EP1949964A1 - Process for the flotation of non-sulfidic minerals and ores - Google Patents
Process for the flotation of non-sulfidic minerals and ores Download PDFInfo
- Publication number
- EP1949964A1 EP1949964A1 EP07001678A EP07001678A EP1949964A1 EP 1949964 A1 EP1949964 A1 EP 1949964A1 EP 07001678 A EP07001678 A EP 07001678A EP 07001678 A EP07001678 A EP 07001678A EP 1949964 A1 EP1949964 A1 EP 1949964A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flotation
- collectors
- ores
- minerals
- monoesters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000005188 flotation Methods 0.000 title claims abstract description 55
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims abstract description 55
- 239000011707 mineral Substances 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000008569 process Effects 0.000 title claims abstract description 25
- 239000000725 suspension Substances 0.000 claims abstract description 8
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 7
- 239000006260 foam Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000006872 improvement Effects 0.000 claims abstract description 3
- -1 hydroxyethyl radical Chemical group 0.000 claims description 27
- 125000004432 carbon atom Chemical group C* 0.000 claims description 15
- 229910021532 Calcite Inorganic materials 0.000 claims description 13
- 150000004665 fatty acids Chemical class 0.000 claims description 12
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 11
- 239000000194 fatty acid Substances 0.000 claims description 11
- 229930195729 fatty acid Natural products 0.000 claims description 11
- 238000009291 froth flotation Methods 0.000 claims description 7
- 239000003093 cationic surfactant Substances 0.000 claims description 5
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 3
- 239000005642 Oleic acid Substances 0.000 claims description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 3
- 239000004094 surface-active agent Substances 0.000 claims description 3
- 125000002252 acyl group Chemical group 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 18
- 239000002245 particle Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 13
- 238000000926 separation method Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 229910001629 magnesium chloride Inorganic materials 0.000 description 9
- 150000001412 amines Chemical class 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000002253 acid Substances 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 6
- 125000000129 anionic group Chemical group 0.000 description 5
- 125000002091 cationic group Chemical group 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 150000004760 silicates Chemical class 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 4
- 125000005263 alkylenediamine group Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 229920001353 Dextrin Polymers 0.000 description 3
- 239000004375 Dextrin Substances 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 235000019425 dextrin Nutrition 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 235000019197 fats Nutrition 0.000 description 3
- 239000002563 ionic surfactant Substances 0.000 description 3
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- QLAJNZSPVITUCQ-UHFFFAOYSA-N 1,3,2-dioxathietane 2,2-dioxide Chemical compound O=S1(=O)OCO1 QLAJNZSPVITUCQ-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- IAIHUHQCLTYTSF-UHFFFAOYSA-N 2,2,4-trimethylbicyclo[2.2.1]heptan-3-ol Chemical compound C1CC2(C)C(O)C(C)(C)C1C2 IAIHUHQCLTYTSF-UHFFFAOYSA-N 0.000 description 2
- YVBCULSIZWMTFY-UHFFFAOYSA-N 4-Heptanol Natural products CCCC(O)CCC YVBCULSIZWMTFY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 244000007835 Cyamopsis tetragonoloba Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- YZXBAPSDXZZRGB-DOFZRALJSA-N arachidonic acid Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- GHVNFZFCNZKVNT-UHFFFAOYSA-N decanoic acid Chemical compound CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 2
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 2
- UKMSUNONTOPOIO-UHFFFAOYSA-N docosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCCCC(O)=O UKMSUNONTOPOIO-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- 239000010433 feldspar Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000008040 ionic compounds Chemical class 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000010445 mica Substances 0.000 description 2
- 229910052618 mica group Inorganic materials 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 150000003139 primary aliphatic amines Chemical class 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical compound C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- 229930006727 (-)-endo-fenchol Natural products 0.000 description 1
- REPVLJRCJUVQFA-UHFFFAOYSA-N (-)-isopinocampheol Natural products C1C(O)C(C)C2C(C)(C)C1C2 REPVLJRCJUVQFA-UHFFFAOYSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- DSSYKIVIOFKYAU-XCBNKYQSSA-N (R)-camphor Chemical compound C1C[C@@]2(C)C(=O)C[C@@H]1C2(C)C DSSYKIVIOFKYAU-XCBNKYQSSA-N 0.000 description 1
- WUOACPNHFRMFPN-SECBINFHSA-N (S)-(-)-alpha-terpineol Chemical compound CC1=CC[C@@H](C(C)(C)O)CC1 WUOACPNHFRMFPN-SECBINFHSA-N 0.000 description 1
- ICLYJLBTOGPLMC-KVVVOXFISA-N (z)-octadec-9-enoate;tris(2-hydroxyethyl)azanium Chemical class OCCN(CCO)CCO.CCCCCCCC\C=C/CCCCCCCC(O)=O ICLYJLBTOGPLMC-KVVVOXFISA-N 0.000 description 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 description 1
- FJLUATLTXUNBOT-UHFFFAOYSA-N 1-Hexadecylamine Chemical compound CCCCCCCCCCCCCCCCN FJLUATLTXUNBOT-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- FTJUZCBLWZLXFR-KTKRTIGZSA-N 2-[bis(2-hydroxyethyl)amino]ethyl (z)-octadec-9-enoate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCN(CCO)CCO FTJUZCBLWZLXFR-KTKRTIGZSA-N 0.000 description 1
- SLRMQYXOBQWXCR-UHFFFAOYSA-N 2154-56-5 Chemical compound [CH2]C1=CC=CC=C1 SLRMQYXOBQWXCR-UHFFFAOYSA-N 0.000 description 1
- YSTPAHQEHQSRJD-UHFFFAOYSA-N 3-Carvomenthenone Chemical compound CC(C)C1CCC(C)=CC1=O YSTPAHQEHQSRJD-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 108091005950 Azurite Proteins 0.000 description 1
- 235000021357 Behenic acid Nutrition 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- DPUOLQHDNGRHBS-UHFFFAOYSA-N Brassidinsaeure Natural products CCCCCCCCC=CCCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-UHFFFAOYSA-N 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical class C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- 239000005635 Caprylic acid (CAS 124-07-2) Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000723346 Cinnamomum camphora Species 0.000 description 1
- MHZGKXUYDGKKIU-UHFFFAOYSA-N Decylamine Chemical compound CCCCCCCCCCN MHZGKXUYDGKKIU-UHFFFAOYSA-N 0.000 description 1
- 239000004667 Diesterquat Substances 0.000 description 1
- URXZXNYJPAJJOQ-UHFFFAOYSA-N Erucic acid Natural products CCCCCCC=CCCCCCCCCCCCC(O)=O URXZXNYJPAJJOQ-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 description 1
- PSMFFFUWSMZAPB-UHFFFAOYSA-N Eukalyptol Natural products C1CC2CCC1(C)COCC2(C)C PSMFFFUWSMZAPB-UHFFFAOYSA-N 0.000 description 1
