EP1828697B1 - Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream - Google Patents
Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream Download PDFInfo
- Publication number
- EP1828697B1 EP1828697B1 EP05850537A EP05850537A EP1828697B1 EP 1828697 B1 EP1828697 B1 EP 1828697B1 EP 05850537 A EP05850537 A EP 05850537A EP 05850537 A EP05850537 A EP 05850537A EP 1828697 B1 EP1828697 B1 EP 1828697B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- current
- column
- stream
- reflux
- ethane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 114
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 title claims abstract description 48
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 42
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 40
- 239000003345 natural gas Substances 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000009434 installation Methods 0.000 title claims abstract description 24
- 239000004215 Carbon black (E152) Substances 0.000 title claims description 12
- 238000010992 reflux Methods 0.000 claims abstract description 53
- 239000007789 gas Substances 0.000 claims abstract description 21
- 239000007788 liquid Substances 0.000 claims abstract description 21
- 238000000605 extraction Methods 0.000 claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 238000001816 cooling Methods 0.000 claims abstract 10
- 238000011084 recovery Methods 0.000 claims description 32
- 238000005194 fractionation Methods 0.000 claims description 26
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000001294 propane Substances 0.000 claims description 10
- 230000001105 regulatory effect Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- 230000001276 controlling effect Effects 0.000 claims 2
- 238000002156 mixing Methods 0.000 claims 1
- SNOOUWRIMMFWNE-UHFFFAOYSA-M sodium;6-[(3,4,5-trimethoxybenzoyl)amino]hexanoate Chemical compound [Na+].COC1=CC(C(=O)NCCCCCC([O-])=O)=CC(OC)=C1OC SNOOUWRIMMFWNE-UHFFFAOYSA-M 0.000 abstract description 16
- 238000000926 separation method Methods 0.000 abstract description 3
- 238000009833 condensation Methods 0.000 abstract 2
- 230000005494 condensation Effects 0.000 abstract 2
- 238000007865 diluting Methods 0.000 abstract 2
- 238000010079 rubber tapping Methods 0.000 abstract 2
- 238000010790 dilution Methods 0.000 abstract 1
- 239000012895 dilution Substances 0.000 abstract 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000003507 refrigerant Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- -1 C 3 hydrocarbons Chemical class 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- QWTDNUCVQCZILF-UHFFFAOYSA-N iso-pentane Natural products CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/78—Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/90—Details relating to column internals, e.g. structured packing, gas or liquid distribution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/62—Ethane or ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/02—Integration in an installation for exchanging heat, e.g. for waste heat recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/20—Integration in an installation for liquefying or solidifying a fluid stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/02—Control in general, load changes, different modes ("runs"), measurements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
Definitions
- the present invention relates to a process for the simultaneous production of treated natural gas, a C 3 + hydrocarbon-rich fraction and, in at least some production conditions, an ethane-rich stream, from a natural gas.
- starting material comprising methane, ethane and C 3 + hydrocarbons according to the preamble of claim 1.
- the process of the present invention is applicable to plants intended to produce, from a natural gas extracted from the subsoil, a treated natural gas, possibly intended to be liquefied, a C 3 + hydrocarbon fraction, and a stream rich in ethane of variable flow.
- the process of the aforementioned type is optimized to simultaneously extract substantially all the C 3 + hydrocarbons in the starting natural gas, and a high proportion of ethane from the starting gas.
- the propane extraction rate is close to 99%.
- extraction rate refers to the ratio of the difference between the molar flow rate of a constituent in the starting natural gas and the molar flow rate of the constituent in the treated natural gas produced at the molar flow rate. constituent in the starting natural gas.
- the aforementioned article proposes to install in the existing plant, a secondary unit optimized for the production of C 3 + hydrocarbons when the extraction of ethane is low or nothing.
- the plant operator then selectively sends, depending on the amount of ethane required, the starting natural gas in the unit optimized for high ethane extraction rates or in the optimized unit for rates. low or zero ethane extraction.
- the method is therefore complex to implement and expensive, in particular because of the maintenance costs of the installation in which it is implemented.
- An object of the invention is to provide a method of the aforementioned type, which allows by simple and inexpensive means to substantially extract the all of the C 3 + hydrocarbons of a starting natural gas stream, regardless of the amount of ethane produced by the process.
- the subject of the invention is a method according to claim 1.
- the method according to the invention may comprise one or more of the features which are the subject of claims 2 to 8.
- the invention further relates to an installation according to claim 9.
- the installation according to the invention may comprise one or more of the features which are the subject of claims 10 to 15.
- the installation 11 shown in the Figure is intended for the simultaneous production, from a source 13 of natural gas, desulfurized, dry, and at least partially decarbonated, a natural gas treated as the main product, d a section 17 of C 3 + hydrocarbons, and a stream 19 rich in ethane, adjustable flow.
- At least partially decarbonated means that the carbon dioxide content in the starting gas 13 is advantageously less than or equal to 50 ppm when the treated natural gas is to be liquefied. This content is advantageously less than 3% when the treated natural gas is sent directly to a gas distribution network.
- This installation 11 comprises a unit 21 for recovering C 2 + hydrocarbons, and a unit 23 for fractionating these C 2 + hydrocarbons.
- the unit 21 for recovering C 2 + hydrocarbons successively comprises, downstream of the source 13, a first heat exchanger 25, a first separator tank 27, a turbine 29 coupled to a first compressor 31, a first heat exchanger 33, and a recovery column 35 provided with an upper side reboiler 37, a lower side reboiler 39 and a bottom reboiler 41.
- the unit 21 further comprises a second compressor 43 driven by an external energy source and a first refrigerant 45.
- the unit 21 also comprises a pump 47 bottom of the column.
- the fractionation unit 23 comprises a fractionation column 61.
- the column 61 comprises at the head a top condenser 63, and at the bottom a reboiler 65.
- the overhead condenser 63 comprises a second refrigerant 67 and a second separator tank 69 associated with a reflux pump 71 and a second head exchanger 73 of the column 35.
- the starting gas 13 is separated into a main stream 101 and a secondary stream 103.
- the ratio of the flow rate of the secondary stream 103 to the flow rate of the starting gas 13 is for example between 20% and 40%.
- the main stream 101 is cooled in the first heat exchanger 25 to form a cooled gas stream 105.
- the secondary stream 103 is successively cooled in heat exchangers respective lower and upper side reboilers 37, 109, 109, to form a cooled secondary stream 111 which is mixed with the cooled main stream 105.
- the mixture 113 obtained is introduced into the separator tank 27 in which a separation between a gaseous phase 115 and a liquid phase 117 takes place.
- the liquid phase 117 forms, after passing through an expansion valve 119, a relaxed liquid phase 120 which is introduced at a first intermediate level N1 of the recovery column 35 situated in the upper region of the column, above the lateral reboilers 37 and 39.
