EP1818596B1 - Pressure vessel made of plastic and method for its manufacture - Google Patents
Pressure vessel made of plastic and method for its manufacture Download PDFInfo
- Publication number
- EP1818596B1 EP1818596B1 EP07090008A EP07090008A EP1818596B1 EP 1818596 B1 EP1818596 B1 EP 1818596B1 EP 07090008 A EP07090008 A EP 07090008A EP 07090008 A EP07090008 A EP 07090008A EP 1818596 B1 EP1818596 B1 EP 1818596B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liner body
- liner
- pressure reservoir
- plastic
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C1/00—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
- F17C1/16—Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0604—Liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0607—Coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0602—Wall structures; Special features thereof
- F17C2203/0612—Wall structures
- F17C2203/0614—Single wall
- F17C2203/0621—Single wall with three layers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/066—Plastics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2203/00—Vessel construction, in particular walls or details thereof
- F17C2203/06—Materials for walls or layers thereof; Properties or structures of walls or their materials
- F17C2203/0634—Materials for walls or layers thereof
- F17C2203/0658—Synthetics
- F17C2203/0663—Synthetics in form of fibers or filaments
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/01—Mounting arrangements
- F17C2205/0153—Details of mounting arrangements
- F17C2205/0192—Details of mounting arrangements with external bearing means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/05—Vessel or content identifications, e.g. labels
- F17C2205/052—Vessel or content identifications, e.g. labels by stickers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2205/00—Vessel construction, in particular mounting arrangements, attachments or identifications means
- F17C2205/05—Vessel or content identifications, e.g. labels
- F17C2205/058—Vessel or content identifications, e.g. labels by Radio Frequency Identification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2209/00—Vessel construction, in particular methods of manufacturing
- F17C2209/21—Shaping processes
- F17C2209/2154—Winding
- F17C2209/2163—Winding with a mandrel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2221/00—Handled fluid, in particular type of fluid
- F17C2221/03—Mixtures
- F17C2221/031—Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0107—Single phase
- F17C2223/0123—Single phase gaseous, e.g. CNG, GNC
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
- F17C2270/0171—Trucks
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0165—Applications for fluid transport or storage on the road
- F17C2270/0168—Applications for fluid transport or storage on the road by vehicles
- F17C2270/0173—Railways
Definitions
- the invention relates to a pressure vessel made of plastic, in particular compressed air tank for brake power and pneumatic auxiliary equipment on trucks, trucks, buses, rail vehicles or fire extinguishing systems, with a container shell of an injection molded, composed of liner parts liner body made of fiber-reinforced polyethylene, polypropylene, or polyamide, in the pole caps Connecting sleeves are formed captive, a arranged on the liner body reinforcing layer of fiberglass tape and an arranged on the latter injection-molded captive enclosure made of fiber-reinforced polyethylene, polypropylene, or polyamide.
- a container is from the US-A-5,484,079 known.
- the invention further relates to a method for producing a pressure vessel made of plastic, in particular compressed air tank for brake power systems and pneumatic auxiliary equipment on trucks, trucks, buses, Rail vehicles or fire extinguishing systems, in which first liner parts with pole caps made of glass fiber reinforced polyethylene, polypropylene or polyamide granules are injection molded by injection molding in an injection mold, embedded in the center of the pole caps connection sleeves are embedded by the plastic, the liner parts by joining in a joining machine to a liner body are joined together, the added liner body is wound with a reinforcing layer of glass fibers in a winding machine and the armored liner body is overmolded with a cladding of fiber-reinforced polyethylene, polypropylene, or polyamide.
- a pressure vessel in particular accumulator tank for brake power systems and pneumatic auxiliary equipment on trucks, trucks, buses, rail vehicles, etc. or for fire-extinguishing systems, which consists of a liquid-tight injection-molded liner or thermoplastic body such as polypropylene, polyethylene, polyamide and the like. consists, are provided in the openings for connection sleeves and arranged on the liner armor layer.
- the liner consists of a lost shape body made of short glass fiber reinforced thermoplastic and is versatile surrounded by a one-piece captive shell.
- the sheath consists of short fibers, preferably glass fibers, reinforced and filled polypropylene or polyamide or modified polypropylene ethers or polyphenylsulfide or polyetherimide.
- the reinforcing layer is composed of cross-laminated with about 55 ° to each other wound glass fibers or metal wires or wire mesh together.
- the pressure vessel consists, at least in part, of a tube, which in turn is made of fiber-reinforced thermoplastic, the material of the tube being more than 10% by volume of fibers having an average fiber length of more than 50 mm.
- the floor is formed as a separate part and also consists of a fiber-plastic composite material with short, long or continuous fibers. The floor is curved inwardly formed in the container space. At the bottom of a circumferential collar is arranged, which abuts against the inner wall of the central part and is connected thereto.
- the DE 100 00 705 A1 describes a plastic core container reinforced with a fiber-plastic composite for storing liquid and / or gaseous media under pressure which has one or more connecting pieces in the neck and / or bottom and / or cylindrical container part, of which at least one connecting piece for receiving a screw-in cylindrical or conical thread having pressure line feed such as a valve or pipe connection is formed.
- a cylindrical insert is mounted with a sleeve end enveloping or circumferential collar end, wherein at least two seals are arranged in such a manner that at least one seal between the insert and the inner surface of the plastic connecting pin of the plastic core container and at least one further seal between insert and pressure line feed is arranged.
- a container for storing and transporting fluids under pressure comprising a thermoplastic inner blown liner of polyethylene, polyethylene terephthalate, polypropylene, polyvinylchloride or polyvinyldiene chloride provided with an outer layer of carbon fibers, polyamide fibers, glass fibers, glass fiber reinforced Polyester fibers or glass fiber reinforced phenolic epoxy resin is wrapped.
- a container intended to receive a pressurized fluid having a shell of substantially cylindrical shape and two substantially spherical bottoms closing the shell at its ends.
- the container comprises an outer shell of composite material, an inner shell rigidly connected to the outer shell, a first opening piercing the inner and outer sheath, and a reinforcing element of the outer sheath around the first opening located inside the outer shell located and also includes an opening, which cooperates with the second opening.
- the first opening is located in the jacket area and is provided with means for attaching the container.
- the reinforcing element is interposed between the inner and outer sheaths.
- the reinforcing element occupies at least the entire length of the shell.
- the inner shell is cast, the shape chosen so that the insertion of the reinforcing element does not interfere with the profile intended for the container.
- the outer shell is made of a fibrous material which is wound up on the inner shell provided with the reinforcing element. Subsequently, a heat treatment of the container is made.
- the Indian EP 0 666 450 A1 described pressure vessel comprises a plastic liner with a cylindrical middle part, two dome-shaped end parts and a liner overfilling the outer jacket with a plurality of radially superimposed tangential windings and axial windings of a fiber-reinforced plastic, wherein the lowermost winding is formed as a tangential winding and in the axial direction substantially over the cylindrical middle part of Liners extends.
- the lowermost winding in the middle region has a first thickness and merges at both ends into a winding edge, which has a second thickness which is greater than the first thickness.
- a pressure vessel in particular compressed gas tank known, consisting of a dimensionally stable, rotationally symmetrical, gas-tight and cylindrical in its central region inner container, two coaxial from the outside to the bottom of the inner container mounted pole pieces and wound on the inner container with detection of the pole pieces, of continuous filaments and cured Plastic laminated outer sheath is made, wherein a bottom of the inner container and the patch thereon pole piece with an opening for tight connection of a valve o. The like. Are provided.
- DE 2 423 497 A1 is a process for producing a claimed fiber-reinforced resin impregnated hollow body in the winding process with a mandrel remaining in the finished part, being formed as a mandrel a structure of the structure of the hollow body mitbeffleder fiber reinforced support body and cured.
- the support body has two end caps and is provided with at least one of the support body and the end caps engaging winding layer.
- the winding layers are applied in the form of longitudinal windings with a sharp winding angle and in the form of circumferential windings of approximately 90 °.
- the DE 2 516 395 A1 discloses a pressure vessel formed as an aluminum vessel having a cylindrical portion and a hood-shaped end portion at each end of the cylindrical portion, the cylindrical and hood-shaped portions being substantially equal in thickness.
- a winding arrangement of alternately polar oriented and circumferentially oriented glass fiber fabric is provided around the aluminum vessel.
- At least one circumferentially oriented winding assembly is wound over the junctions between the cylindrical and hood-shaped end portions. The wrapping is in a preloaded condition so that compressive forces are applied to the outer surface of the vessel.
- a gas cylinder for high gas pressure which consists of an aluminum liner and a circumferential layer of glass fiber reinforced plastic, wherein the liner has a cylindrical portion and spherically shaped pole caps with connecting pieces.
- the liner including its polar caps is with a first layer of glass fibers in cross-winding provided.
- a second layer is provided mainly in the cylindrical part of the liner, the glass fibers being in a circumferential winding.
- the WO 01/57429 A1 describes a fiber-reinforced pressure vessel whose gaseous or liquid-tight body is completely wrapped with sliver, wherein the slivers are not embedded in a matrix and at least a number of slivers are freely movable relative to each other. The slivers are wound so that as soon as the pressure vessel is under internal pressure, the slivers are loaded exactly in their longitudinal direction.
- a plastic tank which is reinforced with glass fibers or corresponding reinforcing filaments and composed of preferably cylindrical tank halves, each having a bottom and one of the two floors having a connection opening.
- the open ends of the tank halves are tapered and inserted into each other as an insert in a receiving part and held together by an adhesive.
- the tank halves include outer and inner layers that are substantially transverse reinforcing strands, wherein the inner layer of the insert and the outer layer of the receptacle each include a layer of densely-spaced reinforcing strands in a number of layers of flat-lying rovings.
- This prior art also discloses a method for producing a reinforcing body of fiber strands for insertion into a casting mold for casting a fiber-reinforced cylinder having a closed end on which longitudinal and transverse reinforcing strands are wound, which are joined together by heating fusible resin powder.
- a pressure vessel consisting of a dimensionally stable, gas-tight and in its central region cylindrical inner container, two coaxial from the outside to the bottom of the inner container mounted pole pieces and a wound under detection of the pole pieces on the inner container outer shell of glass fiber reinforced plastic, wherein a bottom of the inner container and the are provided with a flange-shaped part patch pole piece with an opening for tight connection of a connector and the inner container at its opening edge has an integrally formed axially outwardly directed and cylindrical neck whose contour matches that of the pole piece and the connector and by the with the Pole piece through Screw connection contiguous connector is pressed radially against the pole piece.
- the inner container neck, the inner contour of the pole piece and the outer contour of the connector are conically tapered outward.
- the liner is made of plastic and has two openings located in the neck region, in each of which an opening closing and / or sealing neck piece is arranged, of which at least one is designed to receive a screw-valve.
- Both neck pieces are provided with an end region facing the pressure vessel with a flat running, frustoconical collar which is surrounded by the elements of the liner and / or the reinforcing winding and with a central axis of the axis of symmetry enclosing and extending from the inside recess, the in the case of the valve neck piece, it merges into the bore of the valve stem area.
