[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1845080B1 - Verfahren zur Herstellung von Anilin - Google Patents

Verfahren zur Herstellung von Anilin Download PDF

Info

Publication number
EP1845080B1
EP1845080B1 EP07075104.5A EP07075104A EP1845080B1 EP 1845080 B1 EP1845080 B1 EP 1845080B1 EP 07075104 A EP07075104 A EP 07075104A EP 1845080 B1 EP1845080 B1 EP 1845080B1
Authority
EP
European Patent Office
Prior art keywords
aniline
alkali metal
extraction
metal hydroxide
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07075104.5A
Other languages
English (en)
French (fr)
Other versions
EP1845080A1 (de
Inventor
Markus Dugal
Franz-Ulrich Gehlen
Stefan Wershofen
Andre Lago
Peter Lehner
Werner BÄCKER
Benie Marotz
Horst Brinkschulte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer Intellectual Property GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property GmbH filed Critical Bayer Intellectual Property GmbH
Publication of EP1845080A1 publication Critical patent/EP1845080A1/de
Application granted granted Critical
Publication of EP1845080B1 publication Critical patent/EP1845080B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/45Monoamines
    • C07C211/46Aniline

Definitions

  • the invention relates to a process for the preparation and purification of aniline by extraction of crude aniline with aqueous alkali metal hydroxide solution (alkali metal hydroxide solution), wherein the concentration of the alkali metal hydroxide solution used and the temperature are adjusted so that during the phase separation, the aqueous phase is the lower phase ,
  • Aniline is an important intermediate, for example for the preparation of methylene diphenyl diisocyanate (MDI) and is usually produced on an industrial scale by catalytic hydrogenation of nitrobenzene with hydrogen (see, for example, US Pat DE-OS 2 201 528 . DE-OS 3 414 714 . US 3,136,818 . EP 0 696 573 and EP 0 696 574 ).
  • secondary components such as, for example, phenols or aminophenols are formed in this reaction, which must be removed by distillation prior to further use of the aniline in subsequent processes.
  • the registration JP-A-08-295654 describes as an alternative to the removal of phenolic compounds from aniline extraction with dilute aqueous sodium hydroxide (or potassium hydroxide), whereby the phenol is transferred as sodium phenolate largely in the aqueous phase, which is separated by the subsequent phase separation as the upper phase.
  • the adjustment of the sodium hydroxide concentration in a range of ⁇ 0.7 wt .-% is given as necessary in order to avoid a phase reversal and thus problems in the phase separation.
  • a molar ratio of NaOH: phenol in the range of 3-100: 1 is required for an effective reduction of the phenol content.
  • a disadvantage of this method is the limitation to highly dilute aqueous alkali hydroxide ⁇ 0.7 wt .-% to avoid phase separation problems and phase reversal, as a result, given a required molar alkali: phenol ratio, the amount of alkali-phenolate-containing wastewater relatively large can be, which brings ecological and economic disadvantages.
  • the object of the present invention is therefore to provide a simple and economical process for the purification of aniline which has been prepared by catalytic hydrogenation of nitrobenzene, in which it is possible to dispense with the expensive distillation and at the same time reduces the size of the wastewater streams can be.
  • the crude aniline used can come from all technically customary processes for the hydrogenation of nitrobenzene. Preference is given to the hydrogenation of nitrobenzene in the gas phase on stationary, heterogeneous supported catalysts, such as Pd on alumina or charcoal, in fixed bed reactors at a pressure of 2-50 bar and a temperature in the range of 250-500 ° C under adiabatic conditions in cycle gas mode, ie, with recycling of unreacted hydrogen during the hydrogenation, carried out (see EP-A-0 696 573 and EP-A-0 696 574 ).
  • heterogeneous supported catalysts such as Pd on alumina or charcoal
  • an alkali metal hydroxide solution in a concentration range of> 0.7 wt .-% of alkali metal hydroxide, based on the weight of the alkali metal hydroxide solution, used to achieve that in the separation of the aqueous and the organic phase the aqueous phase represents lower phase.
  • the presence of the aqueous phase is additionally promoted as the lower phase.
  • the procedure according to the invention therefore makes it possible to ensure that no phase separation problems or phase reversal occur in the phase separation contained in the extraction.
  • the aqueous phase is always the lower phase, a phase reversal during the separation, for example in the phase separation vessel, therefore does not occur.
  • Sodium hydroxide solution or potassium hydroxide solution is preferably used as the alkali metal hydroxide solution. Particular preference is given to using sodium hydroxide solution. In principle, however, all alkali metal hydroxide solutions can be used. Also, the use of alkaline earth metal hydroxides or other water-soluble basic compounds such. Alkali or alkaline earth metal carbonates or bicarbonates is conceivable in principle.
  • the preferred concentration range of the alkali metal hydroxide solution used is between 0.71 and 35% by weight of alkali metal hydroxide, preferably between 0.75 and 10% by weight, based on the weight of the alkali metal hydroxide solution.