- intermediate level is meant a location comprising distillation means, above and below this level.
- the gaseous fraction 115 is separated into a feed stream 121 and a reflux stream 123.
- the feed stream 121 is expanded in the turbine 29 to provide a relaxed feed stream 125, which is fed into the recovery column At a second intermediate level N2, located above the first intermediate level N1.
- the reflux stream 123 is partially condensed in the first head exchanger 33, and then expanded in an expansion valve 127, to form a relaxed reflux stream 128.
- This stream 128 is introduced into the recovery column 35 at a third intermediate level. N3, located above the intermediate level N2.
- the pressure of the recovery column 35 is for example between 15 and 40 bar.
- the recovery column 35 produces a top stream 131 which is separated into a major fraction 133 and a minor fraction 135.
- the major fraction 133 is reheated in the first head exchanger 33 by heat exchange with the reflux stream 123 to form a major fraction heated up 137.
- the ratio of the flow of the minority fraction 135 to the majority fraction 133 is for example less than 20%.
- the minor fraction 135 is reheated in the second head exchanger 73 to form a heated fraction 136.
- This fraction 136 is mixed with the heated majority fraction 137 to form a heated treated gas stream 139.
- This stream 139 is reheated in the first heat exchanger 25 by heat exchange with the main stream 101 of the pretreated natural gas.
- the warmed treated natural gas 139 is then compressed in the first compressor 31, then in the second compressor 43, and cooled in the first refrigerant 45 to form the treated natural gas 15.
- the treated gas contains 0.0755 mol% hydrogen, 0.0049% carbon dioxide, 1.2735 mol% nitrogen, 90.8511 mol% methane, 7.7717 mol% C hydrocarbons. 2 , 0.0232 mol% of C 3 hydrocarbons and a C 4 hydrocarbon content of less than 1 ppm.
- This treated gas comprises a C 6 + hydrocarbon content of less than 1 ppm, a water content of less than 1 ppm, advantageously less than 0.1 ppm, a sulfur dioxide content of less than 4 ppm, and a content of dioxide. less than 50 ppm carbon.
- the treated gas can thus be sent directly to a liquefaction train to produce liquefied natural gas.
- Reboiler streams 163, 161 are withdrawn from the column 35 and are reintroduced into the column 35 after reheating in the respective exchangers 109, 107 of the upper and lower reboilers 37 and 39, by heat exchange with the minority current 111 of the natural gas. 'Entrance.
- a bottom reboiler stream 165 is withdrawn in the vicinity of the bottom of the column 35. This stream 165 passes into a bottom heat exchanger 167 in which it is reheated by heat exchange with an adjustable temperature reheating stream 169. The heated reboiler stream is then reintroduced into the column 35.
- a bottom stream 171 rich in C 2 + hydrocarbons is extracted from the bottom of the fractionation column 35 to form a C 2 + hydrocarbon fraction.
- the bottom stream 171 is pumped by the bottom pump 47 and introduced at an intermediate level P1 of the fractionation column 61.
- the fractionation column 61 operates a pressure of between 20 and 42 bar.
- the pressure of the fractionation column 61 is at least 1 bar higher than the pressure of the recovery column 35.
- a bottom stream 181 is removed from the fractionation column 61 to form the C 3 + hydrocarbon section 17.
- the extraction rate of C 3 + hydrocarbons in the process is greater than 99%. In all cases, the propane extraction rate is greater than 99% and the C 4 + hydrocarbon extraction rate is greater than 99.8%.
- the molar ratio of ethane to propane in section 17 is less than 2% and in particular substantially equal to 0.5%.
- the ethane-rich stream 19 is withdrawn directly at an intermediate level P2 located in the upper region of the fractionation column 61.
- This stream comprises 0.57% methane, 97.4% ethane, 2% propane and 108 ppm carbon dioxide.
- the number of theoretical plates between the head of the column 61 and the upper level P2 is for example between 1 and 7.
- the level P2 is greater than the supply level P1.
- the content of methane and propane in the bottom stream 171, and thus in the stream 19, is regulated in particular by the temperature of the reheating current 169 of the bottom reboiler. These contents are preferably less than 1% and 2%, respectively.
- a head stream 183 is withdrawn from the top of the column 61 and then cooled in the second cooler 67 to form a top stream 185 at least partially cooled and condensed.
- This stream 185 is introduced into the second separator tank 69 to produce a liquid fraction 187.
- the liquid fraction 187 is then separated into a primary reflux stream 189 and a secondary reflux stream 191.
- the primary reflux stream 189 is pumped to be introduced as reflux in the fractionation column 35, at a head level P3 located above the level P2.
- the secondary reflux stream 191 is introduced into the second head exchanger 73, where it is cooled by heat exchange with the stream 135 and then expanded in a valve 193 and introduced at reflux at the head N4 level of the recovery column 35.
- Stream 191 contains 1.64% methane, 97.75% ethane, 0.59% propane and 216 ppm carbon dioxide.
- the ethane extraction rate, and consequently the ethane flow rate produced in the installation 11, is controlled by regulating the flow rate of the secondary reflux stream 191 flowing through the expansion valve 193, on the one hand, and by adjusting the pressure in the recovery column 35, using the compressors 43 and 31 which are of the variable speed type, on the other hand.
- the method according to the invention thus makes it possible, by simple and inexpensive means, to obtain a variable and easily adjustable flow rate of a stream rich in ethane 19 extracted from the starting natural gas 13, while maintaining the extraction rate of propane greater than 99%. This result is obtained without significant modification of the installation in which the process is implemented.
- composition of the secondary reflux stream 191, richer in methane than the ethane stream 19 withdrawn from the fractionation column 61, makes it possible to obtain this result.
- the recoveries of frigories within the heat exchangers 107, 109 of the lateral reboilers 37, 39 of the recovery column 35 adapt autonomously, without the need to drive the flow rates of fluid passing through these exchangers, and regardless of the flow rates of the ethane-rich stream 19 produced.
- the installation 11 according to the invention also does not require imperative use of multiflux exchangers. It is thus possible to use only tube and shell exchangers, which increase the reliability of the installation and reduce the risk of clogging.
- the treated natural gas comprises substantially zero levels of C 5 + hydrocarbons, for example less than 1 ppm. As a result, if the carbon dioxide content in the treated gas is less than 50 ppm, this gas can be liquefied without further treatment or fractionation.
- the top stream 183 of the fractionation column is not totally condensed in the refrigerant 67.
- the gas stream 201 coming from the separator drum 69 is then mixed with the secondary reflux stream. 191 , before passing through the second head exchanger 73.
- the pressure in the recovery column 35 is greater than the pressure in the fractionation column 61.
