[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1851823B1 - Doppelspiralantenne - Google Patents

Doppelspiralantenne Download PDF

Info

Publication number
EP1851823B1
EP1851823B1 EP06706941A EP06706941A EP1851823B1 EP 1851823 B1 EP1851823 B1 EP 1851823B1 EP 06706941 A EP06706941 A EP 06706941A EP 06706941 A EP06706941 A EP 06706941A EP 1851823 B1 EP1851823 B1 EP 1851823B1
Authority
EP
European Patent Office
Prior art keywords
spiral
antenna
radiator
diameter
feed point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06706941A
Other languages
English (en)
French (fr)
Other versions
EP1851823A1 (de
Inventor
Hans Adel
Rainer Wansch
Josef Bernhard
Thomas Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos GmbH
Original Assignee
Siemens Audioligische Technik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Audioligische Technik GmbH filed Critical Siemens Audioligische Technik GmbH
Publication of EP1851823A1 publication Critical patent/EP1851823A1/de
Application granted granted Critical
Publication of EP1851823B1 publication Critical patent/EP1851823B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • H01Q9/27Spiral antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/51Aspects of antennas or their circuitry in or for hearing aids

Definitions

  • the present invention generally relates to an antenna, more particularly to an antenna for wireless data transmission to a hearing aid.
  • inductive transmission paths are frequently implemented in practice for data transmission to a hearing device.
  • an induction loop is integrated in the hearing aid.
  • inductive transmission of voice or data to the hearing aid requires special installations in the appropriate room in which the wireless voice or data transmission is to take place.
  • magnetic antennas are used in the hearing aids. These essentially couple with the magnetic components of an electromagnetic field and are usually designed as conductor loops. Such radio transmission systems usually work at frequencies that are significantly lower than the frequencies used in mobile communications, for example in the VHF band at 174 MHz.
  • EP 1 326 302 A2 describes a fractal antenna structure that is implemented on an integrated circuit and that can be used in a hearing aid.
  • the fractal antennas described in the cited document come only for much higher frequencies in question.
  • the present invention provides an antenna having a first radiator having a first spiral and a second radiator having a second spiral, the first radiator having a first feed point at an outer end of the first spiral and an inner end of the first spiral Spiral having an open end, and wherein the second radiator at a outer end of the second spiral has a second feed point and at an inner end of the second spiral having an open end.
  • a linear antenna can be downsized in its maximum dimensions by making the two radiators in the form of a spiral.
  • the two radiators each have a feed point, which is located at the outer end of the respective spiral.
  • the inner ends of the two spirals run empty. Winding the two radiators results in contrast to merely shortening the two radiators in an antenna whose feedpoint impedance can be easily adapted to practically used transmission lines or transmitting or receiving stages.
  • an inventive design of an antenna thus makes it possible to fully integrate the same in a mobile device having wireless information transmission.
  • the antenna structure according to the invention can be integrated into a plastic housing due to the small dimensions and the flexibility in the geometric design.
  • an antenna can be designed that is completely invisible from the outside.
  • an antenna according to the invention has at its feed points a substantially symmetrical electrical behavior with respect to a fixed external reference potential.
  • the feed of the antenna can be designed symmetrically, whereby interference in a receiving part can be reduced.
  • an antenna design according to the invention makes it possible to realize an antenna structure as a slot antenna in a metal surface. This is possible because of the duality principle and allows maximum flexibility in the design of an antenna.
  • a distance between the first feed point and the second feed point is at least 0.005 times the free space wavelength at an operating frequency for which the antenna is designed.
  • a distance of the feed points ensures that the input impedance of the antenna is in a technically advantageous range, so that an impedance matching is possible by simple means.
  • a distance of the feed points of more than 5 * 10 -3 times the free space wavelength ensures good reproducibility of the antenna structure.
  • the distance between a centroid of the first coil and a centroid of the second coil is greater than the hypotenuse of a right triangle whose first catheter has a length equal to half the diameter of the first coil and whose second catheter has a length which is equal to half the diameter of the second spiral is.
  • the center of gravity of a spiral is defined as a geometric center of gravity of a line that describes the course of the spiral.
  • the diameter of a spiral is defined as the maximum distance between any two points that are part of the spiral.
  • the antenna is designed so that a parallel projection of a first coil carrier surface in the direction of a first coil axis avoids a second coil carrier surface, and that a parallel projection of the second coil carrier surface in the direction of a second spiral axis avoids the first spiral carrier surface.
  • a spiral support surface is defined herein as an area delimited by the outermost spiral turn of a spiral and, while minimizing the surface area, forms a simply continuous surface in which the spiral is contained. In other words, a spiral support surface is an area of approximately circular shape suitable to support a spiral.
  • a spiral axis can be constructed by approximating the spiral in sections by a circle, and by forming a normal vector that is perpendicular to the plane in which the approximate circle lies.
  • the spiral axis Averaging the normal vectors for different sections of the spiral then gives the direction of the spiral axis. If the spiral lies in a plane, the spiral axis simply has the direction of a normal to that plane. On the other hand, if the spiral lies on a curved surface, then the spiral axis is approximately equal to the averaged surface normal over the area in which the spiral is located.
  • Such a design of the antenna provides ensure that the antenna acts as a radiant electric dipole, and that the two spirals are not approximately parallel.
  • the first radiator and the second radiator are electrically conductive structures.
  • the first radiator and the second radiator are radiating slots surrounded by a conductive structure.
  • an antenna arrangement according to the invention also as a slot antenna in accordance with the principle of duality.
  • the radiators of an antenna are formed by winding the two arms of a straight linear radiator into a first spiral and a second spiral.
  • winding is not to be considered in a physical sense as a material processing, but as a procedure in the design of the antenna, so that by definition, a metallization, a flat metal foil, a wire or a similar conductive material can be considered wound up.
  • Production engineering can be carried out, for example, by coating in conjunction with photolithographic patterning, cutting, stamping or another production method.
  • the winding of the two arms of the stretched linear radiator is not common but separate from each other.
  • the two spirals forming the first radiator and the second radiator are not co-wrapped, but exist as separate spirals. So they are spatially spaced.
  • the first spiral and the second spiral preferably have the same winding sense or sense of circulation or rotation. This results, at least approximately, in a point symmetry of the arrangement and leads to particularly advantageous radiation properties of the antenna.
  • To determine the direction of rotation two spirals that are not in one plane are imaged by a parallel projection in a plane, wherein the parallel projection rays always run in the same direction and have the same orientation.
  • the sense of rotation of the projection then represents the direction of rotation of the two spirals.
  • Two spirals in one plane then have the same sense of circulation when both spirals are passed from their inner end to their outer end with the same qualitative curvature behavior (left-curved or right-curved).
  • the antenna it is preferable to design the antenna such that it has an electrical behavior that is essentially symmetrical with respect to a reference potential at the first feed point and the second feed point.
  • This enables a symmetrical feeding of the antenna and makes a large-area reference potential surface superfluous compared to unbalanced antennas.
  • the avoidance of an extensive reference potential area is advantageous especially for very small devices, since they are smaller in size than the wavelength of the transmission frequencies used, and since such devices often have no larger metallic or metallized housing parts.
  • the first radiator and the second radiator are formed on a surface of a dielectric material.
  • a dielectric carrier material is advantageous, since this both improves the mechanical stability of the antenna compared to a self-supporting metallization structure, as well as facilitates the production.
  • the metallic structures can be applied to the surface by a coating process (eg vapor deposition, lamination, gluing) of the dielectric material are applied and then patterned.
  • a coating process eg vapor deposition, lamination, gluing
  • the surface of the dielectric material on which the first radiator and the second radiator are formed is curved.
  • the antenna structure according to the invention can be adapted without problems to the topology of an existing surface. This is particularly important in the realization of an antenna on or in the housing of a device, wherein the shape of the housing must usually obey a variety of criteria.
  • the first radiator and the second radiator in a housing of an electronic device, which is formed of a dielectric material, and which houses an electrical circuit.
  • a housing of an electronic device which is formed of a dielectric material, and which houses an electrical circuit.
  • mount the antenna structure of the invention on the surface of a dielectric substrate, but it is also possible to integrate them into the substrate, that is, into the housing.
  • Such a design can bring very great benefits in some applications, since the antenna is firstly protected against external influences and damage and secondly that the antenna is no longer visible from the outside. The radiation characteristics of the antenna are not significantly degraded if the housing is sufficiently thin.
  • the antenna according to the invention can advantageously be arranged on the surface of a housing which is part of a behind-the-ear hearing aid.
  • a behind the ear hearing aid is typically designed to be worn behind an auricle of a human. It has been shown that the matching and radiation properties an antenna according to the invention are good even in this difficult operating environment.
  • the operating frequency of an antenna according to the invention is between 500 MHz and 6 GHz. Furthermore, it is preferred that the antenna has a maximum dimension of less than 10 cm. Thus, the antenna according to the invention can be used in portable devices.
  • the antenna has a maximum dimension of less than one fifth of a free-space wavelength at an operating frequency at which the antenna is operated.
  • the spiral is wrapped tight enough to achieve a suitable field distribution.
  • the size advantage of an antenna according to the present invention is most prominent in comparison with a conventional dipole antenna when the antenna is small compared to the free space wavelength.
  • Fig. 1 shows a schematic representation of an antenna according to the invention according to a first embodiment of the present invention.
  • the antenna is designated 100 in its entirety. It has a first radiator 110 and a second radiator 112.
  • the first radiator 110 has a first spiral 120 and a first feed point 122.
  • the first feed point 122 is located at the outer end 124 of the first scroll 120.
  • the inner end 126 of the first spiral 120 is open.
  • the second radiator 112 is constructed similar to the first radiator 110 and has a second spiral 130 and a second feed point 132.
  • the second feed point 132 is disposed at the outer end 134 of the second scroll 130.
  • the inner end 136 of the second coil 130 is open.
  • the first radiator 110 and the second radiator 112 are preferably an electrically conductive arrangement. But it can also be a radiating slot, which is surrounded by a conductive structure, such as a metallization, are used. If the radiator is formed by a conductive structure, this can be made in a variety of technologies.
  • the coils 110, 112 may be formed by a correspondingly shaped wire.
  • a machined foil of a conductive material eg, copper foil
  • the radiator structure may be formed by a thin conductive layer used in the manufacture applied to a substrate and then patterned.
  • the conductive structure may be either cantilevered (i.e., moored to only one or a few attachment points) or deposited on a substrate.
  • cantilevered i.e., moored to only one or a few attachment points