  • the temperature in the extraction preferably in the range between 20 ° C and 140 ° C, more preferably between 30 ° C and 100 ° C, most preferably between 50 ° C and 95 ° C.
  • the temperature during the phase separation which is a component of the extraction, in the same areas.
  • the choice of the appropriate combination of the concentration of the alkali metal hydroxide solution and the temperature during the extraction depends in addition to the achievement of an underlying aqueous phase in the phase separation according to the respective relevant process engineering and economic criteria.
  • a minimization of the temperature may be useful, on the other hand, it may be procedurally advantageous to condense the Rohanilin at a higher temperature after the reaction and then extract at the same temperature.
  • too high a concentration of the alkali metal hydroxide solution may result in reduced extraction efficiency and extended separation times if the organics / water ratio becomes too great and too low a concentration of the alkali metal hydroxide solution leads to the disadvantages of excessive wastewater.
  • the water used to prepare the aqueous alkali metal hydroxide solution is preferably completely or partially taken from the reaction water from the hydrogenation reaction of nitrobenzene, whereby an additional reduction in the total wastewater load of the aniline production process can be achieved.
  • water can also be used from any other source.
  • the dilute alkali metal hydroxide solution used for extraction is usually generated by adding a concentrated alkali metal hydroxide solution to the feed water, the concentrated alkali metal hydroxide solution containing the alkali metal hydroxide, eg NaOH or KOH, in preferred concentrations of 2 to 50 wt. % Alkali metal hydroxide, based on the weight of the alkali hydroxide solution.
  • the separators may be provided with coalescing aids, e.g. Knitted, plates or packings are provided.
  • the purified aniline obtainable in the process according to the invention preferably contains less than 0.01% by weight, more preferably less than 0.005% by weight of phenolic compounds in total, based on the weight of the aniline.
  • phenolic compounds also include those benzene derivatives which, in addition to the OH function, also carry further functional groups, such as. e.g. Aminophenols.
  • distillation or washing stages may be preceded and / or followed by extraction with alkali metal hydroxide solutions to achieve even higher levels of aniline purity, but are not essential.
  • the subsequent or upstream washing and / or distillation steps can be configured in all variants familiar to the person skilled in the art and operated under a wide variety of conditions.
  • distillation may e.g. take place in one or more bubble tray or packing columns, but also in dividing wall columns. In this case, low boilers and high boiler separation in different columns, but also together in a column with side stream of aniline take place.
  • the distillative workup of largely purified phenolic compounds Rohanilins can be done by various methods under adjustment of a wide range of conditions.
  • the distillation can be carried out in one or more stages in different column types, preferably in conventional rectification columns or in versions as dividing wall columns and with the various internals such as screen, valve or bubble cap trays, packing or packings. Other designs are possible.
  • the operating parameters head pressure and reflux ratio must always be selected as a function of the composition of the rohaniline, the specification / purity of the purified aniline (pure aniline) and the available separation stages.
  • low boilers such as water, benzene, cyclohexane, cyclohexylamine, cyclohexanone and high boilers
  • high boilers such as phenol, Alkaliphenolate, Aminophenole, Alkaliaminophenolate, phenylenediamines, diphenylamine, etc.
  • low boilers such as water, benzene, cyclohexane, cyclohexylamine, cyclohexanone
  • high boilers such as phenol, Alkaliphenolate, Aminophenole, Alkaliaminophenolate, phenylenediamines, diphenylamine, etc.
  • the distillative purification of phenol compounds largely purified crude aniline is carried out in a preferred embodiment in a sidestream column, more preferably in a dividing wall column, with removal of the low boilers from the top, removal of the high boilers at the bottom and removal of the pure aniline in the side stream. Furthermore, the bottoms product of the high boiler separation can optionally be further concentrated in a residue column to minimize aniline loss.
  • the feed of the largely purified phenolic compounds Rohanilins in the distillation column can be carried out at any point of the column, but preferably the feed is carried out according to the concentration profile of the aniline in the distillation column in the column center or in the lower half of the column.
  • the column may have an output and / or an amplifier part.
  • the inlet temperature in the column, and the sump temperature, top pressure and reflux ratio are adjustable and can be adapted to the separation task, as well as the qualitative, operational and economic requirements.
  • the temperature at the top of the column adjusts according to the selected default settings of said parameters and the composition of the liquid phase and the vapor phase in the column.
  • Preferred conditions for operating parameters of the distillation column are absolute pressures of from 10 to 1000 mbar, particularly preferably from 10 to 500 mbar, and reflux ratios of from 0.1 to 3, particularly preferably from 0.3 to 0.8.
  • the feed or metered addition of the crude urethane is carried out in a low-boiling column in which the low boilers, including the water, are separated off at the top of the column.
  • the resulting in the bottom mixture containing aniline and high boilers is then fed to a further distillation step (high boiler separation or pure distillation).
  • a concentration of the bottoms in a residue column optionally follows, wherein the aniline obtained overhead in the residue column can be recycled back to the column of high boiler separation or purifying distillation or into the low boiler column or the upstream phase separation.