- the bottom stream 171 of the recovery column 35 is fed to the fractionation column 61 through an expansion valve.
- the secondary reflux stream 191 is then pumped to the top of the recovery column 35.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Catalysts (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Description
La présente invention concerne un procédé de production simultanée de gaz naturel traité, d'une coupe riche en hydrocarbures en C3 + et, dans au moins certaines conditions de production, d'un courant riche en éthane, à partir d'un gaz naturel de départ comprenant du méthane, de l'éthane et des hydrocarbures en C3 +, selon le préambule de la revendication 1.The present invention relates to a process for the simultaneous production of treated natural gas, a C 3 + hydrocarbon-rich fraction and, in at least some production conditions, an ethane-rich stream, from a natural gas. starting material comprising methane, ethane and C 3 + hydrocarbons according to the preamble of claim 1.
Un tel procédé est décrit par exemple dans
Le procédé de la présente invention s'applique aux installations destinées à produire, à partir d'un gaz naturel extrait du sous-sol, un gaz naturel traité, éventuellement destiné à être liquéfié, une coupe d'hydrocarbures en C3 +, et un courant riche en éthane de débit variable.The process of the present invention is applicable to plants intended to produce, from a natural gas extracted from the subsoil, a treated natural gas, possibly intended to be liquefied, a C 3 + hydrocarbon fraction, and a stream rich in ethane of variable flow.
On connaît de l'article
Le procédé du type précité est optimisé pour extraire simultanément la quasi-totalité des hydrocarbures en C3 + dans le gaz naturel de départ, et une proportion élevée d'éthane du gaz de départ. Ainsi, lorsque le taux d'extraction d'éthane est d'au moins 70%, le taux d'extraction de propane est proche de 99%.The process of the aforementioned type is optimized to simultaneously extract substantially all the C 3 + hydrocarbons in the starting natural gas, and a high proportion of ethane from the starting gas. Thus, when the ethane extraction rate is at least 70%, the propane extraction rate is close to 99%.
Comme il est bien connu, le terme « taux d'extraction » désigne le rapport de la différence entre le débit molaire d'un constituant dans le gaz naturel de départ et le débit molaire du constituant dans le gaz naturel traité produit, au débit molaire du constituant dans le gaz naturel de départ.As is well known, the term "extraction rate" refers to the ratio of the difference between the molar flow rate of a constituent in the starting natural gas and the molar flow rate of the constituent in the treated natural gas produced at the molar flow rate. constituent in the starting natural gas.
Un tel procédé ne donne pas entière satisfaction. En effet, la de mande en éthane sur le marché est très fluctuante, alors que celle des coupes d'hydrocarbures en C3 + reste relativement constante et bien valorisée. Par suite, il est parfois nécessaire de diminuer la production d'éthane dans le procédé, en réduisant le taux d'extraction de ce composé dans la colonne de récupération. Dans ce cas, le taux d'extraction des hydrocarbures en C3 + diminue également, ce qui réduit la rentabilité de l'installation.Such a method is not entirely satisfactory. Indeed, the ethane demand in the market is very fluctuating, whereas that of the C 3 + hydrocarbon cuts remains relatively constant and well valued. As a result, it is sometimes necessary to reduce the production of ethane in the process by reducing the rate of extraction of this compound in the recovery column. In this case, the rate of extraction of C 3 + hydrocarbons also decreases, which reduces the profitability of the installation.
Pour pallier ce problème, l'article précité (voir Figures 15 et 16) propose d'installer dans l'installation existante, une unité secondaire optimisée pour la production d'hydrocarbures en C3 + lorsque l'extraction d'éthane est faible ou nulle. L'opérateur de l'installation envoie alors sélectivement, en fonction de la quantité d'éthane requise, le gaz naturel de départ dans l'unité optimisée pour des taux d'extraction d'éthane élevés ou dans l'unité optimisée pour des taux d'extraction d'éthane faibles ou nuls. Le procédé est donc complexe en mettre en oeuvre et coûteux, notamment en raison des coûts de maintenance de l'installation dans laquelle il est mis en oeuvre.To alleviate this problem, the aforementioned article (see Figures 15 and 16) proposes to install in the existing plant, a secondary unit optimized for the production of C 3 + hydrocarbons when the extraction of ethane is low or nothing. The plant operator then selectively sends, depending on the amount of ethane required, the starting natural gas in the unit optimized for high ethane extraction rates or in the optimized unit for rates. low or zero ethane extraction. The method is therefore complex to implement and expensive, in particular because of the maintenance costs of the installation in which it is implemented.
Un but de l'invention est de fournir un procédé du type précité, qui permet par des moyens simples et peu coûteux d'extraire sensiblement la totalité des hydrocarbures en C3 + d'un courant de gaz naturel de départ, quelle que soit la quantité d'éthane produite par le procédé.An object of the invention is to provide a method of the aforementioned type, which allows by simple and inexpensive means to substantially extract the all of the C 3 + hydrocarbons of a starting natural gas stream, regardless of the amount of ethane produced by the process.
A cet effet, l'invention a pour objet un procédé selon la revendication 1.For this purpose, the subject of the invention is a method according to claim 1.
Le procédé suivant l'invention peut comprendre l'une ou plusieurs des caractéristiques qui font l'objet des revendications 2 à 8.The method according to the invention may comprise one or more of the features which are the subject of claims 2 to 8.
L'invention a en outre pour objet une installation selon la revendication 9.The invention further relates to an installation according to claim 9.
L'installation selon l'invention peut comprendre l'une ou plusieurs des caractéristiques qui font l'objet des revendications 10 à 15.The installation according to the invention may comprise one or more of the features which are the subject of claims 10 to 15.
Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard de la Figure unique annexée, qui représente un schéma synoptique fonctionnel d'une installation selon l'invention.Examples of implementation of the invention will now be described with reference to the appended single figure, which represents a functional block diagram of an installation according to the invention.
L'installation 11 représentée sur la Figure est destinée à la production simultanée, à partir d'une source 13 de gaz naturel de départ, désulfuré, sec, et au moins partiellement décarbonaté, d'un gaz naturel traité 15 comme produit principal, d'une coupe 17 d'hydrocarbures en C3 +, et d'un courant 19 riche en éthane, de débit réglable.The
Le terme « au moins partiellement décarbonaté » signifie que la teneur en dioxyde de carbone dans le gaz de départ 13 est avantageusement inférieure ou égale à 50 ppm lorsque le gaz naturel traité 15 doit être liquéfié. Cette teneur est avantageusement inférieure à 3% lorsque !e gaz naturel traité 15 est envoyé directement à un réseau de distribution de gaz.The term "at least partially decarbonated" means that the carbon dioxide content in the
Cette installation 11 comprend une unité 21 de récupération des hydrocarbures en C2 +, et une unité 23 de fractionnement de ces hydrocarbures en C2 +.This
Dans tout ce qui suit, on désignera par une même référence un flux de liquide et la conduite qui le véhicule, les pressions considérées sont des pressions absolues, et les pourcentages considérés sont des pourcentages molaires.In what follows, we will designate by the same reference a liquid flow and the pipe that conveys it, the pressures considered are absolute pressures, and the percentages considered are molar percentages.
