[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1955335A2 - Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility - Google Patents

Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility

Info

Publication number
EP1955335A2
EP1955335A2 EP06818538A EP06818538A EP1955335A2 EP 1955335 A2 EP1955335 A2 EP 1955335A2 EP 06818538 A EP06818538 A EP 06818538A EP 06818538 A EP06818538 A EP 06818538A EP 1955335 A2 EP1955335 A2 EP 1955335A2
Authority
EP
European Patent Office
Prior art keywords
oxide layer
treated
water
treatment
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06818538A
Other languages
German (de)
French (fr)
Other versions
EP1955335B1 (en
Inventor
Horst-Otto Bertholdt
Terezinha Claudete Maciel
Franz Strohmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva GmbH
Original Assignee
Areva NP GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva NP GmbH filed Critical Areva NP GmbH
Priority to EP08009058A priority Critical patent/EP1968075B1/en
Priority to SI200631067T priority patent/SI1955335T1/en
Publication of EP1955335A2 publication Critical patent/EP1955335A2/en
Application granted granted Critical
Publication of EP1955335B1 publication Critical patent/EP1955335B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces

Definitions

  • the invention relates to a method for decontamination of an oxide layer having surface of a component or a system of a nuclear facility.
  • an oxidation layer forms on the system and component surfaces, which must be removed in order, for example, to minimize the radiation exposure of the personnel in the case of revision work.
  • the material for a system or a component comes first of all Austenitic chromium-nickel steel, for example, with 72% iron, 18% chromium and 10% nickel in question. Oxidation on the surfaces forms oxide layers with spinel-like structures of the general formula AB 2 O 4 .
  • the chromium is always present in trivalent, nickel always in divalent and iron in both the two- and trivalent form in the oxide structure.
  • Such oxide layers are chemically almost insoluble.
  • the removal or dissolution of an oxide layer in the context of a decontamination process thus always precedes an oxidation step in which the trivalent chromium is converted into hexavalent chromium.
  • the compact spinel structure is destroyed and iron, chromium and nickel oxides are formed which are readily soluble in organic and mineral acids.
  • an oxidation step is followed by treatment with an acid, in particular with a complexing acid, such as oxalic acid.
  • the aforementioned pre-oxidation of the oxide layer is conventionally carried out in acidic solution with potassium permanganate and nitric acid or in alkaline solution with potassium permanganate and sodium hydroxide.
  • the acidic range is used and permanganic acid is used instead of potassium permanganate.
  • the abovementioned processes have the disadvantage that during the oxidation treatment, manganese dioxide (MnO 2 ) forms, which deposits on the oxide layer to be treated and inhibits the passage of the oxidizing agent (permanganate ion) into the oxide layer. In conventional methods, therefore, the oxide layer can not be completely oxidized in one step.
  • manganese dioxide layers must be removed by intermediate reduction treatments. Normally, three to five such reduction treatments are required, which is associated with a correspondingly high expenditure of time.
  • Another disadvantage of the known methods is the large amount of secondary waste, which is mainly due to the removal of manganese by means of ion exchangers.
  • oxidation in the literature is described by means of ozone in aqueous acidic solution with addition of chromates, nitrates or cerium-IV salts.
  • the oxidation with ozone under the conditions mentioned requires process temperatures in the range of 40-60 °. Under these conditions, however, the solubility and thermal stability of ozone is relatively low, so that it is almost impossible to produce ozone concentrations on an oxide layer which are sufficiently high to break up the spinel structure of the oxide layer in an acceptable time.
  • the introduction of ozone in large volumes of water is technically complex. Therefore, despite its disadvantages, oxidation with permanganate or permanganic acid has become established worldwide.
  • This object is achieved in a method according to claim 1, characterized in that the oxidation of the oxide layer with a gaseous oxidizing agent, that is carried out in the gas phase.
  • a gaseous oxidizing agent that is carried out in the gas phase.
  • Such a procedure initially achieves the advantage that the oxidizing agent can be applied to the oxide layer at a considerably higher concentration than is the case with an aqueous solution with its limited solubility for the oxidizing agent.
  • the suitable for the intended purpose oxidizing agents such as ozone or nitrogen oxides are less stable in aqueous solution than in the gas phase.
  • an oxidant in aqueous solution such as the primary coolant of a light water reactor, usually finds a variety of reactants, so that a portion of the oxidizing agent is consumed on its way from the feed point to the oxide layer.
  • the required oxidation reactions in particular the conversion of chromium-III to chromium-VI, would take place too slowly. It is therefore advantageous if, during the treatment, a water film is maintained on the oxide layer and a water-soluble oxidizing agent is used. The oxidizing agent then finds in the water film covering the oxide layer or in pores of the oxide layer filled with water the aqueous conditions required for the course of the oxidative reactions. In the event that emptied a previously filled with water system and then the gas phase oxidation is carried out, the oxide layer is still moistened or moistened with water, so a water film already exists, so this may need to be maintained only during the gas phase oxidation.
  • a water film is preferably generated or maintained by means of water vapor.
  • an elevated temperature may be required for the desired oxidation reactions to take place in economically justifiable periods of time.
  • heat is supplied to the surface of a system or a component or the oxide layer present on it, which takes place, for example, with the aid of an external heating device or preferably with the aid of superheated steam or hot air.
  • the desired water film is also formed on the oxide layer at the same time.
  • ozone is used as the oxidizing agent.
  • ozone is converted to oxygen, which can be fed to the exhaust air system of a nuclear installation without further aftertreatment.
  • Ozone is also much more stable in the gas phase than in the aqueous phase. Solubility problems as in the aqueous phase, especially at higher temperatures, do not occur.
  • the ozone gas can thus be introduced in high doses to a water-wetted oxide layer, so that the oxidation of the oxide layer, in particular the oxidation of chromium III to chromium-VI proceeds faster, in particular when working at higher temperatures.
  • Ozone has an oxidation potential of 2.08 V in an acidic solution, but only 1.25 V in a basic solution.
  • acidic conditions are created in the water film wetting the oxide layer, which occurs in particular due to the metered addition of nitrogen oxides can.
  • ozone as an oxidizing agent, a pH of 1 to 2 is maintained.
  • the acidification of the water film takes place preferably with the aid of gaseous acid anhydrides. These form acids under water accumulation in the water film.
  • the acid anhydrides have an oxidizing effect, they can at the same time be used as oxidizing agents, as is the case with a preferred process variant described below.
  • the occurring oxidation reactions can be accelerated by using elevated temperatures.