- All of these known plastic pressure vessels have a, taken from the metal container construction cylindrical middle or shell part, which is closed by corresponding bottoms on both sides.
- dome-shaped or inwardly curved floors arise in the transition from Mantel- in the bottom area voltage spikes, which often lead to breakage at these transitions or to release the bottom part of the shell part.
- the basic rule is that the smaller the transition radius, the greater the risk of a voltage breakage despite amplification measures of the most varied types. Even the transition from a cylindrical jacket region into a spherical pole region with a slightly larger radius can not sufficiently reduce the risk of breakage, especially with continuous and decaying permanent stress, as occurs in particular in brake power plants ( DE 38 21 852 A1 ).
- the present invention seeks to improve a composite pressure vessel of the type mentioned so that the complex property guarantee of brake air tanks such as high toughness even at low temperatures, high impact and breaking strength under dynamic stress in the pressure range of 8 , 5 to 20 bar, a long service life of at least 15 years despite constant load cycling and corrosion resistance is achieved.
- the solution according to the invention is characterized in that the shell and bottom region of the pressure vessel is brought into a construction form suitable for a more even and thus more safe distribution of the axial and radial stresses, which no longer consists of a cylindrical shell part and a spherical bottom part, but the Has a form of an ellipsoid of revolution, whereby a substantial approximation to the spherical shape is made possible.
- the liner body therefore has an approximately ellipsoidal body shape, so that no sharp transitions between the bottom and shell area arise. Due to the largely uniform curvature in the longitudinal direction of the container wall in the originally cylindrical shell region, the tensile and radial stresses are very evenly distributed over all wall areas and a concentration of stress in the wall transition from the shell to the ground is significantly reduced.
- a body shape which is particularly suitable for equalizing the tensile and compressive stresses is achieved when the ratio of the radius of the pole caps to the radius of the liner parts is 1: 2.5 to 1: 5.
- the wall of the pole caps and the wall in the central region of the pressure vessel are evenly curved and merge seamlessly into one another.
- the body shape of the ellipsoid of revolution is also maintained during application of the plastic-coated reinforcing layer of fiberglass tape and the plastic coating on the liner, so that a pressure vessel is created, which breaks for the first time with the adopted from the steel container construction cylindrical body shape and is no longer comparable with the latter.
- the plastic coating of the glass fiber tape makes it possible to connect the glass fiber tapes with the liner and the juxtaposed or superimposed glass fiber bands during winding cohesively together. It has been shown that especially with laser welding the required high speeds of joining can be achieved.
- the reinforcement is welded onto the liner, the body shape formed from spherical sections or the body shape of the ellipsoid of revolution can also be easily adhered to when reinforcing the liner.
- the liner is expediently filled with water, with which the resulting heat is dissipated.
- the pressure vessel according to the invention achieves an extremely high fatigue strength of well over 25,000 load changes, has a relation to the pressure vessels made of steel or containers with wound metal liners much lower weight, is shock resistant, shatterproof and not subject to any external corrosion by its designed as an insulating layer envelope. Due to the special shape of the wrapper, the pressure vessel according to the invention receives a specific outer attachment structure, which makes it possible to continue to use existing on trucks, trucks buses or rail vehicles fasteners for attachment.
- the method according to the invention also makes it possible to considerably increase the degree of automation in the manufacture of the pressure vessels through the use of modular tools and the integration of the testing technology in the production process.
- the pressure vessel produced by the method according to the invention have a repeatability of 100%, whereby no volume fluctuations in the air volume occur.
- Fig. 1 a pressure vessel according to the invention in sectional view
- Fig. 2 a liner in section with injected sleeves
- Fig. 3 one with a first reinforcing winding in the longitudinal direction of the liner body in a schematic representation
- Fig. 4 a representation of the on the first reinforcing winding after Fig. 3 applied second reinforcing winding in the circumferential direction of the liner
- Fig. 5 a liner with a third reinforcing winding made of plastic-coated fiberglass tape on the second layer in the jacket center region of the liner body in the circumferential direction in a schematic representation
- Fig. 6 a reinforced with reinforcing layer, inserted in an injection mold liner for encapsulation with a cladding layer,
- Fig. 7a a representation of the enclosure with a fastening variant as a partial view
- Fig. 7b a front view of the mounting variant according to Fig. 7a .
- Fig. 8a a further fastening variant molded into the envelope as a partial view
- Fig. 8b a front view of the Fig. 8a
- Fig. 9 a view of the connection sleeve in the pressure vessel.
- Fig. 1 shown pressure vessel 1 for a brake system, not shown, a truck should have a capacity of 10 l and thus correspond to the nominal content of a pressure vessel made conventionally made of steel with cylindrical central portion and dished ends.
- the pressure vessel 1 has an inner liner body 2 (see Fig. 2 ), which is composed of two liner parts 3 and 4 , a multi-layer, cohesively connected to the liner body 2 by welding reinforcing layer 5 and a sheath 6.
- the two liner parts 3 and 4 are made of glass fibers of short length reinforced polyethylene and are on a conventional spraying machine produced in an injection mold. Each at their open end faces 7 , the liner parts 3 and 4 by Mirror welding bonded cohesively and gas-tight.
- the connecting sleeve 8 of the pressure vessel 1 are made of corrosion-resistant metal, such as brass, and are encapsulated on all sides by the polyethylene during injection molding on the polar caps 9 to the inner axial passage, so that the sleeves 8 are captive and gas-tight in the center of the caps 9 .
- the injection molding tools for producing the liner parts 3 and 4 are modular tools in which the volume can be correspondingly increased or reduced by core and jacket inserts ( Fig. 6 ).
- the liner parts 3 and 4 according to the invention in the usual diameter ranges for pressure vessels are variable in length and thus variable in volume.
- the forces occurring at internal pressure on the pressure vessel 1 are expressed in axial and tangential stresses, which overlap each other at each point of the container wall and occur as a resultant stress.
- Optimum container dimensions are achieved when each point of the container wall receives the same resulting stresses.
- Containers made of metallic materials or containers with sharp transitions (strong curvatures) from the jacket do not meet these requirements, so that especially in these areas high resulting stresses occur, which regularly lead to leaking of the pressure vessel at high alternating loads.
- the pole caps 9 and the middle jacket region 10 of the liner body 2 of the pressure vessel 1 have the shape of a body formed from ball sections or an ellipsoid of revolution 11 (see Fig. 2 ), wherein the pole caps 7 are formed approximately hemispherical and merge transitionless in the shell region 10 .
- the pressure vessel 1 receives a bulbous design (see Fig. 1 ).
- the radius RP of the pole cap 7 in the presented example is 103.3 mm, the radius RM of the jacket region 302.3 mm, so that a ratio of the two radii to each other of 1: 2.92 results. With this ratio, the pressure vessel 1 according to the invention achieves an optimum between the force relationships underlying the dimensioning and the stress conditions.
- the multi-layer reinforcing layer 5 consists of an endless glass fiber tape 12 with a sheath 13 made of polyethylene.
- the plastic casing 13 made of polyethylene by means of laser, electric arc or similar. heated, locally melted and welded to the surface of the liner body 2 , so that the liner body 2 and the first winding layer A form a cohesive unit.
- the subsequent second and third winding layers B and C of the continuous glass fiber tape 12 are also applied, so that the juxtaposed and superimposed edges of the tape 12 are welded together.
- the applied reinforcing layer 5 thereby also obtains the body shape of the above-described spherical sections or of the ellipsoid of revolution 11 (see FIG Fig. 4 and 5 ).
- the multi-layer reinforcing layer 5 is followed by the applied by injection coating 6, which consists of a short glass fibers contained polyethylene.
- the polyethylene can also be mixed with propellants.
- the sheath 6 secures the reinforcing layer 5 in its function and is at the same time designed as a protective layer, wherein in the case of an additive with propellants and an insulation is achieved.
- fasteners are integrated or the sheath 6 is itself formed into a specific fastener 14 (see Fig. 7a and 7b and 8a and 8b ). Accordingly, this fastening element 14 can be designed so that the hitherto conventional fastening by means of tension bands ( Fig. 7a and 7b ) or by a direct screw connection ( Fig. 8a and 8b ) he follows.
- Appropriate signs, nameplates, company logos or other names or labels can be prefabricated and introduced captive into the enclosure 6 . This also provides the opportunity to provide the signs or nameplates or other names with digital information carriers whose information can be read and retrieved by a corresponding RFID configuration.
- the Fig. 9 shows the fixed by encapsulation with plastic in the polar cap 7 of the liner body 2 connecting sleeve 8 made of metal, such as brass.
- On the connection sleeve 8 act as a result of the internal pressure in the pressure vessel 1 and 2 LinerSystem shear forces that try to push out the connection sleeve 8 from the plastic composite.
- LinerSystem shear forces that try to push out the connection sleeve 8 from the plastic composite.
- screwing or unscrewing plugs or screw in the connection sleeve 8 arise circumferential forces that try to unscrew the connection sleeve 8 from the plastic composite.
- a constantly increasing and decreasing force acts on the connection sleeve 8 .
- connection sleeve 8 has a flange 15 and a sufficiently long cylindrical portion 16 in which grooves, punctures and shoulders 17 are introduced to increase the shear surface. This allows a positive connection between the connection sleeve 8 and the plastic composite with a sufficiently high shear resistance.
- a fine-toothed knurling 18 is present, which is able to absorb both circumferential forces and shear forces in a sufficient size.
- connection sleeve 8 acts under internal pressure load a contact force of the plastic composite on the cylindrical portion 16 of the connecting sleeve 8 due to the leverage on the recess 17 of the sleeve 8.
- the connecting sleeve 8 is provided on the inside with a recess 19 , into which an injected plastic lip 20 of the liner wall 21 of the respective liner part 3, 4 protrudes.
- the liner parts 3 and 4 are sprayed on a conventional injection molding machine, so that a more detailed description is dispensable.
- Starting material for the injection of the liner body is a plastic granules of polyethylene, to which a short fiber content is compounded or added as a pure admixture with a share of up to 30% by weight.
- the injection molding tools used are modular tools, which are constructed so that always two congruent liner parts 3 and 4 can be produced.
- the core and dome of the tools are equipped with disc-shaped, coolable segments, which allow the active elements to be lengthened or shortened in the respective diameter range. For each container diameter, only one tool is required.
- the coolable segments are replaced accordingly in pairs in the injection mold.
- the installation parts and connection sleeves are with known handling devices inserted and molded in the injection mold.
- the injection of the plastic melt via a hot runner nozzle always on the front side of the liner parts.
- the hot runner nozzle has 12 star-shaped distribution channels, which distribute the plastic melt evenly in linear and radial direction with the effect of a partial fiber orientation in the flow direction. By this measure, the compressive strength of the liner body increases significantly.
- the attached liner body 2 is tested for gas tightness, in which the liner body 2 is spent in water, submerged and exposed to air at a test pressure of 2.5 bar. Existing leaks are indicated by rising from the liner body 2 air bubbles.
- the gas-tightness test is preceded by a safety test in which the liner body is pressed under air with a hermetic shielding at a test pressure of 3.5. This pressure is then reduced to 2.5 bar on the leakage tester mentioned at the beginning.
