EP1816425A2 - Abgaswärmetauscher in einer Abgasrückführungsanordnung - Google Patents
Abgaswärmetauscher in einer Abgasrückführungsanordnung Download PDFInfo
- Publication number
- EP1816425A2 EP1816425A2 EP07001251A EP07001251A EP1816425A2 EP 1816425 A2 EP1816425 A2 EP 1816425A2 EP 07001251 A EP07001251 A EP 07001251A EP 07001251 A EP07001251 A EP 07001251A EP 1816425 A2 EP1816425 A2 EP 1816425A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat exchanger
- exhaust gas
- gas heat
- channels
- stack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002826 coolant Substances 0.000 claims abstract description 26
- 239000007789 gas Substances 0.000 claims abstract 14
- 238000010276 construction Methods 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims 1
- 239000003546 flue gas Substances 0.000 claims 1
- 238000005476 soldering Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 3
- 239000002912 waste gas Substances 0.000 abstract 1
- 238000005382 thermal cycling Methods 0.000 description 5
- 239000011324 bead Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
- F02M26/32—Liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/025—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/11—Manufacture or assembly of EGR systems; Materials or coatings specially adapted for EGR systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D21/0001—Recuperative heat exchangers
- F28D21/0003—Recuperative heat exchangers the heat being recuperated from exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2210/00—Heat exchange conduits
- F28F2210/10—Particular layout, e.g. for uniform temperature distribution
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2265/00—Safety or protection arrangements; Arrangements for preventing malfunction
- F28F2265/26—Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
Definitions
- the invention relates to an exhaust gas heat exchanger in an exhaust gas recirculation arrangement having the features of the preamble of claim 1.
- the described exhaust gas heat exchanger is from the EP 1 348 924 A2 known. He essentially fulfilled his task during the implementation. Recently, however, increase the exhaust gas temperatures of the motor vehicle engines and consequently also the temperature differences between the coolant and the exhaust gas, which leads to the known, caused by excessive thermal cycling cracks and the like damage that can cause the failure of the entire system.
- the solution of this object is achieved according to the invention with an exhaust gas heat exchanger having the features of claim 1.
- the flow guide elements are formed as a corrugated plate in which channels are arranged with inlets and outlets, which extend in the longitudinal or transverse direction of the exhaust gas heat exchanger, wherein at least some of the channels at least in the inlet region of the coolant have a curved course, the flow velocity of Incoming coolant specifically increases and the flow is directed or distributed over as possible the entire plate area, whereby the temperature differences can be selectively lowered.
- This embodiment is particularly effective when the inlet region of the coolant is in the vicinity of the inlet region of the exhaust gas, so that the exhaust gas heat exchanger can be flowed through in direct current. It has been found that the flow in the DC with respect to the thermal cycling loads is more favorable, which is why this flow was preferably provided. Because of the non-straight channels in the inlet region there is a high flow velocity of the coolant, which also prevents the liquid coolant passes into the gaseous state.
- the corrugated plate at the two longitudinal edges is designed so that the flow of the coolant between the plate edges and the housing is prevented. This contributes to the concentration of the flow on the heat exchanged areas in the channels.
- the structural complexity remains within reasonable limits, when the longitudinal edges of the plate are bent and abut the adjacent flat tube and connected, preferably soldered.
- the corrugated plate should have flat edges in the inlet area, so that the mentioned distribution of the coolant is supported.
- the plate stack of the exhaust gas heat exchanger consists of a plurality of two connected at their longitudinal edges 10 plates 1, wherein two such plates each form a flat tube 2 .
- Each flat tube 2 contains a turbulator 3 through which the exhaust gas flows.
- a coolant channel 5 is arranged in each case, which is equipped with flow guide elements 6 . All mentioned components are made of stainless steel sheet.
- the flow directing elements 6 consist of a corrugated plate 7.
- channels 13 are connected to A - and outlets 14 have been formed 15 wherein at least some of the channels 13 in the entry region 16 of the refrigerant having an odd, dividing up the flow or distributing the course .
- the corrugated plates 7 have bent longitudinal edges 17 , each of which can surround the flat tube 2 arranged above its longitudinal edges. (FIG. 3) In the inlet region 16 , however, no bent edges but undeformed edges were provided on the flow elements 6 .
- FIGS. 4 and 7 The mentioned components are assembled according to FIGS. 4 and 7 to the plate stack.
- the two figures differ from one another in that in FIG. 4, two-part flow guide elements 6 have each been arranged in a coolant channel 5 , and FIG. 7 is a FIG one-piece flow guide element 6.
- FIG. 1 one of the two-part flow guide elements 6 was shown and in FIG. 6, the one-piece flow guide element 6 was shown.
- At both ends of the plate stack also made of stainless steel tubesheet 30 and a collection box or a diffuser 31 is attached.
- the plate stack is further closed by two stainless steel side members 25 top and bottom.
- the described construction is first brazed, with all the parts shown in FIGS. 4 or 7.
- a seal 40 is applied around the circumference of the plate stack, which is intended to ensure that the coolant is concentrated on the coolant channels 5 .
- a flow of the coolant between the housing 11 and the circumference of the plate stack should be suppressed as much as possible. This effect is supported by the described special construction of the longitudinal edges 17 on the corrugated plates 7 .
