[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1870369B1 - Method for testing a lift braking device, method for start-up of a lift facility and a device for carrying out start-up - Google Patents

Method for testing a lift braking device, method for start-up of a lift facility and a device for carrying out start-up Download PDF

Info

Publication number
EP1870369B1
EP1870369B1 EP07109524.4A EP07109524A EP1870369B1 EP 1870369 B1 EP1870369 B1 EP 1870369B1 EP 07109524 A EP07109524 A EP 07109524A EP 1870369 B1 EP1870369 B1 EP 1870369B1
Authority
EP
European Patent Office
Prior art keywords
brake
force
elevator
friction
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07109524.4A
Other languages
German (de)
French (fr)
Other versions
EP1870369A1 (en
Inventor
Nicolas Gremaud
Steffen Grundmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP10183872.0A priority Critical patent/EP2316776B1/en
Priority to PL07109524T priority patent/PL1870369T3/en
Priority to EP07109524.4A priority patent/EP1870369B1/en
Publication of EP1870369A1 publication Critical patent/EP1870369A1/en
Application granted granted Critical
Publication of EP1870369B1 publication Critical patent/EP1870369B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • B66B5/18Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well and applying frictional retarding forces

Definitions

  • the invention relates to a method for testing an elevator brake device, to a method for starting up an elevator installation and to a device for carrying out a startup according to the preamble of the independent claims.
  • An elevator system is installed in a shaft. It consists essentially of an elevator car, which is connected via suspension means with a counterweight. By means of a drive which acts selectively on the suspension means, directly on the cabin or directly on the counterweight, the cabin is moved along a substantially vertical cabin carriageway.
  • Such elevator systems have mechanical brake systems which enable the car to be kept at any location which can slow down the elevator system or its moving masses during normal operation or which can safely stop the elevator car in the event of an error. Holding at any location is, for example, holding the elevator car on one floor for unloading or loading or waiting for a next move command.
  • a brake in normal operation is, for example, stopping process when the car enters a floor and braking in case of failure is required when, for example, a controller, the drive or support means fail.
  • two braking systems have been used to meet these requirements, one of which was located on the drive itself and the other on the cab.
  • An examination of these systems is expensive, on the one hand because two systems must be tested, on the other hand because usually fully loaded cabins are required for the test. This is complicated because a payload for the cabin has to be transported. This load must often be transported in small load portions and the test is a risk of damage to cabin equipment by slipping this load.
  • the object of this invention is to design a test method which enables an efficient and reliable testing of such a brake device.
  • a commissioning of a corresponding elevator system should be easy to do.
  • possible errors should be detected early and important system data should be able to be verified.
  • WO 2005/068337 discloses a method for testing an elevator brake device in which a number of brake units which are engaged with brake tracks in case of need and which press at least one brake plate to the brake track are tested by applying an effective coefficient of friction of the brake unit to the brake track when the brake plate is pressed is determined.
  • the effective coefficient of friction of the brake unit ( ⁇ e) is determined by means of a brake force measuring device for measuring a braking force and by means of a normal force measuring device for measuring an acting brake application force. This is particularly advantageous because force measurements, for example can be carried out inexpensively using strain gauges. In addition, an effective resulting coefficient of friction of a brake unit can be very easily determined using these measures.
  • This is particularly advantageous since dirt and dust can accumulate on the brake track during assembly of an elevator installation. This influences a coefficient of friction and thus also a resulting braking force. With the method shown this dirt can be rubbed away and the success of the cleaning can be checked by checking the friction coefficient. At the same time, it can be checked whether the measured coefficient of friction corresponds to an empirical value. This allows a rough assessment of the material used, for example, whether the correct brake track material is used.
  • a very advantageous test variant provides that the determination of the effective coefficient of friction of the brake unit ( ⁇ e) is carried out on the unloaded elevator car. This is economically interesting, since for the purpose of testing a braking device no payload must be used. The time required to transport test weights is eliminated and there is no risk of damage to cabin equipment.
  • a helpful embodiment variant provides that a sufficient brake safety factor (SB) is detected on the basis of the effective coefficient of friction ( ⁇ e) and a maximum brake application force (FNm) determined by means of the normal force measuring device.
  • SB sufficient brake safety factor
  • ⁇ e effective coefficient of friction
  • FNm maximum brake application force
  • Such a test method is particularly advantageous for testing an elevator brake device according to the preceding statements for starting up an elevator installation with such an elevator brake device.
  • the elevator installation includes an elevator car for transporting a delivery load and a counterweight which is connected by means of suspension to the elevator car and a drive for driving the elevator car, counterweight and suspension means, wherein the counterweight and the car move in opposite directions in a substantially vertical shaft.
  • the evaluation of an elevator brake device is particularly difficult, since a complex mass system is involved.
  • the proposed test method offers an efficient and safe way to commission a lift system.
  • An elevator system is a complex mass system and an elevator brake device has to cope with this complex mass system.
  • the elevator brake device of an elevator system must bring the entire mass system or the total mass (MG) to be braked to a standstill.
  • the elevator brake device In a "worst case”, for example in the case of failure of suspension elements or support structures, however, the elevator brake device must be able to securely brake and hold the remaining mass (MV), essentially the mass of the empty elevator car including the payload. This latter requirement can not be checked real in an elevator system, since this would be such a "worst case”, in the areas of elevator construction also referred to as "free fall", brought about.
  • Another variant provides that the remaining mass (MV) of the elevator installation to be braked by the elevator brake device in the "worst case" is entered by entering the permissible weight (MF) of the conveyor load, an effective mass proportion of the drive (MA) and measuring an elevator acceleration (ak). wherein mass determinations on the elevator installation such as, an actual imbalance (MB) of the elevator installation, or an actual weight (MT) of the suspension means are performed using the braking force measuring device.
  • mass determinations on the elevator installation such as, an actual imbalance (MB) of the elevator installation, or an actual weight (MT) of the suspension means are performed using the braking force measuring device.
  • This variant is advantageous when it comes to customer-specific elevator systems, in which, for example, additional equipment, such as imaging devices, air conditioners or the like or equipment such as mirrors, decorative materials or custom flooring are installed. This method allows a safe determination of the braked masses.
  • the effective mass fractions of the drive (MA) are defined by the drive.
  • the actual imbalance (MB) is the mass difference between the counterweight and the empty cab. As a rule, this mass difference is designed for 50% of the permissible delivery load (MF). But there are also other interpretations of this imbalance known. This imbalance can be determined by first determining an actual weight (MT) of the suspension elements.
  • the measurement of the holding forces (FB HT , FB HB ) takes place in each case by the elevator car in relevant stop (top or bottom) is held solely by the braking device and the holding force is measured by the brake force measuring device.
  • a weight (MZ) of a possible payload of the cabin (for example, an installer) must be taken into account in this determination.
  • the weight of the empty elevator car (MK) can now be determined by, for example, by means of an acceleration sensor, an intrinsic acceleration (ak) of the elevator car is measured. In this case, the empty car is parked in the lowest stop (HB), then the braking device is opened whereby the empty elevator car accelerates automatically upwards. This acceleration (ak) and a possible residual braking force (FB R) is measured, and then the brake is again closed.
  • This method allows a reliable determination of the actual mass fractions of an elevator installation.
  • a further embodiment provides that the brake unit is delivered with a maximum force and by means of the normal force measuring device the maximum achievable Bremszustellkraft (FNm) is measured and this maximum Bremszustellkraft (FNm) with the maximum required Bremszustellkraft (FNe) is compared and the proof sufficient Braking function is called satisfied when the maximum brake application force (FNm) by the safety factor (SB) is greater than the maximum required brake application force (FNe).
  • This design allows a statement about a really existing safety of the braking device. This results in a very safe braking device,
  • FBe KB 2 ' * MV * ake + G _ ,
  • the correction factor (KB2 ') takes account of characteristic empirical values such as the expected overload.
  • the maximum possible braking force (FBm) is now compared with the maximum required braking force (FBe) and the detection of sufficient braking function is deemed fulfilled if the maximum possible braking force (FBm) is exceeded the safety factor (SB) is greater than the maximum required braking force (FBe).
  • SB safety factor
  • the braking function is generally verified by the empty cabin controlled or uncontrolled, preferably accelerated in the upward direction until a Fahrkurven- or speed monitoring system activates the braking device and the braking device by means of associated brake unit (s) Braking the car to a standstill and keeping it at a standstill During the braking process, the brake application forces and braking forces are measured and a coefficient of friction of the brake unit ( ⁇ b) determined from these measurements is compared with the previously determined effective coefficient of friction of the brake unit ( ⁇ e). The commissioning of the braking device is referred to as satisfied if the determined coefficient of friction ( ⁇ b) substantially coincides with the effective coefficient of friction ( ⁇ e), possibly taking into account the correction factor (KB1, KB2).
  • the advantage of this embodiment is the fact that the overall function of the safety system of the elevator installation can be carried out by simple means of only one person.
  • a further advantageous embodiment of the commissioning method provides that a correct balance of an elevator system using the Brake force measuring device is made or verified. This is economical because no separate measuring instruments are required.
  • the balancing of the elevator system is performed by entering a required balancing factor in an evaluation unit.
  • the actual imbalance (MB) may be determined using the brake force measurement device as previously described.
  • a true balance factor (Bw) is determined by setting the actual imbalance (MB) in relation to the allowable payload (MF) of the elevator car.
  • MF allowable payload
  • a possibly required additional weight can be determined as the difference between the required balancing factor (Bg) minus the actual balancing factor (Bw) and multiplication by the permissible payload, and the counterweight can be weighted with this additional weight or relieved accordingly if the result is negative.
  • the advantage of this design is that balancing can be easily and safely controlled and / or corrected.
  • the number of brake units used is 2 or a multiple of 2. This is advantageous because usually two brake tracks are present and thus the brake units can be distributed symmetrically on the brake tracks. It is also possible to use several small brake units instead of large brake units. This is inexpensive because modular braking devices can be interconnected into a system.
  • parameters of the brake unit acquired during commissioning are checked for conformity with default values.
  • these commissioning values or parameters determined during commissioning are stored, and a running status check evaluates the characteristic values during normal brake application of each brake application.
  • the condition check compares continuously determined characteristic values with the commissioning values and in case of unexpected deviations a recalibration, a service message or a fault message is generated. This allows the function of the braking device to be ensured for a long time, and allows targeted maintenance.
  • the determined effective coefficient of friction ( ⁇ e) is used as the parameter.
  • a determined normal force characteristic curve is used as the parameter, which is stored as a function of a delivery measuring device or a delivery path.
  • a correct function of the brake force measuring device is checked by comparing a measured braking force (FB) with a required driving force for moving the elevator car (FA), for which purpose a static braking force (FBST) is measured with the elevator car stationary and a dynamic braking force (FBdyn) is measured at a constant driving speed and a small-acting brake application force (FBw) and the difference between these two measurements (FBdyn-Fbstat) is compared with the required driving force (FA), for example an engine torque (TA).
  • FBST static braking force
  • FBdyn dynamic braking force
  • FA engine torque
  • a device is used to carry out the start-up method, which device can be connected to the brake device and controls the sequence of startup.
  • This is particularly advantageous, since by means of this device, for example, instructions can be given to the person performing, calculations can be performed automatically and the results of commissioning can be stored, or output in a report. This is safe and efficient.
  • Fig. 1 shows an example of an elevator installation 1.
  • the elevator installation 1 comprises an elevator cage 2 which is connected by means of suspension 4 to a counterweight 3.
  • the elevator car 2 is driven by a drive 5 by means of suspension 4.
  • the elevator car 2 is guided by guide rails 6 essentially in the vertical direction in an elevator shaft 7 by means of guide shoes 23. Elevator car 2 and counterweight 3 move in the same way in the elevator shaft 7.
  • the elevator car 2 is used to transport the delivery load 10.
  • the elevator system 1 is controlled by an elevator control 8.
  • the elevator car is provided with a braking device 11, which can hold the elevator car 2 at a standstill and which, if necessary, can brake the elevator car 2 from a driving state to a standstill. Stopping at standstill is required, for example, when the elevator car is in a floor for the purpose of picking up or discharging conveyor load 10. Braking may be required if a fault is detected in the lift system and accordingly the elevator car must be decelerated quickly.
  • the brake device 11 comprises at least one brake unit 12 which can be brought into engagement with a brake track 6.
  • Fig. 1 is the guide rail 6 and the brake track 6 one and the same element.
  • the brake device 11 further comprises a brake control unit 13 which controls the brake unit 12.
  • the brake control unit 13 gives the brake unit 12 braking values which the brake unit 12 adjusts.
  • an acceleration sensor 22 is mounted on the car 2, which detects a current acceleration state of the car 2 and at least passes it on to the brake control unit 13 and / or the elevator control 8.
  • a device 9 is connected to the elevator control 8, which controls a start-up procedure of the elevator installation 1.
  • this device 9 is a mobile computer, such as a laptop, PDA, or the like.
  • Fig. 1 a shows the in Fig. 1
  • the elevator car 2 is guided by two guide rails or brake tracks 6.
  • the counterweight 3 is located in the same shaft 7 and is guided along its own guide rails (not labeled).
  • the braking device 11 is mounted on the elevator car 2, wherein in the example two brake units 12.1, 12.2 are used, which can each act on a brake track 6.
  • Fig. 2 and Fig. 3 show an exemplary brake unit 12.
  • the brake unit 12 includes a brake housing 16 with a fixed brake plate 14 and a feed device 15 which has a second brake plate 14.
  • the brake unit 12 comprises the brake track 6 and by means of the feed device 15, the brake plates 14 can be delivered, whereby a braking or holding force can be generated.
  • the delivery is controlled and regulated by means of a control device 17.
  • the guide shoe 23 serves to guide the brake unit 12 and / or the elevator car 2.
  • a normal force measuring device 21 a normal force FN generated by the brake unit 12 is measured.
  • the normal force FN generates the braking force FB defined by a coefficient of friction ⁇ .
  • a single braking force FB per braking unit is measured and from this a coefficient of friction ⁇ is determined which corresponds to the value FN divided by FB, that is to say a braking unit related coefficient of friction.
  • an attachment housing 18 leads the braking force FB from the brake plates 14 via a carrier pin 19 to the elevator cage 2.
  • the braking force can be measured by a brake force measuring device 20.
  • the measured values of normal force FN, braking force FB or a delivery path, which can be measured for example in the delivery device 15, are detected by the control device 17 and forwarded directly or possibly via the brake control unit 13 and / or elevator control 8 to the commissioning device 9.
  • these measured values are also used by the control device 17, the brake control unit 13 and / or the elevator control 8 for their own tasks.
  • the brake unit 12 slides at a speed v of the brake track 6, while holding this speed v is equal to zero.
  • This embodiment allows an efficient control of the braking device 11 in the event of an operation, since the brake control unit 13 can specify a desired normal force FN to each brake unit 12 and the brake unit 12 adjusts this value independently. During commissioning, these values can simply be used to calculate an effective brake safety SB.
  • Fig. 4 schematically represents a possible measuring arrangement for exercising the commissioning process.
  • the drive 5 is provided with a device for detecting the drive torque TA.
  • the drive provides this measurement signal to the drive controller 8.
  • the elevator car 2 is equipped with the acceleration sensor 22.
  • the signal of the acceleration sensor 22 is likewise made available to the elevator control 8 via the car.
  • the car 2 contains the braking device 11, which consists of a plurality of brake units 12.
  • Each of the brake units 12 has normal force measurement 21, brake force measurement 20 and in the illustrated example further on the measurement of the effective feed travel of the feed device 15.
  • the measured values are
  • the elevator control 8 is also made available via the brake unit, or the measurement signals are made available via the elevator control 8 to the device 9 for controlling the startup procedure.
  • the device 9 is connected to the elevator control 8 in the example shown. This allows operation of the device from one floor. Of course, the device could be connected to other data points such as the brake control unit 13 or to the braking device 11.
  • Fig. 5 gives an overview of the main dimensions of a lift system.
  • the car 2 with the empty mass MK is connected to a suspension element 4 which has the mass MT to the counterweight 3.
  • the counterweight 3 has the mass MC.
  • the drive 5, which drives the car 2 and the counterweight 3 via the suspension element 4, has a mass equivalent MA which corresponds to the rotational mass of the drive components 5.
  • the car 2 is loaded with a maximum allowable delivery load 10 which corresponds to the mass MF.
  • the cabin 2 is provided with a braking device 11.
  • the Fig. 6a to 6c give a representation of possible measurement points for the commissioning of the braking device 11 and the elevator system 1.
  • the cabin is unloaded, that is, the current mass MF is zero.
  • the Fig. 6a to 6c are related to Fig. 5 consider.
  • the measuring point is shown in the lowest stop HB.
  • the mass fraction MT of the suspension element 4 is substantially on the side of the car 2.
  • the measurement FB corresponds to the preponderance of counterweight 2 to empty cabin 2 and suspension means 4th
  • Fig. 6b a measuring point is shown in the middle stop HM.
  • Cabin 2 and counterweight 3 are at the same height and the mass fraction MT of the suspension element 4 is divided substantially evenly on the side of the car 2 and the counterweight 3.
  • the measurement FB corresponds to the sole preponderance of counterweight 2 to empty cabin 2.
  • Fig. 6c the measuring point is shown in the uppermost stop HT.
  • the mass fraction MT of the suspension element 4 is substantially on the side of the counterweight 3.
  • the measurement FB corresponds to the preponderance of counterweight 2 and support means 4 to the empty cabin 2.
  • the measuring point according to Fig. 6b Of course, it can also be calculated as the mean value between the measured value Fig. 6a and 6c determine.
  • the elevator expert can arbitrarily change the set shapes and arrangements.
  • the illustrated arrangement of a drive in the shaft head can be replaced by a drive on the car or on the counterweight or the braking device can be arranged at the upper end of the cabin or below and above the cabin or laterally of the cabin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Elevator Control (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Prüfung einer Aufzugsbremseinrichtung, ein Verfahren zur Inbetriebnahme einer Aufzugsanlage und eine Einrichtung zur Durchführung einer Inbetriebnahme gemäss Oberbegriff der unabhängigen Patentansprüche.The invention relates to a method for testing an elevator brake device, to a method for starting up an elevator installation and to a device for carrying out a startup according to the preamble of the independent claims.