- 240000006927 Foeniculum vulgare Species 0.000 description 1
- 235000004204 Foeniculum vulgare Nutrition 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000005639 Lauric acid Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004666 Monoesterquat Substances 0.000 description 1
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 235000017343 Quebracho blanco Nutrition 0.000 description 1
- 241000065615 Schinopsis balansae Species 0.000 description 1
- 241000907663 Siproeta stelenes Species 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- PLZVEHJLHYMBBY-UHFFFAOYSA-N Tetradecylamine Chemical compound CCCCCCCCCCCCCCN PLZVEHJLHYMBBY-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- OVKDFILSBMEKLT-UHFFFAOYSA-N alpha-Terpineol Natural products CC(=C)C1(O)CCC(C)=CC1 OVKDFILSBMEKLT-UHFFFAOYSA-N 0.000 description 1
- 229940088601 alpha-terpineol Drugs 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- INJRKJPEYSAMPD-UHFFFAOYSA-N aluminum;silicic acid;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O INJRKJPEYSAMPD-UHFFFAOYSA-N 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 229940114079 arachidonic acid Drugs 0.000 description 1
- 235000021342 arachidonic acid Nutrition 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 229910001864 baryta Inorganic materials 0.000 description 1
- 229940116226 behenic acid Drugs 0.000 description 1
- 229910052614 beryl Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052626 biotite Inorganic materials 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- CKDOCTFBFTVPSN-UHFFFAOYSA-N borneol Natural products C1CC2(C)C(C)CC1C2(C)C CKDOCTFBFTVPSN-UHFFFAOYSA-N 0.000 description 1
- 229940116229 borneol Drugs 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229930008380 camphor Natural products 0.000 description 1
- 229960000846 camphor Drugs 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- IKNAJTLCCWPIQD-UHFFFAOYSA-K cerium(3+);lanthanum(3+);neodymium(3+);oxygen(2-);phosphate Chemical compound [O-2].[La+3].[Ce+3].[Nd+3].[O-]P([O-])([O-])=O IKNAJTLCCWPIQD-UHFFFAOYSA-K 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KMPWYEUPVWOPIM-UHFFFAOYSA-N cinchonidine Natural products C1=CC=C2C(C(C3N4CCC(C(C4)C=C)C3)O)=CC=NC2=C1 KMPWYEUPVWOPIM-UHFFFAOYSA-N 0.000 description 1
- RFFOTVCVTJUTAD-UHFFFAOYSA-N cineole Natural products C1CC2(C)CCC1(C(C)C)O2 RFFOTVCVTJUTAD-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 1
- ZXOKVTWPEIAYAB-UHFFFAOYSA-N dioxido(oxo)tungsten Chemical compound [O-][W]([O-])=O ZXOKVTWPEIAYAB-UHFFFAOYSA-N 0.000 description 1
- DTGKSKDOIYIVQL-UHFFFAOYSA-N dl-isoborneol Natural products C1CC2(C)C(O)CC1C2(C)C DTGKSKDOIYIVQL-UHFFFAOYSA-N 0.000 description 1
- VPNOHCYAOXWMAR-UHFFFAOYSA-N docosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCCCN VPNOHCYAOXWMAR-UHFFFAOYSA-N 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- ZQPPMHVWECSIRJ-MDZDMXLPSA-N elaidic acid Chemical compound CCCCCCCC\C=C\CCCCCCCC(O)=O ZQPPMHVWECSIRJ-MDZDMXLPSA-N 0.000 description 1
- DPUOLQHDNGRHBS-KTKRTIGZSA-N erucic acid Chemical compound CCCCCCCC\C=C/CCCCCCCCCCCC(O)=O DPUOLQHDNGRHBS-KTKRTIGZSA-N 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- LQJBNNIYVWPHFW-QXMHVHEDSA-N gadoleic acid Chemical compound CCCCCCCCCC\C=C/CCCCCCCC(O)=O LQJBNNIYVWPHFW-QXMHVHEDSA-N 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229910052598 goethite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 229910052864 hemimorphite Inorganic materials 0.000 description 1
- SHVBTTRUEDMJTK-UHFFFAOYSA-N hexadec-1-en-1-amine Chemical compound CCCCCCCCCCCCCCC=CN SHVBTTRUEDMJTK-UHFFFAOYSA-N 0.000 description 1
- QNVRIHYSUZMSGM-UHFFFAOYSA-N hexan-2-ol Chemical compound CCCCC(C)O QNVRIHYSUZMSGM-UHFFFAOYSA-N 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 1
- BUHXFUSLEBPCEB-UHFFFAOYSA-N icosan-1-amine Chemical compound CCCCCCCCCCCCCCCCCCCCN BUHXFUSLEBPCEB-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010443 kyanite Substances 0.000 description 1
- 229910052850 kyanite Inorganic materials 0.000 description 1
- 230000004130 lipolysis Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 1
- XMWCXZJXESXBBY-UHFFFAOYSA-L manganese(ii) carbonate Chemical compound [Mn+2].[O-]C([O-])=O XMWCXZJXESXBBY-UHFFFAOYSA-L 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- CRVGTESFCCXCTH-UHFFFAOYSA-N methyl diethanolamine Chemical compound OCCN(C)CCO CRVGTESFCCXCTH-UHFFFAOYSA-N 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910052961 molybdenite Inorganic materials 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052590 monazite Inorganic materials 0.000 description 1
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- WGNKXCMZCXHUHX-UHFFFAOYSA-N octadec-1-en-1-amine Chemical compound CCCCCCCCCCCCCCCCC=CN WGNKXCMZCXHUHX-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- IOQPZZOEVPZRBK-UHFFFAOYSA-N octan-1-amine Chemical compound CCCCCCCCN IOQPZZOEVPZRBK-UHFFFAOYSA-N 0.000 description 1
- 229960002446 octanoic acid Drugs 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 229910052628 phlogopite Inorganic materials 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229930006968 piperitone Natural products 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- WBHHMMIMDMUBKC-XLNAKTSKSA-N ricinelaidic acid Chemical compound CCCCCC[C@@H](O)C\C=C\CCCCCCCC(O)=O WBHHMMIMDMUBKC-XLNAKTSKSA-N 0.000 description 1
- 229960003656 ricinoleic acid Drugs 0.000 description 1
- FEUQNCSVHBHROZ-UHFFFAOYSA-N ricinoleic acid Natural products CCCCCCC(O[Si](C)(C)C)CC=CCCCCCCCC(=O)OC FEUQNCSVHBHROZ-UHFFFAOYSA-N 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 229910021646 siderite Inorganic materials 0.000 description 1
- 229910052604 silicate mineral Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- TUNFSRHWOTWDNC-HKGQFRNVSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCC[14C](O)=O TUNFSRHWOTWDNC-HKGQFRNVSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GWBUNZLLLLDXMD-UHFFFAOYSA-H tricopper;dicarbonate;dihydroxide Chemical compound [OH-].[OH-].[Cu+2].[Cu+2].[Cu+2].[O-]C([O-])=O.[O-]C([O-])=O GWBUNZLLLLDXMD-UHFFFAOYSA-H 0.000 description 1
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical class CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000001238 wet grinding Methods 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/012—Organic compounds containing sulfur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/01—Organic compounds containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D1/00—Flotation
- B03D1/001—Flotation agents
- B03D1/004—Organic compounds
- B03D1/01—Organic compounds containing nitrogen
- B03D1/011—Quaternary ammonium compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2201/00—Specified effects produced by the flotation agents
- B03D2201/02—Collectors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03D—FLOTATION; DIFFERENTIAL SEDIMENTATION
- B03D2203/00—Specified materials treated by the flotation agents; Specified applications
- B03D2203/02—Ores
- B03D2203/04—Non-sulfide ores
Definitions
- This invention relates to the flotation of non-sulfidic minerals and ores, and more particularly the use of certain cationic surfactants as collectors in a froth flotation process.