- the prefabricated unit of the plate stack is inserted into the housing 11 described in more detail below so that changes in length can be compensated, which are set under thermal cycling.
- the housing 11 just mentioned is a die-cast aluminum construction shown in FIG. It has a tapered outlet flange 60 for the exhaust gas, which is dimensioned such that the diffuser 31 soldered to the plate stack fits into it. Further, a groove 61 has been formed, in which a sealing ring or other suitable seal 62 is located. From this representation it can be seen that changes in length caused by temperature changes can be compensated for by permitting movements in the longitudinal direction of the plate stack or the housing 11 . The two double block arrows on the left side in FIG. 9 are intended to indicate this. Due to the specially designed flow guide 6 was additionally ensured that the stresses caused by thermal cycling stresses or changes in shape are reduced.
- a further flange 50 has been formed, to which the tube plate 30 of the plate stack and a further exhaust gas collection box 51 are attached.
- fastening means 52 are formed on the housing 11 in order to fasten the exhaust gas heat exchanger to a connection structure, not shown.
- connecting pieces 70 have also been formed on the housing 11 in order to insert the coolant into the coolant channels 5 of the plate stack - or to let out. The inflow and outflow is also ensured by the edges 18 , which are undeformed in the inlet 16 and in the outlet area, on the flow guide elements 6 , which are arranged in all coolant channels 5 .
- FIGS. 11 and 12 relate to an exemplary embodiment with channels 13 which extend in the transverse direction of the exhaust gas heat exchanger and which are formed in the flow guide element 6 .
- FIG. 11 shows a top view of such a flow guiding element 6.
- the black block arrows again indicate the direction of the coolant.
- Only some of the channels 13 have inlets or outlets 14, 15 within the corrugated plate 6 .
- the inlets or outlets have been arranged on the two longitudinal edges of the corrugated plate 6 .
- FIG. 12 is an illustration of the brazed exhaust gas heat exchanger having external similarities to FIG. 8. There, however, the flow guide elements 6 from FIG. 11 have been used. The housing arranged around this stack must be modified accordingly. It was not drawn for this application.
- the arrows indicate the direction of flow of the coolant and the exhaust gas.
- a visible difference from FIG. 8 is that the seal 40 extends in the longitudinal direction of the exhaust gas heat exchanger. Again, the seal 40, which is intended to rest against the housing wall, not shown, ensures that the cooling liquid is concentrated on the coolant channels 5 .
- FIG. 13 shows a detail similar to FIG. 3 from a stack in which flat tubes 2 are present, which are formed from a sheet-metal strip and welded by means of a longitudinal seam 20 .
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
- Die Erfindung betrifft einen Abgaswärmetauscher in einer Abgasrückführungsanordnung, der die Merkmale des Oberbegriffs aus dem Patentanspruch 1 aufweist.
- Der beschriebene Abgaswärmetauscher ist aus dem
EP 1 348 924 A2 bekannt. Er hat seine Aufgabe im durchgeführten Einsatzfall im Wesentlichen erfüllt. Neuerdings steigen jedoch die Abgastemperaturen der Kraftfahrzeugmotoren und demzufolge auch die Temperaturdifferenzen zwischen dem Kühlmittel und dem Abgas, was zu den bekannten, durch zu hohe Temperaturwechselbelastungen verursachte Rissen und dergleichen Beschädigungen führt, die den Ausfall des gesamten Systems zur Folge haben können. - Man hat auch bereits daran gearbeitet, Abgaswärmetauscher hinsichtlich ihrer Temperaturwechselbelastungsfähigkeit zu verbessern. Eine solche Lösung ist beispielsweise aus der
WO 03/036214A1 WO 03/064953 WO 2003/091650 wurde eine Schiebesitzanordnung vorgeschlagen. Alle diese Lösungen scheinen zweckdienlich zu sein, ohne jedoch sämtliche zu stellenden Anforderungen erfüllen zu können.
Die Aufgabe der Erfindung besteht in der Schaffung eines Abgaswärmetauschers, der einen Beitrag zur Lösung des vorstehend angesprochenen Problems leisten kann und der darüber hinaus kostengünstig herstellbar ist.
Die Lösung dieser Aufgabe ergibt sich erfindungsgemäß mit einem Abgaswärmetauscher, der die Merkmale des Anspruchs 1 aufweist.
Weil die Strömungsleitelemente als gewellte Platte ausgebildet sind, in der Kanäle mit Ein - und Austritten angeordnet sind, die sich in Längsrichtung oder in Querrichtung des Abgaswärmetauschers erstrecken, wobei wenigstens einige der Kanäle wenigstens im Eintrittsbereich des Kühlmittels einen gebogenen Verlauf aufweisen, wird die Strömungsgeschwindigkeit des eintretenden Kühlmittels gezielt erhöht und die Strömung wird über möglichst den gesamten Plattenbereich gelenkt bzw. verteilt, wodurch die Temperaturdifferenzen gezielt abgesenkt werden können. - Besonders wirksam ist diese Ausgestaltung, wenn sich der Eintrittsbereich des Kühlmittels in der Nähe des Eintrittsbereichs des Abgases befindet, sodass der Abgaswärmetauscher im Gleichstrom durchströmbar ist. Es hat sich erwiesen, dass die Durchströmung im Gleichstrom bezüglich der Temperaturwechselbelastungen günstiger ist, weshalb diese Durchströmung vorzugsweise vorgesehen wurde. Wegen der nicht geraden Kanäle im Eintrittsbereich liegt dort eine hohe Strömungsgeschwindigkeit des Kühlmittels vor, die auch verhindert, dass das flüssige Kühlmittel in den gasförmigen Zustand übergeht.