L'unité 21 de récupération des hydrocarbures en C2 + comprend successivement, en aval de la source 13, un premier échangeur de chaleur 25, un premier ballon séparateur 27, une turbine 29 accouplée à un premier compresseur 31, un premier échangeur de chaleur 33 de tête, et une colonne 35 de récupération munie d'un rebouilleur latéral 37 supérieur, d'un rebouilleur latéral 39 inférieur et d'un rebouilleur de fond 41.The
L'unité 21 comprend en outre un deuxième compresseur 43 entraîné par une source d'énergie externe et un premier réfrigérant 45. L'unité 21 comprend également une pompe 47 de fond de colonne.The
L'unité de fractionnement 23 comprend une colonne de fractionnement 61. La colonne 61 comporte en tête un condenseur de tête 63, et en pied un rebouilleur 65.The
Le condenseur de tête 63 comprend un deuxième réfrigérant 67 et un deuxième ballon séparateur 69 associé à une pompe de reflux 71 et à un deuxième échangeur de tête 73 de la colonne 35.The
Un exemple de mise en oeuvre du procédé selon l'invention va maintenant être décrit.An exemplary implementation of the method according to the invention will now be described.
La composition molaire initial du flux 13 de gaz naturel de départ désulfuré, sec, et au moins partiellement décarbonaté, est donnée dans le tableau 1 ci-après.
Le gaz de départ 13 est séparé en un courant principal 101 et un courant secondaire 103. Le rapport du débit du courant secondaire 103 au débit du gaz de départ 13 est par exemple compris entre 20 % et 40 %.The starting
Le courant principal 101 est refroidi dans le premier échangeur de chaleur 25 pour former un courant de gaz refroidi 105. Le courant secondaire 103 est refroidi successivement dans des échangeurs de chaleur respectifs 107, 109 des rebouilleurs latéraux inférieur 39 et supérieur 37, pour former un courant secondaire refroidi 111 qui est mélangé au courant principal refroidi 105.The
Le mélange 113 obtenu est introduit dans le ballon séparateur 27 dans lequel s'effectue une séparation entre une phase gazeuse 115 et une phase liquide 117. La phase liquide 117 forme, après passage dans une vanne de détente 119, une phase liquide détendue 120 qui est introduite à un premier niveau intermédiaire N1 de la colonne de récupération 35 situé dans la région supérieure de la colonne, au-dessus des rebouilleurs latéraux 37 et 39. Par « niveau intermédiaire », on entend un emplacement comportant des moyens de distillation au-dessus et au-dessous de ce niveau.The
La fraction gazeuse 115 est séparée en un courant d'alimentation 121 et un courant de reflux 123. Le courant d'alimentation 121 est détendu dans la turbine 29 pour donner un courant d'alimentation détendu 125, lequel est introduit dans la colonne de récupération 35 à un deuxième niveau intermédiaire N2, situé au-dessus du premier niveau intermédiaire N1.The
Le courant de reflux 123 est partiellement condensé dans le premier échangeur de tête 33, puis détendu dans une vanne de détente 127, pour former un courant de reflux détendu 128. Ce courant 128 est introduit dans la colonne de récupération 35 à un troisième niveau intermédiaire N3, situé au-dessus du niveau intermédiaire N2.The
La pression de la colonne de récupération 35 est par exemple comprise entre 15 et 40 bars.The pressure of the recovery column 35 is for example between 15 and 40 bar.
La colonne de récupération 35 produit un courant de tête 131 qui est séparé en une fraction majoritaire 133 et une fraction minoritaire 135. La fraction majoritaire 133 est réchauffée dans le premier échangeur de tête 33 par échange thermique avec le courant de reflux 123 pour former une fraction majoritaire réchauffée 137. Le rapport du débit de la fraction minoritaire 135 à la fraction majoritaire 133 est par exemple inférieur à 20%.The recovery column 35 produces a
La fraction minoritaire 135 est réchauffée dans le deuxième échangeur de tête 73 pour former une fraction réchauffée 136. Cette fraction 136 est mélangée à la fraction majoritaire réchauffée 137 pour former un courant de gaz traité réchauffé 139.The
Ce courant 139 est à nouveau réchauffé dans le premier échangeur de chaleur 25 par échange thermique avec le courant principal 101 du gaz naturel prétraité.This
Le gaz naturel traité réchauffé 139 est ensuite comprimé dans le premier compresseur 31, puis dans le deuxième compresseur 43, et refroidi dans le premier réfrigérant 45 pour former le gaz naturel traité 15.The warmed treated
Le gaz traité 15 contient 0,0755 % molaire d'hydrogène, 0,0049% de dioxyde de carbone, 1,2735 % molaire d'azote, 90,8511 % molaire de méthane, 7,7717 % molaire d'hydrocarbures en C2, 0,0232% molaire d'hydrocarbures en C3 et une teneur en hydrocarbures en C4 inférieure à 1 ppm. Ce gaz traité comprend une teneur en hydrocarbures en C6 + inférieure à 1 ppm, une teneur en eau inférieure à 1 ppm, avantageusement inférieure à 0,1 ppm, une teneur en dioxyde de soufre inférieure à 4 ppm, et une teneur en dioxyde de carbone inférieure à 50 ppm. Le gaz traité 15 peut donc être envoyé directement à un train de liquéfaction pour produire du gaz naturel liquéfié.The treated gas contains 0.0755 mol% hydrogen, 0.0049% carbon dioxide, 1.2735 mol% nitrogen, 90.8511 mol% methane, 7.7717 mol% C hydrocarbons. 2 , 0.0232 mol% of C 3 hydrocarbons and a C 4 hydrocarbon content of less than 1 ppm. This treated gas comprises a C 6 + hydrocarbon content of less than 1 ppm, a water content of less than 1 ppm, advantageously less than 0.1 ppm, a sulfur dioxide content of less than 4 ppm, and a content of dioxide. less than 50 ppm carbon. The treated gas can thus be sent directly to a liquefaction train to produce liquefied natural gas.
Des courants de rebouilleur 163, 161 sont extraits de la colonne 35 et sont réintroduits dans la colonne 35 après réchauffage dans les échangeurs respectifs 109, 107 des rebouilleurs supérieur et inférieur 37 et 39, par échange thermique avec le courant minoritaire 111 du gaz naturel d'entrée.