  • the feed of the crude aniline, which is substantially purified from phenolic compounds is introduced into a combined low boiler and low boiler column (side stream column), the low boilers being discharged overhead, the high boiler as the bottom phase and the reinaniline as the side stream.
  • This sidestream column can be realized both as a conventional column (ie without a dividing wall) and as a dividing wall column.
  • This variant, in which a sidestream column or dividing wall column is used, requires a phase separation of the condensed vapors taken off at the top, which essentially contain the azeotrope water / aniline and low boilers. Water and dissolved in the aqueous phase low boilers are preferably removed, the aniline is preferably recycled to the column.
  • the vapors taken off at the top of the side stream column are preferably condensed in a two-stage condensation.
  • the first condenser preferably partially condenses the heavier components of the vapors.
  • the blown low-boilers are preferably condensed, which can thus be discharged separately.
  • the partial condensate from the first condenser is fed to a phase separation. Water and dissolved in the aqueous phase low boilers are preferably removed, the aniline is preferably recycled to the column.
  • the removed in the side stream pure aniline is preferably partially abandoned as reflux to the sidestream column below the removal point of the side stream.
  • the sidestream intake can be realized as a total or partial withdrawal. In both cases, a targeted adjustment of the reflux ratio can be realized.
  • the alkali metal hydroxide solution used for the extraction can be recycled after extraction, if necessary after additional purification and / or concentration, and reused for extraction.
  • the alkali metal hydroxide solution used for the extraction if appropriate after additional purification, can be supplied to a wastewater stream which is supplied to a sewage treatment plant, for example, after subsequent work-up.
  • the aniline obtained by the process according to the invention can then be reacted with formaldehyde in the presence of an acid catalyst to di- and polyamines of the diphenylmethane series according to the methods known from the prior art.
  • the di- and polyamines can then be reacted with phosgene according to methods known from the prior art to give the corresponding diisocyanates and polyisocyanates of the diphenylmethane series.
  • FIGS. 1 and 2 show a schematic representation of preferred embodiments of the method according to the invention.
  • FIG. 1 a preferred embodiment of the method according to the invention is shown.
  • the mixture 1 is converted from Rohanilin and water of reaction in a phase separator B.
  • the crude urethane 2 is passed into a first mixer-settler extraction stage C.
  • the water 3 is adjusted by the addition of sodium hydroxide solution 4 from a reservoir G to the desired NaOH concentration and passed into a second mixer-settler extraction stage D.
  • the once extracted aniline 5 from the first extraction stage C is passed into the second extraction stage D, while the aqueous sodium hydroxide solution 6 separated as the lower phase is transferred from the second extraction stage D in countercurrent to the first extraction stage C. That twice Extracted aniline 7 is then fed to a distillative workup stage E, the aqueous phase separated as the lower phase aqueous alkali solution 8 from the first mixer-settler extraction stage C is fed to a wastewater treatment stage F.
  • FIG. 2 an alternative, likewise preferred embodiment of the method according to the invention is shown.
  • the mixture 1 is converted from Rohanilin and water of reaction in a phase separator B.
  • the Rohanilin 2 is passed into a first mixer-settler extraction stage C.
  • the separated in the phase separator B reaction water 3 is first fed to a washing stage H, in which the twice extracted with NaOH solution aniline 7 is washed before distillation E.
  • the separated water 9 from the washing stage H is mixed with sodium hydroxide solution 4 from a feed tank G and transferred to the second extraction stage D.
  • the once extracted aniline 5 from the first extraction stage C is passed into the second extraction stage D, while the aqueous sodium hydroxide solution 6 separated as the lower phase is transferred from the second extraction stage D in countercurrent to the first extraction stage C.
  • the twice extracted aniline 7 is supplied after the scrubbing H to a distillative workup stage E as stream 10, the lower phase separated aqueous alkali solution 8 from the first mixer-settler extraction stage C is fed to a wastewater treatment stage F.
  • the aqueous alkali solution 8 can be circulated and, if appropriate, with the discharge of a partial amount and supplemented by fresh alkali solution, transferred again to the second mixer-settler extraction stage D for extraction.
  • the extraction in both modes can also be carried out in one stage or more than two stages.
  • GC gas chromatography
  • AAS atomic absorption spectroscopy
  • Example 1 a phenol-containing Rohanilin is purified by the method according to the invention and purified aniline (Reinanilin) obtained.
  • Reinanilin purified aniline
  • the aqueous phase in the phase separation containers (settler) is the lower phase.
  • Table 1 The operating parameters are summarized in Table 1. A phenol depletion of 939 ppm to 35 ppm is achieved (Table 1).
  • Example 3 50 g of a phenolic Rohanilins by a two-stage cross-flow extraction in separatory funnels at 90 ° C and an organic to aqueous phase ratio of 5.0: 1 with 1.5 wt .-% NaOH solution (1.5 wt.% NaOH based on the weight of the NaOH solution) extracted.