- Bei Abgaswärmetauschern mit in Längsrichtung orientierten Kanälen in der gewellten Platte, ist außerdem vorgesehen worden, dass die gewellte Platte an den beiden Längsrändern so ausgestaltet ist, dass die Strömung des Kühlmittels zwischen den Plattenrändern und dem Gehäuse unterbunden ist. Dies trägt zur Konzentration der Strömung auf die zum Wärmeaustausch ausgestalteten Bereiche in den Kanälen bei.
- Der bauliche Aufwand bleibt im vertretbaren Rahmen, wenn die Längsränder der Platte abgebogen werden und am angrenzenden Flachrohr anliegen und damit verbunden, vorzugsweise verlötet sind.
- Die gewellte Platte soll im Eintrittsbereich ebene Ränder aufweisen, damit die erwähnte Verteilung des Kühlmittels unterstützt wird.
- Die Kanäle sind im Anschluss an den Eintrittsbereich im Wesentlichen gerade ausgebildet und erstrecken sich in einem Ausführungsbeispiel in Längsrichtung des Abgaswärmetauschers. Bei einem anderen Ausführungsbeispiel sind die Kanäle im Wesentlichen in Querrichtung des Abgaswärmetauschers orientiert.
Weitere Merkmale sind in den Patentansprüchen vorhanden.
Aus der folgenden Beschreibung von Ausführungsbeispielen ergeben sich weitere Merkmale und Vorteile. Die beigefügten Abbildungen zeigen Folgendes: - Fig. 1 Draufsicht auf ein Strömungsleitelement;
- Fig. 2 Schnitt durch ein Strömungsleitelement;
- Fig. 3 Ausschnitt aus einem Stapel;
- Fig. 4 Explosionsdarstellung eines Stapels;
- Fig. 5 Teilsweise geschnittene Ansicht des Stapels im Gehäuse,
- Fig. 6 Draufsicht auf ein anderes Strömungsleitelement;
- Fig. 7 wie Fig. 4, aber mit dem Strömungsleitelement aus Fig. 6;
- Fig. 8 Ansicht auf einen bereits gelöteten Stapel;
- Fig. 9 Teil-Längsschnitt durch den Abgaswärmetauscher;
- Fig. 10 Ansicht des Gehäuses des Abgaswärmetauschers;
- Fig. 11 ein anderes Strömungsleitelement in einer Draufsicht;
- Fig. 12 ein bereits gelöteter Stapel in einem anderen Ausführungsbeispiel;
- Fig. 13 Ausschnitt aus einem Stapel;
- Die Integration des Abgaswärmetauschers in eine Abgasrückführungsanordnung wurde nicht gezeigt, da hierzu auf Lösungen aus dem Stand der Technik zurückgegriffen werden kann. In dem Ausführungsbeispiel gemäß den Fig. 1 - 12 wurden Platten eingesetzt, wobei jeweils zwei Platten ein Flachrohr bilden, weshalb dort von Plattenstapel gesprochen wird. Demgegenüber zeigt die Fig. 13 eine Ausführung, in der die Flachrohre einstückig und mit einer Längsnaht geschweißt ausgebildet worden sind.
- Der Plattenstapel des Abgaswärmetauschers besteht, aus einer Vielzahl von zwei an ihren Längsrändern 10 verbundenen Platten 1, wobei zwei solche Platten jeweils ein Flachrohr 2 bilden. Jedes Flachrohr 2 enthält einen Turbulator 3, durch das bzw. den das Abgas strömt. Zwischen zwei Flachrohren 2 ist jeweils ein Kühlmittelkanal 5 angeordnet ist, der mit Strömungsleitelementen 6 ausgestattet ist. Alle erwähnten Bestandteile werden aus Edelstahlblech hergestellt.
- Die Strömungsleitelemente 6 bestehen aus einer gewellten Platte 7. In der gewellten Platte 7 sind Kanäle 13 mit Ein - und Austritten 14, 15 ausgebildet worden, wobei wenigstens einige der Kanäle 13 im Eintrittsbereich 16 des Kühlmittels einen ungeraden, die Strömung aufteilenden oder verteilenden Verlauf aufweisen. Die gewellten Platten 7 weisen abgebogene Längsränder 17 auf, die jeweils das darüber angeordnete Flachrohr 2 an dessen Längsränder einfassen können. (Fig. 3) Im Eintrittsbereich 16 wurden an den Strömungselementen 6 dagegen keine abgebogenen Ränder sondern unverformte Ränder vorgesehen.