  • a temperature range of 40-70 0 C has been found to be particularly advantageous. From 40 0 C, the oxidation reactions take place in the oxide layer at an acceptable rate. However, a temperature increase is only useful up to about 70 0 C, since at higher temperatures, the decomposition of ozone in the gas phase increases significantly.
  • the duration for the oxidation treatment of the oxide layer can be influenced not only by the temperature but also by the concentration of the oxidizing agent. In the case of ozone, acceptable conversion rates, optimum ratios at concentrations of 100 to 120 g / Nm 3 , are achieved within the abovementioned temperature range only from about 5 g / Nm 3 .
  • nitrogen oxides ie mixtures of various nitrogen oxides such as NO, NO 2 , N 2 O and N 2 O 4 are used for the oxidation.
  • NO x nitrogen oxides
  • the oxidation effect can be increased by using elevated temperatures, with such an increase from about 80 0 C is noticeable. The best efficiency is achieved when operating in a temperature range of about 110 0 C to about 180 0 C.
  • the oxidation effect can also, as in the case of ozone, be influenced by the concentration of nitrogen oxides.
  • a NO x concentration of less than 0.5 g / Nm 3 is hardly effective.
  • work is carried out at NO x concentrations of 10 to 50 g / Nm 3 .
  • an oxide layer is subjected to steam after the oxidation treatment, wherein a condensation of the water vapor takes place at the oxide layer.
  • a condensation of the water vapor takes place at the oxide layer.
  • activity adhering to or in contact with the oxide layers or component surfaces for example in particle form or in dissolved or colloidal form, passes into the condensate and is removed therefrom by the surface treatment. This effect is clearly noticeable at water vapor temperatures above 100 ° C.
  • Another advantage of this approach is the comparatively small amount of accumulating condensate.
  • Treatment was performed, removed and condensed. Together with the condensate draining from a component surface, it is passed over a cation exchanger. In this way, the condensate is released from the activity and can be disposed of easily.
  • a further treatment may be expedient in advance, especially if nitrate ions are contained which originate from the oxidative treatment of an oxide layer or an acidification of a water film with nitrogen oxides.
  • the nitrates are preferably removed from the condensate by reacting with a reducing agent, in particular with hydrazine, to form gaseous nitrogen become. It is expedient to set a molar ratio of nitrate to hydrazine of 1: 0.5 to 2: 5.
  • the attached figure shows a flow chart for a decontamination process.
  • the system 1 to be decontaminated for example the primary circuit of a pressurized water system, is first emptied.
  • a component such as a primary system pipeline
  • this is arranged in a container.
  • a decontamination circuit 2 is connected to the system 1 and the container. This is gas-tight.
  • the decontamination circuit 2 and the system are checked for leaks, for example by evacuation.
  • the entire system is therefore system 1 and
  • Decontamination circuit 2 heated.
  • a feed station 3 for hot air and / or superheated steam is arranged in the decontamination circuit 2.
  • the supply of air or steam via a supply line 4.
  • a pump 5 is further provided to fill the system 1 with the appropriate gaseous medium and this, as long as necessary, circulate throughout the plant.
  • the system With the help of hot air or hot steam, the system is brought to the intended process temperature, in the case of ozone to 50-70 0 C.
  • steam is added via the feed station 3.
  • Separating or condensing water is separated off at the system outlet 6 with the aid of a liquid separator 7 and removed from the decontamination circuit 2 with the aid of a condensate line 8.
  • the water film wetting the oxide layer to be oxidized is acidified.
  • 2 gaseous nitrogen oxides or finely atomized nitric acid are added at a feed station 9 of the decontamination cycle.
  • the nitrogen oxides dissolve in the water to form the corresponding acids, such as to form nitric or nitrous acid.
  • the metered amounts of NO x or nitric acid / nitrous acid are chosen so that a pH of about 1 to 2 is established in the water film.
  • the system 1 is supplied with ozone via a feed stadium 10 having a concentration in the range of preferably 100 to 120 g / Nm 3 continuously supplied when the pump 5 is in operation. If necessary, there is a continuous feed of NO x (or HNO 3 ) to maintain the acidic conditions in the water film and hot air or superheated steam to maintain the set temperature parallel to the ozone feed.
  • NO x or HNO 3
  • part of the gas / vapor mixture present in the decontamination cycle 2 is discharged, so that fresh ozone gas and, if appropriate, other auxiliary substances such as NOx can be metered in, the discharged quantity corresponding to the metered amount of gas.
  • the discharge takes place via a gas scrubber for
  • the ozone-free, optionally still containing water vapor oxygen-air mixture is fed to the exhaust system of the power plant.
  • the ozone concentration is measured at the system return 13 by means of measuring probes (not shown).
  • a temperature monitoring is carried out with appropriate, arranged in the area of the system 1 sensors.
  • the amount of metered NO x is a function of the amount of water vapor supplied. Per Nm 3 of water vapor is supplied at least 0.1 g of NO x, thereby ensuring a pH of the water film of ⁇ 2.
  • Ozone, NO x , hot air supply turned off and a rinse step initiated.
  • the oxide layer is acted upon by steam and ensured that the component surfaces or an oxide layer located thereon have a temperature of less than 100 0 C, so that the water vapor can condense it.
  • activity present in or on the oxide layer is removed by this treatment.
  • the respective surfaces of acid residues mainly so rinsed by nitrates.
  • the nitrate is converted to gaseous nitrogen with the aid of a reducing agent, the best results of which were achieved with hydrazine, and thus removed from the condensate solution.
  • a stoichiometric amount of hydrazine is preferably employed, i. a MoI ratio of nitrate to hydrazine of 2: 5 is set.
  • the active cations are removed by passing the solution through a cation exchanger.
  • the rinsing of an oxidatively treated oxide layer can also be done by filling the system 1 with deionized water.
  • the displaced gas is passed over the catalyst 12 while the residual ozone therein is reduced to O 2 and, as already mentioned above fed to the exhaust system of the nuclear power plant.
  • the nitrate ions present on the surface of the components to be decontaminated or of the oxide layer still present there, which have been formed by metering in nitric acid or by oxidation of NO x are taken up by the deionate and remain during the subsequent treatment to dissolve the oxide coating the decontamination solution.
  • a gas phase oxidation was carried out on a pipe section of a primary system pipeline.
  • a test setup corresponding to the attached flow chart was used.
  • the pipeline originated from a pressurized water system with more than 25 years of power operation and was provided with an inner cladding made of austenitic Fe-Cr-Ni steel (DIN 1.4551).
  • the oxide layer of Inconel 600 steam generator tubes which had been in power operation for 22 years, was pre-oxidized with ozone in the gas phase.
  • comparative experiments were carried out with permanganate as the oxidant.
  • Table 1 Decontamination of austenitic Fe / Cr / Ni steel plating (DIN 1.4551) from a primary pipeline of a pressurized water reactor