Eine Aufzugsanlage ist in einem Schacht eingebaut. Sie besteht im Wesentlichen aus einer Aufzugskabine, welche über Tragmittel mit einem Gegengewicht verbunden ist. Mittels eines Antriebes, der wahlweise auf die Tragmittel, direkt auf die Kabine oder direkt auf das Gegengewicht einwirkt, wird die Kabine entlang einer, im Wesentlichen vertikalen, Kabinenfahrbahn verfahren.
Derartige Aufzugsanlagen verfügen über mechanische Bremssysteme welche ein Halten der Kabine an einem beliebigen Ort ermöglichen, welche die Aufzugsanlage, bzw. deren bewegte Massen im Normalbetrieb bremsen können oder welche die Aufzugskabine in einem Fehlerfalle sicher anhalten können. Ein Halten an einem beliebigen Ort ist zum Beispiel ein Halten der Aufzugskabine auf einer Etage zum Zwecke des Ent- oder Beladens oder zum Warten auf einen nächsten Fahrbefehl. Ein Bremsen im Normalbetrieb ist beispielsweise Anhaltevorgang wenn die Kabine in eine Etage einfährt und das Bremsen im Fehlerfalle ist erforderlich, wenn beispielsweise eine Steuerung, der Antrieb oder Tragmittel versagen.
Bis heute waren für diese Anforderungen in der Regel zwei Bremssysteme verwendet, wovon eines am Antrieb selbst und das andere auf der Kabine angeordnet waren. Eine Prüfung dieser Systeme ist aufwendig, einerseits weil zwei Systeme geprüft werden müssen, andererseits weil für die Prüfung in der Regel vollbeladene Kabinen erforderlich sind. Dies ist insofern aufwändig, da eine Zuladung für die Kabine herbeitransportiert werden muss. Diese Last muss vielfach in kleinen Lastportionen transportiert werden und beim Test besteht ein Risiko von Beschädigung von Kabinenausstattungen durch verrutschen dieser Zuladung.
An elevator system is installed in a shaft. It consists essentially of an elevator car, which is connected via suspension means with a counterweight. By means of a drive which acts selectively on the suspension means, directly on the cabin or directly on the counterweight, the cabin is moved along a substantially vertical cabin carriageway.
Such elevator systems have mechanical brake systems which enable the car to be kept at any location which can slow down the elevator system or its moving masses during normal operation or which can safely stop the elevator car in the event of an error. Holding at any location is, for example, holding the elevator car on one floor for unloading or loading or waiting for a next move command. A brake in normal operation is, for example, stopping process when the car enters a floor and braking in case of failure is required when, for example, a controller, the drive or support means fail.
To date, two braking systems have been used to meet these requirements, one of which was located on the drive itself and the other on the cab. An examination of these systems is expensive, on the one hand because two systems must be tested, on the other hand because usually fully loaded cabins are required for the test. This is complicated because a payload for the cabin has to be transported. This load must often be transported in small load portions and the test is a risk of damage to cabin equipment by slipping this load.