- Die erwähnten Bestandteile werden gemäß den Fig. 4 bzw. 7 zum Plattenstapel zusammengesetzt. Die beiden Figuren unterscheiden sich dadurch voneinander, dass in der Fig. 4 zweiteilige Strömungsleitelemente 6 jeweils in einem Kühlmittelkanal 5 angeordnet wurden und in der Fig. 7 handelt es sich um ein einteiliges Strömungsleitelement 6. In der Fig. 1 wurde eines der zweiteiligen Strömungsleitelemente 6 gezeigt und in der Fig. 6 wurde das einteilige Strömungsleitelement 6 dargestellt. An beiden Enden des Plattenstapels wird ein ebenfalls aus Edelstahl hergestellter Rohrboden 30 und ein Sammelkasten oder ein Diffusor 31 angesetzt. Der Plattenstapel wird ferner von zwei Edelstahl-Seitenteilen 25 oben und unten abgeschlossen. Die beschriebene Konstruktion wird zunächst gelötet, mit all den Teilen, die in den Fig. 4 oder 7 gezeigt sind. Anschließend wird in einem weiteren Verfahrensschritt eine Abdichtung 40 um den Umfang des Plattenstapels herum angebracht, die dafür sorgen soll, dass das Kühlmittel auf die Kühlmittelkanäle 5 konzentriert wird. Eine Strömung des Kühlmittels zwischen dem Gehäuse 11 und dem Umfang des Plattenstapels soll möglichst unterdrückt werden. Diese Wirkung wird durch die beschriebene spezielle Konstruktion der Längsränder 17 an den gewellten Platten 7 unterstützt. In einem abschließenden Verfahrensschritt wird die vorgefertigte Einheit des Plattenstapels in das weiter unten näher beschriebene Gehäuse 11 so eingesetzt, dass Längenänderungen kompensiert werden können, die sich unter Temperaturwechselbelastungen einstellen.
- Das gerade angesprochene Gehäuse 11 ist eine Druckgusskonstruktion aus Aluminium, das in der Fig. 10 gezeigt ist. Es besitzt einen sich verjüngenden Austrittsflansch 60 für das Abgas, welcher so dimensioniert ist, dass der am Plattenstapel angelötete Diffusor 31 dort hinein passt. Ferner wurde eine Nut 61 ausgebildet, in der sich ein Dichtring oder eine andere geeignete Abdichtung 62 befindet. (Fig. 9) Aus dieser Darstellung ist ersichtlich, dass sich durch Temperaturwechsel verursachte Längenänderungen durch Zulassen von Bewegungen in Längsrichtung des Plattenstapels bzw. des Gehäuses 11 ausgleichen können. Die beiden doppelten Blockpfeile an der linken Seite in der Fig. 9 sollen das anzeigen. Durch die speziell ausgebildeten Strömungsleitelemente 6 wurde zusätzlich dafür gesorgt, dass die durch Temperaturwechselbelastungen verursachten Spannungen bzw. Formänderungen reduziert werden. Am anderen Ende des Gehäuses 11 ist ein weiterer Flansch 50 ausgebildet worden, an dem der Rohrboden 30 des Plattenstapels und ein weiterer Abgas-Sammelkasten 51 befestigt werden. Ferner sind am Gehäuse 11 Befestigungsmittel 52 ausgeformt, um den Abgaswärmetauscher an einer nicht gezeigten Anschlussstruktur befestigen zu können. Schließlich sind am Gehäuse 11 auch Anschlussstutzen 70 ausgeformt worden, um das Kühlmittel in die Kühlmittelkanäle 5 des Plattenstapels ein - bzw. ausströmen zu lassen. Das Ein - und Ausströmen wird auch durch die im Eintritts- 16 und im Austrittsbereich unverformten Ränder 18 an den Strömungsleitelementen 6 gewährleistet, die in allen Kühlmittelkanälen 5 angeordnet sind.
- Die Fig. 11 und 12 beziehen sich auf ein Ausführungsbeispiel mit sich in Querrichtung des Abgaswärmetauschers erstreckenden Kanälen 13, die in dem Strömungsleitelement 6 ausgebildet sind. Die Fig. 11 zeigt eine Draufsicht auf ein solches Strömungsleitelement 6. Die schwarzen Blockpfeile zeigen wieder die Richtung des Kühlmittels an. Nur einige der Kanäle 13 weisen Ein - bzw. Austritte 14, 15 innerhalb der gewellten Platte 6 auf. Bei der Mehrzahl der Kanäle 13 sind die Ein - bzw. Austritte an den beiden Längsrändern der gewellten Platte 6 angeordnet worden. Die Fig. 12 zeigt eine Darstellung des gelöteten Abgaswärmetauschers, die äußerliche Ähnlichkeiten mit der Fig. 8 hat. Dort sind allerdings die Strömungsleitelemente 6 aus der Fig. 11 eingesetzt worden. Das um diesen Stapel angeordnete Gehäuse muss entsprechend modifiziert werden. Es wurde für diesen Einsatzfall nicht gezeichnet. Auch dort zeigen die Pfeile die Durchströmungsrichtung des Kühlmittels und des Abgases an. Ein sichtbarer Unterschied zur Fig. 8 besteht darin, dass sich die Abdichtung 40 in Längsrichtung des Abgaswärmetauschers erstreckt. Auch hier sorgt die Abdichtung 40, die an der nicht gezeigten Gehäusewand anliegen soll, dafür, dass die Kühlflüssigkeit auf die Kühlmittelkanäle 5 konzentriert wird.