Landscapes

  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Treating Waste Gases (AREA)

Abstract

The invention relates to a method for decontaminating an oxide layer-containing surface of a component or a system of a nuclear facility. According to said method, the oxide layer is treated with a gaseous oxidant.

Description

Beschreibung description
Verfahren zur Dekontamination einer eine Oxidschicht aufwei- senden Oberfläche einer Komponente oder eines Systems einer kerntechnischen AnlageMethod for decontaminating a surface of a component or a system of a nuclear installation which has an oxide layer
Die Erfindung betrifft ein Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechnischen Anlage. Während des Betriebs eines Leichtwasserreaktors bildet sich auf System- und Komponentenoberflächen eine Oxidationsschicht , die entfernt werden muss, um beispielsweise im Falle von Revisionsarbeiten die Strahlenbelastung des Personals möglichst gering zu hal- ten. Als Material für ein System bzw. eine Komponente kommt vor allen Dingen austenitischer Chrom-Nickel-Stahl beispielsweise mit 72% Eisen, 18% Chrom und 10% Nickel in Frage. Durch Oxidation bilden sich auf den Oberflächen Oxidschichten mit spinellartigen Strukturen der allgemeinen Formel AB2O4. Das Chrom kommt dabei immer in dreiwertiger, Nickel immer in zweiwertiger und Eisen sowohl in zwei- als auch in dreiwertiger Form in der Oxidstruktur vor. Derartige Oxidschichten sind chemisch nahezu unlöslich. Der Entfernung bzw. Auflösung einer Oxidschicht im Rahmen eines Dekontaminationsverfahrens geht somit stets ein Oxidationsschritt voraus, bei dem das dreiwertig gebundenen Chrom in sechswertiges Chrom überführt wird. Dabei wird die kompakte Spinellstruktur zerstört und es bilden sich Eisen- , Chrom- und Nickeloxide, die in organischen und mineralischen Säuren leicht löslich sind. Herkömmlicherweise schließt sich daher an einen Oxidationsschritt eine Behandlung mit einer Säure, insbesondere mit einer komplexierenden Säure, etwa Oxalsäure an.The invention relates to a method for decontamination of an oxide layer having surface of a component or a system of a nuclear facility. During operation of a light water reactor, an oxidation layer forms on the system and component surfaces, which must be removed in order, for example, to minimize the radiation exposure of the personnel in the case of revision work. The material for a system or a component comes first of all Austenitic chromium-nickel steel, for example, with 72% iron, 18% chromium and 10% nickel in question. Oxidation on the surfaces forms oxide layers with spinel-like structures of the general formula AB 2 O 4 . The chromium is always present in trivalent, nickel always in divalent and iron in both the two- and trivalent form in the oxide structure. Such oxide layers are chemically almost insoluble. The removal or dissolution of an oxide layer in the context of a decontamination process thus always precedes an oxidation step in which the trivalent chromium is converted into hexavalent chromium. In the process, the compact spinel structure is destroyed and iron, chromium and nickel oxides are formed which are readily soluble in organic and mineral acids. Conventionally, therefore, an oxidation step is followed by treatment with an acid, in particular with a complexing acid, such as oxalic acid.
Die erwähnte Voroxidation der Oxidschicht wird herkömmlicher- weise in saurer Lösung mit Kaliumpermanganat und Salpetersäure oder in alkalischer Lösung mit Kaliumpermanganat und Natriumhydroxid durchgeführt. Bei einem aus EP 0 160 831 Bl bekannten Verfahren wird im sauren Bereich gearbeitet und anstelle von Kaliumpermanganat Permangansäure eingesetzt. Die genannten Verfahren haben den Nachteil, dass sich während der Oxidati - onsbehandlung Braunstein (MnO2) bildet, der sich auf der zu behandelnden Oxidschicht absetzt und den Übertritt des Oxida- tionsmittels (Permanganat-Ion) in die Oxidschicht hemmt. Bei herkömmlichen Verfahren kann daher die Oxidschicht nicht in einem Schritt vollständig aufoxidiert werden. Vielmehr müssen als Diffusionssperre wirkende Braunsteinschichten durch zwischengeschaltete Reduktionsbehandlungen entfernt werden. Normalerweise sind drei bis fünf solcher Reduktionsbehandlungen erforderlich, was mit entsprechend hohem Zeitaufwand verbunden ist. Ein weiterer Nachteil der bekannten Verfahren ist die große Menge an Sekundärabfall, die sich vor allem durch die Entfernung des Mangans mittels Ionentauscher ergibt.The aforementioned pre-oxidation of the oxide layer is conventionally carried out in acidic solution with potassium permanganate and nitric acid or in alkaline solution with potassium permanganate and sodium hydroxide. In a method known from EP 0 160 831 Bl, the acidic range is used and permanganic acid is used instead of potassium permanganate. The abovementioned processes have the disadvantage that during the oxidation treatment, manganese dioxide (MnO 2 ) forms, which deposits on the oxide layer to be treated and inhibits the passage of the oxidizing agent (permanganate ion) into the oxide layer. In conventional methods, therefore, the oxide layer can not be completely oxidized in one step. Rather, acting as a diffusion barrier manganese dioxide layers must be removed by intermediate reduction treatments. Normally, three to five such reduction treatments are required, which is associated with a correspondingly high expenditure of time. Another disadvantage of the known methods is the large amount of secondary waste, which is mainly due to the removal of manganese by means of ion exchangers.
Neben der Permanganatoxidation wird in der Literatur die Oxi- dation mittels Ozon in wässriger saurer Lösung unter Zusatz von Chromaten, Nitraten oder Cer-IV-Salzen beschrieben. Die Oxidation mit Ozon unter den genannten Bedingungen erfordert Prozesstemperaturen im Bereich von 40-60°. Unter diesen Bedingungen ist jedoch die Löslichkeit und die thermische Bestän- digkeit des Ozons relativ gering, so dass es nahezu unmöglich ist, an einer Oxidschicht Ozonkonzentrationen zu erzeugen, die ausreichend hoch sind, um die Spinellstruktur der Oxidschicht in akzeptabler Zeit aufzubrechen. Außerdem ist die Einbringung von Ozon in große Wasservolumina technisch aufwendig. Daher hat sich, trotz ihrer Nachteile, die Oxidation mit Permanganat bzw. Permangansäure weltweit durchgesetzt.In addition to permanganate oxidation, oxidation in the literature is described by means of ozone in aqueous acidic solution with addition of chromates, nitrates or cerium-IV salts. The oxidation with ozone under the conditions mentioned requires process temperatures in the range of 40-60 °. Under these conditions, however, the solubility and thermal stability of ozone is relatively low, so that it is almost impossible to produce ozone concentrations on an oxide layer which are sufficiently high to break up the spinel structure of the oxide layer in an acceptable time. In addition, the introduction of ozone in large volumes of water is technically complex. Therefore, despite its disadvantages, oxidation with permanganate or permanganic acid has become established worldwide.
Davon ausgehend ist es die Aufgabe der Erfindung, ein Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntech- nischen Anlage vorzuschlagen, welches wirksam arbeitet und insbesondere einstufig durchführbar ist.On this basis, it is the object of the invention to provide a method for decontaminating an oxide layer having a surface of a component or a system of nuclear technology niche plant suggest that works effectively and in particular one-stage feasible.
Diese Aufgabe wird bei einem Verfahren nach Anspruch 1 dadurch gelöst, dass die Oxidation der Oxidschicht mit einem gasförmigen Oxidationsmittel , also in der Gasphase durchgeführt wird. Durch eine derartige Verfahrensweise wird zunächst der Vorteil erzielt, dass das Oxidationsmittel mit einer erheblich höheren Konzentration auf die Oxidschicht appliziert werden kann, als dies bei einer wässrigen Lösung mit ihrer begrenzten Lösefähigkeit für das Oxidationsmittel der Fall ist. Außerdem sind die für den vorgesehenen Zweck in Frage kommenden Oxidationsmittel wie beispielsweise Ozon oder Stickoxide in wässriger Lösung weniger beständig als in der Gasphase. Hinzu kommt noch, dass ein Oxidationsmittel in wässriger Lösung, etwa dem Primärkühlmittel eines Leichtwasserreaktors, in der Regel eine Vielzahl von Reaktionspartnern findet, so dass ein Teil des Oxidationsmittels auf seinem Weg von der Einspeisestelle zur Oxidschicht verbraucht wird.This object is achieved in a method according to claim 1, characterized in that the oxidation of the oxide layer with a gaseous oxidizing agent, that is carried out in the gas phase. Such a procedure initially achieves the advantage that the oxidizing agent can be applied to the oxide layer at a considerably higher concentration than is the case with an aqueous solution with its limited solubility for the oxidizing agent. In addition, the suitable for the intended purpose oxidizing agents such as ozone or nitrogen oxides are less stable in aqueous solution than in the gas phase. In addition, an oxidant in aqueous solution, such as the primary coolant of a light water reactor, usually finds a variety of reactants, so that a portion of the oxidizing agent is consumed on its way from the feed point to the oxide layer.