- the safety and tightness tester is a complex assembly, which in addition with a Drying device is equipped for drying the liner body.
- the operation of this complex test bench is only reserved for authorized personnel who have the appropriate approvals for pressure vessels or similar. features.
- the previously tested for safety and tightness liner body 2 is bubble-free filled with an incompressible medium such as water and the connection sleeves 8 sealed liquid-tight with plugs.
- This medium stabilizes the liner body, safely absorbs the heat introduced in the process steps described in more detail below and thus at the same time serves as a coolant.
- connection sleeves are used in the connection sleeves, which ensure that the incompressible medium kept under pressure can be driven in the circuit through the liner body 2 .
- the plugs are provided with a conical pin, which serve for clamping and for securing the position of the liner body 2 in the centered position of the winding machine.
- the wrapping material used is polyethylene-sheathed continuous glass fibers which are sintered into a strip of rectangular cross-section.
- polyethylene but also polypropylene or other suitable thermoplastic can be used.
- Other thermoplastics are also suitable.
- the reinforcement of the liner body 2 is with the application of a first winding layer A of plastic-coated continuous glass fiber strips 12 for receiving the axial stresses started while receiving the radial stresses.
- the winding layer A is wound at an angle of 55 ° to the longitudinal axis and also serves to reinforce the pole caps of the pressure vessel.
- the winding layer A is heated during winding by laser, the plastic coating is melted and the edges of the individual layers welded together and on the liner body.
- a second winding layer C is first applied as a peripheral winding on the first layer.
- the winding width B1 of the winding layer C is dependent on the container length L and the container diameter D.
- a third winding layer E is wound onto the second winding layer C.
- the winding layer E serves in conjunction with the winding layer C a more uniform radial stress distribution and forms a belt layer in the middle layer region.
- the media filling remains in the finished armored liner body 2 as well as the plugs in the connecting sleeves 8. This state is maintained in the following encapsulation of the armored liner body 2 .
- the encapsulation of the armored liner body 2 takes place in a separate, suitably prepared injection mold in the interaction of an adapted Spritzg screenformsley and a suitable plastic and the pressure build-up of the spray medium.
- the injection mold is equipped with several sprue distribution channels, which allow a simultaneous filling of the cavities between the form and inserted armored liner body.
- the sprues are distributed in Polkappen and coat area. The gating takes place on the machine side at the same time at the poles through a round film gate, which is balanced in the hot runner.
- the armored, filled with the incompressible medium liner body 2 is inserted into the opened injection mold and centered on the conical lugs of the stopper and firmly clamped when closing the mold, after the internal pressure of the filling medium in the liner body 2 to about 8 to 10 bar at a temperature from 10 to 15 ° C was set.
- the armored liner body 2 forms the core, which is overmolded.
- Starting material for the production of the envelope is a plastic granules of polyethylene, to which a short fiber content to increase the strength and a blowing agent for foaming, for example, in each case compounded or added as a pure admixture.
- a plastic granules of polyethylene to which a short fiber content to increase the strength
- a blowing agent for foaming for example, in each case compounded or added as a pure admixture.
- the polyethylene can also be further colored by the addition of colorants, so that a corresponding color of the pressure vessel can be omitted and in addition a color coding according to the technical field of application of the pressure vessel is easily possible.
- Interchangeable dies are incorporated in the injection mold for the application of inscriptions, which then appear raised or recessed on the container surface.
- This allows according to the customer's request company names, nameplate labels, information signs, approval marks, logos and the like. applied.
- Inscriptions, images or signs, permits can also be inserted in the form of films in the injection mold, fix by means of vacuum in a suitable position and merge inextricably during injection with the enclosure. This also makes it possible to provide these slides with digital data carriers that contain the corresponding technical data, registration information, etc. stored and can be retrieved using RFED technology. The time-consuming gluing or welding on the company signs can be omitted.
- the injection mold is run at a temperature of 80 ° C.
- the injection rate was 15 mm / s
- the injection pressure was ⁇ 40 bar
- the back pressure at 15 bar the intrusion at 4-6 s
- the cooling time 120 s.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Pressure Vessels And Lids Thereof (AREA)
Abstract
Description
Die Erfindung betrifft einen Druckbehälter aus Kunststoff, insbesondere Druckluftbehälter für Bremskraftanlagen und pneumatische Hilfseinrichtungen an Lastkraftwagen, Trucks, Omnibussen, Schienenfahrzeugen oder an Feuerlöschanlagen, mit einem Behältermantel aus einem spritzgußgeformten, aus Linerteilen zusammengesetzten Linerkörper aus faserverstärktem Polyethylen, Polypropylen, oder Polyamid, in dessen Polkappen Anschlussmuffen unverlierbar eingeformt sind, einer auf dem Linerkörper angeordneten Armierungsschicht aus Glasfaserband und einer auf letzterer angeordneten spritzgußgeformten unverlierbaren Umhüllung aus faserverstärktem Polyethylen, Polypropylen, oder Polyamid. Ein derartiger Behälter ist aus der
Die Erfindung betrifft ferner ein Verfahren zum Herstellen eines Druckbehälters aus Kunststoff, insbesondere Druckluftbehälter für Bremskraftanlagen und pneumatische Hilfseinrichtungen an Lastkraftwagen, Trucks, Omnibussen, Schienenfahrzeugen oder an Feuerlöschanlagen, bei dem zunächst Linerteile mit Polkappen aus glasfaserverstärktem Polyethylen-, Polypropylen- oder Polyamidgranulat mittels Spritzgießen in einem Spritzgießwerkzeug gespritzt werden, wobei im Zentrum der Polkappen eingebrachte Anschlussmuffen vom Kunststoff eingebettet werden, die Linerteile durch Fügen in einer Fügemaschine zu einem Linerkörper miteinander verbunden werden, der gefügte Linerkörper mit einer Armierungsschicht aus Glasfasern in einer Wickelmaschine bewickelt wird und der so armierte Linerkörper mit einer Umhüllung aus faserverstärktem Polyethylen, Polypropylen, oder Polyamid umspritzt wird.The invention further relates to a method for producing a pressure vessel made of plastic, in particular compressed air tank for brake power systems and pneumatic auxiliary equipment on trucks, trucks, buses, Rail vehicles or fire extinguishing systems, in which first liner parts with pole caps made of glass fiber reinforced polyethylene, polypropylene or polyamide granules are injection molded by injection molding in an injection mold, embedded in the center of the pole caps connection sleeves are embedded by the plastic, the liner parts by joining in a joining machine to a liner body are joined together, the added liner body is wound with a reinforcing layer of glass fibers in a winding machine and the armored liner body is overmolded with a cladding of fiber-reinforced polyethylene, polypropylene, or polyamide.
Die Verwendung von Linern aus thermoplastischem Kunststoff bei der Herstellung von Druckbehältern ist hinreichend bekannt (siehe u.a.
So ist aus
In der
Bei dem Stand der Technik nach
Die
Nach der
Des weiteren ist aus der
Die innere Hülle wird gegossen, wobei die Form so gewählt wird, dass das Einfügen des Verstärkungselements nicht das für den Behälter vorgesehene Profil stört. Die äußere Hülle besteht aus einem Fasermaterial, das auf die mit dem Verstärkungselement versehenen inneren Hülle aufgewickelt wird. Anschließend wird eine Wärmebehandlung des Behälters vorgenommen.Furthermore, from the
The inner shell is cast, the shape chosen so that the insertion of the reinforcing element does not interfere with the profile intended for the container. The outer shell is made of a fibrous material which is wound up on the inner shell provided with the reinforcing element. Subsequently, a heat treatment of the container is made.
Der in der
Ebenso ist es bekannt, den Liner mit glasfaserverstärkten Bändern sowohl in Längs- als auch in Querrichtung zur Linerachse zu bewickeln (siehe
Aus der
In dem bekannten Stand der Technik nach
Die
Nach der
Die
Aus der
Des weiteren ist aus der
Auch für die Integration von Anschlußmuffen oder sonstigen Bauteilen in Composite-Behälter ist eine Vielzahl von Lösungen bekannt (
So offenbart die
Der Innenbehälterhals, die Innenkontur des Polstücks und die Außenkontur des Anschlussstücks sind konisch nach außen verengend ausgebildet.So revealed the
The inner container neck, the inner contour of the pole piece and the outer contour of the connector are conically tapered outward.
Beim bekannten Composite-Behälter nach
Bei einem weiteren bekannten Composite-Druckbehälter (
Alle diese bekannten Druckbehälter aus Kunststoff weisen einen, aus dem Metallbehälterbau übernommenen zylindrischen Mittel- oder Mantelteil auf, der durch entsprechende Böden beiderseits verschlossen wird. Vor allem bei kalottenförmigen oder auch nach innen gewölbten Böden entstehen im Übergang vom Mantel- in den Bodenbereich Spannungsspitzen, die häufig zum Bruch an diesen Übergängen oder zum Lösen des Bodenteils vom Mantelteils führen. Es gilt die Grundregel, je kleiner der Übergangsradius um so größer ist die Gefahr eines Spannungsbruchs trotz Verstärkungsmaßnahmen unterschiedlichster Art.
Selbst der Übergang von einem zylindrischen Mantelbereich in einen sphärischen Polbereich mit einem etwas größeren Radius vermag die Bruchgefahr, insbesondere bei an- und abschwellender Dauerbeanspruchung wie sie insbesondere in Bremskraftanlagen auftritt, nicht genügend zu reduzieren (
Even the transition from a cylindrical jacket region into a spherical pole region with a slightly larger radius can not sufficiently reduce the risk of breakage, especially with continuous and decaying permanent stress, as occurs in particular in brake power plants (
Bei diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Composit-Druckbehälter der eingangs genannten Art so zu verbessern, dass die komplexe Eigenschaftsgewährleistung von Bremsluftbehältern wie hohe Zähigkeiten auch bei niedrigen Temperaturen, hohe Schlag- und Bruchfestigkeit bei dynamischer Beanspruchung im Überdruckbereich von 8,5 bis 20 bar, eine hohe Lebensdauer von mindestens 15 Jahren trotz ständiger Lastwechselbeanspruchung und Korrosionsfestigkeit erreicht wird.In this prior art, the present invention seeks to improve a composite pressure vessel of the type mentioned so that the complex property guarantee of brake air tanks such as high toughness even at low temperatures, high impact and breaking strength under dynamic stress in the pressure range of 8 , 5 to 20 bar, a long service life of at least 15 years despite constant load cycling and corrosion resistance is achieved.
Diese Aufgabe wird durch einen Druckbehälter der eingangs genannten Gattung mit den kennzeichnenden Merkmalen des Anspruchs 1 und durch ein Verfahren mit den kennzeichnenden Merkmalen des Anspruchs 18 gelöst.This object is achieved by a pressure vessel of the aforementioned type with the characterizing features of
Vorteilhafte Ausgestaltungen des Druckbehälters und des Verfahrens sind den Unteransprüchen entnehmbar.Advantageous embodiments of the pressure vessel and the method are the dependent claims.