Aus unserer Anmeldung EP05111993.1 ist nun ein Bremssystem bekannt, welches anstelle von zwei Bremssystemen nur noch ein Bremssystem erfordert. Die gezeigte Aufzugsbremseinrichtung bremst und hält eine Aufzugskabine und die Aufzugsbremseinrichtung besteht aus einer Anzahl Bremseinheiten welche im Bedarfsfalle mit Bremsbahnen in Eingriff gebracht werden, wobei die Bremseinheit zu diesem Zwecke mindestens eine Bremsplatte an die Bremsbahn andrückt und eine Bremskraft erzeugt.
Dieses Bremssystem muss nun besonders sicher und trotzdem effizient geprüft werden können.
Aufgabe dieser Erfindung ist es dementsprechend ein Prüfverfahren zu entwerfen, welches eine effiziente und sichere Prüfung einer derartigen Bremseinrichtung ermöglicht. Eine Inbetriebnahme einer entsprechenden Aufzugsanlage soll einfach machbar sein. Vorzugsweise sollen mögliche Fehler frühzeitig erkannt werden können und wichtige Anlagedaten sollen verifiziert werden können. WO 2005/068337 offenbart ein Verfahren zur Prüfung einer Aufzugsbremseinrichtung, in der eine Anzahl Bremseinheiten welche im Bedarfsfalle mit Bremsbahnen in Eingriff gebracht werden und welche mindestens jeweils eine Bremsplatte an die Bremsbahn andrücken, geprüft werden, indem ein beim Andrücken der Bremsplatte an die Bremsbahn erzeugter effektiver Reibwert der Bremseinheit ermittelt wird.
Durch eine Ermittlung des effektiven Reibwertes der Bremseinheit können Abweichungen früh erkannt werden und die Ermittlung erlaubt eine zuverlässige Aussage zur Funktionsfähigkeit der Bremseinheit. Durch entsprechende Ermittlung kann die Überwachung dauernd, das heisst bei jeder Verwendung verifiziert werden was eine besonders sichere Ausführung einer derartigen Bremseinheit ermöglicht. Diese Aufgaben werden gemäss der Erfindung dadurch gelöst, dass der effektive Reibwert der Bremseinheit (µe) mittels einer Bremskraftmesseinrichtung zum Messen einer Bremskraft und mittels einer Normalkraftmesseinrichtung zum Messen einer wirkenden Bremszustellkraft ermittelt. Dies ist besonders Vorteilhaft, da Kraftmessungen, beispielsweise unter Verwendung von Dehnmessstreifen kostengünstig ausgeführt werden können. Zudem kann ein effektiver resultierender Reibwert einer Bremseinheit unter Verwendung dieser Messgrössen sehr einfach ermittelt werden.
From our registration EP05111993.1 Now, a brake system is known, which requires only a brake system instead of two brake systems. The elevator brake device shown brakes and holds an elevator car and the elevator brake device consists of a number of brake units which are brought in case of need with brake tracks in engagement, the brake unit for this purpose presses at least one brake plate to the brake track and generates a braking force.
This braking system must now be able to be tested particularly safely and efficiently.
Accordingly, the object of this invention is to design a test method which enables an efficient and reliable testing of such a brake device. A commissioning of a corresponding elevator system should be easy to do. Preferably, possible errors should be detected early and important system data should be able to be verified. WO 2005/068337 discloses a method for testing an elevator brake device in which a number of brake units which are engaged with brake tracks in case of need and which press at least one brake plate to the brake track are tested by applying an effective coefficient of friction of the brake unit to the brake track when the brake plate is pressed is determined.
By determining the effective coefficient of friction of the brake unit deviations can be detected early and the determination allows a reliable statement on the functioning of the brake unit. By appropriate determination, the monitoring can be permanently verified, that is to say with each use, which makes possible a particularly secure execution of such a brake unit. These objects are achieved according to the invention in that the effective coefficient of friction of the brake unit (μe) is determined by means of a brake force measuring device for measuring a braking force and by means of a normal force measuring device for measuring an acting brake application force. This is particularly advantageous because force measurements, for example can be carried out inexpensively using strain gauges. In addition, an effective resulting coefficient of friction of a brake unit can be very easily determined using these measures.

Eine Ausführungsvariante sieht vor, dass zur Ermittlung des effektiven Reibwertes (µe) der Bremseinheit die Bremseinheit mit der Bremsbahn zum Eingriff gebracht und mit kleiner wirkender Bremszustellkraft (FNw) zugestellt wird, und die Aufzugskabine mit geringer Geschwindigkeit Verfahren wird, wobei der Vorgang des Verfahrens solange fortgesetzt oder wiederholt wird, bis sich ein im Wesentlichen konstanter effektiver Reibwert der Bremseinheit (µe = FB / FNw) einstellt. Dies ist besonders vorteilhaft, da sich bei der Montage einer Aufzugsanlage Schmutz und Baustaub auf der Bremsbahn festsetzen kann. Dies beeinflusst einen Reibwert und damit auch eine resultierende Bremskraft. Mit der dargestellten Methode lässt sich dieser Schmutz wegreiben und der Erfolg der Reinigung kann mittels der Prüfung des Reibwertes kontrolliert werden. Gleichzeitig kann geprüft werden, ob der gemessene Reibwert einem Erfahrungswert entspricht. Dies ermöglicht eine Grobbewertung des eingesetzten Materials, beispielsweise ob richtiges Bremsbahnmaterial verwendet ist.A variant embodiment provides that in order to determine the effective coefficient of friction (μe) of the brake unit, the brake unit is brought into engagement with the brake track and delivered with a smaller-acting brake application force (FNw), and the elevator car is operated at low speed, the process being carried out as long as possible is continued or repeated until a substantially constant effective coefficient of friction of the brake unit (μe = FB / FNw) is established. This is particularly advantageous since dirt and dust can accumulate on the brake track during assembly of an elevator installation. This influences a coefficient of friction and thus also a resulting braking force. With the method shown this dirt can be rubbed away and the success of the cleaning can be checked by checking the friction coefficient. At the same time, it can be checked whether the measured coefficient of friction corresponds to an empirical value. This allows a rough assessment of the material used, for example, whether the correct brake track material is used.

Eine sehr vorteilhafte Prüfvariante sieht vor, dass die Ermittlung des effektiven Reibwerts der Bremseinheit (µe) an der unbeladenen Aufzugskabine durchgeführt wird. Dies ist insofern wirtschaftlich interessant, da zum Zwecke der Prüfung einer Bremseinrichtung keine Zuladung verwendet werden muss. Der Zeitbedarf für den Transport von Prüfgewichten entfällt und ein Risiko der Beschädigung von Kabinenausstattung besteht nicht.A very advantageous test variant provides that the determination of the effective coefficient of friction of the brake unit (μe) is carried out on the unloaded elevator car. This is economically interesting, since for the purpose of testing a braking device no payload must be used. The time required to transport test weights is eliminated and there is no risk of damage to cabin equipment.

Eine hilfreiche Ausführungsvariante sieht vor, dass anhand des effektiven Reibwertes (µe) und einer mittels der Normalkraftmesseinrichtung ermittelten maximalen Bremszustellkraft (FNm) ein genügender Bremssicherheitsfaktor (SB) nachgewiesen wird. Ein Sicherheitsfaktor ist ein Kennzeichen für die Zuverlässigkeit einer Einrichtung bzw. die Sicherheit der Aufgabenerfüllung einer Einrichtung. Bei einer Bremseinrichtung ist ein solcher Bremssicherheitsfaktor besonders wichtig.A helpful embodiment variant provides that a sufficient brake safety factor (SB) is detected on the basis of the effective coefficient of friction (μe) and a maximum brake application force (FNm) determined by means of the normal force measuring device. A safety factor is a mark for the reliability of a device or the security of the task performance of a device. In a braking device such a brake safety factor is particularly important.

Besonders vorteilhaft ist ein derartiges Prüfverfahren zur Prüfung einer Aufzugsbremseinrichtung gemäss den vorgängigen Ausführungen zur Inbetriebnahme einer Aufzugsanlage mit einer derartigen Aufzugsbremseinrichtung verwendet. Die Aufzugsanlage beinhaltet eine Aufzugskabine zum Transportieren einer Förderlast und ein Gegengewicht welches mittels Tragmitteln zur Aufzugskabine verbunden ist und einen Antrieb zum Antreiben von Aufzugskabine, Gegengewicht und Tragmittel, wobei sich Gegengewicht und Kabine in einem im Wesentlichen vertikalen Schacht gegengleich bewegen. Bei einer derartigen Aufzugsanlage ist die Beurteilung einer Aufzugsbremseinrichtung besonders schwierig, da ein komplexes Massensystem beteiligt ist. Das vorgeschlagene Prüfverfahren bietet hierbei eine effiziente und sichere Möglichkeit zur Inbetriebnahme einer Aufzugsanlage.Such a test method is particularly advantageous for testing an elevator brake device according to the preceding statements for starting up an elevator installation with such an elevator brake device. The elevator installation includes an elevator car for transporting a delivery load and a counterweight which is connected by means of suspension to the elevator car and a drive for driving the elevator car, counterweight and suspension means, wherein the counterweight and the car move in opposite directions in a substantially vertical shaft. In such an elevator installation, the evaluation of an elevator brake device is particularly difficult, since a complex mass system is involved. The proposed test method offers an efficient and safe way to commission a lift system.

Eine Aufzugsanlage ist ein komplexes Massensystem und eine Aufzugsbremseinrichtung hat diesem komplexen Massensystem gerecht zu werden. Im Regelfall, das heisst bei normalen Betriebszuständen muss die Aufzugsbremseinrichtung einer Aufzugsanlage das gesamte Massensystem bzw. die abzubremsende Gesamtmasse (MG) zum Stillstand bringen. In einem "worst case", beispielsweise bei Versagen von Tragmitteln oder Tragstrukturen muss jedoch die Aufzugsbremseinrichtung die verbleibende Masse (MV), im Wesentlichen die Masse der leeren Aufzugskabine inklusive der Zuladung, sicher Bremsen und Halten können. Diese letztere Anforderung kann in einer Aufzugsanlage nicht real geprüft werden, da hierzu ein derartiger "worst case" , im Bereiche des Aufzugbaues auch als "Freifall" bezeichnet, herbeigeführt werden müsste.
Um demzufolge eine zuverlässige Aussage zur Sicherheit einer Aufzugsbremseinrichtung machen zu können - und eine derartige Aussage ist Bestandteil der Inbetriebnahme der Aufzugsanlage - müssen die beteiligten Massen bekannt sein. Die Erfindung schlägt nun hilfreiche Ausführungsvarianten zur Ermittlung dieser Massen vor.
Eine erste Ausführungsvariante sieht vor, dass die von der Aufzugsbremseinrichtung im "worst case" abzubremsende verbleibende Masse (MV) der Aufzugsanlage unter Eingabe eines zulässigen Gewichts (MF) der Förderlast und Eingabe eines Gewichts (MK) der leeren Aufzugskabine gerechnet (MV = MK+MF) wird-Dies ist einfach realisierbar und ist in stark standardisierten Aufzugsanlagen möglich, wo keine kundenspezifische Gestaltungen zugelassen wird.
An elevator system is a complex mass system and an elevator brake device has to cope with this complex mass system. As a rule, that is to say in the case of normal operating states, the elevator brake device of an elevator system must bring the entire mass system or the total mass (MG) to be braked to a standstill. In a "worst case", for example in the case of failure of suspension elements or support structures, however, the elevator brake device must be able to securely brake and hold the remaining mass (MV), essentially the mass of the empty elevator car including the payload. This latter requirement can not be checked real in an elevator system, since this would be such a "worst case", in the areas of elevator construction also referred to as "free fall", brought about.
In order to be able to make a reliable statement on the safety of an elevator brake device - and such a statement is part of the commissioning of the elevator system - the masses involved must be known. The invention proposes now helpful variants for the determination of these masses.
A first embodiment variant provides that the remaining mass (MV) of the elevator installation to be braked by the elevator brake device in the "worst case" is entered by inputting a permissible weight (MF) of the delivery load and input A weight (MK) of the empty elevator car calculated (MV = MK + MF) becomes-this is easily realizable and is possible in highly standardized elevator installations, where no customer-specific designs are permitted.