Un courant de rebouilleur de fond 165 est extrait au voisinage du pied de la colonne 35. Ce courant 165 passe dans un échangeur de chaleur de fond 167 dans lequel il est réchauffé par échange thermique avec un courant de réchauffage 169 à température réglable. Le courant de rebouilleur réchauffé est ensuite réintroduit dans la colonne 35.A
Un courant de fond 171 riche en hydrocarbures en C2 + est extrait du pied de la colonne de fractionnement 35 pour former une coupe d'hydrocarbures en C2 +.A
Le courant de fond 171 est pompé par la pompe de fond de cuve 47 et introduit à un niveau intermédiaire P1 de la colonne de fractionnement 61.The
Dans l'exemple représenté, la colonne de fractionnement 61 opère une pression comprise entre 20 et 42 bars. Dans cet exemple, la pression de la colonne de fractionnement 61 est supérieure d'au moins 1 bar à la pression de la colonne de récupération 35.In the example shown, the
Un courant de pied 181 est extrait de la colonne de fractionnement 61 pour former la coupe 17 d'hydrocarbures en C3 +.A
Le taux d'extraction des hydrocarbures en C3 + dans le procédé est supérieur à 99%. Dans tous les cas, le taux d'extraction de propane est supérieur à 99% et le taux d'extraction des hydrocarbures en C4 + est supérieur à 99,8%.The extraction rate of C 3 + hydrocarbons in the process is greater than 99%. In all cases, the propane extraction rate is greater than 99% and the C 4 + hydrocarbon extraction rate is greater than 99.8%.
Le rapport molaire de l'éthane au propane dans la coupe 17 est inférieur à 2 % et notamment sensiblement égal à 0,5%.The molar ratio of ethane to propane in
Le courant riche en éthane 19 est soutiré directement à un niveau intermédiaire P2 situé dans la région supérieure de la colonne de fractionnement 61.The ethane-
Ce courant comprend 0,57% de méthane, 97,4% d'éthane, 2% de propane et 108 ppm de dioxyde de carbone.This stream comprises 0.57% methane, 97.4% ethane, 2% propane and 108 ppm carbon dioxide.
Le nombre de plateaux théoriques entre la tête de la colonne 61 et le niveau supérieur P2 est par exemple compris entre 1 et 7. Le niveau P2 est supérieur au niveau d'alimentation P1.The number of theoretical plates between the head of the
La teneur en méthane et en propane dans le courant de fond 171, et donc dans le courant 19, est réglée notamment par la température du courant de réchauffage 169 du rebouilleur de fond. Ces teneurs sont de préférence inférieures respectivement à 1% et à 2%.The content of methane and propane in the
Un courant de tête 183 est extrait de la tête de la colonne 61 puis refroidi dans le deuxième réfrigérant 67 pour former un courant de tête 185 refroidi et condensé au moins partiellement. Ce courant 185 est introduit dans le deuxième ballon séparateur 69 pour produire une fraction liquide 187.A
La fraction liquide 187 est alors séparée en un courant de reflux primaire 189 et un courant de reflux secondaire 191.The
Le courant de reflux primaire 189 est pompé pour être introduit comme reflux dans la colonne de fractionnement 35, à un niveau de tête P3 situé au dessus du niveau P2.The
Le courant de reflux secondaire 191 est introduit dans le deuxième échangeur de tête 73, où il est refroidi par échange thermique avec le courant 135 puis détendu dans une vanne 193 et introduit en reflux au niveau de tête N4 de la colonne de récupération 35.The
Le courant 191 contient 1,64% de méthane, 97,75% d'éthane, 0,59% de propane et 216 ppm de dioxyde de carbone.
Le taux d'extraction d'éthane, et par suite le débit d'éthane produit dans l'installation 11, est commandé en réglant le débit du courant de reflux secondaire 191 circulant à travers la vanne de détente 193, d'une part, et en réglant la pression dans la colonne de récupération 35, à l'aide des compresseurs 43 et 31 qui sont du type à vitesse variable, d'autre part.The ethane extraction rate, and consequently the ethane flow rate produced in the
Comme le montre le tableau 2 ci-dessous, le débit du courant riche en éthane est réglable, pratiquement sans affecter le taux d'extraction des hydrocarbures en C3 +.As shown in Table 2 below, the flow rate of the ethane rich stream is adjustable, virtually without affecting the C 3 + hydrocarbon removal rate.
Le procédé selon l'invention permet donc, par des moyens simples et peu coûteux, d'obtenir un débit variable et facilement réglable d'un courant riche en éthane 19 extrait du gaz naturel de départ 13, en maintenant le taux d'extraction de propane supérieur à 99%. Ce résultat est obtenu sans modification importante de l'installation dans laquelle le procédé est mis en oeuvre.
Les valeurs des pressions, des températures et débits dans le cas où le taux de récupération d'éthane est égal à 29,33% sont données dans le tableau 3 ci-dessous.
La composition du courant de reflux secondaire 191, plus riche en méthane que le courant d'éthane 19 soutiré de la colonne de fractionnement 61, permet notamment d'obtenir ce résultat.The composition of the
De plus, lorsque le débit du courant riche en éthane 19 est réduit, la puissance totale de compression est également fortement réduite.In addition, when the flow rate of the ethane-
Par ailleurs, les récupérations de frigories au sein des échangeurs de chaleur 107, 109 des rebouilleurs latéraux 37, 39 de la colonne de récupération 35 s'adaptent de manière autonome, sans qu'il soit nécessaire de piloter les débits de fluide passant par ces échangeurs, et ce quel que soit le débits du courant riche en éthane 19 produit.Moreover, the recoveries of frigories within the
L'installation 11 selon l'invention ne requiert par ailleurs pas d'utilisation impérative d'échangeurs multiflux. Il est ainsi possible d'utiliser uniquement des échangeurs à tubes et calandre, qui augmentent la fiabilité de l'installation et diminuent le risque de bouchage.The
Le gaz naturel traité 15 comporte des teneurs sensiblement nulles en hydrocarbures en C5 +, par exemple inférieures à 1 ppm. Par suite, si la teneur en dioxyde de carbone dans le gaz traité 15 est inférieure à 50 ppm, ce gaz 15 peut être liquéfié sans traitement ou fractionnement complémentaire.The treated natural gas comprises substantially zero levels of C 5 + hydrocarbons, for example less than 1 ppm. As a result, if the carbon dioxide content in the treated gas is less than 50 ppm, this gas can be liquefied without further treatment or fractionation.