Bei völlig trockener Oxidschicht würden die erforderlichen Oxidationsreaktionen, insbesondere die Umwandlung von Chrom- III zu Chrom-VI, zu langsam ablaufen. Daher ist es vorteilhaft, wenn während der Behandlung auf der Oxidschicht ein Wasserfilm aufrechterhalten und ein wasserlösliches Oxidationsmittel verwendet wird. Das Oxidationsmittel findet dann in dem die Oxidschicht bedeckenden Wasserfilm bzw. in mit Wasser gefüllten Poren der Oxidschicht die zum Ablaufen der oxidati- ven Umsetzungen erforderlichen wässrigen Bedingungen vor. Für den Fall, dass ein vorher mit Wasser gefülltes System entleert und anschließend die Gasphasenoxidation durchgeführt wird, ist die Oxidschicht noch mit Wasser benetzt bzw. durchfeuchtet, ein Wasserfilm also schon vorhanden, so dass dieser gegebenenfalls während der Gasphasenoxidation nur noch aufrechterhalten werden muss. Ein Wasserfilm wird vorzugsweise mit Hilfe von Wasserdampf erzeugt bzw. aufrechterhalten. Je nach Art des verwendeten Oxidationsmittel kann eine erhöhte Temperatur erforderlich sein, damit die gewünschten Oxidati- onsreaktionen in ökonomisch vertretbaren Zeiträumen ablaufen. Bei einer weiteren bevorzugten Verfahrensvariante ist daher vorgesehen, dass der Oberfläche eines Systems oder einer Komponente bzw. der auf ihr vorhandenen Oxidschicht Wärme zugeführt wird, was etwa mit Hilfe einer externen Heizeinrichtung oder vorzugsweise mit Hilfe von Heißdampf oder Heißluft er- folgt. Im erstgenannten Fall entsteht gleichzeitig auch der gewünschte Wasserfilm auf der Oxidschicht.With a completely dry oxide layer, the required oxidation reactions, in particular the conversion of chromium-III to chromium-VI, would take place too slowly. It is therefore advantageous if, during the treatment, a water film is maintained on the oxide layer and a water-soluble oxidizing agent is used. The oxidizing agent then finds in the water film covering the oxide layer or in pores of the oxide layer filled with water the aqueous conditions required for the course of the oxidative reactions. In the event that emptied a previously filled with water system and then the gas phase oxidation is carried out, the oxide layer is still moistened or moistened with water, so a water film already exists, so this may need to be maintained only during the gas phase oxidation. A water film is preferably generated or maintained by means of water vapor. Depending on the nature of the oxidizing agent used, an elevated temperature may be required for the desired oxidation reactions to take place in economically justifiable periods of time. In a further preferred variant of the method it is therefore provided that heat is supplied to the surface of a system or a component or the oxide layer present on it, which takes place, for example, with the aid of an external heating device or preferably with the aid of superheated steam or hot air. In the former case, the desired water film is also formed on the oxide layer at the same time.
Bei einer besonders bevorzugten Verfahrensvariante wird als Oxidationsmittel Ozon verwendet. Bei den in oder an der Oxid- schicht ablaufenden Redox-Reaktionen wird Ozon zu Sauerstoff umgesetzt, der ohne weitere Nachbehandlung dem Abluftsystem einer kerntechnisches Anlage zugeführt werden kann. Ozon ist außerdem in der Gasphase wesentlich beständiger als in der wässrigen Phase. Lδslichkeitsprobleme wie in der wässrigen Phase, insbesondere bei höheren Temperaturen, treten nicht auf. Das Ozongas kann somit in hohen Dosen an eine wasserbenetzte Oxidschicht herangeführt werden, so dass die Oxidation der Oxidschicht, insbesondere die Oxidation von Chrom- III zu Chrom-VI schneller vonstatten geht, insbesondere wenn bei höheren Temperaturen gearbeitet wird.In a particularly preferred variant of the method, ozone is used as the oxidizing agent. In the case of the redox reactions taking place in or on the oxide layer, ozone is converted to oxygen, which can be fed to the exhaust air system of a nuclear installation without further aftertreatment. Ozone is also much more stable in the gas phase than in the aqueous phase. Solubility problems as in the aqueous phase, especially at higher temperatures, do not occur. The ozone gas can thus be introduced in high doses to a water-wetted oxide layer, so that the oxidation of the oxide layer, in particular the oxidation of chromium III to chromium-VI proceeds faster, in particular when working at higher temperatures.
Nicht nur Ozon, sondern auch andere Oxidationsmittel haben in saurer Lösung ein höheres Oxidationspotential als in alkalischer Lösung. Ozon beispielsweise hat in saurer Lösung ein Oxidationspotential von 2,08 V, in basischer Lösung dagegen nur von 1,25 V. Bei einer weiteren bevorzugten Verfahrensvariante werden daher in dem die Oxidschicht benetzenden Wasserfilm saure Bedingungen geschaffen, was insbesondere durch die Zudosierung von Stickoxiden geschehen kann. Insbesondere im Falle von Ozon als Oxidationsmittel wird ein pH-Wert von 1 bis 2 eingehalten. Das Ansäuern des Wasserfilms erfolgt vor- zugsweise mit Hilfe von gasförmigen Säureanhydriden. Diese bilden unter Wasseranlagerung im Wasserfilm Säuren.Not only ozone, but also other oxidants have a higher oxidation potential in acidic solution than in alkaline solution. Ozone, for example, has an oxidation potential of 2.08 V in an acidic solution, but only 1.25 V in a basic solution. In a further preferred process variant, acidic conditions are created in the water film wetting the oxide layer, which occurs in particular due to the metered addition of nitrogen oxides can. In particular, in the case of ozone as an oxidizing agent, a pH of 1 to 2 is maintained. The acidification of the water film takes place preferably with the aid of gaseous acid anhydrides. These form acids under water accumulation in the water film.
Wenn die Säureanhydride oxidierend wirken, können sie gleich- zeitig als Oxidationsmittel eingesetzt werden, wie dies bei einer weiter unten beschriebenen bevorzugten Verfahrensvariante der Fall ist.If the acid anhydrides have an oxidizing effect, they can at the same time be used as oxidizing agents, as is the case with a preferred process variant described below.
Wie bereits erwähnt wurde, können die ablaufenden Oxidations- reaktionen durch Anwendung erhöhter Temperaturen beschleunigt werden. Im Falle der Oxidation mit Ozon hat sich ein Temperaturbereich von 40-700C als besonders vorteilhaft herausgestellt. Ab 40 0C laufen die Oxidationsreaktionen in der Oxidschicht mit akzeptabler Geschwindigkeit ab. Eine Temperatur- Steigerung ist jedoch nur bis etwa 70 0C zweckmäßig, da bei höheren Temperaturen der Zerfall des Ozons in der Gasphase merklich zunimmt. Die Dauer für die Oxidationsbehandlung der Oxidschicht kann außer durch die Temperatur auch durch die Konzentration des Oxidationsmittels beeinflusst werden. Im Fall von Ozon werden innerhalb des o.g. Temperaturbereichs erst ab etwa 5 g/Nm3 akzeptable Umsatzraten, optimale Verhältnisse bei Konzentrationen von 100 bis 120 g/Nm3 erreicht.As already mentioned, the occurring oxidation reactions can be accelerated by using elevated temperatures. In the case of oxidation with ozone, a temperature range of 40-70 0 C has been found to be particularly advantageous. From 40 0 C, the oxidation reactions take place in the oxide layer at an acceptable rate. However, a temperature increase is only useful up to about 70 0 C, since at higher temperatures, the decomposition of ozone in the gas phase increases significantly. The duration for the oxidation treatment of the oxide layer can be influenced not only by the temperature but also by the concentration of the oxidizing agent. In the case of ozone, acceptable conversion rates, optimum ratios at concentrations of 100 to 120 g / Nm 3 , are achieved within the abovementioned temperature range only from about 5 g / Nm 3 .
Bei einer weiteren bevorzugten Verfahrensvariante werden zur Oxidation Stickoxide (NOx) , also Gemische verschiedener Stickstoffoxide wie NO, NO2, N2O und N2O4 eingesetzt. Auch bei Verwendung von Stickoxiden kann die Oxidationswirkung durch Anwendung erhöhter Temperaturen gesteigert werden, wobei eine solche Steigerung ab etwa 80 0C spürbar ist. Die beste Effek- tivität wird erreicht, wenn in einem Temperaturbereich von etwa 110 0C bis etwa 180 0C gearbeitet wird. Die Oxidationswirkung kann außerdem, wie im Falle von Ozon auch, durch die Konzentration der Stickoxide beeinflusst werden. Eine NOx- Konzentration von weniger als 0,5 g/Nm3 ist kaum wirksam. Vorzugsweise wird bei NOx-Konzentrationen von 10 bis 50 g/Nm3 gearbeitet . Bevor nach Abschluss der Oxidationsbehandlung eine Auflösung der auf einer Bauteiloberfläche vorhandenen Oxidschicht eingeleitet wird, ist eine Spülung der auf die oben geschilderte Art und Weise behandelten Oxidschicht, beispielsweise mitIn a further preferred process variant, nitrogen oxides (NO x ), ie mixtures of various nitrogen oxides such as NO, NO 2 , N 2 O and N 2 O 4 are used for the oxidation. Even when using nitrogen oxides, the oxidation effect can be increased by using elevated temperatures, with such an increase from about 80 0 C is noticeable. The best efficiency is achieved when operating in a temperature range of about 110 0 C to about 180 0 C. The oxidation effect can also, as in the case of ozone, be influenced by the concentration of nitrogen oxides. A NO x concentration of less than 0.5 g / Nm 3 is hardly effective. Preferably, work is carried out at NO x concentrations of 10 to 50 g / Nm 3 . Before dissolution of the oxide layer present on a component surface is initiated after completion of the oxidation treatment, rinsing of the oxide layer treated in the above-described manner, for example with
Deionat zweckmäßig. Bei einer bevorzugten Verfahrensvariante wird jedoch eine Oxidschicht im Anschluss an die Oxidationsbehandlung mit Wasserdampf beaufschlagt wird, wobei an der Oxidschicht eine Kondensation des Wasserdampfes erfolgt. Damit Wasserdampf kondensieren kann ist gegebenenfalls eine Abkühlung der Bauteiloberflächen bzw. einer auf ihnen vorhandenen Oxidschicht auf eine Temperatur unterhalb 100 0C erforderlich. Es hat sich überraschenderweise gezeigt, dass durch diese Behandlung in oder an den Oxidschichten oder Bauteiloberflä- chen anhaftende Aktivität, etwa in Partikelform oder in gelöster oder kolloidaler Form in das Kondensat übertritt und mit diesem von den Oberflächen entfernt wird. Dieser Effekt macht sich bei Wasserdampf-Temperaturen oberhalb von 100 0C deutlich bemerkbar. Ein weiterer Vorteil dieser Vorgehensweise ist die vergleichsweise geringe Menge an anfallender Kondensatflüssigkeit.Deionat appropriate. In a preferred variant of the method, however, an oxide layer is subjected to steam after the oxidation treatment, wherein a condensation of the water vapor takes place at the oxide layer. In order for water vapor to condense, it may be necessary to cool the component surfaces or an oxide layer present on them to a temperature below 100 ° C. It has surprisingly been found that activity adhering to or in contact with the oxide layers or component surfaces, for example in particle form or in dissolved or colloidal form, passes into the condensate and is removed therefrom by the surface treatment. This effect is clearly noticeable at water vapor temperatures above 100 ° C. Another advantage of this approach is the comparatively small amount of accumulating condensate.