Eine andere Ausführungsvariante sieht vor, dass die von der Aufzugsbremseinrichtung im "worst case" abzubremsende verbleibende Masse (MV) der Aufzugsanlage unter Eingabe des zulässigen Gewichts (MF) der Förderlast, eines wirkenden Massenanteiles des Antriebes (MA) und Messung einer Aufzugsbeschleunigung (ak) gerechnet wird, wobei Massenbestimmungen an der Aufzugsanlage wie, eine tatsächliche Unbalance (MB) der Aufzugsanlage, oder ein tatsächliches Gewicht (MT) der Tragmittel unter Verwendung der Bremskraftmesseinrichtung durchgeführt werden. Diese Variante ist vorteilhaft, wenn es sich um Kundenspezifische Aufzugsanlagen handelt, bei der beispielsweise Zusatzapparaturen, wie Bildgeräte, Klimageräte oder ähnliches oder Ausstattungsgegenstände wie Spiegel, Dekormaterialien oder ein Kundespezifischer Bodenbelag eingebaut werden. Dieses Verfahren erlaubt eine sichere Bestimmung der abzubremsenden Massen.
Die wirkenden Massenanteile des Antriebes (MA) sind durch den Antrieb definiert. Es handelt sich hierbei um die Trägheitsmassen des Antriebes inklusive zugehöriger Antriebsscheiben und Umlenkrollen. Diese rotatorischen Trägheitsmassen sind entsprechend dem Durchmesser der Antriebsscheibe auf einen äquivalenten linearen Massenanteil des Antriebes (MA) umgerechnet. Diese Werte sind in Anlagedokumenten ersichtlich oder in Form von Datentabellen einem Prüfgerät beigegeben.
Die tatsächliche Unbalance (MB) bezeichnet die Massendifferenz zwischen Gegengewicht und leerer Kabine. In der Regel wird diese Massendifferenz auf 50% der zulässigen Förderlast (MF) ausgelegt. Es sind aber auch andere Auslegungen dieser Unbalance bekannt. Diese Unbalance kann ermittelt werden, indem zuerst ein tatsächliches Gewicht (MT) der Tragmittel bestimmt wird- Dies erfolgt vorteilhafterweise durch Messung der Haltekraft (FBHT) im ruhenden Zustand bei im obersten Halt (HT) parkierter Kabine und Messung der Haltekraft (FBHB) im ruhenden Zustand bei einer im untersten Halt (HB) parkierten Kabine. Die Messung der Haltekräfte (FBHT, FBHB) erfolgt jeweils indem die Aufzugskabine im betreffenden Halt (zuoberst oder zuunterst) alleine durch die Bremseinrichtung festgehalten wird und die Haltekraft mittels der Bremskraftmesseinrichtung gemessen wird. Das tatsächliche Gewicht der Tragmittel kann aus der Differenz dieser zwei Messungen, nach der folgenden Formel bestimmt werden: Masse Tragmittel MT = Haltekraft FB HT Haltekraft FB HB / 2 / g _

Figure imgb0001
wobei g die Erdbeschleunigung (9.81m/s2) ist.
Die tatsächliche Unbalance (MB) kann beispielsweise aus der Summe dieser zwei Messungen, nach der folgenden Formel bestimmt werden: Mass Unbalance MB = Haltekraft FB HT + Haltekraft FB HB / 2 / g _
Figure imgb0002
wobei g wiederum die Erdbeschleunigung (9.81m/s2) ist. Allenfalls muss bei dieser Bestimmung ein Gewicht (MZ) einer allfälligen Zuladung der Kabine (beispielsweise ein Installateur) berücksichtigt werden.
Das Gewicht der leeren Aufzugskabine (MK) kann nun ermittelt werden, indem beispielsweise mittels eines Beschleunigungssensors eine Eigenbeschleunigung (ak) der Aufzugskabine gemessen wird. Hierbei wird die leere Kabine im untersten Halt (HB) parkiert, dann wird die Bremseinrichtung geöffnet wodurch sich die leere Aufzugskabine selbstständig nach oben beschleunigt. Diese Beschleunigung (ak) und eine allfällige Restbremskraft (FBR) wird gemessen und anschliessend wird die Bremse wiederum geschlossen.
Das tatsächliche Gewicht der leeren Aufzugskabine (MK) kann nun beispielsweise unter Verwendung der vorgenannten ermittelten oder bekannten Werte, nach der folgenden Formel bestimmt werden: MK = MB MT MZ * g MT + MZ + MA + MB * ak FB R / ak _
Figure imgb0003
Another variant provides that the remaining mass (MV) of the elevator installation to be braked by the elevator brake device in the "worst case" is entered by entering the permissible weight (MF) of the conveyor load, an effective mass proportion of the drive (MA) and measuring an elevator acceleration (ak). wherein mass determinations on the elevator installation such as, an actual imbalance (MB) of the elevator installation, or an actual weight (MT) of the suspension means are performed using the braking force measuring device. This variant is advantageous when it comes to customer-specific elevator systems, in which, for example, additional equipment, such as imaging devices, air conditioners or the like or equipment such as mirrors, decorative materials or custom flooring are installed. This method allows a safe determination of the braked masses.
The effective mass fractions of the drive (MA) are defined by the drive. These are the inertia masses of the drive including associated drive pulleys and pulleys. These rotational inertial masses are converted according to the diameter of the drive pulley to an equivalent linear mass fraction of the drive (MA). These values are visible in plant documents or in the form of data tables attached to a test instrument.
The actual imbalance (MB) is the mass difference between the counterweight and the empty cab. As a rule, this mass difference is designed for 50% of the permissible delivery load (MF). But there are also other interpretations of this imbalance known. This imbalance can be determined by first determining an actual weight (MT) of the suspension elements. This advantageously takes place by measuring the holding force (FB HT ) in the stationary state with the car parked in the uppermost stop (HT) and measuring the holding force (FB HB ). in the dormant state at a car parked in the lowest stop (HB) . The measurement of the holding forces (FB HT , FB HB ) takes place in each case by the elevator car in relevant stop (top or bottom) is held solely by the braking device and the holding force is measured by the brake force measuring device. The actual weight of the suspension element can be determined from the difference between these two measurements, according to the following formula: Mass suspension MT = holding force FB HT - holding force FB HB / 2 / G _
Figure imgb0001
where g is the gravitational acceleration (9.81m / s 2 ).
For example, the actual imbalance (MB) can be determined from the sum of these two measurements, using the following formula: Mass unbalance MB = holding force FB HT + holding force FB HB / 2 / G _
Figure imgb0002
where g is again the gravitational acceleration (9.81m / s 2 ). At most, a weight (MZ) of a possible payload of the cabin (for example, an installer) must be taken into account in this determination.
The weight of the empty elevator car (MK) can now be determined by, for example, by means of an acceleration sensor, an intrinsic acceleration (ak) of the elevator car is measured. In this case, the empty car is parked in the lowest stop (HB), then the braking device is opened whereby the empty elevator car accelerates automatically upwards. This acceleration (ak) and a possible residual braking force (FB R) is measured, and then the brake is again closed.
The actual weight of the empty elevator car (MK) can now be determined, for example, using the aforementioned determined or known values, according to the following formula: MK = MB - MT - MZ * G - MT + MZ + MA + MB * ak - FB R / ak _
Figure imgb0003

Die von der Aufzugsbremseinrichtung im "worst case" abzubremsende verbleibende Masse (MV) kann nun gerechnet werden: MV = MK + MF _ .

Figure imgb0004
The remaining mass (MV) to be braked by the elevator brake device in the "worst case" can now be calculated: MV = MK + MF _ ,
Figure imgb0004

Dieses Verfahren erlaubt eine sichere Ermittlung der tatsächlichen Massenanteile einer Aufzugsanlage.This method allows a reliable determination of the actual mass fractions of an elevator installation.

Vorteilhafterweise wird eine maximal erforderliche Bremszustellkraft (FNe) unter Berücksichtigung der im "worst case" abzubremsenden Gesamtmasse(MV), des effektiven Reibwertes der Bremseinheit (µe), der Anzahl verwendeter Bremseinheiten (N), einer erforderlichen minimalen Verzögerung (ake) und eines Korrekturfaktors (KB1) bestimmt wird, wobei der Korrekturfaktor (KB) charakteristische Erfahrungswerte wie Bremsgeschwindigkeit, Verschmutzung oder zu erwartende Überlast berücksichtigt: FNe = KB 1 * MV * ake + g / N * μ e _

Figure imgb0005
Advantageously, a maximum required brake application force (FNe) takes into account the total mass (MV) to be braked in the worst case, the effective coefficient of friction of the brake unit (μe), the number of brake units (N) used, a required minimum deceleration (ake) and a correction factor (KB1), whereby the correction factor (KB) takes into account characteristic empirical values such as brake speed, contamination or expected overload: FNe = KB 1 * MV * ake + G / N * μ e _
Figure imgb0005

Dies erlaubt eine effektive Voraussage der erforderlichen Zustellkraft (FNe) bei geringem Aufwand. Die erforderlichen Messungen können von einer Person alleine durchgeführt werden, und es sind keine Testgewichte erforderlich.This allows an effective prediction of the required delivery force (FNe) with little effort. The required measurements can be done by one person alone and no test weights are required.

Eine weiterführende Ausgestaltung sieht vor, dass die Bremseinheit mit einer maximalen Kraft zugestellt wird und mittels der Normalkraftmesseinrichtung die derart erreichbare maximale Bremszustellkraft (FNm) gemessen wird und diese maximale Bremszustellkraft (FNm) mit der maximal erforderlichen Bremszustellkraft (FNe) verglichen wird und der Nachweis genügender Bremsfunktion als erfüllt bezeichnet wird, wenn die maximale Bremszustellkraft (FNm) um den Sicherheitsfaktor (SB) grösser als die maximal erforderliche Bremszustellkraft (FNe) ist. Diese Ausführung erlaubt eine Aussage zu einer wirklich vorhandenen Sicherheit der Bremseinrichtung. Dies ergibt eine sehr sichere Bremseinrichtung,A further embodiment provides that the brake unit is delivered with a maximum force and by means of the normal force measuring device the maximum achievable Bremszustellkraft (FNm) is measured and this maximum Bremszustellkraft (FNm) with the maximum required Bremszustellkraft (FNe) is compared and the proof sufficient Braking function is called satisfied when the maximum brake application force (FNm) by the safety factor (SB) is greater than the maximum required brake application force (FNe). This design allows a statement about a really existing safety of the braking device. This results in a very safe braking device,

Alternativ wird die Bremseinheit mit einer maximalen Kraft zugestellt und mittels der Normalkraftmesseinrichtung die derart erreichbare maximale Bremszustellkraft (FNm) gemessen und unter Berücksichtigung des effektiven Reibwertes der Bremseinheit (µe), der Anzahl verwendeter Bremseinheiten (N) und eines Korrekturfaktors (KB2), wobei der Korrekturfaktor (KB2) charakteristische Erfahrungswerte wie Bremsgeschwindigkeit oder Verschmutzung berücksichtigt, wird eine maximal mögliche Bremskraft FBm = KB 2 * 2 * FNm * N * μ e _

Figure imgb0006
bestimmt.
Dies erlaubt eine direkte Aussage zur maximal möglichen Bremskapazität der eingesetzten Bremseinrichtung in einer bestimmten Aufzugsanlage.Alternatively, the brake unit is delivered with a maximum force and measured by means of the normal force measuring device achievable maximum Bremszustellkraft (FNm) and taking into account the effective coefficient of friction of the brake unit (μe), the number of brake units used (N) and a correction factor (KB2), the Correction factor (KB2) takes into account characteristic empirical values such as braking speed or contamination, a maximum possible braking force FBm = KB 2 * 2 * FNm * N * μ e _
Figure imgb0006
certainly.
This allows a direct statement to the maximum possible braking capacity of the brake device used in a particular elevator installation.