  • the aqueous phase in the phase separation containers (settler) is the lower phase.
  • the obtained purified aniline is supplied to a water wash to reduce the residual Na content.
  • the phenol content in Rohanilin is thereby reduced from 494 ppm to 50 ppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung und Aufreinigung von Anilin durch Extraktion von Roh-Anilin mit wässriger Alkalimetallhydroxid-Lösung (Alkalilauge), wobei die Konzentration der eingesetzten Alkalilauge und die Temperatur so eingestellt werden, dass bei der Phasentrennung die wässrige Phase die untere Phase darstellt.
  • Anilin ist wichtiges Zwischenprodukt z.B. zur Herstellung von Methylendiphenyldiisocyanat (MDI) und wird im großtechnischen Maßstab in der Regel durch katalytische Hydrierung von Nitrobenzol mit Wasserstoff hergestellt (siehe z.B. DE-OS 2 201 528 , DE-OS 3 414 714 , US 3 136 818 , EP 0 696 573 und EP 0 696 574 ). Bei dieser Reaktion werden neben dem Zielprodukt Anilin auch Nebenkomponenten wie z.B. Phenole oder Aminophenole gebildet, die vor einer weiteren Anwendung des Anilins in Folgeprozessen durch Destillation entfernt werden müssen. Insbesondere die Trennung von Phenol und Anilin stellt aufgrund der eng zusammen liegenden Siedepunkte für die Destillationstechnik eine große Herausforderung dar, was sich in der Verwendung langer Destillationskolonnen mit großer Trennstufenzahl und hoher Rücklaufverhältnisse mit entsprechend hohem Investitions- und Energieaufwand widerspiegelt.
  • Die Anmeldung JP-A-08-295654 beschreibt als Alternative zur Entfernung von phenolischen Verbindungen aus Anilin eine Extraktion mit verdünnter wässriger Natronlauge (oder Kalilauge), wodurch das Phenol als Natriumphenolat großenteils in die wässrige Phase transferiert wird, die durch die anschließende Phasentrennung als obere Phase abgetrennt wird. Dabei wird die Einstellung der Natronlaugekonzentration in einem Bereich von < 0,7 Gew.-% als notwendig angeführt, um eine Phasenumkehr und somit Probleme bei der Phasentrennung zu vermeiden. Für eine effektive Reduzierung des Phenolgehaltes ist ein molares Verhältnis NaOH : Phenol im Bereich von 3-100:1 erforderlich.
  • Nachteilig bei diesem Verfahren ist die Limitierung auf stark verdünnte wässrige Alkalihydroxidlösungen < 0,7 Gew.-% zur Vermeidung von Phasentrennproblemen und Phasenumkehr, da hierdurch bei einem gegebenen erforderlichen molaren Alkali:Phenol-Verhältnis die Menge an Alkali-Phenolat-haltigem Abwasser relativ groß werden kann, was ökologische und ökonomische Nachteile mit sich bringt.
  • Die Aufgabe der vorliegenden Erfindung ist daher, ein einfaches und wirtschaftliches Verfahren zur Aufreinigung von Anilin, das durch katalytische Hydrierung von Nitrobenzol hergestellt wurde, zur Verfügung zu stellen, bei dem auf die aufwendige Destillation verzichtet werden kann und bei dem gleichzeitig die Größe der Abwasserströme reduziert werden kann.
  • Die Erfindung betrifft ein Verfahren zur Herstellung von Anilin, bei dem
    1. a) Roh-Anilin durch Hydrierung von Nitrobenzol in Gegenwart eines Katalysators hergestellt wird, und
    2. b) das Roh-Anilin mit wässriger Alkalimetallhydroxid-Lösung extrahiert und anschließend die wässrige und die organische Phase voneinander getrennt werden, wobei die Konzentration der eingesetzten Alkalimetallhydroxid-Lösung und die Temperatur während der Extraktion so eingestellt werden, dass bei der Trennung der wässrigen und der organischen Phase die wässrige Phase die untere Phase darstellt.
  • Das eingesetzte Roh-Anilin kann aus allen technisch üblichen Verfahren zur Hydrierung von Nitrobenzol stammen. Bevorzugt wird die Hydrierung von Nitrobenzol in der Gasphase an ortsfesten, heterogenen Trägerkatalysatoren, wie z.B. Pd auf Aluminiumoxid oder Kohleträgern, in Festbettreaktoren bei einem Druck von 2-50 bar und einer Temperatur im Bereich von 250-500°C unter adiabatischen Bedingungen in Kreisgasfahrweise, d.h. unter Rückführung von während der Hydrierung nicht umgesetztem Wasserstoff, durchgeführt (siehe EP-A-0 696 573 und EP-A-0 696 574 ).
  • Dabei wird eine Alkalimetallhydroxid-Lösung in einem Konzentrationsbereich von > 0,7 Gew.-% an Alkalimetallhydroxid, bezogen auf das Gewicht der Alkalimetallhydroxid-Lösung, eingesetzt, um zu erreichen, dass bei der Trennung der wässrigen und der organischen Phase die wässrige Phase die untere Phase darstellt. Durch Einstellung höherer Temperaturen wird das Vorliegen der wässrigen Phase als untere Phase zusätzlich begünstigt.