  • deposited on a substrate it is not necessary for the two radiators 110, 112 to lie in one plane. Rather, these may be inclined to each other or be adapted to the course of a curved surface, as long as the course of the electric and magnetic field lines does not fundamentally changed with respect to the embodiment shown.
  • the coupling of the two radiators 110, 112 to a transmission line or associated circuitry can be done at the feed points 122, 132. These are in the embodiment shown at the outer end 124 of the first coil 120 and at the outer end 134 of the second spiral 130.
  • the coupling can be done for example via a pair of lines, which lies in the same plane or on the same material surface as However, it is also possible for the feed to be perpendicular to the plane or surface in which the two radiators 110, 112 are located.
  • vias may be provided at the outer ends 124, 134 of the two coils 120, 130 for this purpose.
  • Mixed solutions in which part of the feed structure lies in a radiator plane and another part of the feed structure is arranged outside this plane or surface are also possible.
  • feeder lines which run obliquely to the antenna plane, are quite possible.
  • the feeder structure may include matching circuits (eg, variable width lines, stubs, or lumped elements).
  • matching circuits eg, variable width lines, stubs, or lumped elements.
  • a coupling of the spirals is not carried out at the outermost end, but spaced from the end.
  • an impedance matching can take place, if not already due to the geometry the radiator is guaranteed.
  • the outer end of the spiral is not to be considered in a narrow geometrical sense as a point, but as a region extending from the extremity of the spiral about 1/10 of the free space wavelength as measured along the course of the spiral. extending to the inner end of the spiral.
  • the coupling is via any arrangement suitable for exciting a slot antenna, the feed structure being matched to the feedpoint impedance of the slot antenna, or designed to achieve an impedance transformation to a preferred impedance ,
  • the width of the spirals varies from the outer end to the inner end.
  • the width of the coils ie the width of the conductive structure or the radiating slot
  • the width of the coils at the inner ends 126, 136 is greater or smaller than the width of the coils at the outer ends 124, 134.
  • the two spirals 120, 130 have a same direction of rotation.
  • the direction of rotation of a spiral is changed, that is to say that the two spirals 120, 130 that form the antenna have the opposite direction of rotation.
  • the antenna according to the invention is based on a dipole antenna, wherein the arms of a linear dipole antenna are wound into spirals 120, 130. As a result, the maximum dimension of the antenna is reduced compared to a stretched dipole antenna. Since the antenna according to the invention is essentially based on a dipole antenna, it is a symmetrical antenna. The electrical behavior at the feed points 122, 132 is thus substantially symmetrical with respect to a reference potential, wherein any geometric asymmetries of course affect the electrical properties.
  • the operation of the present antenna may be understood as starting from a conventional dipole antenna with shortening coils.
  • the entire dipole is wound up.
  • the winding axis is in this case approximately perpendicular to the plane or surface in which the respective spiral is located.
  • conventional shortening coils are designed either as lumped elements or as a plurality of turns and are usually arranged close to the feed point, the emission originating essentially from the remaining elongated dipole.
  • the antenna according to the invention can be used cantilevered, applied to a substrate or integrated into a plastic housing. It has been found here that an assembly of the antenna according to the invention in a plastic housing or on a plastic housing does not entail unacceptable deterioration of the electrical properties. Thus, the antenna according to the invention is well suited, for example, for use in small portable devices such as hearing aids, pagers and mobile phones.
  • Fig. 2 shows a schematic representation of an antenna according to the invention according to a second embodiment of the present invention, disposed on the housing of a hearing aid.
  • the arrangement is designated in its entirety by 200.
  • the illustrated assembly 200 includes a spiral antenna 210 mounted on the hearing aid body 220 of a hearing aid 240.
  • the hearing aid body 220 forms the hearing device 240 together with the earmold piece 230 and the spiral antenna 210.
  • the spiral antenna 210 consists of two radiators 110, 112. Since the spiral antenna 210 of the basis of Fig. 1 The spiral antenna 100 described in FIG. 1 is similar in terms of components thereof Fig. 1 and 2 denoted by the same reference numerals and will not be explained in more detail here.
  • the arrangement 200 thus shows how a helical antenna 210 according to the invention can be constructed on a hearing device 240. It should be noted here that the two spirals 120, 130 can be adapted to the shape of the hearing device body 220.
  • the spiral antenna 210 is applied to the outside of the hearing aid body 220. But it is just as possible that the antenna is formed on the inside of the hearing aid housing. Likewise, it is conceivable that the spiral antenna 210 is embedded between a plurality of layers of the hearing device housing, so that, for example, a protective layer protects the spiral antenna 210. The protective layer can simultaneously serve to adapt the appearance of the hearing device 240 to the wishes of the user.
  • the spiral antenna 210 is preferably designed in conjunction with the hearing aid 240 to receive a voice or data signal that is transmitted wirelessly and to forward it to electronics in the hearing aid.
  • a received speech signal can in this case be output via the earmold piece 230 to the auditory canal of a user of the hearing device 240.
  • Wirelessly transmitted data signals may also be used to affect settings of the hearing device 240 and, for example, to be adjusted according to the wishes of the user.
  • the spiral antenna 210 can be used for both transmission and reception. For example, it may be desirable to transmit status information from the hearing aid to a receiver. Due to the reciprocity, the spiral antenna 210 can be used both as a transmitting antenna and as a receiving antenna, wherein transmission and reception can take place simultaneously or in time division multiplex.
  • the spiral antenna for an operating frequency that is between 500 MHz and 6 GHz.
  • the ISM band for example, 868 MHz.
  • frequency bands reserved for medical applications can be used.
  • the size of the entire spiral antenna structure is limited to less than 10 cm.
  • the antenna structure according to the invention has sufficiently good properties despite the small dimensions.
  • the total size of the antenna structure when used in conjunction with a hearing aid should not fall below 1/16 of the free space wavelength at an operating frequency of the antenna, provided that 1/16 of the free space wavelength is less than 2cm. If at low frequencies 1/16 of the free space wavelength is greater than 2cm (ie the free space wavelength is greater than 32cm), the overall size of the antenna structure is preferably at least 2cm. In any case, even at low frequencies below 1 GHz, the antenna must be smaller than the hearing aid.
  • a total size of the antenna structure of about ⁇ / 5 has proven to be particularly advantageous because this is the best possible compromise between space requirements of the antenna and radiation properties.
  • Fig. 3 shows a photographic image of a prototype of an antenna according to the invention according to the second embodiment of the present invention, disposed on the housing of a hearing aid.
  • the arrangement is designated in its entirety by 300. Since the arrangement is substantially identical to those in the Fig. 1 and 2 shown arrangements 100, 200 are the same elements here provided with the same reference numerals as in the above-described arrangements 100,200 and will not be explained again here.
  • the illustrated arrangement 300 represents a prototype of a hearing aid with a spiral antenna 210 attached thereto.
  • the prototype was simulated with an electromagnetic field simulator and made from a self-adhesive copper foil cut out and pasted on a hearing aid.
  • Noteworthy here is the feeding of the two radiators 110, 112.
  • the two feed points 122, 132 have bushings, in which electrical connections from the outer ends 124, 134 of the two coils 120, 130 are guided into the interior of the hearing aid.
  • the distance d of the two feed points is about half the diameter of the two spirals. The distance between the two feed points is thus greater than would be expected in a conventional dipole arrangement.
  • the minimum distance between the first scroll 120 and the second scroll 130 is preferably between 0.3 times the diameter of a spiral and 0.5 times the diameter of a spiral. This ensures that a suitable coupling between the spirals is ensured, which allows optimal radiation.
  • a distance d of the two feed points 122, 132 is typically smaller than a diameter of the first spiral 110 and further smaller than a diameter of the second spiral 112.
  • the distance d of the two feed points 122, 132 is in a range between 0 , 25 x dMIN and 0.75 x dMIN, where dMIN is a diameter of the smaller of the two coils 110, 112, or equal to the diameter of the two coils, if the two coils 110, 112 have the same diameter.
  • the two spirals 110, 112 are designed such that a tangential direction of the first spiral 120 at the first end 124, ie a direction which describes the course of the spiral at the first end 124, with a tangential direction of the second Spiral 130 at the second end 134 forms an acute angle which is not greater than 30 °.
  • the two spirals 110, 112 have approximately identical directions at the outer ends 124, 134, or in an environment of the feed points 122, 132.
  • the currents in approximately equal directions, whereby a radiation of the two spirals 110, 112 in the vicinity of the feed points 122, 132 is maximized.
  • the spacing of the two feed points 122, 132 is in the range between 0.4 times the diameter of one of the two coils 110, 112 and 0.6 times the diameter of the corresponding coil 110, 112.
  • Fig. 4a shows a block diagram of an electrical measurement setup for determining the input reflection factor of an antenna according to the invention.
  • the measurement setup is designated 400 in its entirety.
  • the measuring structure comprises an antenna 410 according to the invention. This has an approximately symmetrical electrical behavior at its feed points 412, 414. Therefore, the antenna is coupled to a network analyzer 430 via a balun 420.
  • the balun 420 in this case comprises, for example, a balun transformer, so that an unbalanced signal 434 is available on the side of the network analyzer.
  • the network analyzer 430 may be a scalar network analyzer or a vectorial network analyzer, depending on the metrics required.
  • FIG. 4b is a graph of the input reflection factor (or return loss) in logarithmic versus frequency form for an antenna according to an embodiment of the present invention.
  • the measured prototype of the antenna according to the invention was made in the production of a self-adhesive Cut out copper foil and glued on a hearing aid. An example of such a prototype is in Fig. 3 shown.
  • the antenna 410 has been connected to the network analyzer 430 in accordance with the measurement setup 400 via a discrete balun 420 (cf. Fig. 4a ).
  • the hearing aid 240 with the attached antenna 210 was worn on the ear of a subject during the measurement to take into account the effects of the human head or ear on the characteristics of the antenna.
  • the result of the measurement is shown in graph 510.
  • the frequency is plotted in a range from 500 MHz to 1200 MHz.
  • the ordinate 522 shows the return loss in a range of -80 dB to +20 dB.
  • the measured return loss is shown as a function of the frequency from curve 530.
  • the return loss here shows a clear maximum at about 860 MHz, with a -10 dB bandwidth of the return loss is about 35MHz.
  • the maximum achievable return loss is about 12 dB. Apart from the useful frequency, the return loss goes back to about 2 to 3 dB. This indicates a low emission of the antenna 410.
  • the antenna effectively radiates power only at a frequency interval around the design frequency.
  • the -10 dB bandwidth of about 35 MHz corresponds to a relative usable bandwidth of about 4 percent.
  • the present invention thus describes a novel antenna for wireless voice and data transmission.
  • the antenna according to the invention has been designed especially for very small devices, such as hearing aids, which are worn behind the ear. It is particularly suitable for mobile sending and receiving.
  • a particular advantage of the symmetrical spiral antenna according to the invention is that they are integrated in a relatively simple manner into an existing system, for example a hearing aid can.
  • the fact that the antenna can be integrated into a plastic housing, this can be carried out so that it is completely invisible from the outside.
  • the antenna is relatively small feasible and allows a balanced feed.
  • the antenna structure according to the invention can also be integrated as a slot antenna in a metal surface.
  • the antenna according to the invention is particularly well suited for being integrated into a hearing aid. Due to the small size and the integrability in a plastic housing but other applications, such as pagers and mobile phones, are conceivable for an antenna according to the invention.