Die erfindungsgemäße Lösung zeichnet sich dadurch aus, dass der Mantel- und Bodenbereich des Druckbehälters in eine für eine gleichmäßigere und damit gefahrlosere Verteilung der Axial- und Radialspannungen geeignete Konstruktionsform gebracht wird, die nicht mehr aus einem zylindrischen Mantelteil und einem sphärischen Bodenteil besteht, sondern die Form eines Rotationsellipsoids aufweist, wodurch eine weitgehende Annäherung an die Kugelform ermöglicht wird. Der Linerkörper besitzt demzufolge eine annähernd ellipsoide Körperform, so dass keine scharfen Übergänge zwischen Boden- und Mantelbereich entstehen. Durch die weitgehend gleichmäßige Krümmung in Längsrichtung der Behälterwandung auch im ursprünglich zylindrischen Mantelbereich verteilen sich die Zug- und Radialbeanspruchungen sehr gleichmäßig auf alle Wandbereiche und eine Spannungskonzentration im Wandübergang vom Mantel zum Boden wird merklich vermindert.The solution according to the invention is characterized in that the shell and bottom region of the pressure vessel is brought into a construction form suitable for a more even and thus more safe distribution of the axial and radial stresses, which no longer consists of a cylindrical shell part and a spherical bottom part, but the Has a form of an ellipsoid of revolution, whereby a substantial approximation to the spherical shape is made possible. The liner body therefore has an approximately ellipsoidal body shape, so that no sharp transitions between the bottom and shell area arise. Due to the largely uniform curvature in the longitudinal direction of the container wall in the originally cylindrical shell region, the tensile and radial stresses are very evenly distributed over all wall areas and a concentration of stress in the wall transition from the shell to the ground is significantly reduced.
Eine besonders für die Vergleichmäßigung der Zug- und Druckspannungen geeignete Körperform wird erreicht, wenn das Verhältnis aus dem Radius der Polkappen zum Radius der Linerteile 1:2,5 bis 1:5 beträgt. Die Wand der Polkappen und die Wand im Mittelbereich des Druckbehälters sind gleichmäßig gekrümmt und gehen ansatzlos ineinander über.A body shape which is particularly suitable for equalizing the tensile and compressive stresses is achieved when the ratio of the radius of the pole caps to the radius of the liner parts is 1: 2.5 to 1: 5. The wall of the pole caps and the wall in the central region of the pressure vessel are evenly curved and merge seamlessly into one another.
Die Körperform des Rotationsellipsoids wird auch beim Aufbringen der kunststoffummantelten Armierungsschicht aus Glasfaserband und der Kunststoffummantelung auf dem Liner beibehalten, so dass ein Druckbehälter entsteht, der erstmals mit der aus dem Stahlbehälterbau übernommenen zylindrischen Körperform bricht und nicht mehr mit letzterer vergleichbar ist.
Die Kunststoffummantelung des Glasfaserbands ermöglicht es, die Glasfaserbänder mit dem Liner und die nebeneinander- bzw. übereinander liegenden Glasfaserbänder während des Wickeln stoffschlüssig miteinander zu verbinden. Es hat sich gezeigt, dass besonders mit dem Laserschweißen die erforderlich hohen Geschwindigkeiten beim Fügen erreicht werden können. Da gewissermaßen die Verstärkung auf dem Liner aufgeschweißt wird, kann die aus Kugelabschnitten gebildete Körperform bzw. die Körperform des Rotationsellipsoids auch beim Armieren des Liners problemlos eingehalten werden. Der Liner ist zweckmäßigerweise mit Wasser gefüllt, mit dem die entstehende Wärme abgeführt wird.The body shape of the ellipsoid of revolution is also maintained during application of the plastic-coated reinforcing layer of fiberglass tape and the plastic coating on the liner, so that a pressure vessel is created, which breaks for the first time with the adopted from the steel container construction cylindrical body shape and is no longer comparable with the latter.
The plastic coating of the glass fiber tape makes it possible to connect the glass fiber tapes with the liner and the juxtaposed or superimposed glass fiber bands during winding cohesively together. It has been shown that especially with laser welding the required high speeds of joining can be achieved. Since, in a sense, the reinforcement is welded onto the liner, the body shape formed from spherical sections or the body shape of the ellipsoid of revolution can also be easily adhered to when reinforcing the liner. The liner is expediently filled with water, with which the resulting heat is dissipated.
Der erfindungsgemäße Druckbehälter erreicht eine äußerst hohe Lastwechselfestigkeit von weit mehr als 25000 Lastwechseln, hat ein gegenüber den Druckbehältern aus Stahl oder Behältern mit bewickelten Metall-Linern wesentlich geringeres Gewicht, ist durch seine als Dämmschicht ausgeführte Umhüllung schlagzäh, bruchsicher und unterliegt keiner äußeren Korrosion. Durch die besondere Formgebung der Umhüllung erhält der erfindungsgemäßen Druckbehälter eine spezifische äußere Befestigungsstruktur, die es ermöglicht, die an Lastkraftwagen, Trucks Omnibussen oder Schienenfahrzeugen vorhandenen Befestigungselemente zur Befestigung weiterhin zu nutzen.The pressure vessel according to the invention achieves an extremely high fatigue strength of well over 25,000 load changes, has a relation to the pressure vessels made of steel or containers with wound metal liners much lower weight, is shock resistant, shatterproof and not subject to any external corrosion by its designed as an insulating layer envelope. Due to the special shape of the wrapper, the pressure vessel according to the invention receives a specific outer attachment structure, which makes it possible to continue to use existing on trucks, trucks buses or rail vehicles fasteners for attachment.
Das erfindungsgemäße Verfahren gestattet es ferner, den Automatisierungsgrad bei der Herstellung der Druckbehälter durch den Einsatz von Baukastenwerkzeugen und die Integration der Prüftechnologie in den Fertigungsablauf erheblich zu steigern.The method according to the invention also makes it possible to considerably increase the degree of automation in the manufacture of the pressure vessels through the use of modular tools and the integration of the testing technology in the production process.
Die mit dem erfindungsgemäßen Verfahren hergestellten Druckbehälter haben eine Wiederholgenauigkeit von 100%, wodurch keine Volumenschwankungen im Luftvolumen auftreten.The pressure vessel produced by the method according to the invention have a repeatability of 100%, whereby no volume fluctuations in the air volume occur.
Es ist weiterhin von besonderem Vorteil, dass in die Umhüllung Typen-, Hinweis und Firmenschilder unverlierbar eingebracht werden können, so dass die Behälter direkt mit erzeugnisspezifischen Prüfangaben entsprechend den Abnahmebedingungen versehen werden können, wobei eine separate, nachträglich aufwendige Kennzeichnung der Behälter entfallen kann.It is also of particular advantage that in the enclosure type, note and company signs can be introduced captive, so that the container can be provided directly with product specific Prüfangaben according to the acceptance conditions, with a separate, subsequently consuming labeling of the container can be omitted.
Weitere Vorteile und Einzelheiten ergeben sich aus der nachfolgenden Beschreibung unter Bezugnahme auf die beigefügten Zeichnungen.Further advantages and details will become apparent from the following description with reference to the accompanying drawings.
Die Erfindung soll nachstehend an einem Ausführungsbeispiel näher erläutert werden.The invention will be explained in more detail below using an exemplary embodiment.
Der in
Der Druckbehälter 1 besitzt einen inneren Linerkörper 2 (siehe
Die Spritzgießwerkzeuge zur Herstellung der Linerteile 3 und 4 sind Baukastenwerkzeuge, bei denen durch Kern- und Manteleinsätze das Volumen entsprechend vergrößert oder verkleinert werden kann (
The injection molding tools for producing the
Die bei Innendruck auftretenden Kräfte auf den Druckbehälter 1 äußern sich in axialen und tangentialen Spannungen, die sich an jedem Punkt der Behälterwandung überlagern und als resultierende Spannung auftreten. Optimale Behälterdimensionierungen sind dann erreicht, wenn jeder Punkt der Behälterwandung gleiche resultierende Spannungen aufnimmt.The forces occurring at internal pressure on the
Behälter aus metallischen Werkstoffen oder Behälter mit scharfen Übergängen (starken Krümmungen) vom Mantel werden diesen Anforderungen nicht gerecht, so dass gerade in diesen Bereichen hohe resultierende Spannungen auftreten, die regelmäßig zum Undichtwerden des Druckbehälters bei hohen Wechselbelastungen führen.Containers made of metallic materials or containers with sharp transitions (strong curvatures) from the jacket do not meet these requirements, so that especially in these areas high resulting stresses occur, which regularly lead to leaking of the pressure vessel at high alternating loads.
Die Polkappen 9 und der mittlere Mantelbereich 10 des Linerkörpers 2 des erfindungsgemäßen Druckbehälters 1 haben die Form eines aus Kugelabschnitten gebildeten Körpers oder eines Rotationsellipsoids 11 (siehe
Der Radius RP der Polkappe 7 beträgt in dem vorgestellten Beispiel 103,3 mm, der Radius RM des Mantelbereichs 302,3 mm, so dass sich ein Verhältnis der beiden Radien zueinander von 1:2,92 ergibt. Bei diesem Verhältnis erreicht der erfindungsgemäße Druckbehälter 1 ein Optimum zwischen den der Dimensionierung zugrunde liegenden Kräfteverhältnissen und den Beanspruchungsbedingungen.The radius RP of the
Die mehrlagige Armierungsschicht 5 besteht aus einem Endlosglasfaserband 12 mit einer Ummantelung 13 aus Polyethylen.