Vorteilhafterweise wird, basierend auf der vorgängigen Aussage zur maximal möglichen Bremskraft (FBm), eine maximal erforderliche Bremskraft (FBe) unter Berücksichtigung der im "worst case" abzubremsenden Gewicht (MV), einer erforderlichen minimalen Verzögerung (ake) und eines Korrekturfaktors (KB2') bestimmt: FBe = KB 2 ' * MV * ake + g _ .

Figure imgb0007
Advantageously, based on the previous statement on the maximum possible braking force (FBm), a maximum required braking force (FBe) under Consideration of the "worst case" braked weight (MV), a required minimum delay (ake) and a correction factor (KB2 ') determines: FBe = KB 2 ' * MV * ake + G _ ,
Figure imgb0007

Der Korrekturfaktor (KB2') berücksichtigt charakteristische Erfahrungswerte wie zu erwartende Überlast Die maximal mögliche Bremskraft (FBm) wird nun mit der maximal erforderlichen Bremskraft (FBe) verglichen und der Nachweis genügender Bremsfunktion wird als erfüllt bezeichnet, wenn die maximal mögliche Bremskraft (FBm) um den Sicherheitsfaktor (SB) grösser als die maximal erforderliche Bremskraft (FBe) ist.
Diese Methode gibt einen umfassenden Überblick über die Bremssicherheit einer Aufzugsanlage.
The correction factor (KB2 ') takes account of characteristic empirical values such as the expected overload. The maximum possible braking force (FBm) is now compared with the maximum required braking force (FBe) and the detection of sufficient braking function is deemed fulfilled if the maximum possible braking force (FBm) is exceeded the safety factor (SB) is greater than the maximum required braking force (FBe).
This method gives a comprehensive overview of the brake safety of an elevator system.

In einer vorteilhaften Ausgestaltung des Verfahrens zur Inbetriebnahme einer Aufzugsanlage wird die Bremsfunktion im generellen verifiziert, indem die leere Kabine kontrolliert oder unkontrolliert, vorzugsweise in Aufwärtsrichtung beschleunigt wird, bis ein Fahrkurven- oder Geschwindigkeitsüberwachungssystem die Bremseinrichtung aktiviert und die Bremseinrichtung mittels zugehöriger Bremseinheit(en) die Kabine zum Stillstand bremst und im Stillstand hält Während dem Abbremsvorgang werden die Bremszustellkräfte und Bremskräfte gemessen und ein aus diesen Messungen ermittelter Reibwert der Bremseinheit (µb) mit dem vorgängig ermittelten effektiven Reibwert der Bremseinheit (µe) verglichen. Die Inbetriebnahme der Bremseinrichtung wird als erfüllt bezeichnet, wenn der ermittelte Reibwert (µb) im Wesentlichen mit dem effektiven Reibwert (µe), allenfalls unter Berücksichtigung des Korrekturfaktors (KB1, KB2), übereinstimmt. Der Vorteil dieser Ausgestaltung ist darin zu sehen, dass die Gesamtfunktion des Sicherheitssystems der Aufzugsanlage mit einfachen Mitteln von nur einer Person durchgeführt werden kann.In an advantageous embodiment of the method for starting up an elevator system, the braking function is generally verified by the empty cabin controlled or uncontrolled, preferably accelerated in the upward direction until a Fahrkurven- or speed monitoring system activates the braking device and the braking device by means of associated brake unit (s) Braking the car to a standstill and keeping it at a standstill During the braking process, the brake application forces and braking forces are measured and a coefficient of friction of the brake unit (μb) determined from these measurements is compared with the previously determined effective coefficient of friction of the brake unit (μe). The commissioning of the braking device is referred to as satisfied if the determined coefficient of friction (μb) substantially coincides with the effective coefficient of friction (μe), possibly taking into account the correction factor (KB1, KB2). The advantage of this embodiment is the fact that the overall function of the safety system of the elevator installation can be carried out by simple means of only one person.

Eine weitere vorteilhafte Ausgestaltung des Inbetriebnahmeverfahrens sieht vor, dass eine korrekte Ausbalancierung eines Aufzugsystems unter Verwendung der Bremskraftmesseinrichtung vorgenommen oder verifiziert wird. Dies ist wirtschaftlich, da keine separaten Messinstrumente erforderlich sind.A further advantageous embodiment of the commissioning method provides that a correct balance of an elevator system using the Brake force measuring device is made or verified. This is economical because no separate measuring instruments are required.

Vorteilhafterweise wird die Ausbalancierung des Aufzugssystems vorgenommen, indem ein geforderter Ausbalancierfaktor in eine Auswerteeinheit eingegeben wird. Die tatsächliche Unbalance (MB) kann unter Verwendung der Bremskraftmesseinrichtung, wie vorgängig beschrieben ermittelt werden. Ein wirklicher Ausbalancierfaktor (Bw) wird bestimmt, indem die tatsächliche Unbalance (MB) in Relation zur zulässigen Zuladung (MF) der Aufzugskabine gesetzt wird.
Auf einfache Weise kann ein allenfalls erforderliches Zusatzgewicht als Differenz vom gefordertem Ausbalancierfaktor (Bg) minus wirklichem Ausbalancierfaktor (Bw) und Multiplikation mit der zulässigen Zuladung ermittelt werden, und das Gegengewicht kann mit diesem Zusatzgewicht beschwert oder bei negativem Ergebnis entsprechend entlastet werden. Der Vorteil dieser Ausführung ist, dass eine Ausbalancierung einfach, sicher und effizient kontrolliert und / oder korrigiert werden kann.
Advantageously, the balancing of the elevator system is performed by entering a required balancing factor in an evaluation unit. The actual imbalance (MB) may be determined using the brake force measurement device as previously described. A true balance factor (Bw) is determined by setting the actual imbalance (MB) in relation to the allowable payload (MF) of the elevator car.
In a simple way, a possibly required additional weight can be determined as the difference between the required balancing factor (Bg) minus the actual balancing factor (Bw) and multiplication by the permissible payload, and the counterweight can be weighted with this additional weight or relieved accordingly if the result is negative. The advantage of this design is that balancing can be easily and safely controlled and / or corrected.

Vorteilhafterweise beträgt die Anzahl verwendeter Bremseinheiten 2 oder ein Mehrfaches von 2. Dies ist von Vorteil, da in der Regel zwei Bremsbahnen vorhanden sind und damit die Bremseinheiten symmetrisch auf die Bremsbahnen verteilt werden können. Es ist auch möglich anstelle von grossen Bremseinheiten mehrere kleine Bremseinheiten zu verwenden. Dies ist kostengünstig, da modulare Bremseinrichtungen zu einem System Zusammengeschalten werden können.Advantageously, the number of brake units used is 2 or a multiple of 2. This is advantageous because usually two brake tracks are present and thus the brake units can be distributed symmetrically on the brake tracks. It is also possible to use several small brake units instead of large brake units. This is inexpensive because modular braking devices can be interconnected into a system.

Vorteilhafterweise werden im Rahmen der Inbetriebnahme erfasste Kenngrössen der Bremseinheit, auf Übereinstimmung mit Vorgabewerten geprüft. Zwecks Prüfung einer Funktion im Normalbetrieb, werden diese Inbetriebnahmewerte, bzw. bei Inbetriebnahme ermittelte Kenngrössen gespeichert und eine laufende Zustandskontrolle wertet bei jedem Bremseinsatz der Bremseinrichtung im Normalbetrieb die Kennwerte aus. Die Zustandskontrolle vergleicht laufend ermittelte Kennwerte mit den Inbetriebnahmewerten und bei unerwarteten Abweichungen wird eine Neukalibrierung, eine Servicemitteilung oder eine Störungsmeldung generiert. Dies erlaubt eine Sicherstellung der Funktion der Bremseinrichtung über eine lange Zeit, und sie erlaubt eine Zielgerichtete Wartung.Advantageously, parameters of the brake unit acquired during commissioning are checked for conformity with default values. For the purpose of testing a function in normal operation, these commissioning values or parameters determined during commissioning are stored, and a running status check evaluates the characteristic values during normal brake application of each brake application. The condition check compares continuously determined characteristic values with the commissioning values and in case of unexpected deviations a recalibration, a service message or a fault message is generated. This allows the function of the braking device to be ensured for a long time, and allows targeted maintenance.

Vorteilhafterweise sind als Kenngrösse der ermittelte effektive Reibwert (µe) verwendet. Alternativ oder ergänzend ist als Kenngrösse eine ermittelte Normalkraftkennlinie verwendet, welche als Funktion einer Zustellmesseinrichtung, bzw. eines Zustellweges gespeichert ist. Diese Kenngrössen sind Basisgrössen. welche eine sichere Aussage zur Bremsfähigkeit und damit zum Sicherheitszustand der Bremseinrichtung und damit der Aufzugsanlage ermöglichen.Advantageously, the determined effective coefficient of friction (μe) is used as the parameter. Alternatively or additionally, a determined normal force characteristic curve is used as the parameter, which is stored as a function of a delivery measuring device or a delivery path. These parameters are basic quantities. which allow a safe statement about the braking ability and thus the safety state of the braking device and thus the elevator system.

In einer vorteilhaften Ausgestaltung wird eine korrekte Funktion der Bremskraftmesseinrichtung mittels Vergleiches einer gemessenen Bremskraft (FB) mit einer zum Bewegen der Aufzugskabine erforderlichen Antriebskraft (FA) überprüft, wobei zu diesem Zweck eine statische Bremskraft (FBst) bei stillstehender Aufzugskabine gemessen wird und eine dynamische Bremskraft (FBdyn) bei konstanter Fahrgeschwindigkeit und kleiner wirkender Bremszustellkraft (FBw) gemessen wird und die Differenz dieser zwei Messungen (FBdyn - Fbstat) mit der erforderlichen Antriebskraft (FA) beispielsweise einem Motormoment (TA) verglichen wird. Diese Methode erlaubt eine weitere oder alternative Beurteilung des Sicherheitszustandes der Aufzugsanlage, bzw. des Messsystems.In an advantageous embodiment, a correct function of the brake force measuring device is checked by comparing a measured braking force (FB) with a required driving force for moving the elevator car (FA), for which purpose a static braking force (FBST) is measured with the elevator car stationary and a dynamic braking force (FBdyn) is measured at a constant driving speed and a small-acting brake application force (FBw) and the difference between these two measurements (FBdyn-Fbstat) is compared with the required driving force (FA), for example an engine torque (TA). This method allows a further or alternative assessment of the safety state of the elevator installation, or of the measuring system.

Vorteilhafterweise wird zur Durchführung des Inbetriebnahmeverfahrens eine Einrichtung verwendet, welche an die Bremseinrichtung anschliessbar ist und den Ablauf der Inbetriebnahme steuert. Dies ist besonders vorteilhaft, da mittels dieser Einrichtung beispielsweise Anweisungen an die durchführende Person gegeben werden können, Berechnungen automatisch durchgeführt werden können und die Ergebnisse der Inbetriebnahme gespeichert, bzw. in einem Bericht ausgegeben werden können. Dies ist sicher und effizient.Advantageously, a device is used to carry out the start-up method, which device can be connected to the brake device and controls the sequence of startup. This is particularly advantageous, since by means of this device, for example, instructions can be given to the person performing, calculations can be performed automatically and the results of commissioning can be stored, or output in a report. This is safe and efficient.