Landscapes

  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Description

  • Die vorliegende Erfindung bezieht sich im Allgemeinen auf eine Antenne, im Speziellen auf eine Antenne für eine drahtlose Datenübertragung zu einem Hörgerät.
  • Gegenwärtig existiert eine Vielzahl von tragbaren Geräten, von denen und zu denen auf drahtlosem Wege Daten übertragen werden sollen. Hierbei bietet es sich an, die Datenübertragung durch eine elektromagnetische Koppelung zu realisieren. Besondere Schwierigkeiten entstehen dabei, wenn die verwendeten Geräte sehr klein sind, da es in einem solchen Fall problematisch ist, eine Antennenstruktur in ein betreffendes Gerät zu integrieren. Ein wichtiges Beispiel für ein sehr kleines Gerät, bei dem eine drahtlose Datenübertragung erforderlich ist, ist ein Hörgerät.
  • Gemäß dem Stand der Technik werden für eine Datenübertragung zu einem Hörgerät in der Praxis häufig induktive Übertragungsstrecken realisiert. Hierzu ist in das Hörgerät eine Induktionsschleife integriert. Allerdings erfordert eine derartige induktive Übertragung von Sprache bzw. von Daten zu dem Hörgerät spezielle Installationen in dem entsprechenden Raum, in dem die drahtlose Sprach- oder Datenübertragung stattfinden soll.
  • Bei einer anderen Ausführungsform von drahtlosen Funkübertragungssystemen werden in den Hörgeräten magnetische Antennen verwendet. Solche koppeln im Wesentlichen mit den magnetischen Komponenten eines elektromagnetischen Feldes und sind meist als Leiterschleifen ausgeführt. Derartige Funkübertragungssysteme arbeiten meist bei Frequenzen, die deutlich niedriger als die im Mobilfunk verwendeten Frequenzen sind, z.B. im VHF-Band bei 174 MHz.
  • Die europäische Patentanmeldung EP 1 326 302 A2 beschreibt eine fraktale Antennenstruktur, die auf einer integrierten Schaltung realisiert ist, und die in einem Hörgerät eingesetzt werden kann. Allerdings kommen die in der genannten Druckschrift beschriebenen fraktalen Antennen nur für deutlich höhere Frequenzen in Frage.
  • Es ist Aufgabe der vorliegenden Erfindung, eine Antenne zu schaffen, die in ein tragbares Gerät integrierbar ist, und die kleinere maximale geometrische Abmessungen aufweist als eine Dipolantenne für eine entsprechende Frequenz.
  • Diese Aufgabe wird durch eine Antenne gemäß Anspruch 1 gelöst.
  • Die vorliegende Erfindung schafft eine Antenne mit einem ersten Strahler, der eine erste Spirale aufweist, und einem zweiten Strahler, der eine zweite Spirale aufweist, wobei der erste Strahler an einem äußeren Ende der ersten Spirale einen ersten Speisepunkt aufweist und an einem inneren Ende der ersten Spirale ein offenes Ende aufweist, und wobei der zweite Strahler an einem äußeren Ende der zweiten Spirale einen zweiten Speisepunkt aufweist und an einem inneren Ende der zweiten Spirale ein offenes Ende aufweist.
  • Es ist der Kerngedanke der vorliegenden Erfindung, dass eine lineare Antenne dadurch in ihren maximalen Abmessungen verkleinert werden kann, dass die beiden Strahler in der Form einer Spirale ausgeführt werden. Hierbei weisen die beiden Strahler je einen Speisepunkt auf, der an dem äußeren Ende der jeweiligen Spirale gelegen ist. Die inneren Enden der beiden Spiralen laufen hingegen leer. Ein Aufwickeln der beiden Strahler resultiert im Gegensatz zu einem bloßen Verkürzen der beiden Strahler in einer Antenne, deren Speisepunkt-Impedanz problemlos an praktisch verwendete Übertragungsleitungen bzw. Sende- oder Empfangsstufen anpassbar ist.
  • Eine erfindungsgemäße Auslegung einer Antenne ermöglicht es somit, dieselbe vollständig in ein mobiles Gerät, das eine drahtlose Informationsübertragung aufweist, zu integrieren. Die erfindungsgemäße Antennenstruktur kann dabei aufgrund der geringen Abmessungen und der Flexibilität bei der geometrischen Auslegung in ein Kunststoffgehäuse integriert werden. Somit kann eine Antenne entworfen werden, die von außen völlig unsichtbar ist. Weiterhin ist festzuhalten, dass eine erfindungsgemäße Antenne an ihren Speisepunkten ein im Wesentlichen symmetrisches elektrisches Verhalten, bezogen auf ein festes äußeres Bezugspotential, aufweist. Die Speisung der Antenne kann symmetrisch ausgelegt werden, wodurch Störungen in einem Empfangsteil verringert werden können. Ebenso ermöglicht es eine erfindungsgemäße Antennenauslegung, eine Antennenstruktur als Schlitzantenne in einer Metalloberfläche zu realisieren. Dies ist aufgrund des Dualitätsprinzips möglich und erlaubt eine größtmögliche Flexibilität bei dem Entwurf einer Antenne.
  • Bei einem bevorzugten Ausführungsbeispiel der erfindungsgemäßen Antenne beträgt ein Abstand zwischen dem ersten Speisepunkt und dem zweiten Speisepunkt mindestens das 0,005-fache der Freiraumwellenlänge bei einer Betriebsfrequenz, für die die Antenne ausgelegt ist. Ein derartiger Abstand der Speisepunkte stellt sicher, dass die Eingangsimpedanz der Antenne in einem technisch vorteilhaften Bereich liegt, so dass eine Impedanzanpassung mit einfachen Mitteln möglich ist. Weiterhin gewährleistet ein Abstand der Speisepunkte von mehr als 5*10-3 mal der Freiraumwellenlänge eine gute Reproduzierbarkeit der Antennenstruktur.
  • Bei einem bevorzugten Ausführungsbeispiel ist der Abstand zwischen einem Schwerpunkt der ersten Spirale und einem Schwerpunkt der zweiten Spirale größer als die Hypotenuse eines rechtwinkligen Dreiecks, dessen erste Kathete eine Länge aufweist, die gleich dem halben Durchmesser der ersten Spirale ist, und dessen zweite Kathete eine Länge aufweist, die gleich dem halben Durchmesser der zweiten Spirale ist. Hierbei ist der Schwerpunkt einer Spirale definiert als ein geometrischer Schwerpunkt einer Linie, die den Verlauf der Spirale beschreibt. Der Durchmesser einer Spirale ist definiert als der maximale Abstand zwischen zwei beliebigen Punkten, die Teil der Spirale sind. Eine entsprechende Auslegung der Antenne stellt sicher, dass die erste Spirale und die zweite Spirale einen ausreichenden Abstand haben, und dass keine zu starke direkte Koppelung zwischen den beiden Spiralen besteht. Eine starke Koppelung der beiden Spiralen verringert nämlich gerade bei sehr kleinen Geometrien die Effektivität der Abstrahlung und führt zu einer ungünstigen Speisepunktimpedanz.
  • Bei einem weiteren Ausführungsbeispiel ist die Antenne so ausgelegt, dass eine Parallelprojektion einer ersten Spulenträgerfläche in Richtung einer ersten Spulenachse eine zweite Spulenträgerfläche meidet, und dass eine Parallelprojektion der zweiten Spulenträgerfläche in Richtung einer zweiten Spiralenachse die erste Spiralenträgerfläche meidet. Eine Spiralenträgerfläche ist hierbei definiert als eine Fläche, die durch die äußerste Spiralenwindung einer Spirale begrenzt ist und unter Minimierung der Oberfläche eine einfach zusammmenhängende Fläche bildet, in der die Spirale enthalten ist. Mit anderen Worten, eine Spiralenträgerfläche ist eine Fläche von näherungsweise kreisförmiger Gestalt, die geeignet ist, eine Spirale zu tragen. Eine Spiralenachse kann konstruiert werden, indem die Spirale abschnittsweise durch einen Kreis angenähert wird, und indem ein Normalenvektor gebildet wird, der senkrecht auf der Ebene steht, in der der Näherungskreis liegt. Eine Mittelung der Normalenvektoren für verschiedene Abschnitte der Spirale ergibt dann die Richtung der Spiralenachse. Falls die Spirale in einer Ebene liegt, so hat die Spiralenachse einfach die Richtung einer Normale zu dieser Ebene. Liegt die Spirale hingegen auf einer gekrümmten Oberfläche, so ist die Spiralenachse näherungsweise gleich der gemittelten Oberflächennormale über den Bereich, in dem sich die Spirale befindet. Eine derartige Auslegung der Antenne stellt sicher, dass die Antenne als strahlungsfähiger elektrischer Dipol wirkt, und dass die beiden Spiralen nicht näherungsweise parallel angeordnet sind.
  • Bei einem weiteren bevorzugten Ausführungsbeispiel sind der erste Strahler und der zweite Strahler elektrisch leitfähige Strukturen. Genauso ist es allerdings möglich, dass der erste Strahler und der zweite Strahler strahlende Schlitze sind, die von einer leitfähigen Struktur umgeben sind. Somit ist es möglich, eine erfindungsgemäße Antennenanordnung entsprechend dem Grundsatz der Dualität auch als Schlitzantenne auszuführen.