- Schließlich zeigt die Fig. 13 einen der Fig. 3 ähnlichen Ausschnitt aus einem Stapel, in dem Flachrohre 2 vorhanden sind, die aus einem Blechstreifen geformt und mittels einer Längsnaht 20 verschweißt sind.
Claims (12)
- Abgaswärmetauscher in einer Abgasrückführungsanordnung, der aus einem Stapel besteht, der von einem Gehäuse (11) umgeben ist; wobei der Stapel aus Flachrohren (2) besteht die einen Turbulator (3) enthalten, durch die das Abgas strömt, wobei jeweils zwischen zwei Flachrohren (2) ein Kühlmittelkanal (5) angeordnet ist, der mit Strömungsleitelementen (6) ausgestattet ist,
dadurch gekennzeichnet, dass
die Strömungsleitelemente (6) aus einer gewellten Platte (7) bestehen, in der Kanäle (13) mit Ein - und Austritten (14, 15) ausgebildet sind, die sich in Längsrichtung oder in Querrichtung des Abgaswärmetauschers erstrecken, wobei wenigstens einige der Kanäle (13) einen ungeraden Verlauf aufweisen, und dass zwischen dem Stapel und dem Gehäuse (11) Längenänderungen zugelassen werden. - Abgaswärmetauscher nach Anspruch 1, mit sich in Längsrichtung erstreckenden Kanälen (13), dadurch gekennzeichnet, dass der Eintrittsbereich (16) des Kühlmittels in der Nähe des Eintrittsbereich (21) des Abgases vorgesehen ist, sodass der Abgaswärmetauscher im Gleichstrom durchströmbar ist, und dass der ungerade Verlauf der Kanäle (13) wenigstens im Eintrittsbereich (16) des Kühlmittels vorgesehen ist
- Abgaswärmetauscher nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass die gewellte Platte (7) an den beiden Längsrändern (17) so ausgestaltet ist, dass zumindest im Eintrittsbereich (20) das Kühlmittel zwischen dem Plattenstapel und dem Gehäuse (11) vorhanden ist.
- Abgaswärmetauscher nach Anspruch 3, dadurch gekennzeichnet, dass die Längsränder (17) der gewellten Platte (7) abgebogen sind und am angrenzenden Flachrohr (2) anliegen und damit verbunden, vorzugsweise verlötet sind.
- Abgaswärmetauscher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die gewellte Platte (7) wenigstens im Eintrittsbereich (20) ebene Ränder (18) aufweist.
- Abgaswärmetauscher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Strömung des Kühlmittels zwischen dem Gehäuse (11) und dem Stapel mittels einer Abdichtung (40) weitestgehend unterbunden ist.
- Abgaswärmetauscher, nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Stapel zwei Seitenteile (25) aufweist, die jeweils einen außen liegenden Kühlmittelkanal (5) begrenzen.
- Abgaswärmetauscher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sich die Kanäle (13) im Anschluss an den Eintrittsbereich (16) im Wesentlich gerade in Längsrichtung des Abgaswärmetauschers erstrecken.
- Abgaswärmetauscher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (11) aus Aluminium besteht und vorzugsweise als Druckgussteil ausgeführt ist, in das der als Edelstahl - Lötkonstruktion ausgeführte Plattenstapel, einschließlich der an den Flachrohrenden vorgesehenen Rohrböden (30) und einem Diffusor (31) einsetzbar ist.
- Abgaswärmetauscher nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (11) ein mit dem Diffusor (31) abgestimmten Anschlussflansch (60) aufweist, wobei die die Längenänderungen zulassenden Einrichtungen aus einer Nut (62) und einer Abdichtung (61) zwischen dem Diffusor (31) und dem Anschlussflansch (60) bestehen.
- Abgaswärmetauscher nach einem der vorstehenden Ansprüch, dadurch gekennzeichnet, dass die Flachrohre (2) entweder aus Paaren von Platten bestehen oder aus einem Blechstreifen hergestellt und mit einer Längsnaht (20) verschweißt sind.