  • Durch das erfindungsgemäße Vorgehen kann also sichergestellt werden, dass keine Phasentrennprobleme oder Phasenumkehr bei der in der Extraktion enthaltenen Phasentrennung auftreten. Denn bei dem erfindungsgemäßen Verfahren ist die wässrige Phase stets die untere Phase, eine Phasenumkehr während der Separation, beispielsweise in dem Phasentrennbehälter, tritt daher nicht auf.
  • Bevorzugt wird als Alkalimetallhydroxid-Lösung Natriumhydroxid-Lösung oder Kaliumhydroxid-Lösung eingesetzt. Besonders bevorzugt wird Natriumhydroxid-Lösung eingesetzt. Grundsätzlich können aber alle Alkalimetallhydroxid-Lösungen eingesetzt werden. Auch der Einsatz von Erdalkalimetallhydroxiden oder anderen wasserlöslichen basischen Verbindungen wie z.B. Alkali- oder Erdalkalimetallcarbonaten oder Hydrogencarbonaten ist grundsätzlich denkbar.
  • Der bevorzugte Konzentrationsbereich der eingesetzten Alkalimetallhydroxid-Lösung liegt zwischen 0,71 und 35 Gew.-%, an Alkalimetallhydroxid bevorzugt zwischen 0,75 und 10 Gew.-%, bezogen auf das Gewicht der Alkalimetallhydroxid-Lösung.
  • Die Temperatur bei der Extraktion liegt je nach Alkalimetallhydroxid-Konzentration bevorzugt im Bereich zwischen 20°C und 140°C, besonders bevorzugt zwischen 30°C und 100°C, ganz besonders bevorzugt zwischen 50 °C und 95°C. Bevorzugt liegt die Temperatur während der Phasentrennung, die ein Bestandteil der Extraktion ist, in den gleichen Bereichen.
  • Die Wahl der geeigneten Kombination der Konzentration der Alkalimetallhydroxid-Lösung und der Temperatur während der Extraktion richtet sich neben der Erreichung einer unten liegenden wässrigen Phase bei der Phasentrennung nach den jeweilig relevanten verfahrenstechnischen und ökonomischen Kriterien. So kann einerseits zur Begrenzung der Wasserlöslichkeit des Anilins eine Minimierung der Temperatur sinnvoll sein, andererseits kann es verfahrenstechnisch von Vorteil sein, das Rohanilin bei höherer Temperatur nach der Reaktion zu kondensieren und bei gleicher Temperatur dann auch zu extrahieren. Weiterhin kann eine zu hohe Konzentration der Alkalimetallhydroxid-Lösung zu einer verminderten Extraktionseffizienz und verlängerten Trennzeiten führen, wenn das Organik/Wasser-Verhältnis dadurch zu groß wird und eine zu niedrige Konzentration der Alkalimetallhydroxid-Lösung zu den genannten Nachteilen einer zu großen Abwassermenge führt.
  • Das zur Herstellung der wässrigen Alkalimetallhydroxid-Lösung verwendete Wasser wird vorzugsweise ganz oder teilweise dem Reaktionswasser aus der Hydrierreaktion von Nitrobenzol entnommen, wodurch sich eine zusätzliche Verringerung der gesamten Abwasserfracht des Anilin-Herstellverfahrens erreichen lässt. Es kann jedoch auch Wasser aus jeder beliebigen anderen Quelle eingesetzt werden. Die verdünnte Alkalimetallhydroxid-Lösung, die zur Extraktion eingesetzt wird, wird in der Regel durch Zudosierung einer konzentrierten Alkalimetallhydroxid-Lösung zum Einsatzwasser erzeugt, wobei die konzentrierte Alkalimetallhydroxid-Lösung das Alkalimetallhydroxid, z.B. NaOH oder KOH, in bevorzugten Konzentrationen von 2 bis 50 Gew.-% Alkalimetallhydroxid, bezogen auf das Gewicht der Alkalihydroxid-Lösung, enthält.
  • Für die Extraktion können alle dem Fachmann bekannten Methoden und Apparaturen, wie z.B. Mixer-Settler oder Extraktionskolonnen eingesetzt werden. Die Extraktion kann einstufig oder mehrstufig im Gleich- oder Gegenstrom erfolgen. In einer bevorzugten Ausführungsform wird eine zweistufige Gegenstrom Mixer-Settler-Apparatur für die Extraktion eingesetzt. Zur Absenkung der notwendigen Trenn- und Verweilzeiten können die Abscheider mit Koaleszierhilfen wie z.B. Gestricken, Platten oder Füllkörpern versehen werden.