Dans une première variante, représentée en pointillés sur la Figure, le courant de tête 183 de la colonne de fractionnement n'est pas totalement condensé dans le réfrigérant 67. Le flux gazeux 201 issu du ballon séparateur 69 est alors mélangé au courant de reflux secondaire 191, avant son passage dans le deuxième échangeur de tête 73.In a first variant, shown in dashed lines in the figure, the
Dans une autre variante (non représentée), lorsque la pression du gaz naturel de départ est très élevée, par exemple supérieure à 100 bars, la pression dans la colonne de récupération 35 est supérieure à la pression dans la colonne de fractionnement 61. Dans ce cas, le courant de fond 171 de la colonne de récupération 35 est amené dans la colonne de fractionnement 61 à travers une vanne de détente. Par ailleurs, le courant de reflux secondaire 191 est alors pompé jusqu'à la tête de la colonne de récupération 35.In another variant (not shown), when the pressure of the starting natural gas is very high, for example greater than 100 bar, the pressure in the recovery column 35 is greater than the pressure in the
Claims (15)
- Process for simultaneously producing treated natural gas (15), a fraction (17) rich in C3 + hydrocarbons and, under at least some production conditions, a current (19) rich in ethane, from a starting natural gas (13) comprising methane, ethane and C3 + hydrocarbons,
the process comprising the following steps:- the starting natural gas (13) is cooled and partially condensed;- the cooled natural gas (113) is separated into a liquid current (117) and a gaseous current (115);- expansion takes place and the liquid current (117) is introduced into a column (35) for recovering C2 + hydrocarbons at a first intermediate level (N1);- the gaseous current (115) is separated into a feed current for said column (121) and a reflux current (123);- the feed current (121) is expanded in a turbine (29) then introduced into the column (35) at a second intermediate level (N2);- the reflux current (123) is cooled and at least partly condensed and, after expansion, it is introduced into the column (35) at a third intermediate level (N3);- the head current (131) of the column (35) is recovered to form the treated natural gas (15), and the bottoms current (171) of the column (35) is recovered to form a liquid current rich in C2 + hydrocarbons;- the bottoms current (171) is introduced at a feed level (P1) of a fractionation column (61) provided with a head condenser (63), the head condenser comprising a separating flask producing a liquid fraction (187), the fractionation column (61) producing at the top the ethane-rich current (19) and at the bottom the C3 + hydrocarbon fraction (17) ; and- a primary reflux current (189) produced in the head condenser (63) is refluxed into the fractionation column (61);characterised in that
for ethane extraction levels below a predetermined threshold, at least one secondary reflux current (191) is produced from the head condenser (63) by separating the liquid fraction (187) into the primary reflux current (189) and the secondary reflux current (191);
and in that the ethane-rich current (19) is drawn off from an intermediate level (P2) of the fractionation column (61) located above the feed level (P1) of this column (61);
and in that the secondary reflux current (191) produced by separating the liquid fraction at the head of the recovery column (35) is refluxed. - Process according to claim 1; characterised in that the flow rate of the ethane-rich current (19) is controlled by regulating the flow rate of the secondary reflux current (191) and regulating the pressure of the recovery column (35).
- Process according to claim 1 or 2, characterised in that the fractionation column (61) comprises between 1 and 7 theoretical trays about said intermediate level (P2).
- Process according to any one of the preceding claims, characterised in that the secondary reflux current (191) is cooled by heat exchange with at least a first part (135) of the head current (131) of the recovery column (35).
- Process according to claim 4, characterised in that the reflux current (123) of the recovery column (3 5) is cooled by heat exchange with at least a second part (133) of the head current (131) of the recovery column (35).
- Process according to any one of the preceding claims, characterised in that the secondary reflux current is produced from a mixture of a gas current (201) and a liquid current (191) coming from the head condenser (63).
- Process according to any one of the preceding claims, characterised in that the maximum content of methane and propane in the ethane-rich current (19) is controlled using a base reboiler (41) mounted on the recovery column (35).
- Process according to any one of the preceding claims, characterised in that the content of C5 + hydrocarbons in the treated natural gas (15) is less than 1 ppm.
- Installation (11) for simultaneously producing treated natural gas (15) and a fraction (l7) rich in C3 + hydrocarbons and, under at least some production conditions, a current (19) rich in ethane, from a starting natural gas (13) comprising methane, ethane and C3 + hydrocarbons, the installation comprising:- means (25) for cooling and partially condensing the starting natural gas (13);- means (27) for separating the cooled natural gas (113) to form a liquid current (117) and a gaseous current (115);- a column (35) for recovering C2 + hydrocarbons;- means (119) for expanding and introducing the liquid current (117) into the recovery column (35), opening out at a first intermediate level (N1) of the column (35); and- means for separating the gaseous current (115) to form a feed current (125) for the column (35) and a reflux current (123);- turbine (29) for expanding the feed current (121) and means for introducing the current obtained from the turbine (29) at a second intermediate level (N2) of the recovery column (35);- means (33) for cooling and at least partly condensing the reflux current (123), opening into expansion means (127) for the cooled reflux current,- means for introducing, at a third intermediate level (N3) of the recovery column (35), the cooled reflux current coming from the expansion means (127) for the cooled reflux current;- means (131) for recovering the head current of the column to form the treated natural gas (15);- means (171) for recovering the bottoms current of the column to form a liquid current rich in C2 + hydrocarbons;- a fractionation column (61) provided with a head condenser (63), the head condenser comprising a separating flask producing a liquid fraction;- means (47) for introducing said bottoms current (171) at a feed level (P1) of the fractionation column (61);- means for recovering the ethane-rich current (19), which are situated at the top of the fractionation column (61), and means for recovering the C3 + hydrocarbon fraction (17), which are situated at the bottom of the fractionation column (61); and- means (71) for introducing a primary reflux current (189) produced in the head condenser (63) as a reflux into the fractionation column (61);characterised in that the installation comprises means for producing, for levels of ethane extraction from the starting natural gas below a predetermined threshold, a secondary reflux current (191) coming from the head condenser (63) by separating the liquid fraction (187) into the primary reflux current (189) and the secondary reflux current (191);
and in that the means for recovering an ethane-rich current (19) are branched from an intermediate level (P2) of the fractionation column (61) located above the feed level (P1) of this column (61);
and in that the installation (11) comprises means (193) for introducing the secondary reflux current (191) produced by separating the liquid fraction in reflux in the recovery column (35). - Installation (11) according to claim 9, characterised in that it comprises means for controlling the flow rate of the ethane-rich current, comprising means (193) for regulating the flow rate of the secondary reflux current (191) and means for regulating (43, 31) the pressure in the recovery column (35).
- Installation (11) according to claim 9 or 10, characterised in that the fractionation column (61) comprises between 1 and 7 theoretical trays above said intermediate level (P2).
- Installation (11) according to any one of claims 9 to 11, characterised in that it comprises means (73) for cooling the secondary reflux current (191) which bring this current (191) into a heat exchange relationship with at least part (135) of the head current (131) of the recovery column (35).