- Flotation is a separation technique commonly used in the dressing of minerals and crude ores for separating valuable materials from the gangue.
- Non-sulfidic minerals and ores in the context of the present invention include, for example calcite, apatite, fluorite, scheelite, baryta, iron oxides and other metal oxides, for example the oxides of titanium and zirconium, and also certain silicates and aluminosilicates.
- the mineral or ore is normally first subjected to preliminary size-reduction, dry-ground, but preferably wet-ground and suspended in water.
- Collectors are then normally added, often in conjunction with frothers and, optionally, other auxiliary reagents such as regulators, depressors (deactivators) and/or activators, in order to facilitate separation of the valuable materials from the unwanted gangue constituents of the ore in the subsequent flotation process.
- auxiliary reagents such as regulators, depressors (deactivators) and/or activators, in order to facilitate separation of the valuable materials from the unwanted gangue constituents of the ore in the subsequent flotation process.
- These reagents are normally allowed to act on the finely ground ore for a certain time (conditioning) before air is blown into the suspension (flotation) to produce a froth at its surface.
- the collector hydrophobicizes the surface of the minerals so that they adhere to the gas bubbles formed during the activation step.
- the valuable constituents are selectively hydrophobicized so that the unwanted constituents of the mineral or ore do not adhere to the gas bubbles.
- Surfactants and, in particular, anionic, cationic and ampholytic surfactants are used as collectors in the flotation-based dressing of minerals and ores, in particular of calcite which is of considerable value especially for the paper industry.
- Calcite represents an important filler with the ability for adjusting the whiteness and transparency of the paper.
- Calcite minerals are often accompanied by silicates so that, to purify the calcite, the silicate - which is undesirable for many applications - has to be removed.
- Another problem which has a serious impact on the selectivity of the froth flotation process is related to the magnesium content of the minerals or ores. Magnesium salts seriously improve the stability of the froth, which collapses slowly and therefore increases the flotation time, while the selectivity drops.
- an object of the present invention is to provide improved collectors which make flotation processes more economical, i.e. with which it is possible to obtain either greater yields of valuable material for the same quantities of collector and for the same selectivity or at least the same yields of valuable materials for reduced quantities of collector.
- a second object is to supply collectors which simultaneously meet the needs for high biodegradability.
- the present invention refers to a process for the flotation of non-sulfidic minerals or ores, in which crushed crude minerals or ores are mixed with water and a collector to form a suspension, air is introduced into the suspension in the presence of a reagent system and a floated foam containing said non-sulfidic minerals or ores formed therein along with a flotation residue comprising the gangue, wherein the improvement comprises using quaternised alkanolamine-monoesters as the collector.
- quaternised triethanolamine-monooleates are extremely effective as collectors for the flotation of non-sulfidic minerals and ores.
- the collectors according to the present invention have been found even more effective compared to conventional mono/diesterquat mixtures while exhibiting a similarly high degree of biodegradability.
- the products have been found rather useful for the separation of silicate minerals from calcite by froth flotation.
- Quaternised esters of alkanolamines and fatty acids are well known from the state of the art which may be obtained by the relevant methods of preparative organic chemistry. Reference is made in this connection to International patent application WO 91/01295 (Henkel), which is a very early reference disclosing this subject matter, according to which triethanolamine is partly esterified with fatty acids in the presence of hypophosphorous acid, air is passed through and the resulting reaction mixture is quatemised with dimethyl sulfate or ethylene oxide.
- suitable quatemised alkanolamine-monoesters derived from alkanolamines are derived from amines following general formula (I). in which R 1 represents a hydroxyethyl radical, and R 2 and R 3 independently from each other stand for hydrogen, methyl or a hydroxyethyl radical.
- R 1 represents a hydroxyethyl radical
- R 2 and R 3 independently from each other stand for hydrogen, methyl or a hydroxyethyl radical.
- Typical examples are methyldiethanolamin (MDA), monoethanolamine (MES), diethanolamine (DEA) and triethanolamine (TEA).
- MDA methyldiethanolamin
- MES monoethanolamine
- DEA diethanolamine
- TAA triethanolamine
- quatemised triethanolaminemonoesters are used.
- the products are derived from fatty acids following general formula (II), R 4 CO-OH (II) in which R 4 CO stands for a linear or branched acyl radical having 8 to 22 carbon atoms, preferably 16 to 18 carbon atoms, and 0 or 1 to 3 double bonds.
- R 4 CO stands for a linear or branched acyl radical having 8 to 22 carbon atoms, preferably 16 to 18 carbon atoms, and 0 or 1 to 3 double bonds.
- Typical examples are caprylic acid, caprinic acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidinic acid, linoic acid, conjugated linoic acid (CLA), linoleic acid, ricinoleic acid, arachidonic acid, gadoleic acid, behenic acid, erucic acid and also technical grade fatty acids obtained from renewable resources.
- the collectors are obtained from unsaturated fatty acids.