Während des Umwickelns des Linerkörpers 2 mit der ersten tangentialen Wickellage A (siehe
During the wrapping of the
Auf die mehrlagige Armierungsschicht 5 folgt die durch Spritzgießen aufgebrachte Umhüllung 6, die aus einem kurze Glasfasern enthaltenen Polyethylen besteht. Das Polyethylen kann auch mit Treibmitteln versetzt sein. Die Umhüllung 6 sichert die Armierungsschicht 5 in ihrer Funktion und ist zugleich als Schutzschicht ausgebildet, wobei für den Fall eines Zusatzes mit Treibmitteln auch eine Dämmung erreicht wird. In die Umhüllung 6 sind entweder Befestigungselemente integriert oder die Umhüllung 6 ist selbst zu einem spezifischen Befestigungselement 14 ausgeformt (siehe
Entsprechende Hinweisschilder, Typenschilder, Firmenlogos oder sonstige Bezeichnungen oder Beschriftungen können vorgefertigt und unverlierbar in die Umhüllung 6 eingebracht sein. Dies bietet auch die Möglichkeit, die Hinweisschilder oder Typenschilder oder sonstigen Bezeichnungen mit digitalen Informationsträgern zu versehen, deren Informationen durch eine entsprechende RFID-Konfiguration gelesen und abgerufen werden können.Appropriate signs, nameplates, company logos or other names or labels can be prefabricated and introduced captive into the
Die
Damit all diese Kräfte aufgenommen werden können, ohne dass die Verbindung zwischen Anschlußmuffe 8 und Kunststoffverbund beeinträchtigt wird, besitzt die Anschlußmuffe 8 einen Flansch 15 und einen genügend langen zylindrischen Teil 16, in dem zur Vergrößerung der Scherfläche Rillen, Einstiche und Absätze 17 eingebracht sind. Dies ermöglicht eine formschlüssige Verbindung zwischen Anschlußmuffe 8 und dem Kunststoffverbund mit genügend hohem Scherwiderstand.So that all these forces can be absorbed, without the connection between the
Über den gesamten zylindrischen Teil 16 der Anschlußmuffe 8 ist eine feinzahnige Rändelung 18 vorhanden, die in der Lage ist, sowohl Umfangskräfte als auch Scherkräfte in ausreichender Größe aufzunehmen.Over the entire
Um eine dauerhaft dichte Verbindung zwischen Anschlußmuffe 8 und Kunststoffverbund zu gewährleisten, wirkt bei Innendruckbelastung eine Anpresskraft des Kunststoffverbunds auf den zylindrischen Teil 16 der Anschlußmuffe 8 infolge der Hebelwirkung über den Einstich 17 der Muffe 8. Die Anschlußmuffe 8 ist innenseitig mit einer Ausdrehung 19 versehen, in die eine eingespritzte Kunststofflippe 20 der Linerwandung 21 des jeweiligen Linerteils 3, 4 hineinragt.In order to ensure a permanently sealed connection between the connecting
Durch den im Betriebszustand ständig vorherrschenden Innendruck wirkt eine Anpresskraft der Lippe auf die Metallinnenfläche, die umso mehr zunimmt, je höher der Innendruck steigt. Die im Umfang der Anschlußmuffe 8 eingebrachten Rändelungen 18, Einstiche und Absätze 17 sorgen zusätzlich für eine Vergrößerung der Oberfläche um bis zu 80%, so dass die für die Dichtheit maßgeblichen Berührungsflächen zwischen Metall und Kunststoff erheblichen zunehmen und die Dichtheit gewährleistet ist.Due to the constantly prevailing internal pressure in the operating state, a pressing force of the lip acts on the metal inner surface, which increases the more, the higher the internal pressure rises. The introduced in the scope of the connecting
Die Herstellung des erfindungsgemäßen, aus den Lagen Linerkörper 2, Anschlußstutzen 8, Armierungsschicht 5 und Umhüllung 6 bestehenden Druckbehälters wird nachfolgend im Einzelnen beschrieben.The preparation of the pressure vessel according to the invention, consisting of the layers of
Die Linerteile 3 und 4 werden auf einer herkömmlichen Spritzgießmaschine gespritzt, so dass eine weitergehende nähere Beschreibung verzichtbar ist.The
Ausgangsmaterial für das Spritzen des Linerkörpers ist ein Kunststoffgranulat aus Polyethylen, dem ein Kurzfaseranteil compoundiert oder als eine reine Zumischung mit einem Anteil von bis zu 30% Gewichtsanteilen zugefügt wird.Starting material for the injection of the liner body is a plastic granules of polyethylene, to which a short fiber content is compounded or added as a pure admixture with a share of up to 30% by weight.
Die eingesetzten Spritzgießwerkzeuge sind Baukastenwerkzeuge, die so aufgebaut sind, dass immer zwei deckungsgleiche Linerteile 3 und 4 hergestellt werden können. Kern und Kalotte der Werkzeuge sind mit scheibenförmigen kühlfähigen Segmenten ausgerüstet, die ein Verlängern bzw. ein Verkürzen der Aktivelemente im jeweiligen Durchmesserbereich ermöglichen. Für jeden Behälterdurchmesser wird dadurch nur ein Werkzeug erforderlich. Die kühlfähigen Segmente werden entsprechend im Spritzgießwerkzeug paarweise ausgetauscht. Die Einbauteile und Anschlußmuffen werden mit an sich bekannten Handlinggeräten in das Spritzgießwerkzeug eingelegt und umspritzt.The injection molding tools used are modular tools, which are constructed so that always two
Das Einspritzen der Kunststoffschmelze erfolgt über eine Heißkanaldüse immer an der Stirnseite der Linerteile. Die Heißkanaldüse hat 12 sternförmige Verteilkanäle, die die Kunststoffschmelze in linearer und radialer Richtung mit dem Effekt einer teilweisen Faserausrichtung in Fließrichtung gleichmäßig verteilen. Durch diese Maßnahme erhöht sich die Druckfestigkeit des Linerkörpers erheblich.The injection of the plastic melt via a hot runner nozzle always on the front side of the liner parts. The hot runner nozzle has 12 star-shaped distribution channels, which distribute the plastic melt evenly in linear and radial direction with the effect of a partial fiber orientation in the flow direction. By this measure, the compressive strength of the liner body increases significantly.
Die im Spritzgießverfahren hergestellten Linerteile 3 und 4 werden anschließend stoffschlüssig miteinander verbunden. Dies geschieht dadurch, dass die Stirnseiten 7 der Linerteile 3 und 4 zueinander ausgerichtet und mittels Spiegelschweißen miteinander verschweißt werden. Es versteht sich, dass die Schweißparameter entsprechend der gewählten Kunststoffmischung abgestimmt sind und auch andere geeignete Fügeverfahren von der Erfindung erfasst sind.The manufactured by injection
Nach dem Schweißen wird der gefügte Linerkörper 2 auf Gasdichtheit geprüft, in dem der Linerkörper 2 in Wasser verbracht, untergetaucht und mit Luft bei einem Prüfdruck von 2,5 bar beaufschlagt wird. Vorhandene Undichtigkeiten werden durch vom Linerkörper 2 aufsteigende Luftbläschen angezeigt.
Der Gasdichtheitsprüfung voraus geht eine Sicherheitsprüfung, bei der der Linerkörper unter einer hermetischen Abschirmung mit Luft bei einem Prüfdruck von 3,5 abgedrückt wird. Dieser Druck wird dann auf dem eingangs erwähnten Dichtheitsprüfstand auf 2,5 bar reduziert.After welding, the attached
The gas-tightness test is preceded by a safety test in which the liner body is pressed under air with a hermetic shielding at a test pressure of 3.5. This pressure is then reduced to 2.5 bar on the leakage tester mentioned at the beginning.
Der Sicherheits- und Dichtigkeitsprüfstand ist eine komplexe Baugruppe, die zusätzlich mit einer Trocknungseinrichtung zum Trocknen des Linerkörpers ausgerüstet ist. Die Bedienung dieses komplexen Prüfstandes ist nur autorisiertem Personal vorbehalten, das über die entsprechenden Zulassungen für Druckbehälter o.ä. verfügt.The safety and tightness tester is a complex assembly, which in addition with a Drying device is equipped for drying the liner body. The operation of this complex test bench is only reserved for authorized personnel who have the appropriate approvals for pressure vessels or similar. features.
Im folgenden Verfahrensschritt wird der zuvor auf Sicherheit und Dichtheit geprüfte Linerkörper 2 blasenfrei mit einem inkompressiblen Medium wie Wasser gefüllt und die Anschlußmuffen 8 mit Verschlußstopfen flüssigkeitsdicht verschlossen. Dieses Medium stabilisiert den Linerkörper, nimmt die bei den nachfolgend näher beschriebenen Verfahrensschritten eingetragene Wärme gefahrlos auf und dient damit zugleich als Kühlmittel.In the following process step, the previously tested for safety and
Sofern Kunststoffe mit einem höheren Schmelzpunkt zur Anwendung kommen sollen, werden in die Anschlußmuffen Füllventile eingesetzt, die sicherstellen, dass das inkompressible Medium unter Druck gehalten im Kreislauf durch den Linerkörper 2 gefahren werden kann.If plastics are to be used with a higher melting point, filling valves are used in the connection sleeves, which ensure that the incompressible medium kept under pressure can be driven in the circuit through the
Die Verschlussstopfen sind mit einem konischen Zapfen versehen, die zum Einspannen und zur Lagesicherung des Linerkörpers 2 in zentrierter Lage der Wickelmaschine dienen.The plugs are provided with a conical pin, which serve for clamping and for securing the position of the
Als Wickelmaterial kommen aus mit Polyethylen ummantelte Endlosglasfasern zum Einsatz, die zu einem Band mit rechteckigem Querschnitt gesintert sind. Anstelle von Polyethylen kann aber auch Polypropylen oder ein anderer geeigneter Thermoplast verwendet werden. Andere thermoplastische Kunststoffe sind ebenso geeignet.The wrapping material used is polyethylene-sheathed continuous glass fibers which are sintered into a strip of rectangular cross-section. Instead of polyethylene but also polypropylene or other suitable thermoplastic can be used. Other thermoplastics are also suitable.
Die Armierung des Linerkörpers 2 wird mit dem Aufbringen einer ersten Wickellage A eines kunststoffummantelten Endlosglasfaserbands 12 zur Aufnahme der Axialspannungen bei gleichzeitiger Aufnahme der Radialspannungen begonnen. Die Wickellage A wird in einem Winkel von 55° zur Längsachse aufgewickelt und dient gleichzeitig zur Verstärkung der Polkappen des Druckbehälters.The reinforcement of the
Die Wickellage A wird während des Wickelns durch Laser erhitzt, die Kunststoffummantelung aufgeschmolzen und die Ränder der einzelnen Lagen miteinander und auf dem Linerkörper verschweißt.The winding layer A is heated during winding by laser, the plastic coating is melted and the edges of the individual layers welded together and on the liner body.
Die Spannungsspitzen als Resultante aus Axial- und Radialspannungen treten regelmäßig auch im Mantelmittelbereich auf. Deshalb wird im nächsten Arbeitsschritt in Mantelmitte des Mantelmittenbereichs 10 des Linerkörpers 2 zunächst eine zweite Wickellage C als Umfangswicklung auf die erste Lage aufgebracht.
Die Wickelbreite B1 der Wickellage C ist von Behälterlänge L und dem Behälterdurchmesser D abhängig.The voltage peaks as a result of axial and radial stresses regularly occur in the jacket middle area. Therefore, in the next step in the middle of the mantle center of the
The winding width B1 of the winding layer C is dependent on the container length L and the container diameter D.
Für die zweite Wickellage C gilt die Beziehung:
worin bedeutet:
- B
- Wickelbreite
- L
- Behälterlänge
- D
- Behälterdurchmesser.
where:
- B
- winding width
- L
- container length
- D
- Container diameter.
Im nächsten Schritt wird auf die zweite Wickellage C eine dritte Wickellage E aufgewickelt. Die Wickellage E dient in Verbindung mit der Wickellage C einer gleichmäßigeren Radialspannungsverteilung und bildet eine Gürtellage im Mittellagenbereich.In the next step, a third winding layer E is wound onto the second winding layer C. The winding layer E serves in conjunction with the winding layer C a more uniform radial stress distribution and forms a belt layer in the middle layer region.
Für die Lagenbreite der dritten Wickellage E gilt:
worin bedeutet:
- B
- Wickelbreite
- L
- Behälterlänge
- D
- Behälterdurchmesser.
where:
- B
- winding width
- L
- container length
- D
- Container diameter.