- Abgaswärmetauscher nach Anspruch 1, mit sich in Querrichtung erstreckenden Kanälen (13), dadurch gekennzeichnet, dass bei der Mehrzahl der Kanäle (13) die Ein - und Austritte (14, 15) an den Längsrändern der gewellten Platte ausgebildet sind.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006005362A DE102006005362A1 (de) | 2006-02-07 | 2006-02-07 | Abgaswärmetauscher in einer Abgasrückführungsanordnung |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1816425A2 true EP1816425A2 (de) | 2007-08-08 |
EP1816425A3 EP1816425A3 (de) | 2012-06-27 |
EP1816425B1 EP1816425B1 (de) | 2014-10-01 |
Family
ID=38024144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07001251.3A Active EP1816425B1 (de) | 2006-02-07 | 2007-01-20 | Abgaswärmetauscher in einer abgasrückführungsanordnung |
Country Status (3)
Country | Link |
---|---|
US (1) | US8020610B2 (de) |
EP (1) | EP1816425B1 (de) |
DE (1) | DE102006005362A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011011117A1 (de) | 2011-02-12 | 2012-08-16 | Modine Manufacturing Co. | Wärmetauscher und Herstellungsverfahren |
DE102011053421A1 (de) * | 2011-09-09 | 2013-03-14 | Pierburg Gmbh | Vorprodukt eines Gehäuseteils, Innengehäuse, Wärmeübertragungsvorrichtung und Verfahren zur Herstellung eines derartigen Innengehäuses und einer derartigen Wärmeübertragungsvorrichtung |
EP2696062A1 (de) * | 2012-08-09 | 2014-02-12 | Behr GmbH & Co. KG | Wärmeübertrager |
DE102013011061B3 (de) * | 2013-07-02 | 2014-10-09 | Modine Manufacturing Company | Wärmetauscher mit einer Flanschverbindung |
DE102015011368A1 (de) | 2015-08-28 | 2017-03-02 | Modine Manufacturing Company | Wärmetauscher, dessen Herstellungsverfahren sowie ein elastisches Umfangselement |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8915292B2 (en) | 2006-02-07 | 2014-12-23 | Modine Manufacturing Company | Exhaust gas heat exchanger and method of operating the same |
EP3012570B1 (de) * | 2007-04-11 | 2021-07-21 | MAHLE Behr GmbH & Co. KG | Wärmetauscher |
DE102008024386B4 (de) * | 2008-05-22 | 2017-05-18 | Elringklinger Ag | Dichtung für eine Dieselabgas-Kühlvorrichtung sowie Abgaskühlvorrichtung mit einer solchen Dichtung |
DE102008051268A1 (de) * | 2008-10-10 | 2010-04-15 | Mahle International Gmbh | Kühleinrichtung |
US20100224173A1 (en) * | 2009-03-09 | 2010-09-09 | Herve Palanchon | Heat Exchanger with Cast Housing and Method of Making Same |
WO2010132439A1 (en) | 2009-05-12 | 2010-11-18 | Icr Turbine Engine Corporation | Gas turbine energy storage and conversion system |
DE102010029287A1 (de) * | 2009-05-28 | 2011-01-05 | Behr Gmbh & Co. Kg | Schichtwärmeübertrager für hohe Temperaturen |
WO2011109514A1 (en) | 2010-03-02 | 2011-09-09 | Icr Turbine Engine Corporatin | Dispatchable power from a renewable energy facility |
AU2011201083B2 (en) * | 2010-03-18 | 2013-12-05 | Modine Manufacturing Company | Heat exchanger and method of manufacturing the same |
US8984895B2 (en) | 2010-07-09 | 2015-03-24 | Icr Turbine Engine Corporation | Metallic ceramic spool for a gas turbine engine |
CA2813680A1 (en) | 2010-09-03 | 2012-03-08 | Icr Turbine Engine Corporation | Gas turbine engine configurations |
US20120096869A1 (en) * | 2010-10-26 | 2012-04-26 | Icr Turbine Engine Corporation | Utilizing heat discarded from a gas turbine engine |
WO2012106603A2 (en) | 2011-02-04 | 2012-08-09 | Lockheed Martin Corporation | Shell-and-tube heat exchangers with foam heat transfer units |
WO2012106605A2 (en) | 2011-02-04 | 2012-08-09 | Lockheed Martin Corporation | Staged graphite foam heat exchangers |
US9513059B2 (en) | 2011-02-04 | 2016-12-06 | Lockheed Martin Corporation | Radial-flow heat exchanger with foam heat exchange fins |
US9080818B2 (en) * | 2011-02-04 | 2015-07-14 | Lockheed Martin Corporation | Heat exchanger with foam fins |
EP2522845A1 (de) * | 2011-05-11 | 2012-11-14 | Borgwarner Emission Systems Spain, S.L. | Wärmetauscher zum Kühlen von Gas |
US9051873B2 (en) | 2011-05-20 | 2015-06-09 | Icr Turbine Engine Corporation | Ceramic-to-metal turbine shaft attachment |
DE102011076800A1 (de) * | 2011-05-31 | 2012-12-06 | Behr Gmbh & Co. Kg | Wärmeübertrager |
WO2013033839A1 (en) | 2011-09-09 | 2013-03-14 | Dana Canada Corporation | Stacked plate exhaust gas recovery device |
US9303925B2 (en) * | 2012-02-17 | 2016-04-05 | Hussmann Corporation | Microchannel suction line heat exchanger |
DE102012211311A1 (de) * | 2012-06-29 | 2014-01-02 | Behr Gmbh & Co. Kg | Abgaswärmeübertrager |