  • Das in dem erfindungsgemäßen Verfahren erhältliche gereinigte Anilin enthält bevorzugt weniger als 0,01 Gew.-%, besonders bevorzugt weniger als 0,005 Gew.-% an phenolischen Verbindungen in der Summe, bezogen auf das Gewicht des Anilins. Dabei sind unter phenolischen Verbindungen neben Phenol und Phenolat auch diejenigen Benzol-Derivate zusammengefasst, die zusätzlich zur OH-Funktion auch weitere funktionelle Gruppen tragen, wie. z.B. Aminophenole.
  • Weitere Aufarbeitungsschritte, wie z.B. Destillations- oder Waschstufen können der Extraktion mit Alkalimetallhydroxid-Lösungen zur Erreichung noch höherer Reinheitsgrade des Anilins vor- und/oder nachgeschaltet werden, sind aber nicht zwingend erforderlich. Die nach- oder vorgeschalteten Wasch- und/oder Destillationsschritte können in allen dem Fachmann geläufigen Varianten ausgestaltet und unter verschiedensten Bedingungen betrieben werden. So kann eine Destillation z.B. in einer oder mehreren Glockenboden- oder Packungskolonnen, aber auch in Trennwandkolonnen erfolgen. Dabei können Leichtsieder und Schwersiederabtrennung in verschiedenen Kolonnen, aber auch gemeinsam in einer Kolonne unter Seitenstromentnahme des Anilins erfolgen.
  • Die destillative Aufarbeitung des von phenolischen Verbindungen weitgehend gereinigten Rohanilins, kann nach verschiedenen Methoden unter Einstellung einer großen Bandbreite an Bedingungen erfolgen. Dabei kann die Destillation ein- oder mehrstufig in verschiedenen Kolonnentypen, bevorzugt in konventionellen Rektifikationskolonnen oder in Ausführungen als Trennwandkolonnen und mit den verschiedenen Einbauten wie z.B. Sieb-, Ventil- oder auch Glockenböden, Füllkörpern oder Packungen erfolgen. Auch andere Ausführungen sind möglich. Die Betriebsparameter Kopfdruck und Rücklaufverhältnis sind immer in Abhängigkeit von der Zusammensetzung des Rohanilins, der Spezifikation/Reinheit des gereinigten Anilins (Reinanilins) und den zur Verfügung stehenden Trennstufen zu wählen. Die Abtrennung von Leichtsiedern, wie z.B. Wasser, Benzol, Cyclohexan, Cyclohexylamin, Cyclohexanon und Schwersiedern wie z.B. Phenol, Alkaliphenolate, Aminophenole, Alkaliaminophenolate, Phenylendiamine, Diphenylamin etc. kann dabei separat in verschiedenen Kolonnen erfolgen oder alternativ, in einer bevorzugten Ausführungsform, kombiniert in einer Kolonne unter Kopfentnahme der Leichtsieder, Sumpfentnahme der Schwersieder und Seitenstromentnahme des Reinanilins. Die destillative Reinigung des von phenolischen Verbindungen weitgehend gereinigten Roh-Anilins erfolgt in einer bevorzugten Ausführungsform in einer Seitenstromkolonne, besonders bevorzugt in einer Trennwandkolonne, unter Entnahme der Leichtsieder am Kopf, Entnahme der Schwersieder am Sumpf und Entnahme des Reinanilins im Seitenstrom. Weiterhin kann das Sumpfprodukt der Schwersiederabtrennung optional in einer Reststoffkolonne weiter eingeengt werden, um den Anilin-Verlust zu minimieren.
  • Der Zulauf des von phenolischen Verbindungen weitgehend gereinigten Rohanilins in die Destillationskolonne kann an einer beliebigen Stelle der Kolonne erfolgen, bevorzugt erfolgt der Zulauf jedoch entsprechend dem Konzentrationsprofil des Anilins in der Destillationskolonne in der Kolonnenmitte oder in der unteren Kolonnenhälfte. Die Kolonne kann einen Abtriebs- und/oder einen Verstärkerteil besitzen. Die Zulauftemperatur in die Kolonne, sowie die Sumpftemperatur, Kopfdruck und Rücklaufverhältnis sind einstellbar und können der Trennaufgabe, sowie den qualitativen, betrieblichen und ökonomischen Erfordernissen angepasst werden. Die Temperatur am Kopf der Kolonne stellt sich entsprechend der gewählten Voreinstellungen der genannten Parameter und der Zusammensetzung der flüssigen Phase und der Dampfphase in der Kolonne ein. Bevorzugte Bedingungen für Betriebsparameter der Destillationskolonne sind absolute Drücke von 10 bis 1000 mbar, besonders bevorzugt 10 bis 500 mbar und Rücklaufverhältnisse von 0,1 bis 3, besonders bevorzugt von 0,3 bis 0,8.