Die Medienfüllung verbleibt im fertig armierten Linerkörper 2 genauso wie die Verschlußstopfen in den Anschlußmuffen 8. Dieser Zustand wird im folgenden Umspritzen des armierten Linerkörpers 2 beibehalten.The media filling remains in the finished
Das Umspritzen des armierten Linerkörpers 2 erfolgt in einer separaten, entsprechend vorbereiteten Spritzgießform im Zusammenspiel einer angepassten Spritzgießformgestaltung und einem geeigneten Kunststoff und dem Druckaufbau des Spritzmediums.The encapsulation of the
Die Spritzgießform ist mit mehreren Angussverteilkanälen ausgestattet, die eine gleichzeitige Füllung der Hohlräume zwischen Form und eingelegten armierten Linerkörper ermöglichen. Die Angüsse sind im Polkappen- und Mantelbereich verteilt. Die Anspritzung erfolgt maschinenseitig gleichzeitig an den Polen durch einen runden Filmanguss, der im Heißkanal ausbalanciert ist.The injection mold is equipped with several sprue distribution channels, which allow a simultaneous filling of the cavities between the form and inserted armored liner body. The sprues are distributed in Polkappen and coat area. The gating takes place on the machine side at the same time at the poles through a round film gate, which is balanced in the hot runner.
Der armierte, mit dem inkompressiblen Medium gefüllte Linerkörper 2 wird in die geöffnete Spritzgießform eingelegt und an den konischen Ansätzen der Verschlußstopfen zentriert und beim Schließen der Form fest eingespannt, nach dem der Innendruck des Füllmediums im Linerkörper 2 auf etwa 8 bis 10 bar bei einer Temperatur von 10 bis 15 °C eingestellt wurde.The armored, filled with the incompressible
In dieser Lage bildet der armierte Linerkörper 2 den Kern, der umspritzt wird. Durch das Erhöhen des Innendrucks auf etwa 8 bis 10 bar und weiterer technologischer erzeugnisspezifischer Parameter können Lageveränderungen und örtliche Verformungen des Kerns durch die erheblichen Krafteinwirkungen während des Einspritzvorgangs vermieden werden.In this position, the
Ausgangsmaterial für die Herstellung der Umhüllung ist ein Kunststoffgranulat aus Polyethylen, dem ein Kurzfaseranteil zur Erhöhung der Festigkeit und ein Treibmittel zur Aufschäumung, beispielsweise jeweils compoundiert oder als eine reine Zumischung, zugefügt wird. Dies ermöglicht, gewünschte Festigkeitseigenschaften der Umhüllung, beispielsweise für die Integration entsprechender Befestigungselemente in die Umhüllung, und zugleich gewünschte Dämmeigenschaften der Umhüllung, beispielsweise zur Dämpfung plötzlicher Schläge, zu erreichen.Starting material for the production of the envelope is a plastic granules of polyethylene, to which a short fiber content to increase the strength and a blowing agent for foaming, for example, in each case compounded or added as a pure admixture. This makes it possible to achieve desired strength properties of the envelope, for example for the integration of corresponding fastening elements in the envelope, and at the same time desired insulating properties of the envelope, for example, for damping sudden shocks.
Das Polyethylen kann auch des weiteren durch Zugabe von Farbmitteln eingefärbt werden, so dass eine entsprechende Farbgebung des Druckbehälters entfallen kann und zusätzlich eine Farbkennzeichnung entsprechend des technischen Einsatzgebiets des Druckbehälters problemlos möglich wird.The polyethylene can also be further colored by the addition of colorants, so that a corresponding color of the pressure vessel can be omitted and in addition a color coding according to the technical field of application of the pressure vessel is easily possible.
In die Spritzgussform sind auswechselbare Stempel zur Aufbringung von Beschriftungen eingearbeitet, die dann auf der Behälteroberfläche erhaben oder vertieft erscheinen. Dies ermöglicht entsprechend dem Kundenwunsch Firmenbezeichnungen, Typenschildbeschriftungen, Hinweiszeichen, Zulassungszeichen, Logos u.ä. aufzubringen. Beschriftungen, Bilder bzw. Hinweiszeichen, Zulassungen lassen sich darüber hinaus auch in Form von Folien in die Spritzgießform einlegen, mittels Vakuum in geeigneter Position fixieren und beim Einspritzen mit der Umhüllung unlösbar verschmelzen. Dies gestattet es ferner, diese Folien mit digitalen Datenträgern zu versehen, die die entsprechenden technischen Daten, Zulassungsangaben usw. gespeichert enthalten und mittels RFED-Technik abrufbar sind.
Das aufwändige Aufkleben bzw. Aufschweißen der Firmenschilder kann so entfallen.Interchangeable dies are incorporated in the injection mold for the application of inscriptions, which then appear raised or recessed on the container surface. This allows according to the customer's request company names, nameplate labels, information signs, approval marks, logos and the like. applied. Inscriptions, images or signs, permits can also be inserted in the form of films in the injection mold, fix by means of vacuum in a suitable position and merge inextricably during injection with the enclosure. This also makes it possible to provide these slides with digital data carriers that contain the corresponding technical data, registration information, etc. stored and can be retrieved using RFED technology.
The time-consuming gluing or welding on the company signs can be omitted.
Zur Gewährleistung einer kontinuierlichen Fließfähigkeit und einer gleichmäßigen allseitigen Formfüllung wird die Spritzgußform mit einer Temperatur von 80 °C gefahren. In dem hier dargestellten Beispiel betrug die Spritzgeschwindigkeit 15 mm/s, der Spritzdruck lag bei <40 bar, der Nachdruck bei 15 bar, die Intrusion bei 4-6 s und die Kühlzeit bei 120 s.To ensure a continuous flowability and a uniform all-round mold filling, the injection mold is run at a temperature of 80 ° C. In the example shown here, the injection rate was 15 mm / s, the injection pressure was <40 bar, the back pressure at 15 bar, the intrusion at 4-6 s and the cooling time at 120 s.
Die so nach dem erfindungsgemäßen Verfahren hergestellten Druckbehälter mit einem Nenninhalt von 10 L erreichten einen Berstdruck von 50 bis 60 bar ohne Splitterwirkung, eine Lastwechselfestigkeit von mehr als 25000 Lastwechseln, was einer Lebensdauer von etwa 20 Jahren entspricht.The pressure vessel thus produced by the process according to the invention with a nominal content of 10 L. reached a burst pressure of 50 to 60 bar without splinter effect, a load life of more than 25,000 load cycles, which corresponds to a service life of about 20 years.
- Druckbehälterpressure vessel
- 11
- Linerkörperliner body
- 22
- Linerteileliner parts
- 3, 43, 4
- Armierungsschichtreinforcing layer
- 55
- Umhüllungwrapping
- 66
- Stirnseite von 3, 4Front side of 3, 4
- 77
- Anschlußmuffeconnecting sleeve
- 88th
- Polkappenice caps
- 99
- Mittlerer MantelbereichMiddle jacket area
- 1010
- RotationsellipsoidRotationsellipsoid
- 1111
- EndlosglasfaserbandContinuous glass fiber tape
- 1212
- Ummantelung von 12Sheath of 12
- 1313
- Befestigungselementfastener
- 1414
- Flansch von 8Flange of 8
- 1515
- Zylindrischer Teil von 8Cylindrical part of 8
- 1616
- Rillengrooves
- 1717
- Rändelungknurling
- 1818
- Ausdrehungrecess
- 1919
- KunststofflippePlastic lip
- 2020
- LinerwandungLinerwandung
- 2121
- Erste WickellageFirst winding layer
- AA
- Zweite WickellageSecond winding layer
- CC
- Durchmesser des BehältersDiameter of the container
- DD
- Dritte WickellageThird winding layer
- Ee
- Länge des BehältersLength of the container
- LL
- Radius PolkappeRadius pole cap
- RPRP
- Radius MantelRadius coat
- RMRM
Claims (31)
- Pressure reservoir made of plastics, especially compressed air reservoir for brake power systems and pneumatic auxiliary equipment of lorries, trucks, busses, rail vehicles or fire extinguishing plants, with a reservoir casing consisting of an injection moulded made up of liner parts liner body of fiber reinforced polyethylene, polypropylene or polyamide into the pole caps of which are formed captive connecting pieces, an arranged on the liner body reinforcing layer of glass fiber tape and an arranged on the latter injection moulded captive coating of fiber reinforced polyethylene, polypropylene or polyamide, characterized in that the pressure reservoir (1) with pole caps (9) consists of a made up of spherical segments or formed as ellipsoid of revolution (11) multilayer body, wherein the ratio of pole cap radius (RP) and radius (RM) of the central portion of the casing (10) of the pressure reservoir (1) reaches a ratio of at least 1 : 2.5 to 1 : 5, wherein the walls of the pole caps (9) and the wall of the central portion of the casing (10) with the same curvature fit together without any step.
- Pressure reservoir according to claim 1, characterized in that the liner body (2) is reinforced with glass fibers up to a portion of 30 %.
- Pressure reservoir according to claims 1 and 2,
characterized in that the glass fibers consist of milled fibers. - Pressure reservoir according to claims 1 to 3,
characterized in that the liner parts (3, 4) of the liner body (2) are firmly bonded at the fronts (7) facing each other. - Pressure reservoir according to claim 1, characterized in that the reinforcing layer (5) consists of a plastic-coated continuous glass fiber tape (12) that as composite is arranged on the liner body (2) so that the plastic coating of the glass fiber tape by heating it by means of a laser, an electric arc or an open flame is an intimate form-fit firm bonding of the consolidated composite.
- Pressure reservoir according to claim 5, characterized in that the plastic coating (13) of the continuous glass fiber tape of the reinforcing layer (5) consists of polyethylene, polypropylene or polyamide.
- Pressure reservoir according to claim 1, characterized in that the coating (6) at the same time forms a protecting layer which additionally secures and fixes the reinforcing layer (5).
- Pressure reservoir according to claim 7, characterized in that the protection layer additionally forms an insulating layer.
- Pressure reservoir according to claim 7, characterized in that the coating (6) is developed as an external fastening element (14) for the seating of fastening elements of lorries, trucks, busses, rail vehicles or fire extinguishing plants which are firmly formed into or on the coating.
- Pressure reservoir according to claim 7, characterized in that in the coating (6) are placed captive inserts for type plates, information signs, labels, name plates.
- Pressure reservoir according to claim 10, characterized in that the inserts contain a digital information carrier.
- Pressure reservoir according to claim 7, characterized in that to the coating (6) are added colorants guaranteeing a color coding of the coating with respect to the operational conditions.
- Pressure reservoir according to claim 1, characterized in that the connecting muff (8) formed in into the center of the pole caps (9) consists of metal, for example aluminum, copper, brass, titan, tombac, which is enclosed by the synthetic material of the liner body (2) except of its external connection surface and the internal thread.
- Pressure reservoir according to claims 1 and 13,
characterized in that the connecting muff (8) on its inner side has a turn hollow (19) into which projects a plastic lip (20) of the liner body (2), wherein the lip is pressed as sealing onto the turn hollow by the internal pressure acting in the interior of the liner body. - Pressure reservoir according to claims 1 and 13,
characterized in that the connecting muff (8) has a flange (15) and a sufficiently long cylindrical portion .(16) that on its external side is provided with grooves, cuts and projections (17) to enlarge the shear area. - Pressure reservoir according to claim 15, characterized in that the cylindrical portion (16) of the connecting muff (8) furthermore has a fine toothed knurl (18) for taking up peripheral forces and shearing forces.