US9217610B2 (en) * | 2012-07-16 | 2015-12-22 | Caterpillar Inc. | Heat exchanger for exhaust gas recirculation |
US10094288B2 (en) | 2012-07-24 | 2018-10-09 | Icr Turbine Engine Corporation | Ceramic-to-metal turbine volute attachment for a gas turbine engine |
EP2906893B1 (de) | 2012-09-17 | 2016-12-28 | Mahle International GmbH | Wärmetauscher |
US9989322B2 (en) | 2013-03-01 | 2018-06-05 | Dana Canada Corporation | Heat recovery device with improved lightweight flow coupling chamber and insertable valve |
US9631876B2 (en) | 2013-03-19 | 2017-04-25 | Mahle International Gmbh | Heat exchanger |
DE102013008773B4 (de) | 2013-05-23 | 2020-06-10 | Modine Manufacturing Company | Wärmetauscher und Verfahren zur Herstellung eines Wärmetauschers |
US9660168B2 (en) * | 2013-10-18 | 2017-05-23 | Board Of Regents, The University Of Texas System | Heat exchanger for thermoelectric power generation with the thermoelectric modules in direct contact with the heat source |
DE102014005149B4 (de) * | 2014-04-08 | 2016-01-21 | Modine Manufacturing Company | Gelöteter Wärmetauscher |
DE112017005174T5 (de) * | 2016-10-14 | 2019-07-11 | Dana Canada Corporation | Wärmetauscher mit aerodynamischen Eigenschaften zur Verbesserung der Leistung |
DE102017219433B4 (de) * | 2017-10-30 | 2022-08-11 | Hanon Systems | Wärmeübertrager für einen Verbrennungsmotor |
CN108916001A (zh) * | 2018-07-16 | 2018-11-30 | 蚌埠市昊源压缩机制造有限公司 | 一种压缩机换热器 |
KR102522108B1 (ko) * | 2018-08-27 | 2023-04-17 | 한온시스템 주식회사 | 배기열 회수장치의 열교환기 |
JP1653095S (de) * | 2018-11-26 | 2020-02-17 | ||
JP1653094S (de) * | 2018-11-26 | 2020-02-17 | ||
JP1653096S (de) * | 2018-11-26 | 2020-02-17 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003036214A1 (de) | 2001-10-24 | 2003-05-01 | Behr Gmbh & Co. | Wärmeübertrager |
WO2003064953A1 (de) | 2002-02-01 | 2003-08-07 | Behr Gmbh & Co. | Abgaswärmeübertrager |
EP1348924A2 (de) | 2002-03-30 | 2003-10-01 | Modine Manufacturing Company | Abgaswärmetauscher für Kraftfahrzeuge |
WO2003091650A1 (de) | 2002-04-25 | 2003-11-06 | Behr Gmbh & Co. | Abgaswärmeübertrager, insbesondere für kraftfahrzeuge |
EP1528348A1 (de) | 2003-10-20 | 2005-05-04 | Behr GmbH & Co. KG | Wärmetauscher |
US20050189097A1 (en) | 2004-03-01 | 2005-09-01 | The Boeing Company | Formed sheet heat exchanger |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR882208A (fr) * | 1942-01-16 | 1943-05-21 | Perfectionnements aux échangeurs de chaleur | |
US2488807A (en) * | 1946-10-26 | 1949-11-22 | Donald H Currie | Sealing end plates of heat exchangers |
US2680600A (en) * | 1950-05-10 | 1954-06-08 | Maschf Augsburg Nuernberg Ag | Heat interchanger |
US2990163A (en) * | 1958-06-09 | 1961-06-27 | Borg Warner | Turbulizer |
US3291206A (en) * | 1965-09-13 | 1966-12-13 | Nicholson Terence Peter | Heat exchanger plate |
US3734135A (en) * | 1971-09-03 | 1973-05-22 | Modine Mfg Co | Heat exchanger with internal turbulator |
US3893509A (en) * | 1974-04-08 | 1975-07-08 | Garrett Corp | Lap joint tube plate heat exchanger |
US5209289A (en) * | 1991-12-02 | 1993-05-11 | Robinson Fin Machines, Inc. | Lanced ruffled turbulizer |
US6293338B1 (en) * | 1999-11-04 | 2001-09-25 | Williams International Co. L.L.C. | Gas turbine engine recuperator |
US20020153129A1 (en) * | 2000-04-25 | 2002-10-24 | White Stephen L. | Integral fin passage heat exchanger |
DE10021481A1 (de) * | 2000-05-03 | 2001-11-08 | Modine Mfg Co | Plattenwärmetauscher |
US6357396B1 (en) * | 2000-06-15 | 2002-03-19 | Aqua-Chem, Inc. | Plate type heat exchanger for exhaust gas heat recovery |
JP4151001B2 (ja) * | 2002-07-25 | 2008-09-17 | 株式会社ティラド | 熱交換器 |
US20040226694A1 (en) * | 2003-05-14 | 2004-11-18 | Roland Dilley | Heat exchanger with removable core |
DE10349150A1 (de) * | 2003-10-17 | 2005-05-19 | Behr Gmbh & Co. Kg | Wärmeübertrager, insbesondere für Kraftfahrzeuge |
-
2006
- 2006-02-07 DE DE102006005362A patent/DE102006005362A1/de not_active Withdrawn
-
2007
- 2007-01-20 EP EP07001251.3A patent/EP1816425B1/de active Active
- 2007-02-06 US US11/702,755 patent/US8020610B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003036214A1 (de) | 2001-10-24 | 2003-05-01 | Behr Gmbh & Co. | Wärmeübertrager |
WO2003064953A1 (de) | 2002-02-01 | 2003-08-07 | Behr Gmbh & Co. | Abgaswärmeübertrager |
EP1348924A2 (de) | 2002-03-30 | 2003-10-01 | Modine Manufacturing Company | Abgaswärmetauscher für Kraftfahrzeuge |