  • Erfindungsgemäßer Weise werden also die Strahler einer Antenne dadurch gebildet, dass die beiden Arme eines gestreckten linearen Strahlers zu einer ersten Spirale und einer zweiten Spirale aufgewickelt werden. Das Aufwickeln ist hierbei allerdings nicht in einem physikalischen Sinne als eine Materialbearbeitung anzusehen, sondern als ein Vorgehen bei dem Entwurf der Antenne, sodass definitionsgemäß auch eine Metallisierungsschicht, eine flache Metallfolie, ein Draht oder ein vergleichbares leitendes Material als aufgewickelt betrachtet werden kann. Das gleiche gilt für einen Schlitz in einer leitenden Struktur. Eine fertigungstechnische Bearbeitung kann beispielsweise durch ein Beschichten in Verbindung mit einem photolithographischem Strukturieren, ein Schneiden, ein Stanzen oder ein anderes Herstellungsverfahren erfolgen. Weiterhin ist festzuhalten, dass das Aufwickeln der beiden Arme des gestreckten linearen Strahlers nicht gemeinsam, sondern getrennt voneinander erfolgt. Somit sind die beiden Spiralen, die den ersten Strahler und den zweiten Strahler bilden, nicht gemeinsam bzw. ineinander gewickelt, sondern liegen als getrennte Spiralen vor. Sie sind also räumlich beabstandet.
  • Die erste Spirale und die zweite Spirale weisen bevorzugterweise einen gleichen Wickelsinn bzw. Umlaufsinn bzw. Drehsinn auf. Dies resultiert, zumindest näherungsweise, in einer Punktsymmetrie der Anordnung und führt zu besonders vorteilhaften Abstrahleigenschaften der Antenne. Zur Bestimmung des Umlaufsinns werden zwei Spiralen, die nicht in einer Ebene liegen, durch eine Parallelprojektion in eine Ebene abgebildet, wobei die parallelen Projektionsstrahlen stets in die gleiche Richtung verlaufen und die gleiche Orientierung aufweisen. Der Umlaufsinn der Projektion repräsentiert dann den Umlaufsinn der beiden Spiralen. Zwei Spiralen in einer Ebene haben dann den gleichen Umlaufsinn, wenn beide Spiralen von ihrem inneren Ende zu ihrem äußeren Ende mit dem gleichen qualitativen Krümmungsverhalten (link-gekrümmt oder rechts-gekrümmt) durchlaufen werden.
  • Weiterhin wird es bevorzugt, die Antenne so auszulegen, dass sie an dem ersten Speisepunkt und dem zweiten Speisepunkt ein bezüglich eines Bezugspotentials im Wesentlichen symmetrisches elektrisches Verhalten aufweist. Dies ermöglicht eine symmetrische Speisung der Antenne und macht im Vergleich zu unsymmetrischen Antennen eine großflächige Bezugspotentialfläche überflüssig. Die Vermeidung einer ausgedehnten Bezugspotentialfläche ist gerade bei sehr kleinen Geräten vorteilhaft, da diese bezüglich ihrer Abmessungen kleiner sind als die Wellenlänge der verwendeten Sendefrequenzen, und da solche Geräte oft keine größeren metallischen oder metallisierten Gehäuseteile aufweisen.
  • Weiterhin wird es bevorzugt, dass der erste Strahler und der zweite Strahler auf einer Oberfläche eines dielektrischen Materials gebildet sind. Es hat sich nämlich gezeigt, dass die Anbringung einer erfindungsgemäßen Antennenstruktur auf einem dielektrischen Trägermaterial die Antenneneigenschaften nicht wesentlich verschlechtert. Die Verwendung eines Trägermaterials ist vorteilhaft, da dies sowohl die mechanische Stabilität der Antenne gegenüber einer freitragenden Metallisierungsstruktur verbessert, als auch die Herstellung erleichtert. So können nämlich beispielsweise die metallischen Strukturen durch ein Beschichtungsverfahren (z.B. Aufdampfen, Laminieren, Kleben) auf die Oberfläche des dielektrischen Materials aufgebracht und anschließend strukturiert werden. Es ist also nicht die separate Herstellung einer Metallisierungsstruktur erforderlich, die sehr schwer zu handhaben und mechanisch instabil wäre.
  • Weiterhin wird es bevorzugt, dass die Oberfläche des dielektrischen Materials, auf dem der erste Strahler und der zweite Strahler gebildet sind, gewölbt ist. Somit kann die erfindungsgemäße Antennenstruktur ohne Probleme an die Topologie einer bestehenden Oberfläche angepasst werden. Dies ist besonders wichtig bei der Realisierung einer Antenne auf oder in dem Gehäuse eines Geräts, wobei die Formgebung des Gehäuses meist einer Vielzahl von Kriterien gehorchen muss.
  • Daneben ist es vorteilhaft, den ersten Strahler und den zweiten Strahler in einem Gehäuse eines elektronischen Geräts zu integrieren, das aus einem dielektrischen Material gebildet ist, und das eine elektrische Schaltung häust. Es ist nämlich nicht nur möglich, die erfindungsgemäße Antennenstruktur an der Oberfläche eines dielektrischen Trägermaterials anzubringen, sondern es ist auch möglich, diese in das Trägermaterial, also in das Gehäuse, zu integrieren. Eine solche Auslegung kann bei manchen Anwendungen sehr große Vorteile bringen, da die Antenne hierbei erstens gegenüber äußeren Einflüssen und Beschädigungen geschützt ist und da die Antenne zweitens von außen nicht mehr sichtbar ist. Die Abstrahlungseigenschaften der Antenne werden nicht wesentlich verschlechtert, wenn das Gehäuse hinreichend dünn ist.
  • Ferner hat es sich gezeigt, dass die erfindungsgemäße Antenne vorteilhaft an der Oberfläche eines Gehäuses, das Teil einer Hinterohr-Hörhilfe ist, angeordnet werden kann. Eine solche Hinterohr-Hörhilfe ist typischerweise ausgelegt, um hinter einer Ohrmuschel eines Menschen getragen zu werden. Es hat sich gezeigt, dass die Anpassungs- und Abstrahlungseigenschaften einer erfindungsgemäßen Antenne auch in diesem schwierigen Betriebsumfeld gut sind.
  • Schließlich wird es bevorzugt, dass die Arbeitsfrequenz einer erfindungsgemäßen Antenne zwischen 500 MHz und 6 GHz liegt. Weiterhin wird es bevorzugt, dass die Antenne eine maximale Abmessung von weniger als 10 cm aufweist. Damit kann die erfindungsgemäße Antenne in portablen Geräten eingesetzt werden.
  • Weiterhin ist es vorteilhaft, wenn die Antenne eine maximale Abmessung von weniger als einem Fünftel einer Freiraumwellenlänge bei einer Betriebsfrequenz, bei der die Antenne betrieben wird, aufweist. In diesem Fall ist die Spirale eng genug gewickelt, um eine geeignete Feldverteilung zu erzielen. Im übrigen tritt der Größenvorteil einer erfindungsgemäßen Antenne im Vergleich zu einer herkömmlichen Dipolantenne am stärksten in den Vordergrund, wenn die Antenne klein gegenüber der Freiraumwellenlänge ist.
  • Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend bezugnehmend auf die beiliegenden Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    eine schematische Darstellung einer erfindungsgemäßen Antenne gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung;
    Fig. 2
    eine schematische Darstellung einer erfindungsgemäßen Antenne gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung, angeordnet auf dem Gehäuse eines Hörgeräts;
    Fig. 3
    eine fotografische Abbildung eines Prototypen einer erfindungsgemäßen Antenne gemäß dem zweiten Ausführungsbeispiel der vorliegenden Erfindung, angeordnet auf dem Gehäuse eines Hörgeräts;
    Fig. 4a
    ein Blockschaltbild eines elektrischen Messaufbaus zur Bestimmung des Eingangsreflexionsfaktors einer erfindungsgemäßen Antenne; und
    Fig. 4b
    eine grafische Darstellung des Eingangsreflexionsfaktors in logarithmierter Form über der Frequenz für eine erfindungsgemäße Antenne gemäß einem Ausführungsbeispiel der vorliegenden Erfindung.
  • Fig. 1 zeigt eine schematische Darstellung einer erfindungsgemäßen Antenne gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung. Die Antenne ist in ihrer Gesamtheit mit 100 bezeichnet. Sie weist einen ersten Strahler 110 sowie einen zweiten Strahler 112 auf. Der erste Strahler 110 weist eine erste Spirale 120 sowie einen ersten Speisepunkt 122 auf. Der erste Speisepunkt 122 ist an dem äußeren Ende 124 der ersten Spirale 120 gelegen. Das innere Ende 126 der ersten Spirale 120 hingegen ist offen. Der zweite Strahler 112 ist ähnlich dem ersten Strahler 110 aufgebaut und weist eine zweite Spirale 130 sowie einen zweiten Speisepunkt 132 auf. Der zweite Speisepunkt 132 ist an dem äußeren Ende 134 der zweiten Spirale 130 angeordnet. Das innere Ende 136 der zweiten Spirale 130,ist offen.
  • Bei dem ersten Strahler 110 sowie dem zweiten Strahler 112 handelt es sich bevorzugt um eine elektrisch leitende Anordnung. Es kann aber auch ein strahlender Schlitz, der von einer leitenden Struktur, beispielsweise einer Metallisierung, umgeben ist, verwendet werden. Ist der Strahler durch eine leitende Struktur gebildet, so kann diese in einer Vielzahl von Technologien hergestellt sein. Beispielsweise können die Spiralen 110, 112 durch einen entsprechend geformten Draht gebildet sein. Genauso gut kann eine bearbeitete Folie aus einem leitfähigen Material (z.B. Kupferfolie) verwendet werden, um die leitfähigen Spiralen herzustellen. Weiterhin kann die Strahlerstruktur durch eine dünne leitende Schicht gebildet sein, die bei der Herstellung auf ein Trägermaterial aufgebracht und dann strukturiert worden ist.