Überschüssiger Wasserdampf, also solcher der nicht an den behandelten Oberflächen kondensiert ist, wird aus dem zu rei- nigenden System oder einem Behälter, in dem eine oxidativeExcess water vapor, that is, which is not condensed on the treated surfaces, is removed from the system to be cleaned or a container in which an oxidative
Behandlung durchgeführt wurde, entfernt und kondensiert. Zusammen mit dem von einer Bauteiloberfläche ablaufenden Kondensat wird es über einen Kationentauscher geführt wird. Auf diese Weise wird das Kondensat von der Aktivität befreit und kann problemlos entsorgt werden. Vorher kann allerdings eine weitere Behandlung zweckmäßig sein, insbesondere wenn Nitrationen enthalten sind, die aus der oxidativen Behandlung einer Oxidschicht oder einer Ansäuerung eines Wasserfilms mit Stickoxiden stammen. Die Nitrate werden vorzugsweise dadurch aus dem Kondensat entfernt, dass sie mit einem Reduktionsmittel, insbesondere mit Hydrazin zu gasförmigen Stickstoff umgesetzt werden. Dabei wird zweckmäßigerweise ein Molverhältnis von Nitrat zu Hydrazin von 1:0,5 bis 2:5 eingestellt.Treatment was performed, removed and condensed. Together with the condensate draining from a component surface, it is passed over a cation exchanger. In this way, the condensate is released from the activity and can be disposed of easily. However, a further treatment may be expedient in advance, especially if nitrate ions are contained which originate from the oxidative treatment of an oxide layer or an acidification of a water film with nitrogen oxides. The nitrates are preferably removed from the condensate by reacting with a reducing agent, in particular with hydrazine, to form gaseous nitrogen become. It is expedient to set a molar ratio of nitrate to hydrazine of 1: 0.5 to 2: 5.
Die beigefügte Abbildung zeigt ein Flussdiagramm für ein De- kontaminationsverfahren. Das zu dekontaminierende System 1, beispielsweise der Primärkreis einer Druckwasseranlage wird zunächst entleert. Bei der Dekontamination eines Bauteils, beispielsweise einer Primärsystem-Rohrleitung, wird dieses in einem Behälter angeordnet. Ein solcher Behälter würde im Flussdiagramm dem System 1 entsprechen. An das System 1 bzw. den Behälter ist ein Dekontaminationskreislauf 2 angeschlossen. Dieser ist gasdicht ausgeführt. Vor der Inbetriebnahme erfolgt eine Prüfung des Dekontaminationskreislaufs 2 und des Systems auf Dichtigkeit beispielsweise durch Evakuieren. Als nächster Schritt wird die gesamte Anlage also System 1 undThe attached figure shows a flow chart for a decontamination process. The system 1 to be decontaminated, for example the primary circuit of a pressurized water system, is first emptied. In the decontamination of a component, such as a primary system pipeline, this is arranged in a container. Such a container would correspond in the flow chart to the system 1. To the system 1 and the container, a decontamination circuit 2 is connected. This is gas-tight. Before commissioning, the decontamination circuit 2 and the system are checked for leaks, for example by evacuation. As a next step, the entire system is therefore system 1 and
Dekontaminationskreislauf 2 aufgeheizt. Zu diesem Zweck ist in den Dekontaminationskreislauf 2 eine Einspeisestadion 3 für Heißluft und/oder Heißdampf angeordnet. Die Zuführung von Luft bzw. Dampf erfolgt über eine Zuleitung 4. Im Dekontaminations- kreislauf 2 ist weiterhin eine Pumpe 5 vorhanden, um das System 1 mit dem entsprechenden gasförmigen Medium zu füllen und dieses, solange erforderlich, in der gesamten Anlage umzuwälzen. Mit Hilfe heißer Luft oder Heißdampf wird das System auf die vorgesehene Prozesstemperatur, im Falle von Ozon auf 50-700C gebracht. Zur Erzeugung eines Wasserfilms auf der Oxidschicht des Systems 1 bzw. einer in einem Behälter vorhandenen Systemkomponente wird über die Einspeisestadion 3 Wasserdampf zudosiert. Sich abscheidendes oder kondensierendes Wasser wird am Systemausgang 6 mit Hilfe eines Flüssigkeitsab- scheiders 7 abgetrennt und mit Hilfe einer Kondensatleitung 8 aus dem Dekontaminationskreislauf 2 entfernt. Zur Beschleunigung der CrIIl/CrVI-Oxidation wird der die zu oxidierende Oxidschicht benetzende Wasserfilm angesäuert. Dazu werden an einer Einspeisestadion 9 des Dekontaminationskreislaufes 2 gasförmige Stickoxide oder fein vernebelte Salpetersäure zudosiert. Die Stickoxide lösen sich im Wasser unter Bildung der entsprechenden Säuren, etwa unter Bildung von Salpeter- oder salpetriger Säure. Die zudosierten Mengen an NOx bzw. Salpetersäure/salpetriger Säure werden so gewählt, dass sich im Was- serfilm ein pH-Wert von etwa 1 bis 2 einstellt. Sobald die erforderlichen Prozessparameter, also gewünschte Temperatur des Systems bzw. eines auf einer Oberfläche vorhandenen Oxidfilms, Vorhandensein eines Wasserfilms und Säuregrad des Wasserfilms, erreicht sind, wird dem System 1 über eine Einspeisestadion 10 Ozon mit einer Konzentration im Bereich von vor- zugsweise 100 bis 120 g/Nm3 bei in Betrieb befindlicher Pumpe 5 kontinuierlich zugeführt. Soweit erforderlich, erfolgt parallel zur Ozoneinspeisung eine kontinuierliche Einspeisung von NOx (oder auch HNO3) zur Aufrechterhaltung der sauren Bedingungen im Wasserfilm und Heißluft oder Heißdampf zur Aufrechterhaltung der Solltemperatur. Am Systemaustritt 6 wird ein Teil des sich im Dekontaminationskreislauf 2 befindlichen Gas/Dampfgemisches ausgeleitet, damit frisches Ozongas und gegebenenfalls sonstige Hilfsstoffe wie NOx zudosiert werden können, wobei die ausgeleitete Menge der zudosierten Gasmenge entspricht . Die Ausleitung erfolgt über einen Gaswäscher zurDecontamination circuit 2 heated. For this purpose, a feed station 3 for hot air and / or superheated steam is arranged in the decontamination circuit 2. The supply of air or steam via a supply line 4. In the decontamination circuit 2, a pump 5 is further provided to fill the system 1 with the appropriate gaseous medium and this, as long as necessary, circulate throughout the plant. With the help of hot air or hot steam, the system is brought to the intended process temperature, in the case of ozone to 50-70 0 C. To generate a water film on the oxide layer of the system 1 or a system component present in a container, steam is added via the feed station 3. Separating or condensing water is separated off at the system outlet 6 with the aid of a liquid separator 7 and removed from the decontamination circuit 2 with the aid of a condensate line 8. To accelerate the CrIIl / CrVI oxidation, the water film wetting the oxide layer to be oxidized is acidified. For this purpose, 2 gaseous nitrogen oxides or finely atomized nitric acid are added at a feed station 9 of the decontamination cycle. The nitrogen oxides dissolve in the water to form the corresponding acids, such as to form nitric or nitrous acid. The metered amounts of NO x or nitric acid / nitrous acid are chosen so that a pH of about 1 to 2 is established in the water film. As soon as the required process parameters, ie desired temperature of the system or of an oxide film present on a surface, presence of a water film and acidity of the water film, are reached, the system 1 is supplied with ozone via a feed stadium 10 having a concentration in the range of preferably 100 to 120 g / Nm 3 continuously supplied when the pump 5 is in operation. If necessary, there is a continuous feed of NO x (or HNO 3 ) to maintain the acidic conditions in the water film and hot air or superheated steam to maintain the set temperature parallel to the ozone feed. At the system outlet 6, part of the gas / vapor mixture present in the decontamination cycle 2 is discharged, so that fresh ozone gas and, if appropriate, other auxiliary substances such as NOx can be metered in, the discharged quantity corresponding to the metered amount of gas. The discharge takes place via a gas scrubber for
Abscheidung von NOX/HNO3/HNO2 und anschließend über einen Katalysator 12, in welchem eine Umwandlung von Ozon zu Sauerstoff erfolgt. Die ozonfreie, gegebenenfalls noch Wasserdampf enthaltende Sauerstoff-Luftmischung wird dem Abluftsystem des Kraftwerkes zugeführt. Während der Oxidationsbehandlung wird am Systemrücklauf 13 mit Hilfe von Messsonden (nicht dargestellt) die Ozonkonzentration gemessen. Eine Temperaturüberwachung erfolgt mit entsprechenden, im Bereich des Systems 1 angeordneten Messfühlern. Die Menge des zudosierten NOx erfolgt in Abhängigkeit von der zugeführten Wasserdampfmenge. Pro Nm3 Wasserdampf wird mindestens 0,1g NOx zugeführt und dadurch ein pH des Wasserfilms von <2 gewährleistet.Separation of NO x / HNO 3 / HNO 2 and then via a catalyst 12, in which a conversion of ozone to oxygen takes place. The ozone-free, optionally still containing water vapor oxygen-air mixture is fed to the exhaust system of the power plant. During the oxidation treatment, the ozone concentration is measured at the system return 13 by means of measuring probes (not shown). A temperature monitoring is carried out with appropriate, arranged in the area of the system 1 sensors. The amount of metered NO x is a function of the amount of water vapor supplied. Per Nm 3 of water vapor is supplied at least 0.1 g of NO x, thereby ensuring a pH of the water film of <2.
Wenn das in einer Oxidschicht vorhandene Cr-III in Cr-VI zu- mindest in einem wesentlichen Umfang umgewandelt ist, werdenWhen the Cr-III present in an oxide layer is at least substantially converted to Cr-VI