Weitere Details der Erfindung und ergänzende Vorteile derselben werden im nachfolgenden Teil der Beschreibung näher erläutert.Further details of the invention and additional advantages thereof are explained in more detail in the following part of the description.

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen im Zusammenhang mit den Figuren näher erläutert. Die Figuren sind schematisch und unmassstäblich gezeichnet. Gleichwirkende Teile sind in den Figuren gleich bezeichnet.In the following the invention will be explained in more detail by means of exemplary embodiments in conjunction with the figures. The figures are drawn diagrammatically and without authority. Like-acting parts are the same in the figures.

Es zeigen:

Fig. 1
eine Ansicht der Aufzugsanlage mit Aufzugskabine, Gegengewicht und an der Aufzugskabine angebauter Bremseinrichtung,
Fig. 1a
eine Draufsicht auf die Aufzugskabine und Gegengewicht der Aufzugsanlage gemäss Fig. 1,
Fig. 2
eine Detailansicht einer Bremseinheit betrachtet von oben,
Fig. 3
eine Detailansicht einer Bremseinheit,
Fig. 4
eine schematische Darstellung einer Messanordnung,
Fig. 5
eine Ansicht einer Massenverteilung einer Aufzugsanlage,
Fig. 6a
Massenverteilung einer Aufzugsanlage mit Kabine im untersten Halt,
Fig. 6b
Massenverteilung einer Aufzugsanlage mit Kabine in mittlerer Position,
Fig. 6c
Massenverteilung einer Aufzugsanlage mit Kabine im obersten Halt,
Show it:
Fig. 1
a view of the elevator installation with elevator car, counterweight and attached to the elevator car braking device,
Fig. 1a
a plan view of the elevator car and counterweight of the elevator system according to Fig. 1 .
Fig. 2
a detailed view of a brake unit viewed from above,
Fig. 3
a detailed view of a brake unit,
Fig. 4
a schematic representation of a measuring arrangement,
Fig. 5
a view of a mass distribution of an elevator system,
Fig. 6a
Mass distribution of an elevator installation with cabin in the lowest stop,
Fig. 6b
Mass distribution of an elevator installation with cabin in middle position,
Fig. 6c
Mass distribution of an elevator installation with cabin in the uppermost stop,

Fig. 1 zeigt ein Beispiel einer Aufzugsanlage 1. Die Aufzugsanlage 1 umfasst eine Aufzugskabine 2 welche mittels Tragmittel 4 zu einem Gegengewicht 3 verbunden ist. Die Aufzugskabine 2 ist mittels Tragmittel 4 von einem Antrieb 5 getrieben. Die Aufzugskabine 2 ist von Führungsschienen 6 im Wesentlichen in vertikaler Richtung in einem Aufzugsschacht 7 mittels Führungsschuhen 23 geführt. Aufzugskabine 2 und Gegengewicht 3 bewegen sich gegengleich im Aufzugsschacht 7. Die Aufzugskabine 2 dient dem Transport von Förderlast 10. Die Aufzugsanlage 1 ist von einer Aufzugssteuerung 8 gesteuert. Im dargestellten Beispiel ist die Aufzugskabine mit einer Bremseinrichtung 11 versehen, welche die Aufzugskabine 2 im Stillstand halten kann und welche die Aufzugskabine 2 erforderlichenfalls aus einem Fahrzustand zum Stillstand bremsen kann. Ein Halten im Stillstand ist beispielsweise erforderlich, wenn die Aufzugskabine zum Zwecke des Aufnehmens oder Entladens von Förderlast 10 in einer Etage steht. Ein Bremsen kann erforderlich sein, wenn ein Fehler in der Aufzugsanlage festgestellt wird und dementsprechend die Aufzugskabine schnell verzögert werden muss. Fig. 1 shows an example of an elevator installation 1. The elevator installation 1 comprises an elevator cage 2 which is connected by means of suspension 4 to a counterweight 3. The elevator car 2 is driven by a drive 5 by means of suspension 4. The elevator car 2 is guided by guide rails 6 essentially in the vertical direction in an elevator shaft 7 by means of guide shoes 23. Elevator car 2 and counterweight 3 move in the same way in the elevator shaft 7. The elevator car 2 is used to transport the delivery load 10. The elevator system 1 is controlled by an elevator control 8. In the example shown, the elevator car is provided with a braking device 11, which can hold the elevator car 2 at a standstill and which, if necessary, can brake the elevator car 2 from a driving state to a standstill. Stopping at standstill is required, for example, when the elevator car is in a floor for the purpose of picking up or discharging conveyor load 10. Braking may be required if a fault is detected in the lift system and accordingly the elevator car must be decelerated quickly.

Die Bremseinrichtung 11 umfasst mindestens eine Bremseinheit 12 welche mit einer Bremsbahn 6 zum Eingriff gebracht werden kann. Im dargestellten Beispiel nach Fig. 1 ist die Führungsschiene 6 und die Bremsbahn 6 ein und dasselbe Element. Die Bremseinrichtung 11 umfasst weiter eine Bremssteuereinheit 13 welche die Bremseinheit 12 steuert. Die Bremssteuereinheit 13 gibt der Bremseinheit 12 Bremswerte vor, welche die Bremseinheit 12 einstellt. Weiter ist im dargestellten Beispiel an der Kabine 2 ein Beschleunigungssensor 22 angebracht, welcher einen aktuellen Beschleunigungszustand der Kabine 2 erfasst und zumindest an die Bremssteuereinheit 13 und / oder and die Aufzugssteuerung 8 weitergibt. In Fig. 1 ist weiter eine Einrichtung 9 mit der Aufzugssteuerung 8 verbunden, welche ein Inbetriebnahmeverfahren der Aufzugsanlage 1 steuert. Im Beispiel ist diese Einrichtung 9 ein mobiler Computer, wie ein Laptop, PDA, oder ähnliches. Diese Einrichtung 9 enthält die erforderlichen Auswerte- und Steuerroutinen um die Inbetriebnahme der Aufzugsanlage 1, bzw. der Bremseinrichtung 11 einfach durchzuführen.
Fig. 1 a zeigt die in Fig. 1 dargestellte Aufzugsanlage in einer schematischen Draufsicht auf die Aufzugskabine 2. Die Aufzugskabine 2 ist von zwei Führungsschienen, bzw. Bremsbahnen 6 geführt. Das Gegengewicht 3 befindet sich im selben Schacht 7 und ist entlang von eigenen Führungsschienen (nicht bezeichnet) geführt. Die Bremseinrichtung 11 ist an die Aufzugskabine 2 angebaut, wobei im Beispiel zwei Bremseinheiten 12.1, 12.2 verwendet sind, welche auf jeweils eine Bremsbahn 6 einwirken können.
Fig. 2 und Fig. 3 zeigen eine beispielhafte Bremseinheit 12. Die Bremseinheit 12 umfasst ein Bremsgehäuse 16 mit einer festen Bremsplatte 14 und einer Zustelleinrichtung 15 welche eine zweite Bremsplatte 14 aufweist. Die Bremseinheit 12 umfasst die Bremsbahn 6 und mittels der Zustelleinrichtung 15 können die Bremsplatten 14 zugestellt werden, womit eine Brems- oder Haltekraft erzeugt werden kann. Die Zustellung wird mittels einer Kontrolleinrichtung 17 gesteuert und geregelt. Der Führungsschuh 23 dient zur Führung von Bremseinheit12 und / oder von der Aufzugskabine 2. Mittels einer Normalkraftmesseinrichtung 21 wird eine von der Bremseinheit 12 erzeugte Normalkraft FN gemessen. Die Normalkraft FN erzeugt die von einem Reibwert µ definierte Bremskraft FB. Der Einfachheit halber wird eine einzige Bremskraft FB pro Bremseinheit gemessen und daraus wird ein Reibwert µ ermittelt der dem Wert FN dividiert durch FB entspricht, das heisst es ist ein Bremseinheit bezogener Reibwert. Ein Anbaugehäuse 18 leitet im dargestellten Beispiel die Bremskraft FB von den Bremsplatten 14 über einen Tragbolzen 19 zur Aufzugskabine 2. Die Bremskraft kann von einer Bremskraftmesseinrichtung 20 gemessen werden. Die gemessenen Werte von Normalkraft FN, von Bremskraft FB oder eines Zustellweges, welcher beispielsweise in der Zustelleinrichtung 15 gemessen werden kann, werden von der Kontrolleinrichtung 17 erfasst und direkt oder allenfalls über die Bremssteuereinheit 13 und / oder Aufzugssteuerung 8 an die Inbetriebnahmeeinrichtung 9 weitergegeben. Selbstverständlich sind diese Messwerte auch von der Kontrolleinrichtung 17, der Bremssteuereinheit 13 und / oder der Aufzugssteuerung 8 für deren eigenen Aufgaben verwendet.
Beim Bremsen gleitet die Bremseinheit 12 mit einer Geschwindigkeit v der Bremsbahn 6 entlang, beim Halten ist diese Geschwindigkeit v gleich null.
Diese Ausführung erlaubt ein effizientes Regeln der Bremseinrichtung 11 im Betriebsfalle, da die Bremssteuereinheit 13 eine gewünschte Normalkraft FN an jede Bremseinheit 12 vorgeben kann und die Bremseinheit 12 diesen Wert selbstständig einstellt. Bei der Inbetriebnahme können diese Werte einfach zur Berechnung einer effektiven Bremssicherheit SB verwendet werden.
The brake device 11 comprises at least one brake unit 12 which can be brought into engagement with a brake track 6. In the example shown Fig. 1 is the guide rail 6 and the brake track 6 one and the same element. The brake device 11 further comprises a brake control unit 13 which controls the brake unit 12. The brake control unit 13 gives the brake unit 12 braking values which the brake unit 12 adjusts. Further, in the illustrated example, an acceleration sensor 22 is mounted on the car 2, which detects a current acceleration state of the car 2 and at least passes it on to the brake control unit 13 and / or the elevator control 8. In Fig. 1 Furthermore, a device 9 is connected to the elevator control 8, which controls a start-up procedure of the elevator installation 1. In the example, this device 9 is a mobile computer, such as a laptop, PDA, or the like. This device 9 contains the necessary evaluation and control routines to carry out the commissioning of the elevator system 1, and the braking device 11 easily.
Fig. 1 a shows the in Fig. 1 The elevator car 2 is guided by two guide rails or brake tracks 6. The counterweight 3 is located in the same shaft 7 and is guided along its own guide rails (not labeled). The braking device 11 is mounted on the elevator car 2, wherein in the example two brake units 12.1, 12.2 are used, which can each act on a brake track 6.
Fig. 2 and Fig. 3 show an exemplary brake unit 12. The brake unit 12 includes a brake housing 16 with a fixed brake plate 14 and a feed device 15 which has a second brake plate 14. The brake unit 12 comprises the brake track 6 and by means of the feed device 15, the brake plates 14 can be delivered, whereby a braking or holding force can be generated. The delivery is controlled and regulated by means of a control device 17. The guide shoe 23 serves to guide the brake unit 12 and / or the elevator car 2. By means of a normal force measuring device 21, a normal force FN generated by the brake unit 12 is measured. The normal force FN generates the braking force FB defined by a coefficient of friction μ. For the sake of simplicity, a single braking force FB per braking unit is measured and from this a coefficient of friction μ is determined which corresponds to the value FN divided by FB, that is to say a braking unit related coefficient of friction. In the example shown, an attachment housing 18 leads the braking force FB from the brake plates 14 via a carrier pin 19 to the elevator cage 2. The braking force can be measured by a brake force measuring device 20. The measured values of normal force FN, braking force FB or a delivery path, which can be measured for example in the delivery device 15, are detected by the control device 17 and forwarded directly or possibly via the brake control unit 13 and / or elevator control 8 to the commissioning device 9. Of course, these measured values are also used by the control device 17, the brake control unit 13 and / or the elevator control 8 for their own tasks.
During braking, the brake unit 12 slides at a speed v of the brake track 6, while holding this speed v is equal to zero.
This embodiment allows an efficient control of the braking device 11 in the event of an operation, since the brake control unit 13 can specify a desired normal force FN to each brake unit 12 and the brake unit 12 adjusts this value independently. During commissioning, these values can simply be used to calculate an effective brake safety SB.