- Pressure reservoir according to claims 1 and 13, characterized in that that the connecting muff is developed as single-piece multiple distributor.
- Pressure reservoir according to claims 1 and 13,
characterized in that into the internal thread of the connecting muff (8) is inserted a feeding valve. - Method for producing a pressure reservoir made of plastics, especially a compressed air reservoir for brake power systems and pneumatic auxiliary equipment of lorries, trucks, busses, rail vehicles or fire extinguishing plants, wherein in the first instance liner parts with hemispherical pole caps of glass fiber reinforced polyethylene, polypropylene or polyamide granules are formed by means of injection moulding in a mould, wherein connecting muffs placed in the center of the pole caps are enclosed by the plastics, the liner parts are connected with each other to a liner body by bonding in a bonding machine, around the bonded liner body in a winding machine is crosswise wound a reinforcing layer of glass fibers and around the thus reinforced liner body is injected a coating of fiber reinforced polyethylene, polypropylene or polyamide,
characterized in that the pressure reservoir is formed to a body of joined spherical segments or as ellipsoid of revolution with a ratio of pole cap radius and radius of the central portion of the casing of at least 1 : 2.5 to 1 : 5 in the processing steps injection moulding of the liner parts, bonding of the liner parts, welding on the reinforcing layers when they are wound around the liner and injecting the coating around the reinforced liner. - Method according to claim 19, characterized by the following steps:a) Production of congruent liner parts of the liner body by evenly distributing the polymer melt with a portion of up to 30 % milled fibers in axial and radial directions with partial alignment of the fibers in the flowing direction of the melt and controlling the given proportion,b) Firm bonding or glueing of the front surfaces of the liner parts to a closed, hollow liner body with the bonding or glueing parameters adjusted according to the plastic mixture of step a),c) Burst test of the liner body with a view to safety and tightness by leading air into the liner body under water and subsequent drying of the liner body,d) Stabilization of the liner body by filling it with an incompressible medium free of bubbles, admitting an overpressure of 8 to 10 bar to said medium and sealing the connection muffs of the liner body for the subsequent reinforcement of the liner body,e) Reinforcing the liner body by winding around it several layers of continuous glass fiber tape coated with plastics, wherein the layers of the continuous glass fiber tape are firmly bonded to each other by melting the plastic coating,f) Developing a captive coating on the reinforcement of the liner body by injecting fiber reinforced plastics under an injection pressure of < 40 bar onto the liner body placed in the mould starting from the pole caps.
- Method according to claims 19 and 20, characterized in that the thermal stability of the liner body is adjusted to a range of - 40 °C to + 80 °C by adding polypropylene-copolymer granules to the polypropylene granules in a weight ratio of at least 1 : 3.
- Method according to claim 20, characterized in that as bonding method according to step b) is applied a butt-welding, hot gas welding, heated tool welding, resistance wire welding or injection welding.
- Method according to claims 19 and 20, characterized in that the liner body is burst tested in a hermetically sealed room with an atmospheric overpressure of 3.5 bar according to step c) and then after decreasing the overpressure to 2.5 bar is carried out a leak test under water.
- Method according to claims 19 and 20, characterized in that water, oil or mixtures of them are used as incompressible medium for stabilizing the liner body, wherein the medium is hold under an overpressure of 8 to 10 bar.
- Method according to claims 19 to 24, characterized in that the liner body filled with the medium after its placing, centering and fixing in the winding machine is reinforced in the course of the following single steps according to step e):e1) Winding a first layer of plastic coated continuous fiber tape for taking up axial and radial stress around the pole caps and the central portion of the casing and reinforcement of the pole caps by simultaneously melting together the coatings to achieve a firm bond between each other and with the liner body;e2) Winding around the first layer according to e1) a second layer in the central portion of the casing for taking up stress concentrations of axial and radial stress and simultaneously melting together the plastic surfaces of the positioned side by side continuous fiber tape of the second layer with a width of the windings fulfilling the condition B1 = 0.6 L - 0.1 D, wherein
B is the width of windings,
L is the length of windings and
D is the diameter of the liner body.e3) Winding around the second layer a third layer in the central portion of the casing for evening out the radial stress and simultaneously melting together the plastic surfaces of the positioned side by side continuous fiber tape of the third layer with a width of the windings fulfilling the condition B2 = 0.3 L - 0.1 D, wherein
B is the width of windings,
L is the length of windings and
D is the diameter of the liner body. - Method according to claim 25, characterized in that for melting together the plastic surfaces of the continuous fiber tape and the liner body as heat source is used a laser, electric arc or gas burner, wherein the incompressible medium simultaneously is used as coolant to prevent deformations of the liner body.
- Method according to claim 26, characterized in that the incompressible medium and coolant remains in the liner body or is admitted to overpressure and constantly fed into and let out of it through a filling valve positioned in the screw neck.
- Method according to claims 19 and 20, characterized in that the liner body filled with medium, reinforced according to step e) is placed into the mould, centered and fixed at the plugs sealing the connecting muffs is coated in the course of the following single steps according to step f):f1) Increasing the pressure inside the liner body up to 8 to 10 bar by admitting incompressible medium through a filling valve positioned in the screw plug and adjusting the temperature of the filling medium to 10 to 15 °C,f2) Optional placing of name plates, type plates, approval signs or the like on the reinforced surface of the line body,f3) Adjusting the temperature of the injected and distributed plastic melt to at least 180 °C and subsequent cooling below the freezing temperature of the plastic mixture,f4) Holding at a holding pressure of about 15 bar for increasing the hardness of the coating,f5) Demounting the pressure reservoir and emptying it.
- Method according to claim 28, characterized in that the optionally positioned type plates contain digital information carriers.
- Method according to claim 19, characterized in that to the fiber reinforced plastics are added colorants for marking the coating according to the respective operational conditions of the pressure reservoir.
- Method according to claim 20, characterized in that to the coating are added blowing agents to develop an insulating layer.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006006902A DE102006006902B4 (en) | 2006-02-09 | 2006-02-09 | Plastic pressure vessel and process for its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1818596A1 EP1818596A1 (en) | 2007-08-15 |
EP1818596B1 true EP1818596B1 (en) | 2009-04-15 |
Family
ID=38181177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07090008A Not-in-force EP1818596B1 (en) | 2006-02-09 | 2007-01-26 | Pressure vessel made of plastic and method for its manufacture |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1818596B1 (en) |
AT (1) | ATE428888T1 (en) |
DE (2) | DE102006006902B4 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2554699C2 (en) * | 2013-08-19 | 2015-06-27 | Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва"(АО "ИСС") | Metal-plastic high-pressure cylinder |
CN107116340A (en) * | 2017-05-18 | 2017-09-01 | 上海空间推进研究所 | Space flight large size, thin walled liner and its manufacture method |
RU2631957C1 (en) * | 2016-10-27 | 2017-09-29 | Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" | Method of manufacture of high-pressure metal-plastic ballon for space ship |
DE102015003753B4 (en) | 2014-03-25 | 2024-06-27 | Feuerschutz Jockel | Fire extinguisher |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010030921A1 (en) * | 2008-09-15 | 2010-03-18 | Scott Technologies, Inc. | Method and system for filling a gas cylinder |
JP4775776B2 (en) * | 2008-09-24 | 2011-09-21 | トヨタ自動車株式会社 | Gas tank and manufacturing method thereof |
US8517206B2 (en) * | 2009-05-19 | 2013-08-27 | Quantum Fuel Systems Technologies Worldwide Inc. | High pressure storage vessel |
FR2963820B1 (en) * | 2010-08-12 | 2014-02-28 | Air Liquide | COMPOSITE TANK AND METHOD OF MANUFACTURE |
DE102012007404A1 (en) * | 2012-04-16 | 2013-10-31 | Stiebel Eltron Gmbh & Co. Kg | Pressure storage container e.g. pressure tank for home automation device, has central portion that is provided with casing, first and second ends, and casing is provided with arcuate cup |
DE102013100591A1 (en) | 2013-01-21 | 2014-07-24 | Technische Universität Darmstadt | Pressure vessel and method for producing a pressure vessel |
DE102013100594A1 (en) | 2013-01-21 | 2014-08-07 | Technische Universität Darmstadt | Pressure vessel and method for producing a pressure vessel |
BR112016007931B1 (en) * | 2013-10-08 | 2022-05-10 | Performance Pulsation Control, Inc | PULSE CONTROL DEVICE |
AT515036A1 (en) * | 2013-10-22 | 2015-05-15 | MAN Truck & Bus Österreich AG | Commercial vehicle with compressed gas tank |
EP3237184B1 (en) * | 2014-12-24 | 2024-03-20 | Shell Internationale Research Maatschappij B.V. | Process for manufacturing a fluid tight laminate of composite material on a tank, vessel or tube for storage, transport or transfer of a cryogenic fluid |
DE102015105901A1 (en) * | 2015-04-17 | 2016-10-20 | xperion Energy & Environment GmbH | Pressure vessel and method of manufacture |
NL2014899B1 (en) * | 2015-06-01 | 2017-01-31 | Advanced Lightweight Eng B V | Fibre reinforced pressure vessel and method for forming such. |
GB201702362D0 (en) * | 2017-02-14 | 2017-03-29 | Univ Ulster | Composite pressure vessel for hydrogen storage |
DE102017211124A1 (en) * | 2017-06-30 | 2019-01-03 | Bayerische Motoren Werke Aktiengesellschaft | Method for producing a pressure vessel |
DE102018204806A1 (en) * | 2018-03-28 | 2019-07-25 | Audi Ag | Pressure vessel and body structure for a vehicle |
DE102018003996B4 (en) * | 2018-05-17 | 2023-03-23 | Mt Aerospace Ag | Process for applying or producing a fiber layer in the manufacture of tank structures comprising domes |
US11549643B2 (en) * | 2018-07-31 | 2023-01-10 | Kabushiki Kaisha Toyota Jidoshokki | Pressure vessel and pressure-vessel manufacturing method |
CN110242855B (en) * | 2019-06-06 | 2023-09-19 | 吕大明 | Flexible high-pressure hydrogen storage tank |