Ozon-, NOx-, Heißlufteinspeisung abgestellt und ein Spülschritt eingeleitet. Vorzugsweise wird dazu die Oxidschicht mit Wasserdampf beaufschlagt und dafür Sorge getragen, dass die Bauteilflächen bzw. eine sich darauf befindliche Oxidschicht eine Temperatur von unter 100 0C aufweisen, damit der Wasserdampf daran kondensieren kann. Wie bereits weiter oben erwähnt, wird durch diese Behandlung in oder an der Oxidschicht vorhandene Aktivität entfernt. Außerdem werden die jeweiligen Oberflächen von Säureresten, hauptsächlich also von Nitraten freigespült. Diese sind bei der oxidativen Behandlung eines Oxidfilms oder bei der Ansäuerung eines auf einer Oxidschicht vorhandenenOzone, NO x , hot air supply turned off and a rinse step initiated. Preferably, the oxide layer is acted upon by steam and ensured that the component surfaces or an oxide layer located thereon have a temperature of less than 100 0 C, so that the water vapor can condense it. As already mentioned above, activity present in or on the oxide layer is removed by this treatment. In addition, the respective surfaces of acid residues, mainly so rinsed by nitrates. These are in the oxidative treatment of an oxide film or in the acidification of an existing on an oxide layer
Oxidfilms aus den dazu verwendeten Stickoxiden durch Reaktion mit Wasser entstanden. Nach dem mit Wasserdampf durchgeführten Spülschritt liegt somit eine wässrige Nitrat und radioaktive Kationen enthaltende Lösung vor. Zunächst wird das Nitrat mit Hilfe eines Reduktionsmittels, die besten Ergebnisse wurden mit Hydrazin erzielt, zu gasförmigen Stickstoff umgewandelt, und damit aus der Kondensatlösung entfernt. Um das Nitrat vollständig zu entfernen wird vorzugsweise eine stöchimetri- sche Menge an Hydrazin eingesetzt, d.h. es wird ein MoI- Verhältnis von Nitrat zu Hydrazin von 2:5 eingestellt. Als nächstes werden die aktiven Kationen entfernt, indem die Lösung über einen Kationenaustauscher geführt wird.Oxide film formed from the nitrogen oxides used by reaction with water. After the rinsing step carried out with water vapor, there is thus an aqueous solution containing nitrate and radioactive cations. First of all, the nitrate is converted to gaseous nitrogen with the aid of a reducing agent, the best results of which were achieved with hydrazine, and thus removed from the condensate solution. To completely remove the nitrate, a stoichiometric amount of hydrazine is preferably employed, i. a MoI ratio of nitrate to hydrazine of 2: 5 is set. Next, the active cations are removed by passing the solution through a cation exchanger.
Natürlich kann die Spülung einer oxidativ behandelten Oxid- schicht auch erfolgen, indem das System 1 mit Deionat aufgefüllt wird. Beim Auffüllen wird das verdrängte Gas über den Katalysator 12 geführt und dabei das sich darin befindliche Rest -Ozon zu O2 reduziert und, wie weiter oben schon erwähnt dem Abluftsystem des Kernkraftwerkes zugeführt. Die auf der Oberfläche der zu dekontaminierenden Bauteile bzw. der dort noch vorhandenen Oxidschicht vorliegenden Nitrationen, die durch Zudosierung von Salpetersäure oder durch Oxidation von NOx entstanden sind, werden vom Deionat aufgenommen und verbleiben während der sich nun anschließenden zum Auflösen der Oxidschicht dienenden Behandlung in der Dekontaminationslösung. Dieser wird zu dem genannten Zwecke eine organische komplexierende Säure, vorzugsweise Oxalsäure, etwa entsprechend einem in EP 0 160 831 Bl beschriebenen Verfahren bei einer Temperatur von beispielsweise 95°C zugesetzt. Dabei wird die Dekontaminationslösung mit Hilfe der Pumpe 5 im Dekontami- nationskreislauf 2 umgewälzt, wobei über einen NebenschlussOf course, the rinsing of an oxidatively treated oxide layer can also be done by filling the system 1 with deionized water. When filling the displaced gas is passed over the catalyst 12 while the residual ozone therein is reduced to O 2 and, as already mentioned above fed to the exhaust system of the nuclear power plant. The nitrate ions present on the surface of the components to be decontaminated or of the oxide layer still present there, which have been formed by metering in nitric acid or by oxidation of NO x , are taken up by the deionate and remain during the subsequent treatment to dissolve the oxide coating the decontamination solution. This is an organic for the purpose mentioned Complexing acid, preferably oxalic acid, about corresponding to a method described in EP 0,160,831 Bl at a temperature of for example 95 ° C added. In this case, the decontamination solution is circulated by means of the pump 5 in the decontamination circuit 2, whereby via a shunt
(nicht dargestellt) ein Teil der Lösung über Ionentauscherhar- ze geführt und aus der Oxidschicht herausgelöste Kationen an den Austauscherharzen gebunden werden. Am Ende der Dekontamination erfolgt schließlich noch eine oxidative Zersetzung der organischen Säure mittels einer UV-Bestrahlung zu Kohlendioxid und Wasser, etwa entsprechend dem in dem EP- Patent 0 753 196 Bl beschriebenen Verfahren.(not shown), a part of the solution is guided over ion exchange resins and cations dissolved out of the oxide layer are bound to the exchange resins. Finally, at the end of decontamination, an oxidative decomposition of the organic acid by means of UV irradiation to carbon dioxide and water takes place, for example in accordance with the process described in EP Patent 0 753 196 Bl.
In einem Laborversuch wurde eine Gasphasenoxidation an einem Rohrstück einer Primärsystemrohrleitung durchgeführt. Dazu wurde ein dem beigefügten Flussdiagramm entsprechender Versuchsaufbau verwendet. Die Rohrleitung stammte aus einer Druckwasseranlage mit mehr als 25 Jahren Leistungsbetrieb und war mit einer Innenplattierung aus austenitischen Fe-Cr-Ni- Stahl (DIN 1.4551) versehen. Dementsprechend dicht und schwer löslich war die auf der Rohrinnenfläche vorhandene Oxidformation In einem zweiten Laborversuch wurde die Oxidschicht von aus Inconel 600 bestehenden Dampferzeugerrohren, die 22 Jahre im Leistungsbetrieb waren, mit Ozon in der Gasphase voroxi- diert . Sowohl zum ersten als auch zum zweiten Laborversuch wurden jeweils Vergleichsversuche mit Permanganat als Oxidati - onsmittel durchgeführt. In weiteren Versuchen wurden Original - proben aus einer Druckwasseranlage, die sich 3 Jahre lang im Leistungsbetrieb befanden, ausschließlich einer NOx-Gasphasen- Oxidation unterzogen. Die Ergebnisse sind in den nachfolgenden Tabellen 1, 2 und 3 zusammengefasst . Unter dem in den Tabellen angegebenen Begriff „Zyklus" ist 1 Voroxidations- und 1 Dekontaminationsschritt zu verstehen. In a laboratory experiment, a gas phase oxidation was carried out on a pipe section of a primary system pipeline. For this purpose, a test setup corresponding to the attached flow chart was used. The pipeline originated from a pressurized water system with more than 25 years of power operation and was provided with an inner cladding made of austenitic Fe-Cr-Ni steel (DIN 1.4551). In a second laboratory experiment, the oxide layer of Inconel 600 steam generator tubes, which had been in power operation for 22 years, was pre-oxidized with ozone in the gas phase. For both the first and second laboratory experiments, comparative experiments were carried out with permanganate as the oxidant. In further tests, original samples from a pressurized water plant, which had been in power operation for 3 years, were exclusively subjected to NO x gas phase oxidation. The results are summarized in Tables 1, 2 and 3 below. The term "cycle" given in the tables refers to 1 pre-oxidation and 1 decontamination step.
Tabelle 1: Dekontamination einer austenitischen Fe/Cr/Ni- Stahlplattierung (DIN 1.4551) aus einer Primärrohrleitung eines DruckwasserreaktorsTable 1: Decontamination of austenitic Fe / Cr / Ni steel plating (DIN 1.4551) from a primary pipeline of a pressurized water reactor
Tabelle 2: Dekontamination von DWR/Dampferzeugerrohren aus Inco- nel 600 Table 2: Decontamination of PWR / steam generator tubes from Inronel 600
Tabelle 3 Original Probe aus einer DWR Anlage (Werkstoff Nr. 1.4550, 3 Jahre LeistungsbetriebTable 3 Original sample from a DWR plant (material no. 1.4550, 3 years power operation
Es ist erkennbar, dass für die Gasphasenoxidation mit Ozon eine wesentlich geringere Behandlungszeit bei niedrigerer Temperatur erforderlich war als bei einer Voroxidation mit Permanganat. Überraschenderweise hat sich auch gezeigt, dass die sich der Voroxidation anschließende Dekontaminationsphase, bei der also die vorbehandelte Oxidschicht mit Hilfe von Oxalsäure abgelöst wurde, ebenfalls in wesentlich kürzerer Zeit durchgeführt werden konnte. Als weiteres überraschendes Ergebnis wurde festgestellt, dass bei einer erfindungsgemäßen Vorgehensweise wesentlich höhere Dekontaminationsfaktoren (DF) erreicht werden können. Da die Nachbehandlung bei den Versuchen und ihren entsprechenden Vergleichsversuchen jeweils gleich war, kann dieses Ergebnis nur als Auswirkung der Voroxidation in der Gasphase interpretiert werden. Diese schließt einen Oxidfilm offenbar in einer Weise auf, die das nachfol- gende Auflösen der Oxidschicht mit Oxal- oder auch einer anderen komplexierenden organischen Säure erheblich begünstigt.It can be seen that a much lower treatment time was required for the gas phase oxidation with ozone than with a pre-oxidation with permanganate. Surprisingly, it has also been found that the decontamination phase subsequent to the preoxidation, in which the pretreated oxide layer was thus removed with the aid of oxalic acid, could likewise be carried out in a much shorter time. As a further surprising result, it was found that in a procedure according to the invention significantly higher decontamination factors (DF) can be achieved. Since the aftertreatment was the same in the experiments and their corresponding comparative experiments, this result can only be interpreted as an effect of the pre-oxidation in the gas phase. This apparently includes an oxide film in a manner that significantly favors the subsequent dissolution of the oxide layer with oxalic or other complexing organic acid.
Vergleichbare Ergebnisse (siehe Tabelle 3) wurden bei einer ausschließlich mit NOx als Oxidationsmittel arbeitenden Voroxi- dation erreicht. 19Comparable results (see Table 3) were achieved with a preoxidation working exclusively with NO x as the oxidant. 19
BezugszeichenlisteLIST OF REFERENCE NUMBERS
1 System 2 Dekontaminationskreislauf1 system 2 decontamination cycle
3 Einspeisestation3 feed station
4 Zuleitung4 supply line
5 Pumpe5 pump
6 Systemausgang 7 Flüssigkeitsabscheider6 System outlet 7 Liquid separator
8 Kondensatleitung8 condensate line
9 Einspeisestation 0 Einspeisestation 2 Katalysator 3 Systemrücklauf 9 Infeed station 0 Infeed station 2 Catalyst 3 System return