Fig. 4 stellt schematisch eine mögliche Messanordnung zur Ausübung des Inbetriebnahmeverfahrens dar. Der Antrieb 5 ist mit einer Einrichtung zur Erfassung des Antriebsmomentes TA versehen. Der Antrieb stellt dieses Messsignal der Antriebssteuerung 8 zur Verfügung. Die Aufzugskabine 2 ist mit dem Beschleunigungssensor 22 ausgerüstet. Das Signal des Beschleunigungssensors 22 wird über die Kabine ebenfalls der Aufzugssteuerung 8 zur Verfügung gestellt. Die Kabine 2 enthält die Bremseinrichtung11, welche aus mehreren Bremseinheiten 12 besteht. Jede der Bremseinheiten 12 verfügt über Normalkraftmessung 21, Bremskraftmessung 20 und im dargestellten Beispiel weiter über die Messung des effektiven Zustellweges der Zustelleinrichtung 15. Die Messwerte werden über die Bremseinheit schlussendlich ebenfalls der Aufzugssteuerung 8 zur Verfügung gestellt, bzw. die Messsignale werden über die Aufzugssteuerung 8 der Einrichtung 9 zur Steuerung des Inbetriebnahmeverfahrens zur Verfügung gestellt. Die Einrichtung 9 ist im gezeigten Beispiel an der Aufzugssteuerung 8 angeschlossen. Dies ermöglicht eine Bedienung der Einrichtung von einer Etage aus. Selbstverständlich könnte die Einrichtung an anderen Datenpunkten wie beispielsweise der Bremsteuereinheit 13 oder an der Bremseinrichtung 11 angeschlossen werden.
Die Einrichtung 9 zur Steuerung des Inbetriebnahmeverfahrens steuert den Abnahmevorgang und gibt erforderliche Anweisungen an Bedienpersonal.
Fig. 4 schematically represents a possible measuring arrangement for exercising the commissioning process. The drive 5 is provided with a device for detecting the drive torque TA. The drive provides this measurement signal to the drive controller 8. The elevator car 2 is equipped with the acceleration sensor 22. The signal of the acceleration sensor 22 is likewise made available to the elevator control 8 via the car. The car 2 contains the braking device 11, which consists of a plurality of brake units 12. Each of the brake units 12 has normal force measurement 21, brake force measurement 20 and in the illustrated example further on the measurement of the effective feed travel of the feed device 15. The measured values are Finally, the elevator control 8 is also made available via the brake unit, or the measurement signals are made available via the elevator control 8 to the device 9 for controlling the startup procedure. The device 9 is connected to the elevator control 8 in the example shown. This allows operation of the device from one floor. Of course, the device could be connected to other data points such as the brake control unit 13 or to the braking device 11.
The device 9 for controlling the commissioning process controls the removal process and gives necessary instructions to operating personnel.

Fig. 5 gibt einen Überblick über die Hauptmassen einer Aufzugsanlage. Die Kabine 2 mit der leeren Masse MK ist mit einem Tragmittel 4 welches die Masse MT aufweist zum Gegengewicht 3 verbunden. Das Gegengewicht 3 weist die Masse MC auf. Der Antrieb 5, welcher über das Tragmittel 4 die Kabine 2 und das Gegengewicht 3 treibt wiest ein Massenäquivalent MA auf, welches der rotatorischen Masse der Antriebskomponenten 5 entspricht. Die Kabine 2 ist mit einer maximal zulässigen Förderlast 10 beladen welche der Masse MF entspricht. Die Kabine 2 ist mit einer Bremseinrichtung 11 versehen. Fig. 5 gives an overview of the main dimensions of a lift system. The car 2 with the empty mass MK is connected to a suspension element 4 which has the mass MT to the counterweight 3. The counterweight 3 has the mass MC. The drive 5, which drives the car 2 and the counterweight 3 via the suspension element 4, has a mass equivalent MA which corresponds to the rotational mass of the drive components 5. The car 2 is loaded with a maximum allowable delivery load 10 which corresponds to the mass MF. The cabin 2 is provided with a braking device 11.

Die Fig. 6a bis 6c geben eine Darstellung möglicher Messpunkte zur Inbetriebnahme der Bremseinrichtung 11 bzw. der Aufzugsanlage 1. Die Kabine ist unbeladen, das heisst die aktuelle Masse MF ist null. Die Fig. 6a bis 6c sind im Zusammenhang mit Fig. 5 zu betrachten.
In Fig. 6a ist der Messpunkt im untersten Halt HB dargestellt. Hierbei befindet sich der Massenanteil MT des Tragmittels 4 im Wesentlichen auf der Seite der Kabine 2. Die Messung FB entspricht dem Übergewicht von Gegengewicht 2 zu leerer Kabine 2 und Tragmittel 4.
In Fig. 6b ist ein Messpunkt im mittleren Halt HM dargestellt. Kabine 2 und Gegengewicht 3 sind auf gleicher Höhe und der Massenanteil MT des Tragmittels 4 ist im wesentlichen gleichmässig auf die Seite der Kabine 2 und des Gegengewichts 3 aufgeteilt. Die Messung FB entspricht dem alleinigen Übergewicht von Gegengewicht 2 zu leerer Kabine 2.
The Fig. 6a to 6c give a representation of possible measurement points for the commissioning of the braking device 11 and the elevator system 1. The cabin is unloaded, that is, the current mass MF is zero. The Fig. 6a to 6c are related to Fig. 5 consider.
In Fig. 6a the measuring point is shown in the lowest stop HB. Here, the mass fraction MT of the suspension element 4 is substantially on the side of the car 2. The measurement FB corresponds to the preponderance of counterweight 2 to empty cabin 2 and suspension means 4th
In Fig. 6b a measuring point is shown in the middle stop HM. Cabin 2 and counterweight 3 are at the same height and the mass fraction MT of the suspension element 4 is divided substantially evenly on the side of the car 2 and the counterweight 3. The measurement FB corresponds to the sole preponderance of counterweight 2 to empty cabin 2.

In Fig. 6c ist der Messpunkt im obersten Halt HT dargestellt. Hierbei befindet sich der Massenanteil MT des Tragmittels 4 im Wesentlichen auf der Seite des Gegengewichts 3. Die Messung FB entspricht dem Übergewicht von Gegengewicht 2 und Tragmittel 4zur leeren Kabine 2. Der Messpunkt gemäss Fig. 6b lässt sich selbstverständlich auch als Mittelwert zwischen dem Messwert gemäss Fig. 6a und 6c ermitteln.In Fig. 6c the measuring point is shown in the uppermost stop HT. Here, the mass fraction MT of the suspension element 4 is substantially on the side of the counterweight 3. The measurement FB corresponds to the preponderance of counterweight 2 and support means 4 to the empty cabin 2. The measuring point according to Fig. 6b Of course, it can also be calculated as the mean value between the measured value Fig. 6a and 6c determine.

Bei Kenntnis der vorliegenden Erfindung kann der Aufzugsfachmann die gesetzten Formen und Anordnungen beliebig verändern. Beispielsweise kann die gezeigte Anordnung eines Antriebes im Schachtkopf durch einen Antrieb auf der Kabine oder am Gegengewicht ersetzt werden oder die Bremseinrichtung kann am oberen Ende der Kabine oder unterhalb und oberhalb der Kabine oder auch seitlich der Kabine angeordnet sein.With knowledge of the present invention, the elevator expert can arbitrarily change the set shapes and arrangements. For example, the illustrated arrangement of a drive in the shaft head can be replaced by a drive on the car or on the counterweight or the braking device can be arranged at the upper end of the cabin or below and above the cabin or laterally of the cabin.

Claims (18)