- Installation (11) according to claim 12, characterised in that it comprises means (33) for cooling the reflux current (123) of the recovery column (3 5) which bring this current (123) into a heat exchange relationship with at least part (133) of the head current (131) of the recovery column (35).
- Installation (11) according to any one of claims 9 to 13, characterised in that the means for producing the secondary reflux current (191) comprise means for mixing a gas current (201) and a liquid current (191) coming from the head condenser (63).
- Installation (11) according to any one of claims 9 to 14, characterised in that it comprises means (167,169) for controlling the maximum content of methane and propane in the ethane-rich current (19), comprising a base reboiler (41) mounted on the recovery column (35).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL05850537T PL1828697T3 (en) | 2004-12-22 | 2005-12-19 | Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0413751A FR2879729B1 (en) | 2004-12-22 | 2004-12-22 | PROCESS AND PLANT FOR PRODUCING PROCESSED GAS, A C3 + HYDROCARBON-RICH CUTTING AND A CURRENT RICH IN ETHANE |
PCT/FR2005/003186 WO2006070097A1 (en) | 2004-12-22 | 2005-12-19 | Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1828697A1 EP1828697A1 (en) | 2007-09-05 |
EP1828697B1 true EP1828697B1 (en) | 2008-12-03 |
Family
ID=34953803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05850537A Active EP1828697B1 (en) | 2004-12-22 | 2005-12-19 | Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream |
Country Status (18)
Country | Link |
---|---|
US (1) | US7458232B2 (en) |
EP (1) | EP1828697B1 (en) |
CN (1) | CN100547326C (en) |
AT (1) | ATE416352T1 (en) |
AU (1) | AU2005321162B2 (en) |
BR (1) | BRPI0519380B1 (en) |
CA (1) | CA2592012C (en) |
DE (1) | DE602005011482D1 (en) |
DK (1) | DK1828697T3 (en) |
EA (1) | EA010386B1 (en) |
EG (1) | EG24056A (en) |
ES (1) | ES2318587T3 (en) |
FR (1) | FR2879729B1 (en) |
MX (1) | MX2007007351A (en) |
MY (1) | MY145312A (en) |
PL (1) | PL1828697T3 (en) |
PT (1) | PT1828697E (en) |
WO (1) | WO2006070097A1 (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2923001B1 (en) * | 2007-10-26 | 2015-12-11 | Inst Francais Du Petrole | METHOD FOR LIQUEFACTING A NATURAL GAS WITH HIGH PRESSURE FRACTIONATION |
FR2923000B1 (en) * | 2007-10-26 | 2015-12-11 | Inst Francais Du Petrole | METHOD FOR LIQUEFACTING NATURAL GAS WITH IMPROVED RECOVERY OF PROPANE |
CN101614464B (en) * | 2008-06-23 | 2011-07-06 | 杭州福斯达实业集团有限公司 | Method for liquefying natural gas through double-expansion of high-temperature and low-temperature nitrogen gas |
US20110174017A1 (en) * | 2008-10-07 | 2011-07-21 | Donald Victory | Helium Recovery From Natural Gas Integrated With NGL Recovery |
FR2943683B1 (en) * | 2009-03-25 | 2012-12-14 | Technip France | PROCESS FOR TREATING A NATURAL LOAD GAS TO OBTAIN TREATED NATURAL GAS AND C5 + HYDROCARBON CUTTING, AND ASSOCIATED PLANT |
FR2970258B1 (en) * | 2011-01-06 | 2014-02-07 | Technip France | PROCESS FOR PRODUCING C3 + HYDROCARBON RICH CUT AND METHANE ETHANE RICH CURRENT FROM HYDROCARBON RICH POWER CURRENT AND ASSOCIATED PLANT. |
CN102603457B (en) * | 2012-01-17 | 2014-01-08 | 马俊杰 | Production device and process for generating propylene by utilizing C3 and C4 in liquid gas deep processing |
FR2992972B1 (en) * | 2012-07-05 | 2014-08-15 | Technip France | PROCESS FOR PRODUCING NATURAL GAS PROCESSED, CUTTING RICH IN C3 + HYDROCARBONS, AND POSSIBLY A CURRENT RICH IN ETHANE, AND ASSOCIATED PLANT |
US9726426B2 (en) * | 2012-07-11 | 2017-08-08 | Butts Properties, Ltd. | System and method for removing excess nitrogen from gas subcooled expander operations |
BR112015015743A2 (en) * | 2012-12-28 | 2017-07-11 | Linde Process Plants Inc | process for the integrated liquefaction of natural gas and the recovery of natural gas liquids and an apparatus for the integration of liquefaction |
FR3007408B1 (en) * | 2013-06-25 | 2015-07-31 | Technip France | METHOD FOR RECOVERING AN ETHYLENE CURRENT FROM A CARBON MONOXIDE RICH CHARGE CURRENT, AND ASSOCIATED INSTALLATION |
US11402155B2 (en) * | 2016-09-06 | 2022-08-02 | Lummus Technology Inc. | Pretreatment of natural gas prior to liquefaction |
FR3072162B1 (en) * | 2017-10-10 | 2020-06-19 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | < P > PROCESS FOR RECOVERING PROPANE AND AN ADJUSTABLE QUANTITY OF ETHANE FROM NATURAL GAS < / P > |
US11015865B2 (en) | 2018-08-27 | 2021-05-25 | Bcck Holding Company | System and method for natural gas liquid production with flexible ethane recovery or rejection |
US11378333B2 (en) * | 2019-12-13 | 2022-07-05 | Bcck Holding Company | System and method for separating methane and nitrogen with reduced horsepower demands |
CN113899161B (en) * | 2021-10-12 | 2023-04-18 | 中石化石油工程技术服务有限公司 | Method for extracting ethane from natural gas |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1551609A1 (en) * | 1967-12-15 | 1972-03-02 | Messer Griesheim Gmbh | Process for the decomposition of liquid natural gas |
FR2458525A1 (en) * | 1979-06-06 | 1981-01-02 | Technip Cie | IMPROVED PROCESS FOR THE PRODUCTION OF ETHYLENE AND ETHYLENE PRODUCTION PLANT COMPRISING THE APPLICATION OF SAID METHOD |
US4529484A (en) * | 1982-01-29 | 1985-07-16 | Phillips Petroleum Company | Fractional distillation column control |
US6116050A (en) * | 1998-12-04 | 2000-09-12 | Ipsi Llc | Propane recovery methods |
FR2796858B1 (en) * | 1999-07-28 | 2002-05-31 | Technip Cie | PROCESS AND PLANT FOR PURIFYING A GAS AND PRODUCTS THUS OBTAINED |
US6516631B1 (en) * | 2001-08-10 | 2003-02-11 | Mark A. Trebble | Hydrocarbon gas processing |
US7051553B2 (en) * | 2002-05-20 | 2006-05-30 | Floor Technologies Corporation | Twin reflux process and configurations for improved natural gas liquids recovery |
EP1508010B1 (en) * | 2002-05-20 | 2008-01-09 | Fluor Corporation | Twin reflux process and configurations for improved natural gas liquids recovery |
-
2004
- 2004-12-22 FR FR0413751A patent/FR2879729B1/en not_active Expired - Fee Related
-
2005
- 2005-12-19 ES ES05850537T patent/ES2318587T3/en active Active
- 2005-12-19 PT PT05850537T patent/PT1828697E/en unknown
- 2005-12-19 DK DK05850537T patent/DK1828697T3/en active
- 2005-12-19 CA CA2592012A patent/CA2592012C/en active Active
- 2005-12-19 WO PCT/FR2005/003186 patent/WO2006070097A1/en active Application Filing
- 2005-12-19 MX MX2007007351A patent/MX2007007351A/en active IP Right Grant
- 2005-12-19 EP EP05850537A patent/EP1828697B1/en active Active