- the preferred compounds are quaternised alkanolamine-monooleates.
- the most preferred collectors are quaternised alkanolamine-monoesters following general formula (III) in which R 5 CO represents the acyl residue of oleic acid.
- quaternised alkanolamine-monoesters may be modified, adjust or even support the properties of the quaternised alkanolamine-monoesters by adding defined co-collectors, such as, for example, cationic surfactants others than the quaternised alkanolamine-monoesters or amphotheric surfactants.
- defined co-collectors such as, for example, cationic surfactants others than the quaternised alkanolamine-monoesters or amphotheric surfactants.
- cationic surfactants are to be used as co-collectors in accordance with the invention, they may be selected in particular from
- the amine compounds mentioned above may be used as such or in the form of their water-soluble salts.
- the salts are obtained in given cases by neutralization which may be carried out both with equimolar quantities and also with more than or less than equimolar quantities of acid.
- Suitable acids are, for example, sulfuric acid, phosphoric acid, acetic acid and formic acid.
- ampholytic surfactants used as co-collectors in accordance with the invention are compounds which contain at least one anionic and one cationic group in the molecule, the anionic groups preferably consisting of sulfonic acid or carboxyl groups, and the cationic groups consisting of amino groups, preferably secondary or tertiary amino groups.
- Suitable ampholytic surfactants include, in particular,
- Said collectors and said co-collectors can be used in a weight ratio of about 10:90 to about 90:10, preferably about 25:75 to about 75:25, and most preferably about 40:60 to about 60:40.
- the collectors or, respectively, the mixtures of collectors and co-collectors must be used in a certain minimum quantity.
- a maximum quantity of collectors/co-collectors should not be exceeded, because otherwise frothing is too vigorous and selectivity with respect to the valuable minerals decreases.
- the quantities in which the collectors to be used in accordance with the invention are used are governed by the type of minerals or ores to be floated and by their valuable mineral content.
- the particular quantities required may vary within wide limits.
- the collectors and collector/co-collector mixtures according to the invention are used in quantities of from 50 to 2000 g/metric ton, and preferably in quantities of from 100 to 1500 g/metric ton of crude ore.
- Typical steps in the process sequence are, generally, firstly the dry or preferably wet grinding of the minerals or ores, suspension of the resulting ground mineral or ore in water in the presence of the flotation aids and, preferably after a contact time of the collectors and optionally co-collectors present in the flotation aids to be determined in each individual case, injection of air into the plant.
- the nature of the starting materials as well as the flotation aids is illustrated in more detail.
- Another object of the present invention is the use of quaternised alkanolamine-monoesters as collectors for the froth flotation of non-sulfidic minerals or ores.
- the collectors to be used in accordance with the invention may be used with advantage in the dressing of such minerals or ores as s quartz, kaolin, mica, phlogopite, feldspar, silicates and iron ores.
- the collectors according to the present invention lead to a faster collapse of the foam compared to the state of the art which is desirable in the flotation of minerals and ores.
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Physical Water Treatments (AREA)
- Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
Abstract
Description
- This invention relates to the flotation of non-sulfidic minerals and ores, and more particularly the use of certain cationic surfactants as collectors in a froth flotation process.
- Flotation is a separation technique commonly used in the dressing of minerals and crude ores for separating valuable materials from the gangue. Non-sulfidic minerals and ores in the context of the present invention include, for example calcite, apatite, fluorite, scheelite, baryta, iron oxides and other metal oxides, for example the oxides of titanium and zirconium, and also certain silicates and aluminosilicates. In dressing processes based on flotation, the mineral or ore is normally first subjected to preliminary size-reduction, dry-ground, but preferably wet-ground and suspended in water. Collectors are then normally added, often in conjunction with frothers and, optionally, other auxiliary reagents such as regulators, depressors (deactivators) and/or activators, in order to facilitate separation of the valuable materials from the unwanted gangue constituents of the ore in the subsequent flotation process. These reagents are normally allowed to act on the finely ground ore for a certain time (conditioning) before air is blown into the suspension (flotation) to produce a froth at its surface. The collector hydrophobicizes the surface of the minerals so that they adhere to the gas bubbles formed during the activation step. The valuable constituents are selectively hydrophobicized so that the unwanted constituents of the mineral or ore do not adhere to the gas bubbles. The valuable material-containing froth is stripped off and further processed. The object of flotation is to recover the valuable material of the minerals or ores in as high a yield as possible while at the same time obtaining a high enrichment level of the valuable mineral.
- Surfactants and, in particular, anionic, cationic and ampholytic surfactants are used as collectors in the flotation-based dressing of minerals and ores, in particular of calcite which is of considerable value especially for the paper industry. Calcite represents an important filler with the ability for adjusting the whiteness and transparency of the paper. Calcite minerals, however, are often accompanied by silicates so that, to purify the calcite, the silicate - which is undesirable for many applications - has to be removed. Another problem which has a serious impact on the selectivity of the froth flotation process is related to the magnesium content of the minerals or ores. Magnesium salts seriously improve the stability of the froth, which collapses slowly and therefore increases the flotation time, while the selectivity drops. In order to overcome the disadvantages known from the state of the art, for example, international patent application
WO 97/026995 - Accordingly, an object of the present invention is to provide improved collectors which make flotation processes more economical, i.e. with which it is possible to obtain either greater yields of valuable material for the same quantities of collector and for the same selectivity or at least the same yields of valuable materials for reduced quantities of collector. A second object is to supply collectors which simultaneously meet the needs for high biodegradability.
- The present invention refers to a process for the flotation of non-sulfidic minerals or ores, in which crushed crude minerals or ores are mixed with water and a collector to form a suspension, air is introduced into the suspension in the presence of a reagent system and a floated foam containing said non-sulfidic minerals or ores formed therein along with a flotation residue comprising the gangue, wherein the improvement comprises using quaternised alkanolamine-monoesters as the collector.
- Surprisingly it has been observed that quaternised triethanolamine-monooleates are extremely effective as collectors for the flotation of non-sulfidic minerals and ores. In particular with respect to the presence of silicates and/or magnesium salts in the minerals or ores, the collectors according to the present invention have been found even more effective compared to conventional mono/diesterquat mixtures while exhibiting a similarly high degree of biodegradability. In particular, the products have been found rather useful for the separation of silicate minerals from calcite by froth flotation.
- Quaternised esters of alkanolamines and fatty acids are well known from the state of the art which may be obtained by the relevant methods of preparative organic chemistry. Reference is made in this connection to
International patent application WO 91/01295 - According to the present invention, suitable quatemised alkanolamine-monoesters derived from alkanolamines are derived from amines following general formula (I).