  • In einer besonderen Ausführungsform der Erfindung erfolgt der Zulauf bzw. die Zudosierung des Rohanilins in eine Leichtsiederkolonne, in der die Leichtsieder inklusive des Wassers über Kopf der Kolonne abgetrennt werden. Das im Sumpf anfallende Gemisch enthaltend Anilin und Hochsieder wird anschließend einem weiteren Destillationsschritt (Schwersiederabtrennung oder Reindestillation) zugeführt. Optional folgt schließlich eine Aufkonzentrierung des Sumpfes in einer Reststoffkolonne, wobei das in der Reststoffkolonne über Kopf gewonnene Anilin wieder in die Kolonne der Schwersiederabtrennung oder Reindestillation oder in die Leichtsiederkolonne bzw. die vorgeschaltete Phasentrennung zurückgeführt werden kann.
  • In einer weiteren besonderen Ausführungsform erfolgt der Zulauf des von phenolischen Verbindungen weitgehend gereinigten Roh-Anilins in eine kombinierte Leichtsieder- und Schwersiederkolonne (Seitenstromkolonne), wobei die Leichtsieder über Kopf, die Schwersieder als Sumpfphase und das Reinanilin als Seitenstrom abgeführt wird. Diese Seitenstromkolonne ist sowohl als konventionelle Kolonne (d.h. ohne Trennwand) als auch als Trennwandkolonne realisierbar. Diese Variante, bei der eine Seitenstromkolonne oder Trennwandkolonne eingesetzt wird, erfordert eine Phasentrennung der am Kopf entnommenen kondensierten Brüden, die im Wesentlichen das Azeotrop Wasser / Anilin und Leichtsieder enthalten. Wasser und in der wässrigen Phase gelöste Leichtsieder werden bevorzugt abgeführt, das Anilin wird bevorzugt zur Kolonne zurückgeführt.
  • Bevorzugt werden in dieser Ausführungsform des erfindungsgemäßen Verfahrens die am Kopf der Seitenstromkolonne entnommen Brüden in einer zweistufigen Kondensation kondensiert. Dabei kondensiert der erste Kondensator bevorzugt partiell die schwerer siedenden Komponenten der Brüden. In dem zweiten, nachgeschalteten Kondensator werden bevorzugt die durchgeschlagenen Leichtsieder kondensiert, die somit separat ausgeschleust werden können. Das Partialkondensat aus dem ersten Kondensator wird einer Phasentrennung zugeführt. Wasser und in der wässrigen Phase gelöste Leichtsieder werden bevorzugt abgeführt, das Anilin wird bevorzugt zur Kolonne zurückgeführt.
  • Das im Seitenstrom entnommene Rein-Anilin wird bevorzugt partiell als Rücklauf auf die Seitenstromkolonne unterhalb der Entnahmestelle des Seitenstroms aufgegeben. Die Seitenstromentnahme kann als Totalentnahme oder als partielle Entnahme realisiert werden. In beiden Fällen ist eine gezielte Einstellung des Rücklaufverhältnisses realisierbar.
  • Die für die Extraktion verwendete Alkalimetallhydroxid-Lösung kann nach der Extraktion, ggf. nach zusätzlicher Reinigung und/oder Aufkonzentrierung, rezykliert und wieder zur Extraktion verwendet werden. Alternativ kann die für die Extraktion verwendete Alkalimetallhydroxid-Lösung, ggf. nach zusätzlicher Reinigung, einem Abwasserstrom zugeführt werden, der beispielsweise nach anschließender Aufarbeitung einer Kläranlage zugeführt wird.
  • Das nach dem erfindungsgemäßen Verfahren erhaltene Anilin kann anschließend nach den aus dem Stand der Technik bekannten Verfahren mit Formaldehyd in Gegenwart eines sauren Katalysators zu Di- und Polyaminen der Diphenylmethanreihe umgesetzt werden. Die Di- und Polyaminen können anschließend nach den aus dem Stand der Technik bekannten Verfahren mit Phosgen zu den entsprechenden Di- und Polyisocyanaten der Diphenylmethareihe umgesetzt werden.
  • Die Figuren 1 und 2 zeigen in schematischer Darstellung bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens.
  • In Figur 1 ist eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens dargestellt. Aus dem Reaktionsteil A einer Anlage zur Herstellung von Roh-Anilin wird das Gemisch 1 aus Rohanilin und Reaktionswasser in einen Phasentrenner B überführt. Nach Abtrennung der Wasserphase wird das Rohanilin 2 in eine erste Mixer-Settler-Extraktionsstufe C geleitet. Das Wasser 3 wird durch Zugabe von Natronlaugelösung 4 aus einem Vorratsbehälter G auf die gewünschte NaOH-Konzentration eingestellt und in eine zweite Mixer-Settler-Extraktionsstufe D geleitet. Das einmalig extrahierte Anilin 5 aus der ersten Extraktionsstufe C wird in die zweite Extraktionsstufe D geleitet, während die als untere Phase abgetrennte wässrige Natronlaugelösung 6 aus der zweiten Extraktionsstufe D im Gegenstrom in die erste Extraktionsstufe C überführt wird. Das zweimalig extrahierte Anilin 7 wird anschließend einer destillativen Aufarbeitungsstufe E zugeführt, die als untere Phase abgetrennte wässrige Alkalilösung 8 aus der ersten Mixer-Settler-Extraktionsstufe C wird einer Abwasseraufarbeitungstufe F zugeführt.