WO2003091650A1 (de) | 2002-04-25 | 2003-11-06 | Behr Gmbh & Co. | Abgaswärmeübertrager, insbesondere für kraftfahrzeuge |
EP1528348A1 (de) | 2003-10-20 | 2005-05-04 | Behr GmbH & Co. KG | Wärmetauscher |
US20050189097A1 (en) | 2004-03-01 | 2005-09-01 | The Boeing Company | Formed sheet heat exchanger |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011011117A1 (de) | 2011-02-12 | 2012-08-16 | Modine Manufacturing Co. | Wärmetauscher und Herstellungsverfahren |
DE102011011117B4 (de) * | 2011-02-12 | 2016-10-06 | Modine Manufacturing Co. | Wärmetauscher und Herstellungsverfahren |
DE102011053421A1 (de) * | 2011-09-09 | 2013-03-14 | Pierburg Gmbh | Vorprodukt eines Gehäuseteils, Innengehäuse, Wärmeübertragungsvorrichtung und Verfahren zur Herstellung eines derartigen Innengehäuses und einer derartigen Wärmeübertragungsvorrichtung |
EP2696062A1 (de) * | 2012-08-09 | 2014-02-12 | Behr GmbH & Co. KG | Wärmeübertrager |
DE102013011061B3 (de) * | 2013-07-02 | 2014-10-09 | Modine Manufacturing Company | Wärmetauscher mit einer Flanschverbindung |
DE102015011368A1 (de) | 2015-08-28 | 2017-03-02 | Modine Manufacturing Company | Wärmetauscher, dessen Herstellungsverfahren sowie ein elastisches Umfangselement |
DE102015011368B4 (de) | 2015-08-28 | 2022-11-24 | Modine Manufacturing Company | Wärmetauscher, dessen Herstellungsverfahren sowie ein elastisches Umfangselement |
Also Published As
Publication number | Publication date |
---|---|
US20070181294A1 (en) | 2007-08-09 |
EP1816425A3 (de) | 2012-06-27 |
US8020610B2 (en) | 2011-09-20 |
EP1816425B1 (de) | 2014-10-01 |
DE102006005362A1 (de) | 2007-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1816425B1 (de) | Abgaswärmetauscher in einer abgasrückführungsanordnung | |
DE102006028578B4 (de) | Wärmetauscher, insbesondere Abgaswärmetauscher | |
DE19721132C2 (de) | Vorrichtung zur Abgaskühlung | |
DE69310842T2 (de) | Wärmetauscher | |
DE2946804C2 (de) | ||
EP0864838B1 (de) | Wärmeübertrager für ein Kraftfahrzeug | |
EP3163242B1 (de) | Indirekter ladeluftkühler | |
DD215625A5 (de) | Sammelplatte fuer roehrenwaermeaustauscher und wasserbehaelter | |
EP1955001A1 (de) | Kühlvorrichtung für eine verbrennungskraftmaschine | |
EP0479012B1 (de) | Wärmetauscher | |
DE102006018688B4 (de) | Verfahren zum Biegen von Multiportrohren für Wärmeübertrager | |
DE102004001787A1 (de) | Wärmeübertrager, insbesondere Abgaswärmeübertrager für Kraftfahrzeuge | |
DE19836889A1 (de) | Abgaswärmetauscher | |
WO2004001203A2 (de) | Abgaswärmeübertrager und verfahren zu seiner herstellung | |
EP1376043B1 (de) | Wärmetauscher mit einem Diffusor | |
EP2863157B1 (de) | Wärmeübertrager | |
DE112008000781T5 (de) | Wärmetauscheraufbau | |
DE2413165C3 (de) | Plattengegenstrom-Wärmeaustauscher und Verfahren zu seiner Herstellung | |
DE2730541A1 (de) | Radiator fuer heizungsanlagen o.dgl. | |
EP1454109B1 (de) | Abgaswärmeübertrager | |
DE69404108T2 (de) | Wärmetauscher, insbesondere als Ölkühler benutzt | |
EP3232149B1 (de) | Wärmeübertrager | |
DE3132078A1 (de) | Waermeaustauscher | |
EP1862651A2 (de) | Isoliervorrichtung für ein, insbesondere von einem heißen Medium durchströmbares Maschinenelement | |
EP1923653B1 (de) | Wärmeübertrager |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: THUMM, SVEN, DR.-ING. Inventor name: SCHATZ, HARALD, DIPL.-ING. Inventor name: STRAEHLE, ROLAND, DIPL.-ING. Inventor name: SOLDNER, JOERG, DR.-ING. |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F28F 3/02 20060101ALI20120518BHEP Ipc: F28D 9/00 20060101AFI20120518BHEP Ipc: F02M 25/07 20060101ALI20120518BHEP |
|
17P | Request for examination filed |
Effective date: 20130102 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
17Q | First examination report despatched |
Effective date: 20130322 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140630 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007013485 Country of ref document: DE Effective date: 20141113 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007013485 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150702 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190327 Year of fee payment: 8 Ref country code: FR Payment date: 20190125 Year of fee payment: 13 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200120 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200131 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240129 Year of fee payment: 18 |