- With respect to the fatty acid moiety of the quaternised alkanolamine esters, the products are derived from fatty acids following general formula (II),
R4CO-OH (II)
in which R4CO stands for a linear or branched acyl radical having 8 to 22 carbon atoms, preferably 16 to 18 carbon atoms, and 0 or 1 to 3 double bonds. Typical examples are caprylic acid, caprinic acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidinic acid, linoic acid, conjugated linoic acid (CLA), linoleic acid, ricinoleic acid, arachidonic acid, gadoleic acid, behenic acid, erucic acid and also technical grade fatty acids obtained from renewable resources. In a preferred embodiment of the present invention, the collectors are obtained from unsaturated fatty acids. In particular the preferred compounds are quaternised alkanolamine-monooleates. -
- In certain cases it may be advantageous to modify, adjust or even support the properties of the quaternised alkanolamine-monoesters by adding defined co-collectors, such as, for example, cationic surfactants others than the quaternised alkanolamine-monoesters or amphotheric surfactants.
- Where cationic surfactants are to be used as co-collectors in accordance with the invention, they may be selected in particular from
- Primary aliphatic amines,
- Alkylenediamines substituted by alpha-branched alkyl radicals,
- Hydroxyalkyl-substituted alkylenediamines,
- Water-soluble acid addition salts of these amines and also
- Quaternary ammonium compounds.
- Suitable primary aliphatic amines include, above all, the C8-C22 fatty amines derived from the fatty acids of natural fats and oils, for example n-octylamine, n-decylamine, n-dodecylamine, n-tetradecylamine, n-hexadecylamine, n-octadecylamine, n-eicosylamine, n-docosylamine, n-hexadecenylamine and n-octadecenylamine. The amines mentioned may be individually used as co-collectors, although amine mixtures of which the alkyl and/or alkenyl radicals derive from the fatty acid component of fats and oils of animal or vegetable origin are normally used. It is known that amine mixtures such as these may be obtained from the fatty acids obtained by lipolysis from natural fats and oils via the associated nitriles by reduction with sodium and alcohols or by catalytic hydrogenation. Examples include tallow amines or hydrotallow amines of the type obtainable from tallow fatty acids or from hydrogenated tallow fatty acids via the corresponding nitriles and hydrogenation thereof.
- The alkyl-substituted alkylenediamines suitable for use as co-collectors correspond to formula (IV),
R6CHR7-NH-(CH2)nNH2 (IV)
in which R6 and R7 represent linear or branched alkyl or alkenyl radicals and in which n = 2 to 4. The production of these compounds and their use in flotation is described in East German PatentDD 64275 - The hydroxyalkyl-substituted alkylenediamines suitable for use as co-collectors correspond to formula (V),
German Patent DE-AS 2547987 . - The amine compounds mentioned above may be used as such or in the form of their water-soluble salts. The salts are obtained in given cases by neutralization which may be carried out both with equimolar quantities and also with more than or less than equimolar quantities of acid. Suitable acids are, for example, sulfuric acid, phosphoric acid, acetic acid and formic acid.
- The quaternary ammonium compounds suitable for use as co-collectors correspond to formula (VI),
[R10R11R12R13N+] X- (VI)
in which R10 is preferably a linear alkyl radical containing 1 to 18 carbon atoms, R11 is an alkyl radical containing 1 to 18 carbon atoms or a benzyl radical, R12 and R13 may be the same or different and each represent an alkyl radical containing 1 to 2 carbon atoms, and X is a halide anion, particularly a chloride ion. In preferred quaternary ammonium compounds, R10 is an alkyl radical containing 8 to 18 carbon atoms; R11, R12 and R13 are the same and represent either methyl or ethyl groups; and X is a chloride ion. - The ampholytic surfactants used as co-collectors in accordance with the invention are compounds which contain at least one anionic and one cationic group in the molecule, the anionic groups preferably consisting of sulfonic acid or carboxyl groups, and the cationic groups consisting of amino groups, preferably secondary or tertiary amino groups. Suitable ampholytic surfactants include, in particular,
- Sarcosides,
- Taurides,
- N-substituted aminopropionic acids and
- N-(1,2-dicarboxyethyl)-N-alkylsulfosuccinamates..
- The sarcosides suitable for use as co-collectors correspond to formula (VII),
- The taurides suitable for use as co-collectors correspond to formula (VIII),
- N-substituted aminopropionic acids suitable for use as co-collectors correspond to formula (IX),
R16(NHCH2CH2)nN+H2CH2CH2COO- (IX)
in which n may be 0 or a number from 1 to 4, while R16 is an alkyl or acyl radical containing from 8 to 22 carbon atoms. The afore-mentioned N-substituted aminopropionic acids are also known compounds obtainable by known methods. Their use as collectors in flotation is described by H. Schubert, loc. cit. and in Int. J. Min. Proc. 9 (1982), pp 353-384 . - The N-(1,2-dicarboxyethyl)-N-alkylsulfosuccinamates suitable for use as co-collectors according to the invention correspond to formula (X),
- Said collectors and said co-collectors can be used in a weight ratio of about 10:90 to about 90:10, preferably about 25:75 to about 75:25, and most preferably about 40:60 to about 60:40. To obtain economically useful results in the flotation of non-sulfidic minerals or ores, the collectors or, respectively, the mixtures of collectors and co-collectors must be used in a certain minimum quantity. However, a maximum quantity of collectors/co-collectors should not be exceeded, because otherwise frothing is too vigorous and selectivity with respect to the valuable minerals decreases. The quantities in which the collectors to be used in accordance with the invention are used are governed by the type of minerals or ores to be floated and by their valuable mineral content. Accordingly, the particular quantities required may vary within wide limits. In general, the collectors and collector/co-collector mixtures according to the invention are used in quantities of from 50 to 2000 g/metric ton, and preferably in quantities of from 100 to 1500 g/metric ton of crude ore.
- Typical steps in the process sequence are, generally, firstly the dry or preferably wet grinding of the minerals or ores, suspension of the resulting ground mineral or ore in water in the presence of the flotation aids and, preferably after a contact time of the collectors and optionally co-collectors present in the flotation aids to be determined in each individual case, injection of air into the plant. In the following the nature of the starting materials as well as the flotation aids is illustrated in more detail.