Claims

13Ansprüche 13Ansprüche
1. Verfahren zur Dekontamination einer eine Oxidschicht aufweisenden Oberfläche einer Komponente oder eines Systems einer kerntechnischen Anlage, bei dem die Oxidschicht mit einem gasförmigen Oxidationsmittel behandelt wird.A method of decontaminating an oxide layer surface of a component or system of a nuclear facility, wherein the oxide layer is treated with a gaseous oxidizer.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass während der Behandlung auf der Oxidschicht ein Wasserfilm aufrechterhalten und ein wasserlösliches Oxidationsmittel verwendet wird.2. The method according to claim 1, characterized in that maintained during the treatment on the oxide layer, a water film and a water-soluble oxidizing agent is used.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Wasserfilm mit Hilfe von Wasserdampf erzeugt wird.3. The method according to claim 2, characterized in that the water film is produced by means of water vapor.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Oberfläche bzw. der auf ihr vorhandenen Oxidschicht Wärme zugeführt wird.4. The method according to any one of the preceding claims, characterized in that the surface or on its existing oxide layer heat is supplied.
5. Verfahren nach Anspruch 4 , dadurch gekennzeichnet, dass die Wärmezufuhr mit Hilfe von Heißdampf oder Heißluft erfolgt .5. The method according to claim 4, characterized in that the heat is supplied by means of hot steam or hot air.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Wärmezufuhr mit Hilfe einer externen Heizeinrichtung erfolgt . 146. The method according to claim 4, characterized in that the heat is supplied by means of an external heater. 14
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Oxidationsmittel Ozon verwendet wird.7. The method according to any one of the preceding claims, characterized in that is used as the oxidant ozone.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass ein saurer Wasserfilm auf der Oberfläche erzeugt wird.8. The method according to claim 7, characterized in that an acidic water film is produced on the surface.
9. Verfahren nach Anspruch 8, gekennzeichnet durch einen pH-Wert des Wasserfilms von < 2.9. The method according to claim 8, characterized by a pH of the water film of <2.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass der Wasserfilm mit einem gasförmigen Säureanhydrid in Kontakt gebracht wird.10. The method according to claim 8 or 9, characterized in that the water film is brought into contact with a gaseous acid anhydride.
11. Verfahren nach Anspruch 10, gekennzeichnet durch die Verwendung eines Stickoxids.11. The method according to claim 10, characterized by the use of a nitrogen oxide.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass während der Behandlung eine NOx-Konzentration von mindes- tens 0 , lg/Nm3 eingehalten wird.12. The method according to claim 11, characterized in that a NO x concentration of at least 0, lg / Nm 3 is maintained during the treatment.
13. Verfahren nach Anspruch 12, gekennzeichnet durch eine NOx-Konzentration von 0,2 bis 0,5 g/Nm3.13. The method according to claim 12, characterized by a NO x concentration of 0.2 to 0.5 g / Nm 3 .
14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass die zu behandelnde Oberfläche auf eine Temperatur von 300C bis 8O0C aufgeheizt wird. 1514. The method according to any one of claims 7 to 13, characterized in that the surface to be treated is heated to a temperature of 30 0 C to 8O 0 C. 15
15. Verfahren nach Anspruch 14, gekennzeichnet durch eine Temperatur von 60 bis 70 0C.15. The method according to claim 14, characterized by a temperature of 60 to 70 0 C.
16. Verfahren nach einem der Ansprüche 7 bis 15, dadurch gekennzeichnet, dass während der Behandlung eine Ozonkonzentration von mindestens 5 g/Nm3 eingehalten wird.16. The method according to any one of claims 7 to 15, characterized in that an ozone concentration of at least 5 g / Nm 3 is maintained during the treatment.
17. Verfahren nach Anspruch 16, gekennzeichnet durch eine Ozonkonzentration von 100 bis 120 g/Nm3.17. The method according to claim 16, characterized by an ozone concentration of 100 to 120 g / Nm 3 .
18. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Oxidationsmittel ein Stickoxid (NOx) verwendet wird.18. The method according to any one of claims 1 to 6, characterized in that a nitrogen oxide (NO x ) is used as the oxidizing agent.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass die zu behandelnde Oberfläche auf eine Temperatur von mindestens 80 0C, aufgeheizt wird.19. The method according to claim 18, characterized in that the surface to be treated to a temperature of at least 80 0 C, is heated.
20. Verfahren nach Anspruch 19, gekennzeichnet durch eine Temperatur von 1100C bis 1800C.20. The method according to claim 19, characterized by a temperature of 110 0 C to 180 0 C.
21. Verfahren nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass während der Behandlung eine NOx-Konzentration von mindes- tens 1 g/Nm3 eingehalten wird.21. The method according to any one of claims 18 to 20, characterized in that a NO x concentration of at least 1 g / Nm 3 is maintained during the treatment.
22. Verfahren nach Anspruch 21, gekennzeichnet durch e ine NOx- Konzentrat ion von 10 bi s 50 g/Nm3 . 1622. The method according to claim 21, characterized by e in NO x - Concentration ion of 10 bi s 50 g / Nm 3 . 16
23. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Anschluss an die Oxidationsbehandlung die behandelten Oberflächen mit Wasserdampf behandelt werden, wobei an den Oberflächen eine Kondensation des Wasserdampfes erfolgt.23. The method according to any one of the preceding claims, characterized in that, following the oxidation treatment, the treated surfaces are treated with water vapor, wherein on the surfaces, a condensation of the water vapor.
24. Verfahren nach Anspruch 23, gekennzeichnet durch eine Temperatur des Wasserdampfes von größer 100 0C24. The method according to claim 23, characterized by a temperature of the water vapor of greater than 100 0 C.
25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass überschüssiger Wasserdampf kondensiert wird.25. The method according to claim 24, characterized in that excess water vapor is condensed.
26. Verfahren nach Anspruch 24 oder 25, dadurch gekennzeichnet, dass das Kondensat über einen Kationentauscher geführt wird.26. The method according to claim 24 or 25, characterized in that the condensate is passed over a cation exchanger.
27. Verfahren nach Anspruch 24, 25 oder 26, dadurch gekennzeichnet, dass das Kondensat zur Entfernung von darin enthaltenem Nitrat mit einem Reduktionsmittel behandelt wird.27. Process according to claim 24, 25 or 26, characterized in that the condensate is treated with a reducing agent to remove nitrate contained therein.
28. Verfahren nach Anspruch 27, dadurch gekennzeichnet, dass als Reduktionsmittel Hydrazin eingesetzt wird.28. The method according to claim 27, characterized in that hydrazine is used as the reducing agent.
29. Verfahren nach Anspruch 28, gekennzeichnet durch ein Molverhältnis von Nitrat zu Hydrazin von mindestens 1 zu 0,5.29. The method according to claim 28, characterized by a molar ratio of nitrate to hydrazine of at least 1 to 0.5.
30. Verfahren nach Anspruch 29, gekennzeichnet durch ein Molverhältnis von Nitrat zu Hydrazin von 1:0,5 bis 2:5. 1730. The method according to claim 29, characterized by a molar ratio of nitrate to hydrazine of 1: 0.5 to 2: 5. 17
31. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Anschluss an die Oxidationsbehandlung die Oxidschicht mit einer wässrigen Lösung einer organischen Säure behandelt wird.31. The method according to any one of the preceding claims, characterized in that, following the oxidation treatment, the oxide layer is treated with an aqueous solution of an organic acid.
32. Verfahren nach Anspruch 31, gekennzeichnet durch die Verwendung von Oxalsäure. 32. The method according to claim 31, characterized by the use of oxalic acid.
EP06818538A 2005-11-29 2006-11-15 Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility Not-in-force EP1955335B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08009058A EP1968075B1 (en) 2005-11-29 2006-11-15 Method for decontaminating an oxidised surface of a component or a system of a nuclear plant
SI200631067T SI1955335T1 (en) 2005-11-29 2006-11-15 Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005056727 2005-11-29
PCT/EP2006/010927 WO2007062743A2 (en) 2005-11-29 2006-11-15 Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP08009058A Division EP1968075B1 (en) 2005-11-29 2006-11-15 Method for decontaminating an oxidised surface of a component or a system of a nuclear plant
EP08009058.2 Division-Into 2008-05-16

Publications (2)

Publication Number Publication Date
EP1955335A2 true EP1955335A2 (en) 2008-08-13
EP1955335B1 EP1955335B1 (en) 2011-04-27

Family

ID=38051982

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08009058A Not-in-force EP1968075B1 (en) 2005-11-29 2006-11-15 Method for decontaminating an oxidised surface of a component or a system of a nuclear plant
EP06818538A Not-in-force EP1955335B1 (en) 2005-11-29 2006-11-15 Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08009058A Not-in-force EP1968075B1 (en) 2005-11-29 2006-11-15 Method for decontaminating an oxidised surface of a component or a system of a nuclear plant

Country Status (16)

Country Link
US (2) US8608861B2 (en)
EP (2) EP1968075B1 (en)
JP (3) JP4881389B2 (en)
KR (2) KR100960783B1 (en)
CN (2) CN101199026B (en)
AR (2) AR058844A1 (en)
AT (2) ATE522907T1 (en)
BR (2) BRPI0621970A2 (en)
CA (2) CA2633626C (en)
DE (1) DE502006009409D1 (en)
ES (2) ES2365417T3 (en)
MX (1) MX2008000630A (en)
SI (2) SI1955335T1 (en)
TW (2) TW200729233A (en)
WO (1) WO2007062743A2 (en)
ZA (2) ZA200709783B (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1968075B1 (en) * 2005-11-29 2011-08-31 Areva NP GmbH Method for decontaminating an oxidised surface of a component or a system of a nuclear plant
JP4901691B2 (en) * 2007-10-29 2012-03-21 日立Geニュークリア・エナジー株式会社 Chemical decontamination method
KR100889260B1 (en) 2007-11-20 2009-03-17 조한식 Cleaning and disinfection equipment for water pipe
DE102009002681A1 (en) * 2009-02-18 2010-09-09 Areva Np Gmbh Method for the decontamination of radioactively contaminated surfaces
DE102009047524A1 (en) * 2009-12-04 2011-06-09 Areva Np Gmbh Process for surface decontamination
DE102010028457A1 (en) * 2010-04-30 2011-11-03 Areva Np Gmbh Process for surface decontamination
US10056163B2 (en) 2011-09-20 2018-08-21 Siempelkamp NIS Ingenieurgesellschaft mbH Method for dissolving an oxide layer
KR20140095266A (en) 2013-01-24 2014-08-01 한국원자력연구원 Chelate free chemical decontamination reagent for removal of the dense radioactive oxide layer on the metal surface and chemical decontamination method using the same
DE102013100933B3 (en) * 2013-01-30 2014-03-27 Areva Gmbh Process for surface decontamination of components of the coolant circuit of a nuclear reactor
DE102013102331B3 (en) * 2013-03-08 2014-07-03 Horst-Otto Bertholdt Process for breaking down an oxide layer
CN105149278B (en) * 2015-10-14 2017-05-24 广东核电合营有限公司 Chemical cleaning decontamination equipment of nuclear power plant
JP6615009B2 (en) * 2016-03-04 2019-12-04 東京エレクトロン株式会社 Metal contamination prevention method and metal contamination prevention apparatus, and substrate processing method and substrate processing apparatus using them
EP3494579B1 (en) 2017-02-14 2020-08-26 Siempelkamp Nis Ingenieurgesellschaft MBH Process for the removal of a radionuclide containing oxide-layer
CN108630332B (en) * 2018-03-26 2021-06-18 中国核电工程有限公司 Device and method for destroying oxalate in oxalate precipitation and filtration mother liquor
CN112233827B (en) * 2020-09-10 2023-06-13 福建福清核电有限公司 Method for controlling content of dissolved hydrogen before oxidation shutdown of nuclear power station reactor coolant system
CN114684843B (en) * 2020-12-25 2023-11-03 中核四0四有限公司 Method for rapidly oxidizing oxalic acid
KR102631595B1 (en) * 2021-12-13 2024-02-02 한국원자력연구원 Method for Treating Decontamination Waste Liquid Using Dinitrogen Tetroxide