  • Die leitfähige Struktur kann entweder freitragend (d.h. nur an einem oder wenigen Befestigungspunkten festgemacht) sein oder auf ein Trägermaterial aufgebracht sein. Es ist im Übrigen nicht nötig, dass die beiden Strahler 110, 112 in einer Ebene liegen. Vielmehr können diese gegeneinander geneigt sein oder dem Verlauf einer gekrümmten Oberfläche angepasst sein, solange sich der Verlauf der elektrischen und magnetischen Feldlinien nicht grundsätzlich gegenüber dem gezeigten Ausführungsbeispiel verändert.
  • Die Ankoppelung der beiden Strahler 110, 112 an eine Übertragungsleitung oder eine zugehörige Schaltungsanordnung kann an den Speisepunkten 122, 132 erfolgen. Diese liegen bei dem gezeigten Ausführungsbeispiel an dem äußeren Ende 124 der ersten Spirale 120 sowie an dem äußeren Ende 134 der zweiten Spirale 130. Die Ankoppelung kann beispielsweise über ein Paar von Leitungen erfolgen, das in der gleichen Ebene bzw. auf der gleichen Materialoberfläche liegt wie die beiden Strahler 112,112 selbst. Daneben ist es aber auch möglich, dass die Zuführung senkrecht zu der Ebene bzw. Fläche, in der die beiden Strahler 110, 112 liegen, erfolgt. Zu diesem Zweck können beispielsweise Durchkontaktierungen an den äußeren Enden 124, 134 der beiden Spiralen 120, 130 vorhanden sein. Auch gemischte Lösungen, bei denen ein Teil der Speisestruktur in einer Strahlerebene liegt und ein anderer Teil der Speisestruktur außerhalb dieser Ebene oder Fläche angeordnet ist, sind möglich. Auch Speiseleitungen, die Schräg zu der Antennenebene verlaufen, sind durchaus möglich. Im übrigen kann die Speisestruktur Anpassschaltungen (z.B. Leitungen mit veränderlicher Breite, Stichleitungen oder konzentrierte Elemente) umfassen. Daneben ist es möglich, dass eine Ankopplung der Spiralen nicht an dem äußersten Ende erfolgt, sondern beabstandet von dem Ende. Dadurch kann gegebenenfalls eine Impedanzanpassung erfolgen, wenn diese nicht schon durch die Geometrie der Strahler gewährleistet ist. Im Hinblick auf eine solche Ausführungsform ist das äußere Ende der Spirale nicht in einem engen geometrischen Sinne als ein Punkt anzusehen, sondern als eine Region, die sich von dem äußersten Ende der Spirale etwa 1/10 der Freiraumwellenlänge, gemessen entlang dem Verlauf der Spirale, zu dem inneren Ende der Spirale hin erstreckt.
  • Ist der Strahler durch einen strahlenden Schlitz gebildet, so erfolgt die Ankoppelung über eine beliebige Anordnung, die zur Anregung einer Schlitzantenne geeignet ist, wobei die Speisestruktur an die Speisepunktimpedanz der Schlitzantenne angepasst ist, oder ausgelegt ist, um eine Impedanztransformation auf eine bevorzugte Impedanz zu erreichen.
  • Weiterhin ist es möglich, dass die Breite der Spiralen von dem äußeren Ende zu dem inneren Ende hin variiert. Insbesondere ist es je nach Anwendungsfall möglich, dass die Breite der Spiralen (d.h. die Breite der leitenden Struktur oder des strahlenden Schlitzes) an den inneren Enden 126, 136 größer oder kleiner ist, als die Breite der Spiralen an den äußeren Enden 124, 134. Durch eine solche Maßnahme kann beispielsweise ein Impedanzverlauf oder die Bandbreite der Antenne verbessert werden.
  • Bei dem gezeigten Ausführungsbeispiel 100 einer erfindungsgemäßen Antenne weisen die beiden Spiralen 120, 130 einen gleichen Umlaufsinn auf. Es ist jedoch ebenfalls möglich, dass der Umlaufsinn einer Spirale verändert ist, dass also die beiden Spiralen 120,130, die die Antenne bilden, entgegengesetzten Umlaufsinn aufweisen.
  • Basierend auf der strukturellen Beschreibung wird im Folgenden die Funktionsweise einer erfindungsgemäßen Antenne beschrieben.
  • Die erfindungsgemäße Antenne basiert auf einer Dipolantenne, wobei die Arme einer linearen Dipolantenne zu Spiralen 120, 130 aufgewickelt sind. Dadurch wird die maximale Abmessung der Antenne gegenüber einer gestreckten Dipolantenne verkleinert. Da die erfindungsgemäße Antenne im Wesentlichen auf einer Dipolantenne basiert, handelt es sich um eine symmetrische Antenne. Das elektrische Verhalten an den Speisepunkten 122, 132 ist also im Wesentlichen symmetrisch bezüglich eines Bezugspotentials, wobei eventuelle geometrische Asymmetrien sich freilich auf die elektrischen Eigenschaften auswirken.
  • Die Funktionsweise der vorliegenden Antenne kann ansatzweise verstanden werden, indem von einer herkömmlichen Dipolantenne mit Verkürzungsspulen ausgegangen wird. Bei einer Antenne gemäß der vorliegenden Erfindung ist allerdings der gesamte Dipol aufgewickelt. Die Wickelachse ist hierbei näherungsweise senkrecht zu der Ebene bzw. Fläche, in der die jeweilige Spirale gelegen ist. Herkömmliche Verkürzungsspulen hingegen sind entweder als konzentrierte Elemente oder als eine Mehrzahl von Windungen ausgeführt und meist in der Nähe des Speisepunktes angeordnet, wobei die Abstrahlung im wesentlichen von dem verbleibenden gestreckten Dipol ausgeht.
  • Bei einer erfindungsgemäßen Antenne hingegen ist die Trennung zwischen einem der geometrischen Verkürzung dienenden aufgewickelten Bereich und einem gestreckten Strahler aufgehoben. Vielmehr ist ein gesamter Dipol aufgewickelt. Bei Verwendung einer Antennengeometrie gemäß der vorliegenden Erfindung wird somit aufgrund der besonders günstigen Feldverteilung ein Effekt erzielt, der von seiner Wirkung her eine Anpassung der Antenne an übliche Wellenleiterimpedanzen mit sich bringt.
  • Dadurch kann trotz geringer geometrischer Abmessungen der Antenne ein ausreichender Strahlungswirkungsgrad erreicht werden. Es kann weiterhin vermieden werden, dass ein großer Teil der Sendeleistung in einem Anpassnetzwerk verloren geht.
  • Die erfindungsgemäße Antenne kann freitragend verwendet, auf ein Substrat aufgebracht oder in ein Kunststoffgehäuse integriert werden. Es hat sich hierbei gezeigt, dass eine Montage der erfindungsgemäßen Antenne in einem Kunststoffgehäuse oder auf einem Kunststoffgehäuse keine unakzeptable Verschlechterung der elektrischen Eigenschaften mit sich bringt. Somit ist die erfindungsgemäße Antenne beispielsweise für den Einsatz in kleinen portablen Geräten wie Hörgeräten, Pagern und Mobiltelefonen gut geeignet.
  • Fig. 2 zeigt eine schematische Darstellung einer erfindungsgemäßen Antenne gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung, angeordnet auf dem Gehäuse eines Hörgeräts. Die Anordnung ist in ihrer Gesamtheit mit 200 bezeichnet.
  • Die gezeigt Anordnung 200 umfasst eine Spiralantenne 210, die auf dem Hörgerätekörper 220 eines Hörgeräts 240 angebracht ist. Der Hörgerätekörper 220 bildet zusammen mit dem Ohrpass-Stück 230 und der Spiralantenne 210 das Hörgerät 240.
  • Die Spiralantenne 210 besteht aus zwei Strahlern 110, 112. Da die Spiralantenne 210 der anhand von Fig. 1 beschriebenen Spiralantenne 100 von ihren Bestandteilen her entspricht, sind gleiche Einrichtungen in den Fig. 1 und 2 mit gleichen Bezugszeichen bezeichnet und werden hier nicht mehr näher erläutert.
  • Die Anordnung 200 zeigt also, wie eine erfindungsgemäße Spiralantenne 210 auf einem Hörgerät 240 aufgebaut werden kann. Bemerkenswert ist hierbei, dass die beiden Spiralen 120, 130 an die Form des Hörgerätekörpers 220 angepasst sein können.
  • Bei der gezeigten Realisierung ist die Spiralantenne 210 auf der Außenseite des Hörgerätekörpers 220 aufgebracht. Es ist aber genauso gut möglich, dass die Antenne auf der Innenseite des Hörgerätegehäuses ausgebildet ist. Ebenso ist es denkbar, dass die Spiralantenne 210 zwischen mehreren Schichten des Hörgerätegehäuses eingebettet ist, so dass beispielsweise eine Schutzschicht die Spiralenantenne 210 schützt. Die Schutzschicht kann gleichzeitig dazu dienen, das Aussehen des Hörgeräts 240 den Wünschen der Benutzer anzupassen.
  • Die Spiralantenne 210 ist in Verbindung mit dem Hörgerät 240 bevorzugterweise ausgelegt, um ein Sprach- oder Datensignal, das drahtlos übertragen wird, zu empfangen und an eine Elektronik in dem Hörgerät weiterzuleiten. Ein empfangenes Sprachsignal kann hierbei über das Ohrpass-Stück 230 an den Gehörgang eines Benutzers des Hörgeräts 240 ausgegeben werden. Drahtlos übertragene Datensignale können ferner verwendet werden, um Einstellungen des Hörgeräts 240 zu beeinflussen und beispielsweise entsprechend den Wünschen des Benutzers anzupassen.
  • Die Spiralantenne 210 kann sowohl zum Senden als auch zum Empfangen verwendet werden. Beispielsweise kann es wünschenswert sein, Statusinformationen von dem Hörgerät zu einem Empfänger zu übertragen. Aufgrund der Reziprozität kann die Spiralantenne 210 sowohl als Sendeantenne als auch als Empfangsantenne genutzt werden, wobei Senden und Empfangen gleichzeitig oder im Zeitmultiplex erfolgen können.
  • Für entsprechende Anwendungen wird es bevorzugt, die Spiralantenne für eine Betriebsfrequenz auszulegen, die zwischen 500 MHz und 6 GHz liegt. Beispielsweise ist es vorteilhaft, das ISM-Band bei 868 MHz zu benützen. Auch können beispielsweise Frequenzbänder benutzt werden, die für medizinische Anwendungen reserviert sind.