CN112856210A (en) * | 2020-12-30 | 2021-05-28 | 新启时代(北京)材料科技有限公司 | Anti-burst plastic inner container composite material storage tank and manufacturing method thereof |
CN113483253A (en) * | 2021-07-05 | 2021-10-08 | 曾霞光 | Method for improving unit volume storage capacity of pressure container based on pressure difference |
DE102022110151A1 (en) | 2022-04-27 | 2023-11-02 | Bayerische Motoren Werke Aktiengesellschaft | Liner for a pressure vessel and pressure container |
DE202024000857U1 (en) | 2024-05-02 | 2024-05-29 | Emano Kunststofftechnik Gmbh | pressure vessel |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT517238A (en) * | 1953-06-19 | 1900-01-01 | ||
US3057509A (en) * | 1960-02-11 | 1962-10-09 | Brunswick Corp | Pressure vessel bladder |
NL269849A (en) * | 1960-10-05 | |||
US3449182A (en) * | 1966-05-16 | 1969-06-10 | Structural Fibers | Method of making a hollow,fiber-reinforced plastic pressure vessel |
US3598275A (en) * | 1969-05-21 | 1971-08-10 | Uniroyal Inc | Radial-filament cylinders |
DE2152123C3 (en) * | 1971-10-20 | 1974-07-11 | Elektrische Licht- Und Kraftanlagen Ag, 3579 Frielendorf | pressure vessel |
GB1467236A (en) * | 1973-03-07 | 1977-03-16 | Imp Metal Ind Kynoch Ltd | Winding apparatus |
US3969812A (en) * | 1974-04-19 | 1976-07-20 | Martin Marietta Corporation | Method of manufacturing an overwrapped pressure vessel |
DE2423497A1 (en) * | 1974-05-15 | 1975-11-20 | Messerschmitt Boelkow Blohm | PROCESS FOR MANUFACTURING A FIBER-REINFORCED RESIN-IMPROVED HOLLOW BODY IN THE WINDING PROCESS AND HOLLOW-BODY BY THIS PROCESS |
DE2538433C2 (en) * | 1975-08-29 | 1981-09-24 | Aeg Isolier- Und Kunststoff Gmbh, 3500 Kassel | pressure vessel |
SE8300614D0 (en) * | 1983-02-07 | 1983-02-07 | Electrolux Ab | PUT TO MAKE A VACATION-MADE PLASTIC FORM |
GB8329905D0 (en) * | 1983-11-09 | 1983-12-14 | British Petroleum Co Plc | Container |
SE452284B (en) * | 1986-03-10 | 1987-11-23 | Saab Composite Ab | PRINT PRESSURE OF COMPOSITION MATERIAL WITH THE WINDOW INSERT INTO THE WINDOW |
US4685589A (en) * | 1986-03-28 | 1987-08-11 | Pneumo Corporation | Composite pressure vessel including a fluid port directly through the composite side wall structure |
FR2630810B1 (en) * | 1988-04-27 | 1990-08-10 | Aerospatiale | CONTAINER FOR PRESSURE FLUID STORAGE |
DE3821852A1 (en) * | 1988-06-29 | 1990-02-22 | Diehl Gmbh & Co | Pressure-gas cylinder of composite material for high gas pressure |
SE459202B (en) * | 1988-08-15 | 1989-06-12 | Saab Composite Ab | CONNECTION TO A PRESSURE CONDITION OF COMPOSITION MATERIAL |
SE468649B (en) * | 1991-05-24 | 1993-02-22 | Kb Komposit Foersaeljnings Ab | ARMED PLASTIC CONTAINER, SATISFIED TO ASTAD A COMBUSTION BODY FOR THIS AND APPLIANCE BEFORE IMPLEMENTING THE SET |
FR2677734A1 (en) * | 1991-06-14 | 1992-12-18 | Alsthom Gec | RESERVOIR AND ITS MANUFACTURING METHOD. |
EP0550951B1 (en) * | 1992-01-10 | 1995-11-15 | Technical Products Group, Inc. | Improved boss for a filament wound pressure vessel |
US5253778A (en) * | 1992-01-28 | 1993-10-19 | Edo Canada Ltd. | Fluid pressure vessel boss-liner attachment system |
US5287988A (en) * | 1993-02-03 | 1994-02-22 | Brunswick Corporation | Metal-lined pressure vessel |
AU675835B2 (en) * | 1993-04-07 | 1997-02-20 | Edo Canada Ltd. | Fluid pressure vessel boss-liner attachment system with linen/exterior mechanism direct coupling |
EP0635672B1 (en) * | 1993-07-20 | 1997-11-12 | Landgraf, Rainer, Dipl.jur.Dipl.agr | Compressed-air vessel and method for its production |
US5499739A (en) * | 1994-01-19 | 1996-03-19 | Atlantic Research Corporation | Thermoplastic liner for and method of overwrapping high pressure vessels |
EP0666450A1 (en) * | 1994-01-31 | 1995-08-09 | Urenco Deutschland GmbH | Pressure vessel |
US5526994A (en) * | 1994-12-01 | 1996-06-18 | Essef Corporation | Filament-wound isotensoid pressure vessels having geodesic domes |
US5484079A (en) * | 1995-03-13 | 1996-01-16 | Essef Corporation | Hydropneumatic filament-wound pressure vessel |
DE19526154C2 (en) * | 1995-07-10 | 1997-04-17 | Mannesmann Ag | Composite pressure vessel for storing gaseous media under pressure with a plastic liner |
DE19631546C1 (en) * | 1996-07-24 | 1997-11-13 | Mannesmann Ag | Composite gas pressure-bottle with plastic liner |
DE19751411C1 (en) * | 1997-11-14 | 1999-01-14 | Mannesmann Ag | Composite fibre-reinforced pressurised gas tank including liner with end neck sections |
DE19832145B4 (en) * | 1998-07-17 | 2004-11-18 | Linnemann-Schnetzer Gmbh | Container for holding a medium under pressure |
DE19937470A1 (en) * | 1999-08-07 | 2001-02-08 | Ralph Funck | Pressure vessel and process for its manufacture |
DE10000705A1 (en) * | 2000-01-10 | 2001-07-19 | Ralph Funck | Pressure container for storing liquid and / or gaseous media under pressure consisting of a plastic core container which is reinforced with fiber-reinforced plastics and process for its production |
NL1014290C2 (en) * | 2000-02-04 | 2001-08-07 | Advanced Lightweight Const Gro | Fiber-reinforced pressure vessel and method for making a fiber-reinforced pressure vessel. |
EP1156266A3 (en) * | 2000-05-15 | 2005-11-23 | mcs cylinder systems GmbH | Support fot identification data and said data for a composite pressure vessel |
US7147124B2 (en) * | 2002-03-27 | 2006-12-12 | Exxon Mobil Upstream Research Company | Containers and methods for containing pressurized fluids using reinforced fibers and methods for making such containers |
US7113660B2 (en) * | 2004-02-18 | 2006-09-26 | The Boeing Company | Fiber optic damage detection system for composite pressure vessels |
-
2006
- 2006-02-09 DE DE102006006902A patent/DE102006006902B4/en not_active Expired - Fee Related
-
2007
- 2007-01-26 DE DE502007000594T patent/DE502007000594D1/en active Active
- 2007-01-26 AT AT07090008T patent/ATE428888T1/en active
- 2007-01-26 EP EP07090008A patent/EP1818596B1/en not_active Not-in-force
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2554699C2 (en) * | 2013-08-19 | 2015-06-27 | Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва"(АО "ИСС") | Metal-plastic high-pressure cylinder |
DE102015003753B4 (en) | 2014-03-25 | 2024-06-27 | Feuerschutz Jockel | Fire extinguisher |
RU2631957C1 (en) * | 2016-10-27 | 2017-09-29 | Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" | Method of manufacture of high-pressure metal-plastic ballon for space ship |
CN107116340A (en) * | 2017-05-18 | 2017-09-01 | 上海空间推进研究所 | Space flight large size, thin walled liner and its manufacture method |
Also Published As
Publication number | Publication date |
---|---|
DE102006006902A1 (en) | 2007-08-16 |
ATE428888T1 (en) | 2009-05-15 |
DE502007000594D1 (en) | 2009-05-28 |
EP1818596A1 (en) | 2007-08-15 |
DE102006006902B4 (en) | 2008-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1818596B1 (en) | Pressure vessel made of plastic and method for its manufacture | |
DE102009049948B4 (en) | pressure vessel | |
DE112004000261B4 (en) | Double-walled container for cryogenic liquids | |
DE19751411C1 (en) | Composite fibre-reinforced pressurised gas tank including liner with end neck sections | |
DE102010018700B4 (en) | pressure vessel | |
DE102011012704B4 (en) | container | |
WO2001051844A2 (en) | Pressurised container for storing pressurised liquid and/or gaseous media, consisting of a plastic core container which is reinforced with fibre-reinforced plastics and a method for producing the same | |
DE2152123C3 (en) | pressure vessel | |
DE102011116553A1 (en) | Process for producing a composite pressure vessel and composite pressure vessel | |
DE102011011840A1 (en) | Method for producing a lining of a container | |
DE102015106461B4 (en) | Polkappe, in particular for a pressure vessel and method for producing the pole cap and pressure vessel | |
DE102010023386A1 (en) | Pressure tank for storing liquids or gaseous mediums, particularly for installing in vehicle, has base body made of plastic forming storage compartment for liquid and gaseous medium | |
WO2015197457A1 (en) | Pressure vessel | |
DE102017129938A1 (en) | High-pressure tank having a structure for radiating residual gas, and a method for producing the same | |
WO2013020694A1 (en) | Device for storing and dispensing pressurized fluid and/or gaseous media, fuel energy conversion device, and method for assembling a device for storing and dispensing pressurized fluid and/or gaseous media | |
DE102014009341B4 (en) | pressure vessel | |
DE19711844B4 (en) | Method for producing a compressed gas container | |
DE102018009829B4 (en) | Pressure vessel and method of manufacturing the pressure vessel | |
DE102014013249B4 (en) | pressure vessel | |
EP2592327A1 (en) | Storage container for a fluid medium, in particular water, liquid gas or the like | |
DE102014000617A1 (en) | Compressed gas containers | |
DE102012022537B4 (en) | Closure arrangement for containers made in particular of fiber composite material | |
DE202014007319U1 (en) | pressure vessel | |
DE102006037520B3 (en) | Method for production of pressure reservoir, particularly plastic pressure reservoir, involves manufacturing two parts for internal reservoir wall, where two parts are joined to internal container wall | |
DE102015212020B4 (en) | Composite pressure vessel and method of making the composite pressure vessel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080112 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAL | Information related to payment of fee for publishing/printing deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR3 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502007000594 Country of ref document: DE Date of ref document: 20090528 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BOVARD AG PATENTANWAELTE |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090726 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090915 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090815 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 |
|
26N | No opposition filed |
Effective date: 20100118 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090715 |
|
BERE | Be: lapsed |
Owner name: GRAFENTHALER KUNSTSTOFFTECHNIK G.M.B.H. Effective date: 20100131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090716 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: GRAEFENTHALER KUNSTSTOFFTECHNIK GMBH Free format text: GRAEFENTHALER KUNSTSTOFFTECHNIK GMBH#COBURGER STRASSE 56-58#98743 GRAEFENTHAL (DE) -TRANSFER TO- GRAEFENTHALER KUNSTSTOFFTECHNIK GMBH#COBURGER STRASSE 56-58#98743 GRAEFENTHAL (DE) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20110228 Year of fee payment: 5 Ref country code: FR Payment date: 20110222 Year of fee payment: 5 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100126 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091016 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120131 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120131 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090415 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120131 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 428888 Country of ref document: AT Kind code of ref document: T Effective date: 20120126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120126 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150129 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502007000594 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160802 |