- Non-sulfidic minerals and ores
Floatable minerals and ores may be divided into the two groups of polar and non-polar materials. Since non-polar minerals and ores are difficult to hydrate, these materials have to be classified as hydrophobic. Examples of non-polar minerals are graphite, molybdenite, diamond, coal and talcum which are all floatable in their naturally occurring state. By contrast, polar minerals and ores have strong covalent or ionic surface bonds which are accessible to rapid hydration by water molecules in the form of multi-layers, These starting materials include, for example, calcite, malachite, azurite, chrysocolla, wulfenite, cerrusite, whiterite, megnesite, dolomite, smithsonite, rhodochrosite, siderite, magnetite, monazite, hematite, goethite, chromite, pyrolusite, borax, wolframite, columbite, tantalite, rutile, zircon, hemimorphite, beryl, mica, biotite, quartz, feldspar, kyanite and garnet. The flotation of non-sulfidic, but polar minerals and ores is a preferred object of the present invention. - Particle size
The flotation behaviour of the individual mineral constituents can be controlled within certain limits through the particle size distribution of the ground mineral. Conversely, however, the use of the collector or collector/co-collector mixture is also influenced by the particle size so that both particle size and, for example, collector concentration may be determined in situ in a brief series of tests. Generally, however, it may be said that the particles have to increasingly be hydrophobicised with increasing particle size before flotation occurs. As a general rule, the ores should be so finely ground that the individual fine particles consist only of one type of mineral, namely either the valuable minerals or the impurities. The ideal particle size normally has to be determined in dependence upon the particular mineral. In the present case, however, a particle size distribution of around 5 to 500 µm has generally been found to be practicable, narrower distributions being of advantage in some cases. For example, silicate-rich ores can be separated by flotation with excellent results using the flotation aids according to the present invention providing less than 40 % b.w., preferably less than 30 % b.w., and more preferably less than 15 % b.w. of the total mineral or ore fraction has particle sizes of less than 250 µm. To enable the flotation process to be optimally carried out, it can be particularly preferred for the particles larger than 125 µm in size to make up less than 15 % b.w., or preferably less than 10 % b.w. or even 6 % b.w. The lower limit to the particle sizes is determined both by the possibility of size reduction by machine and also by handling properties of the constituents removed by flotation. In general, more than 20 % b.w. of the ground mineral or ore should be smaller than about 50 µm in size, a percentage of particles with this diameter of more than 30 or even 40 % b.w., for example, being preferred. According to the present invention it is of particular advantage for more than 40 % b.w. of the mineral or ore particles to be smaller than 45 µm in diameter.
In certain cases, it may be necessary and appropriate to divide the ground material into two or more fractions, for example three, four or five fractions differing in their particle diameter and separately to subject these fraction to separation by flotation. According to the present invention, the flotation aids may be used in only one separation step although, basically, they may even be used in several separation steps or in all necessary separation steps. The invention also encompasses the successive addition of several different flotation aids, in which case at least one or even more of the flotation aids must correspond to the invention. The fractions obtainable in this way may be further processes either together or even separately after the flotation process. - Technical parameters
The technical parameters of the flotation plant in conjunction with a certain flotation aid and a certain mineral or ore can influence the result of the flotation process within certain limits. For example, it can be of advantage to remove the froth formed after only a short flotation time because the content of floated impurities or floated valuable materials can change according to the flotation time. In this case, a relatively long flotation time can lead to a poorer result than a relatively short flotation time. Similarly, it can happen in the opposite case that the separation process leads to a greater purity or otherwise improved quality of the valuable-mineral fraction with increasing time. Optimising external parameters such as these is among the routine activities of the expert familiar with the technical specifications of the particular flotation machine. - Surface modifiers as auxiliary agents
Reagents which modify surface tension or surface chemistry are generally used for flotation. They are normally classified as frothers, controllers, activators and depressants (deactivators), and of course (co-)collectors which already have been discussed above.
Frothers support the formation of froth which guarantees collectors with an inadequate tendency to froth a sufficiently high froth density and a sufficiently long froth life to enable the laden froth to be completely removed. In general, the use of the collectors or collector/co-collector systems mentioned above will eliminate the need to use other frothers. In special cases, however, it may be necessary or at least advantageous - depending on the flotation process used - to regulate the frothing behaviour. In this case, suitable frothers are, for example, alcohols, more particularly aliphatic C5-C8 alcohols such as, for example, n-pentanol, isoamyl alcohol, hexanol, heptanol, methylbutyl carbinol, capryl alcohol, 4-heptanol, which all have good frothing properties. Natural oils may also be used to support frothing. In particular, alcohols, ethers and ketones, for example, alpha-terpineol, borneol, fennel alcohol, piperitone, camphor, fenchol or 1,8-cineol, have both a collecting and a frothing effect. Other suitable frothers are non-ionic compounds, like, for example, polypropylene glycol ethers.
Depressants which may be effectively used for the purpose of the present invention include, for example, naturally occurring polysaccharides, such as guar, starch and cellulose. Quebracho, tannin, dextrin (white dextrin, British gum, and yellow dextrin) and other chemical derivatives may also be used, including in particular the derivatives of starch, guar and cellulose molecules of which the hydroxyl groups may be equipped with a broad range of anionic, cationic and non-ionic functions. Typical anionic derivatives are epoxypropyl trimethylammonium salts while methyl, hydroxyethyl and hydroxypropyl derivatives are mainly used as non-ionic compounds. - Solvents
To adjust their rheological behaviour, the flotation aids according to the present invention may contain solvents in a quantity of 0.1 to 40 % b.w., preferably in a quantity of 1 to 30 % b.w., and most preferably in a quantity of 2 to 15 % b.w. Suitable solvents are, for example, the aliphatic alcohols mentioned above and other alcohols with shorter chain lengths. Thus the flotation aids according to the present invention may contain small quantities of glycols, for example, ethylene glycol, propylene glycol or butylene glycol, and also monohydric linear or branched alcohols, for example, ethanol, n-propanol or isopropanol. - As outlined above, flotation is carried out under the same conditions as state-of-the-art processes. Reference in this regard is made to the following literature references on the background to ore preparation technology: H. Schubert, Aufbereitung fester mineralischer Stoffe (Dressing of Solid Mineral Raw Materials), Leipzig 1967 ; B. Wills, Mineral Processing Technology Plant Design, New York, 1978 ; D. B. Purchas (ed.), Solid/Liquid Separation Equipment Scale-up, Croydon 1977 ; E. S. Perry, C. J. van Oss, E. Grushka (ed.), Separation and Purification Methods, New York, 1973 to 1978 . As far as the process for conducting the froth flotation of non-sulfidic minerals and ores is concerned, their contents are incorporated by reference.