  • Bei einem Einsatz einer erfindungsgemäßen Spiralantenne 210 in Verbindung mit einem Hörgerät 240 oder mit anderen mobilen Sende- und/oder Empfangsgeräten wie Pagern und Mobiltelefonen ist die Größe der gesamten Spiralantennenstruktur auf weniger als 10 cm beschränkt. Es hat sich allerdings gezeigt, dass die erfindungsgemäße Antennenstruktur trotz der geringen Abmessungen hinreichend gute Eigenschaften aufweist. Weiterhin hat es sich gezeigt, dass die Gesamtgröße der Antennenstruktur bei einem Einsatz in Verbindung mit einem Hörgerät 1/16 der Freiraumwellenlänge bei einer Betriebsfrequenz der Antenne nicht unterschreiten sollte, sofern 1/16 der Freiraumwellenlänge kleiner als 2cm ist. Sofern bei niedrigen Frequenzen 1/16 der Freiraumwellenlänge größer ist als 2cm (die Freiraumwellenlänge also größer als 32cm ist), so beträgt die Gesamtgröße der Antennenstruktur bevorzugterweise mindestens 2cm. Die Antenne muss also in jedem Falle, auch bei niedrigen Frequenzen unter 1 GHz, kleiner als das Hörgerät sein. Eine Gesamtgröße der Antennenstruktur von etwa λ/5 hat sich als besonders vorteilhaft erwiesen, da hierbei ein bestmöglicher Kompromiss zwischen Platzbedarf der Antenne und Abstrahleigenschaften besteht.
  • Fig. 3 zeigt eine fotografische Abbildung eines Prototypen einer erfindungsgemäßen Antenne gemäß dem zweiten Ausführungsbeispiel der vorliegenden Erfindung, angeordnet auf dem Gehäuse eines Hörgeräts. Die Anordnung ist in ihrer Gesamtheit mit 300 bezeichnet. Da die Anordnung im Wesentlichen mit den in den Fig. 1 und 2 gezeigten Anordnungen 100, 200 übereinstimmt, sind gleiche Elemente hier mit gleichen Bezugszeichen versehen wie bei den oben beschriebenen Anordnungen 100,200 und werden hier nicht noch einmal erläutert.
  • Die gezeigte Anordnung 300 stellt einen Prototypen eines Hörgeräts mit einer daran angebrachten Spiralantenne 210 dar. Der Prototyp wurde mit einem elektromagnetischen Feldsimulator simuliert und aus einer selbstklebenden Kupferfolie ausgeschnitten und auf ein Hörgerät geklebt. Bemerkenswert ist hierbei die Speisung der beiden Strahler 110, 112. Die beiden Speisepunkte 122, 132 weisen Durchführungen auf, bei denen elektrische Verbindungen von den äußeren Enden 124, 134 der beiden Spiralen 120, 130 in das Innere des Hörgeräts geführt sind. Der Abstand d der beiden Speisepunkte beträgt etwa die Hälfte des Durchmessers der beiden Spiralen. Der Abstand der beiden Speisepunkte ist somit größer als dies bei einer herkömmlichen Dipolanordnung zu erwarten ist. Im Übrigen ist anzumerken, dass der minimale Abstand zwischen der ersten Spirale 120 und der zweiten Spirale 130 bevorzugterweise zwischen dem 0,3-fachen des Durchmesser einer Spirale und dem 0,5-fachen des Durchmessers einer Spirale liegt. Dadurch wird sichergestellt, dass eine geeignete Verkoppelung zwischen den Spiralen gewährleistet ist, die eine optimale Abstrahlung ermöglicht.
  • Ein Abstand d der beiden Speisepunkte 122, 132 ist typischerweise kleiner als ein Durchmesser der ersten Spirale 110 und ferner kleiner als ein Durchmesser der zweiten Spirale 112. Es wird beispielsweise bevorzugt, dass der Abstand d der beiden Speisepunkte 122, 132 in einem Bereich zwischen 0,25 x dMIN und 0,75 x dMIN ist, wobei dMIN einen Durchmesser der kleineren der beiden Spiralen 110, 112 beschreibt, oder gleich dem Durchmesser der beiden Spiralen ist, falls die beiden Spiralen 110, 112 gleichen Durchmesser aufweisen.
  • Ferner wird es bevorzugt, dass die beiden Spiralen 110, 112 derart ausgelegt sind, dass eine Tangentialrichtung der ersten Spirale 120 an dem ersten Ende 124, also eine Richtung, die den Verlauf der Spirale an dem ersten Ende 124 beschreibt, mit einer Tangentialrichtung der zweiten Spirale 130 an dem zweiten Ende 134 einen spitzen Winkel einschließt, der nicht größer als 30° ist. In anderen Worten, die beiden Spiralen 110, 112 weisen an den äußeren Enden 124, 134, bzw. in einer Umgebung der Speisepunkte 122, 132 näherungsweise gleiche Richtungen auf. Somit fließen in den beiden Spiralen 110, 112 in der Umgebung der Speisepunkte 122, 132 die Ströme in näherungsweise gleiche Richtungen, wodurch eine Abstrahlung der beiden Spiralen 110, 112 in der Umgebung der Speisepunkte 122, 132 maximiert ist.
  • Bei einem weiteren bevorzugten Ausführungsbeispiel ist der Abstand der beiden Speisepunkte 122, 132 in dem Bereich zwischen dem 0,4-fachen des Durchmessers einer der beiden Spiralen 110, 112 und dem 0,6-fachen des Durchmessers der entsprechenden Spirale 110, 112.
  • Durch die entsprechende Ausgestaltung wird im übrigen sichergestellt, dass die beiden Spiralen 110, 112 als zwei Arme einer Dipolantenne wirken.
  • Fig. 4a zeigt ein Blockschaltbild eines elektrischen Messaufbaus zur Bestimmung des Eingangsreflexionsfaktors einer erfindungsgemäßen Antenne. Der Messaufbau ist in seiner Gesamtheit mit 400 bezeichnet.
  • Der Messaufbau umfasst eine erfindungsgemäße Antenne 410. Diese weist an ihren Speisepunkten 412, 414 ein näherungsweise symmetrisches elektrisches Verhalten auf. Daher ist die Antenne über einen Balun 420 mit einem Netzwerkanalysator 430 gekoppelt. Der Balun 420 umfasst hierbei beispielsweise einen Balun-Transformator, so dass auf seiten des Netzwerkanalysators ein unsymmetrisches Signal 434 zur Verfügung steht. Bei dem Netzwerkanalysator 430 kann es sich je nach den erforderlichen Messdaten um einen skalaren Netzwerkanalysator oder einen vektoriellen Netzwerkanalysator handeln.
  • Fig. 4b zeigt eine grafische Darstellung des Eingangsreflexionsfaktors (bzw. der Rückflussdämpfung) in logarithmierter Form über der Frequenz für eine erfindungsgemäße Antenne gemäß einem Ausführungsbeispiel der vorliegenden Erfindung. Der vermessene Prototypen der erfindungsgemäßen Antenne wurde bei der Herstellung aus einer selbstklebenden Kupferfolie ausgeschnitten und auf ein Hörgerät geklebt. Ein Beispiel eines derartigen Prototypen ist in der Fig. 3 gezeigt. Für die Messung der Rückflussdämpfung, d.h. des Eingangsreflexionsfaktors in logarithmierter Form, wurde die Antenne 410 gemäß dem Messaufbau 400 über einen diskreten Balun 420 an den Netzwerkanalysator 430 angeschlossen (vgl. Fig. 4a). Ferner wurde das Hörgerät 240 mit der aufgeklebten Antenne 210 während der Messung an dem Ohr eines Probanden getragen, um die Auswirkungen des menschlichen Kopfes bzw. Ohres auf die Eigenschaften der Antenne mit zu berücksichtigen. Das Ergebnis der Messung ist in der grafischen Darstellung 510 gezeigt. An der Abszisse 520 ist hierbei die Frequenz in einem Bereich von 500MHz bis 1200MHz angetragen. Die Ordinate 522 zeigt die Rückflussdämpfung in einem Bereich von -80 dB bis +20 dB. Die gemessene Rückflussdämpfung ist als Funktion der Frequenz aus der Kurve 530 ersichtlich. Die Rückflussdämpfung zeigt hierbei ein deutliches Maximum bei etwa 860 MHz, wobei eine -10-dB-Bandbreite der Rückflussdämpfung etwa 35MHz beträgt. Die maximal erzielbare Rückflussdämpfung beträgt etwa 12 dB. Abseits der Nutzfrequenz geht die Rückflussdämpfung auf etwa 2 bis 3 dB zurück. Dies deutet auf eine geringe Abstrahlung der Antenne 410 hin.
  • Wie erwartet strahlt die Antenne also nur in einem Frequenzintervall um die Entwurfsfrequenz herum effektiv Leistung ab. Die -10dB-Bandbreite von etwa 35 MHz entspricht einer relativen nutzbaren Bandbreite von etwa 4 Prozent.
  • Die vorliegende Erfindung beschreibt also eine neuartige Antenne zur drahtlosen Sprach- und Datenübertragung. Die erfindungsgemäße Antenne wurde insbesondere für sehr kleine Geräte, wie z.B. Hörgeräte, die hinter dem Ohr getragen werden, konzipiert. Sie eignet sich besonders gut zum mobilen Senden und Empfangen. Ein besonderer Vorzug der erfindungsgemäßen symmetrischen Spiralantenne besteht darin, dass sie auf vergleichsweise einfache Weise in ein bestehendes System, beispielsweise ein Hörgerät, integriert werden kann. Dadurch, dass die Antenne in ein Kunststoffgehäuse integriert werden kann, kann diese so ausgeführt werden, dass sie von außen völlig unsichtbar ist. Weiterhin ist die Antenne vergleichsweise klein realisierbar und ermöglicht eine symmetrische Speisung. Daneben ist die erfindungsgemäße Antennenstruktur auch als Schlitzantenne in einer Metalloberfläche integrierbar.
  • Die erfindungsgemäße Antenne ist besonders gut dafür geeignet, in ein Hörgerät integriert zu werden. Aufgrund der geringen Baugröße und der Integrierbarkeit in ein Kunststoffgehäuse sind für eine erfindungsgemäße Antenne aber auch andere Anwendungsgebiete, wie beispielsweise Pager und Mobiltelefone, denkbar.