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1392822A (en) * 1971-03-02 1975-04-30 Comitato Nazionale Per Lenergi Extraction of metals from solutions
US4287002A (en) * 1979-04-09 1981-09-01 Atomic Energy Of Canada Ltd. Nuclear reactor decontamination
DE3143440A1 (en) * 1981-11-02 1983-05-19 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe METHOD FOR DECONTAMINATING RADIOACTIVELY CONTAMINATED SURFACES OF METAL MATERIALS
US4587043A (en) * 1983-06-07 1986-05-06 Westinghouse Electric Corp. Decontamination of metal surfaces in nuclear power reactors
DE3413868A1 (en) 1984-04-12 1985-10-17 Kraftwerk Union AG, 4330 Mülheim METHOD FOR CHEMICAL DECONTAMINATION OF METAL COMPONENTS OF CORE REACTOR PLANTS
SU1273404A1 (en) * 1985-08-13 1986-11-30 Институт ядерной энергетики АН БССР Method of separaing oxide film
JPS62269096A (en) * 1986-05-19 1987-11-21 株式会社日立製作所 Decontamination method
JPH0753269B2 (en) * 1992-07-06 1995-06-07 日揮株式会社 How to clean the pipeline
FR2699936B1 (en) * 1992-12-24 1995-01-27 Electricite De France Process for dissolving oxides deposited on a metal substrate.
US5958247A (en) 1994-03-28 1999-09-28 Siemens Aktiengesellschaft Method for disposing of a solution containing an organic acid
DE4410747A1 (en) 1994-03-28 1995-10-05 Siemens Ag Method and device for disposing of a solution containing an organic acid
FR2730641B1 (en) 1995-02-20 1997-03-14 Commissariat Energie Atomique OZONE DECONTAMINATION FOAM, AND DECONTAMINATION METHOD USING THE SAME
US5545794A (en) * 1995-06-19 1996-08-13 Battelle Memorial Institute Method for decontamination of radioactive metal surfaces
GB9610647D0 (en) * 1996-05-21 1996-07-31 British Nuclear Fuels Plc Decontamination of metal
GB9709882D0 (en) * 1997-05-16 1997-07-09 British Nuclear Fuels Plc A method for cleaning radioactively contaminated material
US6635232B1 (en) 1999-05-13 2003-10-21 Kabushiki Kaisha Toshiba Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
JP2002066486A (en) * 2000-09-01 2002-03-05 Kaken Tec Kk Cleaning method for inside surface of conduit line
WO2002027775A1 (en) * 2000-09-28 2002-04-04 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for treating wafer
JP4481524B2 (en) * 2001-04-24 2010-06-16 住友金属鉱山エンジニアリング株式会社 Nitrate nitrogen-containing wastewater treatment method
CN1678535A (en) * 2002-08-29 2005-10-05 住友金属矿山株式会社 Method of treating waste water containing high level nitrate-nitrogen
US7485611B2 (en) * 2002-10-31 2009-02-03 Advanced Technology Materials, Inc. Supercritical fluid-based cleaning compositions and methods
EP1968075B1 (en) * 2005-11-29 2011-08-31 Areva NP GmbH Method for decontaminating an oxidised surface of a component or a system of a nuclear plant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007062743A2 *

Also Published As

Publication number Publication date
WO2007062743A2 (en) 2007-06-07
ES2371685T3 (en) 2012-01-09
EP1955335B1 (en) 2011-04-27
US8021494B2 (en) 2011-09-20
CA2633626A1 (en) 2007-06-07
AR058844A1 (en) 2008-02-27
ZA200800291B (en) 2009-08-26
KR100879849B1 (en) 2009-01-22
SI1968075T1 (en) 2011-12-30
BRPI0621970A2 (en) 2011-07-19
JP4876190B2 (en) 2012-02-15
BRPI0611248A2 (en) 2009-07-07
CN101286374A (en) 2008-10-15
CA2633626C (en) 2010-05-04
CN101199026B (en) 2012-02-22
ATE507566T1 (en) 2011-05-15
US20080190450A1 (en) 2008-08-14
CN101199026A (en) 2008-06-11
SI1955335T1 (en) 2011-09-30
TWI406299B (en) 2013-08-21
EP1968075B1 (en) 2011-08-31
JP2009517638A (en) 2009-04-30
MX2008000630A (en) 2008-03-13
CN101286374B (en) 2012-02-22
ATE522907T1 (en) 2011-09-15
US20090250083A1 (en) 2009-10-08
TWI376698B (en) 2012-11-11
JP2011169910A (en) 2011-09-01
CA2614249C (en) 2010-11-16
JP2010107196A (en) 2010-05-13
US8608861B2 (en) 2013-12-17
TW200826119A (en) 2008-06-16
ZA200709783B (en) 2008-11-26
EP1968075A1 (en) 2008-09-10
AR064520A2 (en) 2009-04-08
KR100960783B1 (en) 2010-06-01
ES2365417T3 (en) 2011-10-04
DE502006009409D1 (en) 2011-06-09
WO2007062743A3 (en) 2007-09-27
CA2614249A1 (en) 2007-06-07
KR20080009767A (en) 2008-01-29
TW200729233A (en) 2007-08-01
KR20080016701A (en) 2008-02-21
JP4881389B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
EP1968075B1 (en) Method for decontaminating an oxidised surface of a component or a system of a nuclear plant
DE102017115122B4 (en) Method for decontaminating a metal surface in a nuclear power plant
EP2564394B1 (en) Process for decontamination of surfaces
DE3013551A1 (en) DECONTAMINATION OF CORE REACTORS
DE69312966T2 (en) METHOD FOR RESOLVING OXYDE DEPOSITED ON A METAL SUBSTRATE
EP2417606A1 (en) Method for decontaminating surfaces
EP0313843B2 (en) Process for decontaminating surfaces
EP2923360B1 (en) Process for decontamination of surfaces of parts of the cooling circuit of a nuclear reactor
DE102007023247B3 (en) Two-stage process to remove magnetite and copper deposits from an atomic power station steam generator using complexing agents
CH626741A5 (en) Process for the chemical decontamination of nuclear reactor components
EP2758966B1 (en) Method for decomposing an oxide layer
EP3494579A1 (en) Method for decomposing a radionuclide-containing oxide layer
EP3430628B1 (en) Process for treatment of waste water from the decontamination of a metal surface from the primary cooling circuit of a nuclear reactor, nuclear reactor waste water treatment device and use of this device
EP3607562B1 (en) Dosing of zinc for decontamination of light water reactors
EP3895184A1 (en) Method for conditioning ion exchange resins and apparatus for carrying out the method
EP2248134B1 (en) Method for conditioning radioactive ion exchange resins
EP0278256A1 (en) Method and apparatus for removing oxide layers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080110

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006009409

Country of ref document: DE

Date of ref document: 20110609

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006009409

Country of ref document: DE

Effective date: 20110609

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 9651

Country of ref document: SK

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2365417

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110829

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110728

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110827

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E011705

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006009409

Country of ref document: DE

Effective date: 20120130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 507566

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006009409

Country of ref document: DE

Representative=s name: MOERTEL, ALFRED, DIPL.-PHYS. DR.RER.NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006009409

Country of ref document: DE

Representative=s name: MOERTEL, ALFRED, DIPL.-PHYS. DR.RER.NAT., DE

Effective date: 20131112

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006009409

Country of ref document: DE

Owner name: AREVA GMBH, DE

Free format text: FORMER OWNER: AREVA NP GMBH, 91052 ERLANGEN, DE

Effective date: 20131112

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006009409

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

Effective date: 20131112

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006009409

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Effective date: 20131112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20131107

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006009409

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006009409

Country of ref document: DE

Representative=s name: MEISSNER BOLTE & PARTNER GBR, DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20141115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006009409

Country of ref document: DE

Representative=s name: MEISSNER BOLTE PATENTANWAELTE RECHTSANWAELTE P, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20161124

Year of fee payment: 11

Ref country code: HU

Payment date: 20161109

Year of fee payment: 11

Ref country code: FI

Payment date: 20161123

Year of fee payment: 11

Ref country code: CH

Payment date: 20161124

Year of fee payment: 11

Ref country code: CZ

Payment date: 20161114

Year of fee payment: 11

Ref country code: SK

Payment date: 20161111

Year of fee payment: 11

Ref country code: DE

Payment date: 20161125

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20161124

Year of fee payment: 11

Ref country code: BG

Payment date: 20161124

Year of fee payment: 11

Ref country code: RO

Payment date: 20161107

Year of fee payment: 11

Ref country code: ES

Payment date: 20161124

Year of fee payment: 11

Ref country code: SI

Payment date: 20161109

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006009409

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 9651

Country of ref document: SK

Effective date: 20171115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171115

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20180709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180605

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: AREVA GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGEMENT DE NOM DU PROPRIETAIRE

Effective date: 20190107

Ref country code: BE

Ref legal event code: PD

Owner name: FRAMATOME GMBH; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CESSION

Effective date: 20190107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171116

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20191212 AND 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221121

Year of fee payment: 17

Ref country code: FR

Payment date: 20221122

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221125

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231115

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231115

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231130