- Another object of the present invention is the use of quaternised alkanolamine-monoesters as collectors for the froth flotation of non-sulfidic minerals or ores. The collectors to be used in accordance with the invention may be used with advantage in the dressing of such minerals or ores as s quartz, kaolin, mica, phlogopite, feldspar, silicates and iron ores.
- The following examples demonstrate the superiority of the quaternised alkanolamine-monoesters to be used in accordance with the invention over collector components known from the prior art, in particular compared to convention mono/di-esterquat mixtures. The tests were carried out under laboratory conditions, in some cases with increased collector concentrations considerably higher than necessary in practice. Accordingly, the potential applications and in-use conditions are not limited to separation exercises and test conditions described in the examples. The quantities indicated for reagents are all based on active substance.
- The following examples and comparative examples illustrate the effectiveness of the collectors according to the present invention compared to conventional mono/di-esterquat collectors in the flotation of silicate containing calcite minerals. The results are shown in Table 1.
Particle size distribution: > 40 µm: > 50 % b.w.
Silicates: about 1.5 to 2.5 % b.w.
Calcite: about 97.5 to 98.5 % b.w.Table 1 Calcite flotation Composition C1 C2 C3 1 2 3 Dehyquart® AU 461 [g*t-1] 660 560 320 - - - Dehyquart® EQ2 [g*t-1] - - - 350 300 250 OMC 63173 [g*t-1] 100 100 85 - - - Results Yield Floated Material [g] 39.8 75.4 59.7 20.6 23.4 18.0 Yield Residue [g] 383 361 438 420.7 494.9 571.8 Feed: HCl insoluble [%] 2.6 2.6 2.2 2.5 2.6 2.1 Floated Material : HCl insoluble [%] 25.7 13.6 18.4 52.8 55.8 57.4 Residue: HCl insoluble [%] 0.09 0.18 0.57 0,04 0,08 0,35 Calcite Loss [%] 7.2 15.3 10.0 2.2 2.0 1.3 1 Methyl-quaternised Triethanolamine-mono/di-stearate, Methosulfate, 90 % b.w. AS (Cognis Iberia, ES)
2 Methyl-quaternised Triethanolamine-monooleate, Methosulfate, 90 % b.w. AS (Cognis Iberia, ES)
3 Frother (Cognis Deutschland GmbH & Co. KG, DE) - The following examples and comparative examples illustrate the effectiveness of the collectors according to the present invention compared to conventional mono/di-esterquat collectors under conditions of high magnesium concentrations. The foam height was measured according to the well known Ross-Miles method. The results are shown in Table 2:
Table 2 Foaming behaviour in the presence of magnesium chloride (AS = Active Substance) Ex. Product Addition AS Quantity Test Foam Foam half [% b.w.] Product [g] Solution height [ml] life [min] C4 Dehyquart® 1 2.25 2 % MgCl2 220 2:35 AU 46 2.29 2 % MgCl2 220 2:35 C5 Dehyquart® 1 2.27 5 % MgCl2 220 0:30 AU 46 2.54 5 % MgCl2 220 0:30 4 Dehyquart® 1 2.25 2 % MgCl2 220 2:05 EQ 2.29 2 % MgCl2 220 2:05 5 Dehyquart® 1 2.27 5 % MgCl2 220 0:15 EQ 2.54 5 % MgCl2 220 0:15 - As one can see, the collectors according to the present invention lead to a faster collapse of the foam compared to the state of the art which is desirable in the flotation of minerals and ores.
Claims (10)
- In a process for the flotation of non-sulfidic minerals or ores, in which crushed crude minerals or ores are mixed with water and a collector to form a suspension, air is introduced into the suspension in the presence of a reagent system and a floated foam containing said non-sulfidic minerals or ores formed therein along with a flotation residue comprising the gangue, wherein the improvement comprises using as the collector quatemised alkanolamine-monoesters.
- Process according to Claim 1, characterised in that quaternised alkanolamine-monoesters derived from alkanolamines are used according to general formula (I).
- Process according to Claims 1 and/or 2, characterised in that quaternised triethanolamine-monoesters are used.
- Process according to any of Claims 1 to 3, characterised in that quaternised alkanolamine-monoesters derived from fatty acids are used according to general formula (II),
R4CO-OH (II)
in which R4CO stands for a linear or branched acyl radical having 8 to 22 carbon atoms and 0 or 1 to 3 double bonds. - Process according to any of Claims 1 to 4, characterised in that quaternised alkanolamine-monooleates are used.
- Process according to any of Claims 1 to 6, characterised in that cationic surfactants other than the quaternised alkanolamine-monoesters or amphotheric surfactants as co-collectors are used.
- Process according to Claim 7, characterised in that said collectors and said co-collectors are used in a weight ratio of 10:90 to 90:10.
- Use of quaternised alkanolamine-monoesters as collectors for the froth flotation of non-sulfidic minerals or ores.