Claims (14)

  1. Antenne (100; 210) mit folgenden Merkmalen:
    einem ersten Strahler (110), der eine erste Spirale (120) aufweist; und
    einem zweiten Strahler (112), der eine zweite Spirale (130) aufweist,
    wobei der erste Strahler (110) an einem äußeren Ende (124) der ersten Spirale (120) einen ersten Speisepunkt (122) aufweist und an einem inneren Ende (126) der ersten Spirale (120) ein offenes Ende aufweist;
    wobei der zweite Strahler (112) an einem äußeren Ende (134) der zweiten Spirale (130) einen zweiten Speisepunkt (132) aufweist, und an einem inneren Ende (136) der zweiten Spirale (130) ein offenes Ende aufweist,
    wobei die erste Spirale (120) und die zweite Spirale (130) räumlich beabstandet sind,
    wobei die erste Spirale (120) und die zweite Spirale (130) einen gleichen Wickelsinn aufweisen, und
    bei der der erste Strahler (110) und der zweite Strahler (112) derart ausgebildet sind, dass der erste Strahler als ein erster Arm einer Dipolantenne wirkt, während der zweite Strahler (112) als ein zweiter Arm der Dipolantenne wirkt;
    wobei der erste Strahler und der zweite Strahler in einer gleichen Ebene oder auf einer gleichen Materialoberfläche liegen;
    dadurch gekennzeichnet daß ein Abstand zwischen dem ersten Speisepunkt (122) und dem zweiten Speisepunkt (132) mindestens das 5*10-3-fache einer Freiraumwellenlänge bei einer Betriebsfrequenz, für die die Antenne ausgelegt ist, beträgt; und
    wobei ein minimaler Abstand zwischen der ersten Spirale und der zweiten Spirale zwischen einem 0,3-fachen des Durchmessers einer Spirale und einem 0,5-fachen des Durchmessers einer Spirale liegt.
  2. Antenne (100; 210) gemäß Anspruch 1, wobei ein Abstand der Speisepunkte zwischen einem 0,4-fachen eines Durchmessers einer der beiden Spiralen und einem 0,6-fachen eines Durchmessers einer der beiden Spiralen liegt.
  3. Antenne (100; 210) gemäß Anspruch 1 oder 2, bei der ein Abstand zwischen einem Schwerpunkt der ersten Spirale (120), der als ein geometrischer Schwerpunkt einer Linie, die den Verlauf der ersten Spirale (120) beschreibt, definiert ist, und einem Schwerpunkt der zweiten Spirale (130), der als ein geometrischer Schwerpunkt einer Linie, die den Verlauf der zweiten Spirale (130) beschreibt, definiert ist, größer ist als die Hypotenuse eines rechtwinkligen Dreiecks, dessen erste Kathete eine Länge aufweist, die gleich einem halben Durchmesser der ersten Spirale (120) ist, und dessen zweite Kathete eine Länge aufweist, die gleich einem halben Durchmesser der zweiten Spirale (130) ist.
  4. Antenne (100; 210) gemäß einem der Ansprüche 1 bis 3, bei der die erste Spirale (120) eine erste Spiralenträgerfläche und eine erste Spiralenachse aufweist, und bei der die zweite Spirale (130) eine zweite Spiralenträgerfläche und eine zweite Spiralenachse aufweist, wobei eine Parallelprojektion der ersten Spiralenträgerfläche in Richtung der ersten Spiralenachse die zweite Spiralenträgerfläche nicht schneidet, und wobei eine Parallelprojektion der zweiten Spiralenträgerfläche in Richtung der zweiten Spiralenachse die erste Spiralenträgerfläche meidet.
  5. Antenne (100; 210) gemäß einem der Ansprüche 1 bis 4, bei der erste Strahler (110) und der zweite Strahler (112) elektrisch leitfähige Strukturen sind.
  6. Antenne (100; 210) gemäß einem der Ansprüche 1 bis 4, bei der der erste Strahler (110) und der zweite Strahler (112) strahlende Schlitze sind.
  7. Antenne (100; 210) gemäß einem der Ansprüche 1 bis 6, wobei die Antenne so ausgelegt ist, dass sie an dem ersten Speisepunkt und dem zweiten Speisepunkt ein bezüglich eines Bezugspotentials im Wesentlichen symmetrisches elektrisches Verhalten aufweist.
  8. Antenne (210) gemäß einem der Ansprüche 1 bis 7, bei der der erste Strahler (110) und der zweite Strahler (112) auf einer Oberfläche eines dielektrischen Materials (220) gebildet sind.
  9. Antenne (210) gemäß Anspruch 8, wobei die Oberfläche des dielektrischen Materials (220) gewölbt ist.
  10. Antenne (210) gemäß einem der Ansprüche 1 bis 9, bei der der erste Strahler (110) und der zweite Strahler (112) in ein Gehäuse (220) integriert sind, das aus einem dielektrischen Material gebildet ist und das eine elektronische Schaltung häust.
  11. Antenne (210) gemäß Anspruch 10, bei der das Gehäuse Teil einer Hinterohr-Hörhilfe ist, die ausgelegt ist, um hinter einer Ohrmuschel eines Menschen getragen zu werden.
  12. Antenne (100; 210) gemäß einem der Ansprüche 1 bis 11, die für eine Arbeitsfrequenz in einem Bereich zwischen 500 MHz und 6 GHz ausgelegt ist.
  13. Antenne (100; 210) gemäß einem der Ansprüche 1 bis 12, die eine maximale Abmessung von höchstens 10 cm aufweist.
  14. Antenne (100; 210) gemäß einem der Ansprüche 1 bis 12, bei der eine maximale Abmessung der Antenne weniger als ein Fünftel einer Freiraumwellenlänge bei einer Betriebsfrequenz, für die die Antenne (100; 210) ausgelegt ist, beträgt.
EP06706941A 2005-02-22 2006-02-14 Doppelspiralantenne Active EP1851823B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005008063A DE102005008063B4 (de) 2005-02-22 2005-02-22 Antenne
PCT/EP2006/001335 WO2006089666A1 (de) 2005-02-22 2006-02-14 Doppelspiralantenne

Publications (2)

Publication Number Publication Date
EP1851823A1 EP1851823A1 (de) 2007-11-07
EP1851823B1 true EP1851823B1 (de) 2008-11-05

Family

ID=36190402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06706941A Active EP1851823B1 (de) 2005-02-22 2006-02-14 Doppelspiralantenne

Country Status (6)

Country Link
US (1) US7646356B2 (de)
EP (1) EP1851823B1 (de)
AT (1) ATE413698T1 (de)
DE (2) DE102005008063B4 (de)
DK (1) DK1851823T3 (de)
WO (1) WO2006089666A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593538B2 (en) 2005-03-28 2009-09-22 Starkey Laboratories, Inc. Antennas for hearing aids
US8494197B2 (en) 2008-12-19 2013-07-23 Starkey Laboratories, Inc. Antennas for custom fit hearing assistance devices
US8565457B2 (en) 2008-12-19 2013-10-22 Starkey Laboratories, Inc. Antennas for standard fit hearing assistance devices
US8699733B2 (en) 2008-12-19 2014-04-15 Starkey Laboratories, Inc. Parallel antennas for standard fit hearing assistance devices
US8737658B2 (en) 2008-12-19 2014-05-27 Starkey Laboratories, Inc. Three dimensional substrate for hearing assistance devices
WO2014090419A1 (de) 2012-12-12 2014-06-19 Siemens Medical Instruments Pte. Ltd. Modulare antenne für hörgeräte
US9980062B2 (en) 2012-12-12 2018-05-22 Sivantos Pte. Ltd. Hearing aid and method for producing a hearing aid
US10142747B2 (en) 2008-12-19 2018-11-27 Starkey Laboratories, Inc. Three dimensional substrate for hearing assistance devices