- 2005-12-19 PL PL05850537T patent/PL1828697T3/en unknown
- 2005-12-19 CN CNB200580047003XA patent/CN100547326C/en active Active
- 2005-12-19 AU AU2005321162A patent/AU2005321162B2/en active Active
- 2005-12-19 DE DE602005011482T patent/DE602005011482D1/en active Active
- 2005-12-19 AT AT05850537T patent/ATE416352T1/en active
- 2005-12-19 EA EA200701340A patent/EA010386B1/en not_active IP Right Cessation
- 2005-12-19 BR BRPI0519380-0A patent/BRPI0519380B1/en active IP Right Grant
- 2005-12-21 US US11/316,083 patent/US7458232B2/en active Active
- 2005-12-21 EG EG2005120536A patent/EG24056A/en active
- 2005-12-21 MY MYPI20056083A patent/MY145312A/en unknown
Also Published As
Publication number | Publication date |
---|---|
BRPI0519380B1 (en) | 2018-03-06 |
CA2592012A1 (en) | 2006-07-06 |
EG24056A (en) | 2008-04-30 |
CA2592012C (en) | 2013-10-15 |
PL1828697T3 (en) | 2009-06-30 |
FR2879729A1 (en) | 2006-06-23 |
US7458232B2 (en) | 2008-12-02 |
BRPI0519380A2 (en) | 2009-01-20 |
MY145312A (en) | 2012-01-13 |
EP1828697A1 (en) | 2007-09-05 |
CN100547326C (en) | 2009-10-07 |
DE602005011482D1 (en) | 2009-01-15 |
MX2007007351A (en) | 2007-08-14 |
PT1828697E (en) | 2009-02-12 |
ES2318587T3 (en) | 2009-05-01 |
US20060144081A1 (en) | 2006-07-06 |
EA200701340A1 (en) | 2007-10-26 |
FR2879729B1 (en) | 2008-11-21 |
DK1828697T3 (en) | 2009-03-09 |
EA010386B1 (en) | 2008-08-29 |
ATE416352T1 (en) | 2008-12-15 |
WO2006070097A1 (en) | 2006-07-06 |
CN101103239A (en) | 2008-01-09 |
AU2005321162A1 (en) | 2006-07-06 |
AU2005321162B2 (en) | 2010-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1828697B1 (en) | Method and installation for producing treated natural gas from a c3+ hydrocarbon-rich cut and ethane-rich stream | |
EP1454104B1 (en) | Method and installation for separating a gas mixture containing methane by distillation | |
EP1639062B1 (en) | Method and plant for simultaneous production of a natural gas for liquefaction and a liquid cut from natural gas | |
EP2422152B1 (en) | Method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a natural feed gas stream, and corresponding equipment | |
EP2205920B1 (en) | Method for liquefying natural gas with high pressure fractioning | |
EP2870226B1 (en) | Process and apparatus for the production of treated natural gas and a fraction enriched in c3+ hydrocarbons and a fraction enriched in ethane. | |
EP3625196B1 (en) | Method for recovering a stream of c2+ hydrocarbons in a residual refinery gas and associated facility | |
EP0937679B1 (en) | Process and apparatus for the production of carbon monoxide and hydrogen | |
EP2630428B1 (en) | Simplified method for producing a methane-rich stream and a c2+ hydrocarbon-rich fraction from a feed natural-gas stream, and associated facility | |
EP2122282A2 (en) | Method for separating a mixture of carbon monoxide, methane, hydrogen, and optionally nitrogen by cryogenic distillation | |
EP2553055B1 (en) | Process for treating a stream of cracked gas coming from a hydrocarbon pyrolysis plant, and associated plant | |
WO2010109130A1 (en) | Method for processing a natural load gas for obtaining a natural processed gas and a reduction in c5+ hydrocarbons, and associated installation | |
EP2494295B1 (en) | Method for fractionating a cracked gas flow in order to obtain an ethylene-rich cut and a fuel flow, and associated facility | |
EP2661479A1 (en) | Method for producing a c3+ hydrocarbon-rich fraction and a methane- and ethane-rich stream from a hydrocarbon-rich feed stream, and related facility | |
EP3060629B1 (en) | Method for fractionating a stream of cracked gas, using an intermediate recirculation stream, and related plant | |
CA3119860A1 (en) | Method for treating a feed gas stream and associated installation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070612 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20071029 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 602005011482 Country of ref document: DE Date of ref document: 20090115 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20090130 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2318587 Country of ref document: ES Kind code of ref document: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E005139 Country of ref document: HU |
|
BERE | Be: lapsed |
Owner name: TECHNIP FRANCE SA Effective date: 20081231 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090303 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090403 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081203 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081219 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090304 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091231 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20201116 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20201210 Year of fee payment: 16 Ref country code: FR Payment date: 20201218 Year of fee payment: 16 Ref country code: PT Payment date: 20201117 Year of fee payment: 16 Ref country code: HU Payment date: 20201201 Year of fee payment: 16 Ref country code: IE Payment date: 20201127 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20201120 Year of fee payment: 16 Ref country code: SK Payment date: 20201119 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210107 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220620 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20220101 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 5594 Country of ref document: SK Effective date: 20211219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211219 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211219 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211220 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211219 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211219 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230601 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231116 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20231127 Year of fee payment: 19 Ref country code: EE Payment date: 20231121 Year of fee payment: 19 Ref country code: DK Payment date: 20231215 Year of fee payment: 19 Ref country code: DE Payment date: 20231121 Year of fee payment: 19 Ref country code: CZ Payment date: 20231129 Year of fee payment: 19 Ref country code: BG Payment date: 20231204 Year of fee payment: 19 Ref country code: AT Payment date: 20231127 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231218 Year of fee payment: 19 |