  1. A method for testing an elevator brake device,
    the elevator brake device (11) braking and holding an elevator car (2), and the elevator brake device (11) comprising at least two brake units (12), which engage with brake tracks (6) when needed,
    the brake unit (12) for this purpose pressing at least one brake plate (14) against the brake track (6) and generating a brake force (FB), and an effective coefficient of friction (µe) of the brake unit (12) generated when the brake plate (14) is being pressed against the brake track (6) being ascertained,
    characterized in that
    the effective coefficient of friction (µe) of the brake unit (12) is ascertained by way of a brake force measuring device (20) for measuring a brake force (FB) and by way of a normal force measuring device (21) for measuring an acting brake application force (FNw).
  2. The method according to claim 1,
    characterized in that
    for the purpose of ascertaining the effective coefficient of friction (µe) of the brake unit (12), the brake unit (12) is engaged with the brake track (6) and applied using a small acting brake application force (FNw), and the elevator car (2) is moved at a low speed, the process of moving being continued or repeated until a substantially constant effective coefficient of friction of the brake unit (µe= FB/FNw) develops.
  3. The method according to claim 2,
    characterized in that
    the ascertainment of the effective coefficient of friction (µe) of the brake unit (12) is carried out on the unloaded elevator car (2).
  4. The method according to any one of claims 1 to 3,
    characterized in that
    a sufficient brake safety factor (SB) is demonstrated based on the effective coefficient of friction (µe) and a maximum brake application force (FNm) ascertained by way of the normal force measuring device.
  5. A method for commissioning an elevator system (1), comprising an elevator car (2) for transporting a load (10), a counterweight (3) connected to the elevator car (2) by way of support means (4), a drive mechanism (5) for driving the elevator car (2), the counterweight (3) and the support means (4), the counterweight (3) and the car (2) moving in opposite directions from one another in a vertical shaft (7), and further comprising an elevator brake device (11) attached to the elevator car (2),
    characterized in that
    testing of the elevator brake device (11) is carried out using the method according to any one of claims 1 to 4.
  6. The method according to claim 5,
    characterized in that
    a remaining mass (MV) of the elevator system to be decelerated in the "worst case" by the elevator brake device (11)
    is calculated by inputting a permissible weight (MF) of the load (10) and inputting a weight (MK) of the empty elevator car (2) (MV = MK+MF),
    or
    is calculated by inputting the permissible weight (MF) of the load (10), an acting mass proportion of the drive mechanism (MA) and measurement of an elevator acceleration (ak), the mass determinations on the elevator car, such as an actual unbalance (MB) of the elevator system or an actual weight (MT) of the support means (4), being carried out using the brake force measuring device (20).
  7. The method according to claim 5,
    characterized in that
    a maximum required brake application force (FNe) is determined, taking the total mass to be decelerated in the "worst case" (MV), the effective coefficient of friction of the brake unit (µe), the number of brake units used (N), a required minimum delay (ake) and a correction factor (KB 1) into consideration, the correction factor (KB) taking characteristic empirical values such as the brake speed, contamination or overload to be expected into consideration: FNe = KB 1 * MV * ak + g / N * μ e
    Figure imgb0009
  8. The method according to claim 7,
    characterized in that
    the brake unit (12) is applied using a maximum force, and the thus achievable maximum brake application force (FNm) is measured by way of the normal force measuring device (21), and this maximum brake application force (FNm) is compared to the maximum required brake application force (FNe), and proof of sufficient braking function is considered to be met when the maximum brake application force (FNm) is greater than the maximum required brake application force (FNe) by the safety factor (SB).
  9. The method according to claim 8,
    characterized in that
    the brake unit (12) is applied using a maximum force, the thus achievable maximum brake application force (FNm) is measured by way of the normal force measuring device, and a maximum possible brake force (FBm = KB2 * 2 * FNm * N * µe) is determined, taking the effective coefficient of friction of the brake unit (µe), the number of brake units used (N) and a correction factor (KB2) into consideration, the correction factor (KB2) taking characteristic empirical values such as the brake speed or contamination into consideration.
  10. The method according to claim 9,
    characterized in that
    a maximum required brake force (FBe) is determined, taking the weight to be decelerated in the "worst case" (MV), a required minimum delay (ake) and a correction factor (KB2') into consideration, the correction factor (KB2') taking characteristic empirical values such as the overload to be expected into consideration (FBe = KB2' *MV*(ake+g)), and
    the maximum possible brake force (FBm) is compared to the maximum required brake force (FBe), and proof of sufficient braking function is considered to be met when the maximum possible brake force (FBm) is greater than the maximum required brake force (FBe) by the safety factor (SB).
  11. The method according to any one of claims 5 to 10,
    characterized in that
    the braking function is verified by accelerating the empty car (2) in a controlled or uncontrolled manner, preferably in an upward direction, until a velocity profile or speed monitoring system activates the brake device (11), and the brake device (11) decelerates the car (2) until the car comes to a stop by way of associated brake unit(s) (12) and maintains the car in a stopped position, wherein the brake application forces (FN) and the brake forces (FB) are measured during the braking process, and a current coefficient of friction of the brake unit (µb) ascertained from these measurements is compared to the previously ascertained effective coefficient of friction of the brake unit (µe), and the commissioning of the brake device (11) is considered to be met when the ascertained current coefficient of friction (µb) substantially corresponds to the effective coefficient of friction (µe), if need be taking the correction factor (KB1, KB2) into consideration.
  12. The method according to any one of claims 5 to 11,
    characterized in that
    correct balancing of an elevator system (1) is carried out or verified using the brake force measuring device (20).
  13. The method according to claim 12,
    characterized in that
    balancing of the elevator system (1) is carried out by inputting a required balancing factor,
    an actual balancing factor is ascertained at an uppermost stop (HT) and a lowermost stop (HB) by measuring the sum of the brake forces of the number (N) of brake units (12) at the two positions with a stopped empty elevator car (2), and a mean value of these two measurements is related to the permissible added load (MF) of the elevator car, and
    a required added weight is ascertained as a difference between the required balancing factor (Bg) minus the actual balancing factor (Bw) and multiplication with the permissible added load (MF), and this added weight is accordingly added to the counterweight (3) or, if the result is negative, removed therefrom.
  14. The method according to any one of claims 5 to 13,
    characterized in that
    the number of brake units (12) used is two or a multiple of two.
  15. The method according to any one of claims 5 to 14,
    characterized in that
    characteristic values of the brake unit (12) are recorded as part of the commissioning process, checked for agreement with specified values and stored for the purpose of checking a function during normal operation, an ongoing condition monitoring unit (17) evaluating the characteristic values during every braking use of the brake device (11), comparing these to the commissioning values, and generating a new calibration, a service message or a fault message when unexpected deviations occur.
  16. The method according to claim 15,
    characterized in that
    the ascertained effective coefficient of friction (µe) is used as the characteristic value and/or an ascertained normal force characteristic curve is used as the characteristic value, which is stored as a function of an application measuring device.
  17. The method according to claim 5,
    characterized in that
    a correct function of the brake force measuring device (20) is checked by comparing a measured brake force (FB) to a driving force (FA) required to move the elevator car (2), for this purpose a static brake force (FBst) being measured while the elevator car (2) is stopped, and a dynamic brake force (FBdyn) being measured at a constant travel speed and a small acting brake application force (FBw), and the difference between these two measurements (FBdyn - Fbstat) is compared to the required driving force (FA), such as a motor torque.
  18. A device for carrying out a commissioning process according to any one of claims 5 to 17,
    characterized in that
    the device (9) can be connected to the brake device (11) and controls the commissioning process flow.
EP07109524.4A 2006-06-19 2007-06-04 Method for testing a lift braking device, method for start-up of a lift facility and a device for carrying out start-up Active EP1870369B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10183872.0A EP2316776B1 (en) 2006-06-19 2007-06-04 Method for placing into operation an elevator system
PL07109524T PL1870369T3 (en) 2006-06-19 2007-06-04 Method for testing a lift braking device, method for start-up of a lift facility and a device for carrying out start-up
EP07109524.4A EP1870369B1 (en) 2006-06-19 2007-06-04 Method for testing a lift braking device, method for start-up of a lift facility and a device for carrying out start-up

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06115686 2006-06-19
EP07109524.4A EP1870369B1 (en) 2006-06-19 2007-06-04 Method for testing a lift braking device, method for start-up of a lift facility and a device for carrying out start-up

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP10183872.0A Division-Into EP2316776B1 (en) 2006-06-19 2007-06-04 Method for placing into operation an elevator system
EP10183872.0A Division EP2316776B1 (en) 2006-06-19 2007-06-04 Method for placing into operation an elevator system

Publications (2)

Publication Number Publication Date
EP1870369A1 EP1870369A1 (en) 2007-12-26
EP1870369B1 true EP1870369B1 (en) 2018-01-10

Family

ID=38719714

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10183872.0A Active EP2316776B1 (en) 2006-06-19 2007-06-04 Method for placing into operation an elevator system
EP07109524.4A Active EP1870369B1 (en) 2006-06-19 2007-06-04 Method for testing a lift braking device, method for start-up of a lift facility and a device for carrying out start-up

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10183872.0A Active EP2316776B1 (en) 2006-06-19 2007-06-04 Method for placing into operation an elevator system

Country Status (2)

Country Link
EP (2) EP2316776B1 (en)
PL (1) PL1870369T3 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8210319B2 (en) * 2007-08-31 2012-07-03 John W. Boyd Hydraulic elevating platform assembly
DE102009053131B3 (en) * 2009-11-05 2011-05-19 Db Services West Gmbh Method and device for checking the brake system of an elevator installation
DE202011051664U1 (en) 2011-10-18 2012-01-13 Slc Sautter Lift Components Gmbh & Co. Kg Braking device for an elevator
CN103226351B (en) * 2013-03-18 2015-08-19 康力电梯股份有限公司 A kind of escalator auxiliary brake test macro
DE102014206461A1 (en) 2014-04-03 2015-10-08 Thyssen Krupp Elevator Ag Elevator with a braking device
DE102014213404A1 (en) * 2014-07-10 2016-01-14 Thyssenkrupp Ag Elevator installation with braking device on the car and method for operating the same
CA3005984A1 (en) 2015-12-02 2017-06-08 Inventio Ag Method for driving a brake device of a lift system
CN113247731B (en) * 2021-06-30 2023-04-07 洛阳智超机电科技有限公司 Multi-rope hoister system load detection and safety brake control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59406874D1 (en) * 1993-08-24 1998-10-15 Garaventa Holding Ag Catching and blocking device for a carriage of an inclined or vertical elevator guided on running rails
JP2001192184A (en) * 2000-01-11 2001-07-17 Toshiba Corp Elevator emergency stop device
DE10306375B3 (en) * 2003-02-15 2004-10-14 Henning Gmbh Safety gear inspection procedures
AU2003300127A1 (en) * 2003-12-31 2005-08-03 Otis Elevator Company Elevator safety device
MY192706A (en) * 2004-12-17 2022-09-02 Inventio Ag Lift installation with a braking device, and method for braking and holding a lift installation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2316776A1 (en) 2011-05-04
EP1870369A1 (en) 2007-12-26
PL1870369T3 (en) 2018-06-29
EP2316776B1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
EP1870369B1 (en) Method for testing a lift braking device, method for start-up of a lift facility and a device for carrying out start-up
EP0391174B2 (en) Arrangement and method to detect physical parameters of an elevator
EP1067084B1 (en) Device and method for avoiding vertical slippage and oscillations in load pick up means of conveyor facilities
EP2170753B1 (en) Elevator system with an elevator car and a braking device for stopping said elevator car in a special operating mode and a method for stopping an elevator car in a special operating mode
EP1401757B2 (en) Method for preventing an inadmissibly high speed of the load receiving means of an elevator
DE102014101381B4 (en) Measuring system and measuring method for testing the safety gear of an elevator
EP0755894B1 (en) Method and apparatus for measuring the load in an elevator car
DE102006042909B4 (en) Dynamic determination of the driving ability of traction sheave-driven elevator systems
DE4217587C2 (en) Plant diagnostic procedures
EP0563836B1 (en) Method to measure the driving capability of a transporting device
DE112015006721T5 (en) LIFT DEVICE
EP1671912B1 (en) Elevator system with braking unit and method to keep the elevator stopped
DE10144913B4 (en) Elevator brake load weighing system
DE112016002403T5 (en) Elevator apparatus, control method therefor, and elevator location determining means
DE112014005549T5 (en) Elevator installation and method for its control
EP3774630A1 (en) Method and device for monitoring properties of a supporting-means arrangement in a lift system
DE4311011C2 (en) Method and device for testing an elevator with a traction sheave drive
WO2016005429A1 (en) Elevator system comprising a braking mechanism on the elevator car, and method for operating same
EP1561718A2 (en) Method for monitoring the braking effect on elevator systems
DE10343193B4 (en) Control and regulating device for an elevator
DE102017202589A1 (en) Method and device for determining the driving capability of a conveyor system via a torque measurement
DE102007009602A1 (en) Lift facility's operating parameter testing method, involves introducing excess force initiated in supporting cable of lift facility by using testing device, and loading adjacent supporting cable along section
DE102023123084A1 (en) Checking an elevator system with a reference object
DE102023109710A1 (en) Method for operating an elevator system, computer device
DE102017119599B4 (en) Procedure for testing the traction of a traction sheave

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080529

17Q First examination report despatched

Effective date: 20080620

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1116754

Country of ref document: HK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRUNDMANN, STEFFEN

Inventor name: GREMAUD, NICOLAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170816

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 962158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016015

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2659923

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180320

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016015

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180604

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210622

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20210526

Year of fee payment: 15

Ref country code: AT

Payment date: 20210618

Year of fee payment: 15

Ref country code: TR

Payment date: 20210525

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210713

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 962158

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220604

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220604

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502007016015

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230702

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240618

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240627

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240625

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240701

Year of fee payment: 18