- Use according to Claim 9, characterised in that calcite minerals are subjected to said froth flotation.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07001678A EP1949964A1 (en) | 2007-01-26 | 2007-01-26 | Process for the flotation of non-sulfidic minerals and ores |
PCT/EP2008/000310 WO2008089907A1 (en) | 2007-01-26 | 2008-01-17 | Process for the flotation of non-sulfidic minerals and ores |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07001678A EP1949964A1 (en) | 2007-01-26 | 2007-01-26 | Process for the flotation of non-sulfidic minerals and ores |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1949964A1 true EP1949964A1 (en) | 2008-07-30 |
Family
ID=38196637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07001678A Withdrawn EP1949964A1 (en) | 2007-01-26 | 2007-01-26 | Process for the flotation of non-sulfidic minerals and ores |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1949964A1 (en) |
WO (1) | WO2008089907A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010051895A1 (en) * | 2008-11-07 | 2010-05-14 | Clariant International Ltd | Mixture of an amine alkoxylate ester and a quaternary ammonium compound as a collector for minerals containing silicate |
CN102600985A (en) * | 2012-03-28 | 2012-07-25 | 四川晶大矿业科技有限公司 | Mineral separation collector and using method thereof |
WO2016099532A1 (en) * | 2014-12-19 | 2016-06-23 | Halliburton Energy Services, Inc. | Purification of organically modified surface active minerals by air classification |
CN106733222A (en) * | 2016-12-07 | 2017-05-31 | 广西大学 | A kind of method for floating that Mo-bearing Iron Ores are removed from white tungsten fine ore |
WO2019141343A1 (en) * | 2018-01-16 | 2019-07-25 | Clariant International Ltd | Esterquats for the flotation of non-sulfidic minerals and ores, and method |
WO2021128771A1 (en) * | 2019-12-23 | 2021-07-01 | 中南大学 | Application of 2-cyano-n-(substituted carbamoyl) acetamide compound in calcium-containing mineral flotation |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2666701T3 (en) | 2008-11-10 | 2018-05-07 | Arbutus Biopharma Corporation | New lipids and compositions for the delivery of therapeutic agents |
CN103977907B (en) * | 2014-05-15 | 2016-03-23 | 中南大学 | A kind of xanthic acid acyl ester collecting agent and methods for making and using same thereof |
CN106733206A (en) * | 2017-01-03 | 2017-05-31 | 昆明理工大学 | A kind of application of ultrasonic wave during scheelite heating stirring reagent removal |
CN108722660B (en) * | 2018-05-18 | 2020-05-22 | 中国地质科学院郑州矿产综合利用研究所 | Beneficiation method of low-grade scheelite |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2173909A (en) * | 1937-06-28 | 1939-09-26 | Ninol Inc | Ore dressing |
US3459299A (en) * | 1967-09-01 | 1969-08-05 | Engelhard Min & Chem | Talc beneficiation |
WO1991001295A1 (en) * | 1989-07-17 | 1991-02-07 | Henkel Kommanditgesellschaft Auf Aktien | Process for preparing quaternary ammonium compounds |
US4995965A (en) * | 1988-06-13 | 1991-02-26 | Akzo America Inc. | Calcium carbonate beneficiation |
WO1997026995A1 (en) * | 1996-01-26 | 1997-07-31 | Henkel Kommanditgesellschaft Auf Aktien | Biodegradable quaternary esters used as flotation aids |
-
2007
- 2007-01-26 EP EP07001678A patent/EP1949964A1/en not_active Withdrawn
-
2008
- 2008-01-17 WO PCT/EP2008/000310 patent/WO2008089907A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2173909A (en) * | 1937-06-28 | 1939-09-26 | Ninol Inc | Ore dressing |
US3459299A (en) * | 1967-09-01 | 1969-08-05 | Engelhard Min & Chem | Talc beneficiation |
US4995965A (en) * | 1988-06-13 | 1991-02-26 | Akzo America Inc. | Calcium carbonate beneficiation |
WO1991001295A1 (en) * | 1989-07-17 | 1991-02-07 | Henkel Kommanditgesellschaft Auf Aktien | Process for preparing quaternary ammonium compounds |
WO1997026995A1 (en) * | 1996-01-26 | 1997-07-31 | Henkel Kommanditgesellschaft Auf Aktien | Biodegradable quaternary esters used as flotation aids |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010051895A1 (en) * | 2008-11-07 | 2010-05-14 | Clariant International Ltd | Mixture of an amine alkoxylate ester and a quaternary ammonium compound as a collector for minerals containing silicate |
CN102112235A (en) * | 2008-11-07 | 2011-06-29 | 科莱恩金融(Bvi)有限公司 | Mixture of an amine alkoxylate ester and a quaternary ammonium compound as a collector for minerals containing silicate |
RU2508950C2 (en) * | 2008-11-07 | 2014-03-10 | Клариант Финанс (Бви) Лимитед | Composition of ester of amino alkoxylate and quaternary ammonium compound as collector for silicate-containing minerals |
US9027757B2 (en) | 2008-11-07 | 2015-05-12 | Clariant Finance (Bvi) Limited | Mixture of an amine alkoxylate ester and a quaternary ammonium compound as a collector for minerals containing silicate |
AU2009313103B2 (en) * | 2008-11-07 | 2015-08-27 | Clariant Finance (Bvi) Limited | Mixture of an amine alkoxylate ester and a quaternary ammonium compound as a collector for minerals containing silicate |
CN102600985A (en) * | 2012-03-28 | 2012-07-25 | 四川晶大矿业科技有限公司 | Mineral separation collector and using method thereof |
WO2016099532A1 (en) * | 2014-12-19 | 2016-06-23 | Halliburton Energy Services, Inc. | Purification of organically modified surface active minerals by air classification |
GB2547156A (en) * | 2014-12-19 | 2017-08-09 | Halliburton Energy Services Inc | Purification of organically modified surface active minerals by air classification |
US10232381B2 (en) | 2014-12-19 | 2019-03-19 | Halliburton Energy Services, Inc. | Purification of organically modified surface active minerals by air classification |
GB2547156B (en) * | 2014-12-19 | 2021-07-21 | Halliburton Energy Services Inc | Purification of organically modified surface active minerals by air classification |
CN106733222A (en) * | 2016-12-07 | 2017-05-31 | 广西大学 | A kind of method for floating that Mo-bearing Iron Ores are removed from white tungsten fine ore |
WO2019141343A1 (en) * | 2018-01-16 | 2019-07-25 | Clariant International Ltd | Esterquats for the flotation of non-sulfidic minerals and ores, and method |
EA038655B1 (en) * | 2018-01-16 | 2021-09-29 | Клариант Интернэшнл Лтд | Esterquats for the flotation of non-sulfidic minerals and ores, and method |
US11596952B2 (en) | 2018-01-16 | 2023-03-07 | Clariant International Ltd | Esterquats for the flotation of non-sulfidic minerals and ores, and method |
WO2021128771A1 (en) * | 2019-12-23 | 2021-07-01 | 中南大学 | Application of 2-cyano-n-(substituted carbamoyl) acetamide compound in calcium-containing mineral flotation |
Also Published As
Publication number | Publication date |
---|---|
WO2008089907A8 (en) | 2008-12-11 |
WO2008089907A1 (en) | 2008-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1949963B1 (en) | Process for the flotation of non-sulfidic minerals and ores | |
EP1949964A1 (en) | Process for the flotation of non-sulfidic minerals and ores | |
AU708335B2 (en) | Biologically degradable esterquats as flotation aids | |
US4789466A (en) | Method of separating non-sulfidic minerals by flotation | |
US9724706B2 (en) | Flotation of silicates from ores | |
US4790932A (en) | N-alkyl and N-alkenyl aspartic acids as co-collectors for the flotation of non-sulfidic ores | |
US11596952B2 (en) | Esterquats for the flotation of non-sulfidic minerals and ores, and method | |
CA2244899A1 (en) | Biologically degradable esterquats as flotation aids | |
EP4196281B1 (en) | Method for flotation of a silicate-containing iron ore | |
CA2483165A1 (en) | Use of fatty amine salts in combination with fatty acids as reagents for the flotation of potash salts (sylvinite) | |
EP4438184A1 (en) | Collector composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070126 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
17Q | First examination report despatched |
Effective date: 20090220 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20090703 |