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774961B2 (en) 2005-06-05 2017-09-26 Starkey Laboratories, Inc. Hearing assistance device ear-to-ear communication using an intermediate device
US8041066B2 (en) 2007-01-03 2011-10-18 Starkey Laboratories, Inc. Wireless system for hearing communication devices providing wireless stereo reception modes
US7548211B2 (en) * 2006-03-30 2009-06-16 Phonak Ag Wireless audio signal receiver device for a hearing instrument
US8208642B2 (en) 2006-07-10 2012-06-26 Starkey Laboratories, Inc. Method and apparatus for a binaural hearing assistance system using monaural audio signals
US7586462B1 (en) * 2007-01-29 2009-09-08 Stephen G. Tetorka Physically small spiral antenna
US9420385B2 (en) 2009-12-21 2016-08-16 Starkey Laboratories, Inc. Low power intermittent messaging for hearing assistance devices
US9041618B2 (en) * 2010-04-11 2015-05-26 Broadcom Corporation Three-dimensional multiple spiral antenna and applications thereof
US20130343586A1 (en) 2012-06-25 2013-12-26 Gn Resound A/S Hearing aid having a slot antenna
US8878735B2 (en) 2012-06-25 2014-11-04 Gn Resound A/S Antenna system for a wearable computing device
US20140023216A1 (en) * 2012-07-17 2014-01-23 Starkey Laboratories, Inc. Hearing assistance device with wireless communication for on- and off- body accessories
US9374650B2 (en) 2012-07-17 2016-06-21 Starkey Laboratories, Inc. System and method for embedding conductive traces into hearing assistance device housings
US9319808B2 (en) * 2012-11-19 2016-04-19 Gn Resound A/S Hearing aid having a near field resonant parasitic element
US9414170B2 (en) * 2012-12-28 2016-08-09 Gn Resound A/S Hearing aid having an adaptive antenna matching mechanism and a method for adaptively matching a hearing aid antenna
DK2750408T3 (da) * 2012-12-28 2019-06-11 Gn Hearing As Høreapparat med en adaptiv antennetilpasningsmekanisme og en fremgangsmåde til adaptiv tilpasning af en høreapparatantenne
US9191757B2 (en) * 2013-07-11 2015-11-17 Starkey Laboratories, Inc. Hearing aid with inductively coupled electromagnetic resonator antenna
US9743198B2 (en) * 2014-01-15 2017-08-22 Starkey Laboratories, Inc. Systems and methods for hearing assistance device antenna
US10165376B2 (en) * 2015-03-31 2018-12-25 Starkey Laboratories, Inc. Non-contact antenna feed
US20160330552A1 (en) 2015-05-07 2016-11-10 Starkey Laboratories, Inc. Hearing aid bowtie antenna optimized for ear to ear communications
DK3103511T3 (da) * 2015-06-11 2019-06-03 Oticon As Cochlear høreanordning med kabelantenne
EP3110175B1 (de) * 2015-06-24 2020-03-25 Oticon A/s Hörgerät mit in batterieschublade eingebetteter antenneneinheit
US10257624B2 (en) * 2015-08-17 2019-04-09 Starkey Laboratories, Inc. Hearing aid wireless antenna molded into the device shell
US10297910B2 (en) 2016-10-21 2019-05-21 Starkey Laboratories, Inc. Hearing device with bowtie antenna optimized for specific band
DE102016222323A1 (de) * 2016-11-14 2018-05-17 Sivantos Pte. Ltd. Hörhilfegerät mit Elektronikrahmen und darin integrierter Antenne
US10256529B2 (en) 2016-11-15 2019-04-09 Starkey Laboratories, Inc. Hearing device incorporating conformal folded antenna
DK3343953T3 (da) * 2016-12-29 2022-08-29 Oticon As Høreanordning der indbefatter en ekstern antenne og et indvendigt parasitisk element
EP3343955B1 (de) 2016-12-29 2022-07-06 Oticon A/s Anordnung für ein hörgerät
DK3499913T3 (da) * 2017-12-14 2021-02-01 Gn Hearing As Multiarmdipolantenne til høreinstrument
CN108281783B (zh) * 2018-03-06 2023-07-28 厦门大学嘉庚学院 折线螺旋偶极子-互补缝隙复合超宽频带天线
WO2020132542A1 (en) * 2018-12-21 2020-06-25 Starkey Laboratories, Inc. Ear-worn devices with high-dielectric structural elements
EP3994898A1 (de) * 2019-07-03 2022-05-11 Starkey Laboratories, Inc. Zirkular polarisierte spiralantenne für hörhilfegeräte
EP3972288B1 (de) * 2020-09-17 2024-11-06 Sonova AG Hörvorrichtung
DE102022205231A1 (de) 2022-05-25 2023-11-30 Sivantos Pte. Ltd. Hörgerät mit einer Multifeed-Antennenvorrichtung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3039099A (en) * 1959-06-25 1962-06-12 Herman N Chait Linearly polarized spiral antenna system
US4387379A (en) * 1980-10-14 1983-06-07 Raytheon Company Radio frequency antenna
JPS62216407A (ja) * 1986-03-17 1987-09-24 Nippon Dengiyou Kosaku Kk スパイラルアンテナ
DE19904943B4 (de) * 1999-02-06 2005-11-03 Robert Bosch Gmbh Spiralantenne
US6067058A (en) * 1999-03-03 2000-05-23 Lockhead Martin Corporation End-fed spiral antenna, and arrays thereof
US6130652A (en) 1999-06-15 2000-10-10 Trw Inc. Wideband, dual RHCP, LHCP single aperture direction finding antenna system
US6445354B1 (en) * 1999-08-16 2002-09-03 Novatel, Inc. Aperture coupled slot array antenna
EP1158606B1 (de) 2000-05-26 2004-10-06 Sony International (Europe) GmbH Doppel-Spiralte Schlitzantenne für Zirkularpolarisation
US6362796B1 (en) * 2000-09-15 2002-03-26 Bae Systems Aerospace Electronics Inc. Broadband antenna
WO2002093685A1 (en) * 2001-05-17 2002-11-21 Cypress Semiconductor Corp. Ball grid array antenna
DE60102574T2 (de) 2001-06-26 2005-02-03 Sony International (Europe) Gmbh Gedruckte Dipolantenne mit dualen Spiralen
US6466177B1 (en) * 2001-07-25 2002-10-15 Novatel, Inc. Controlled radiation pattern array antenna using spiral slot array elements
US6710744B2 (en) 2001-12-28 2004-03-23 Zarlink Semiconductor (U.S.) Inc. Integrated circuit fractal antenna in a hearing aid device
DE10236469B3 (de) 2002-08-08 2004-02-12 Siemens Audiologische Technik Gmbh Drahtlos programmierbares Hörhilfsgerät
US7391383B2 (en) * 2002-12-16 2008-06-24 Next-Rf, Inc. Chiral polarization ultrawideband slot antenna
US20040196996A1 (en) 2003-04-02 2004-10-07 Feitel Mark A. Hearing aid and hearing aid accessory cosmetic and functional cover
US6922179B2 (en) * 2003-11-17 2005-07-26 Winegard Company Low profile television antenna

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7593538B2 (en) 2005-03-28 2009-09-22 Starkey Laboratories, Inc. Antennas for hearing aids
US8180080B2 (en) 2005-03-28 2012-05-15 Starkey Laboratories, Inc. Antennas for hearing aids
US10194253B2 (en) 2005-03-28 2019-01-29 Starkey Laboratories, Inc. Antennas for hearing aids
US9451371B2 (en) 2005-03-28 2016-09-20 Starkey Laboratories, Inc. Antennas for hearing aids
US9294850B2 (en) 2008-12-19 2016-03-22 Starkey Laboratories, Inc. Parallel antennas for standard fit hearing assistance devices
US8565457B2 (en) 2008-12-19 2013-10-22 Starkey Laboratories, Inc. Antennas for standard fit hearing assistance devices
US12041420B2 (en) 2008-12-19 2024-07-16 Starkey Laboratories, Inc. Antennas for standard fit hearing assistance devices
US9167360B2 (en) 2008-12-19 2015-10-20 Starkey Laboratories, Inc. Antennas for custom fit hearing assistance devices
US9179227B2 (en) 2008-12-19 2015-11-03 Starkey Laboratories, Inc. Antennas for standard fit hearing assistance devices
US9264826B2 (en) 2008-12-19 2016-02-16 Starkey Laboratories, Inc. Three dimensional substrate for hearing assistance devices
US8699733B2 (en) 2008-12-19 2014-04-15 Starkey Laboratories, Inc. Parallel antennas for standard fit hearing assistance devices
US8737658B2 (en) 2008-12-19 2014-05-27 Starkey Laboratories, Inc. Three dimensional substrate for hearing assistance devices
US10966035B2 (en) 2008-12-19 2021-03-30 Starkey Laboratories, Inc. Antennas for standard fit hearing assistance devices
US9602934B2 (en) 2008-12-19 2017-03-21 Starkey Laboratories, Inc. Antennas for standard fit hearing assistance devices
US9743199B2 (en) 2008-12-19 2017-08-22 Starkey Laboratories, Inc. Parallel antennas for standard fit hearing assistance devices
US8494197B2 (en) 2008-12-19 2013-07-23 Starkey Laboratories, Inc. Antennas for custom fit hearing assistance devices
US10142747B2 (en) 2008-12-19 2018-11-27 Starkey Laboratories, Inc. Three dimensional substrate for hearing assistance devices
US9980062B2 (en) 2012-12-12 2018-05-22 Sivantos Pte. Ltd. Hearing aid and method for producing a hearing aid
US9571944B2 (en) 2012-12-12 2017-02-14 Sivantos Pte. Ltd. Hearing aid and method for producing a hearing aid
WO2014090419A1 (de) 2012-12-12 2014-06-19 Siemens Medical Instruments Pte. Ltd. Modulare antenne für hörgeräte

Also Published As

Publication number Publication date
WO2006089666A1 (de) 2006-08-31
ATE413698T1 (de) 2008-11-15
DK1851823T3 (da) 2009-03-09
EP1851823A1 (de) 2007-11-07
DE102005008063B4 (de) 2008-05-15
DE102005008063A1 (de) 2006-08-24
US7646356B2 (en) 2010-01-12
DE502006002001D1 (de) 2008-12-18
US20080272980A1 (en) 2008-11-06

Similar Documents

Publication Publication Date Title
EP1851823B1 (de) Doppelspiralantenne
DE69608132T2 (de) Schlitzspiralantenne mit integrierter symmetriereinrichtung und integrierter zuleitung
DE69923558T2 (de) Wendelantenne
DE69732975T2 (de) Kleine antenne für tragbares funkgerät
DE69633990T2 (de) Antenne
DE60034042T2 (de) Rahmenantenne mit vier resonanzfrequenzen
DE60109608T2 (de) Antenne und funkgerät mit einer derartigen antenne
DE60128103T2 (de) Zellulares telefon
EP1204160B1 (de) Mehrband-Mikrowellenantenne
EP1195845B1 (de) Miniaturisierte Mikrowellenantenne
DE69220344T2 (de) Tragbare Funk- und Funktelefongeräte mit Schlitzen darin
DE102005015561A1 (de) Interne Breitbandantenne
DE10347719A1 (de) Innere Antenne für ein mobiles Kommunikationsgerät
DE19533105A1 (de) Hochempfindliche, ungerichtete Schleifenantennenanordnung, die geeignet ist für eine Verwendung in einem Kraftfahrzeug
DE60128700T2 (de) Drahtloses funkgerät
DE102012014913A1 (de) Elektrisch kleiner Strahler für vertikal polarisierte Funksignale
DE112010000731T5 (de) Interne fm-antenne
DE69725972T2 (de) Wendelantenne mit integriertem duplexer und verfahren zu deren herstellung
DE69735983T2 (de) Antennenvorrichtung
DE112015003200T5 (de) Mehrband-Antennensystem
DE102011004316B4 (de) Mehrbandantenne geeignet für C2X-Verbindungen
DE19729664C2 (de) Planare Breitbandantenne
DE60302331T2 (de) Einrichtung zum empfangen und/oder emittieren elektromagnetischer wellen mit strahlungs-diversity
DE69722590T2 (de) ANTENNE FÜR FREQUENZEN ÜBER 200 MHz
EP1312136B1 (de) Verkürzter schleifen-dipol und schleifen-monopol

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BERNHARD, JOSEF

Inventor name: FISCHER, THOMAS

Inventor name: WANSCH, RAINER

Inventor name: ADEL, HANS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AUDIOLOGISCHE TECHNIK GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006002001

Country of ref document: DE

Date of ref document: 20081218

Kind code of ref document: P

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090305

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090205

BERE Be: lapsed

Owner name: SIEMENS AUDIOLOGISCHE TECHNIK G.M.B.H.

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090406

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

26N No opposition filed

Effective date: 20090806

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090228

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002001

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006002001

Country of ref document: DE

Representative=s name: FDST PATENTANWAELTE FREIER DOERR STAMMLER TSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006002001

Country of ref document: DE

Owner name: SIVANTOS GMBH, DE

Free format text: FORMER OWNER: SIEMENS AUDIOLOGISCHE TECHNIK GMBH, 91058 ERLANGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240216

Year of fee payment: 19

Ref country code: CH

Payment date: 20240301

Year of fee payment: 19

Ref country code: GB

Payment date: 20240222

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240221

Year of fee payment: 19

Ref country code: DK

Payment date: 20240221

Year of fee payment: 19