  • In Figur 2 ist eine alternative, ebenfalls bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens dargestellt. Aus dem Reaktionsteil A einer Anlage zur Herstellung von Roh-Anilin wird das Gemisch 1 aus Rohanilin und Reaktionswasser in einen Phasentrenner B überführt. Nach Abtrennung der Wasserphase im Phasentrenner B wird das Rohanilin 2 in eine erste Mixer-Settler-Extraktionsstufe C geleitet. Das im Phasentrenner B abgetrennte Reaktionswasser 3 wird zunächst einer Waschstufe H zugeführt, in der das zweimalig mit NaOH-Lösung extrahierte Anilin 7 vor der Destillation E gewaschen wird. Das abgetrennte Wasser 9 aus der Waschstufe H wird mit Natronlauge 4 aus einem Vorlagebehälter G versetzt und in die zweite Extraktionsstufe D überführt. Das einmalig extrahierte Anilin 5 aus der ersten Extraktionsstufe C wird in die zweite Extraktionsstufe D geleitet, während die als untere Phase abgetrennte wässrige Natronlaugelösung 6 aus der zweiten Extraktionsstufe D im Gegenstrom in die erste Extraktionsstufe C überführt wird. Das zweimalig extrahierte Anilin 7 wird nach der Wäsche H einer destillativen Aufarbeitungsstufe E als Strom 10 zugeführt, die als untere Phase abgetrennte wässrige Alkalilösung 8 aus der ersten Mixer-Settler-Extraktionsstufe C wird einer Abwasseraufarbeitungstufe F zugeführt.
  • In einer weiteren Modifizierung der beschriebenen Ausführungsformen kann die wässrige Alkalilösung 8 im Kreis geführt und ggf. unter Ausschleusung einer Teilmenge und Ergänzung durch frische Alkalilösung wieder zur Extraktion in die zweite Mixer-Settler-Extraktionsstufe D überführt werden.
  • Alternativ kann die Extraktion bei beiden Fahrweisen auch einstufig oder mehr als zweistufig ausgeführt werden.
  • Beispiele
  • Im Folgenden sind Beispiele für die Durchführung des erfindungsgemäßen Verfahrens gegeben. Die Analyse der Phenolgehalte in den nachfolgenden Beispielen erfolgt mittels Gaschromatographie (GC), die Analyse der Natrium-Gehalte erfolgt mittels Atomabsorptionsspektroskopie (AAS).
  • Beispiel 1
  • In Beispiel 1 wird ein phenolhaltiges Rohanilin mittels des erfindungsgemäßen Verfahrens gereinigt und gereinigtes Anilin (Reinanilin) erhalten. Bei einem vordefinierten Gewichts-Verhältnis von organischer zu wässriger Phase von 4,9:1 wird mit 2,5 Gew.-% Natronlauge (2,5 Gew.% Na-OH bezogen auf das Gewicht der NaOH-Lösung) das im Rohanilin enthaltene Phenol durch eine zweistufige Gegenstromextraktion in Mixer-Settler Apparaten abgereichert. Dabei ist die wässrige Phase in den Phasentrenn-Behältern (Settler) die untere Phase. Die Betriebsparameter sind in Tabelle 1 zusammengefasst. Es wird eine Phenolabreicherung von 939 ppm auf 35 ppm erzielt (Tabelle 1). Tabelle 1
    Temperatur °C Rohanilin Phenol ppm Zulaufmenge Anilinphase g/h NaOH-Lösung g/h NaOH-Lösung ml/h NaOH-Konz. Gew.-% Phasenverhältnis G.t. OP/WP Molarer Überschuss x fach Abl. Extr.. Phenol ppm
    90 939 1950 400 390 2,5 4,90 12,85 35
    (Gew-% = Gewichts-%, Konz. = Konzentration, Phasenverh.= Phasenverhältnis, G.t. = Gewichtsteile, OP = Organische Phase, WP = Wässrige Phase, Abl. Extr. = Ablauf)
  • In einer anschließenden Destillation in einer Seitenstromkolonne wird Reinanilin als Seitenstromprodukt abgezogen. Die Betriebsparameter und Phenolabreicherung sind in Tabelle 2 aufgeführt. Tabelle 2
    Zullauf Feed kg/h Zulauf Phenol ppm R/E Betriebsdruck mbar (abs) Seitenstrom kg/h Seitenstrom Phenolgehalt Ppm LS/H S ppm Wasser-konz. ppm Kopfkondensat wässrige Phase g/h Org. Phase g/h (Kreislauf)
    2,1 35 1,1 133 1,8 10 38/15 1000 206 2,7
    (R/E = Rücklaufverhältnis, LS = Leichtsieder, HS = Hochsieder, Wasserkonz. = Wasserkonzentration, org. = organische)
  • Beispiel 2
  • Bei einem definierten Gewichts-Verhältnis von organischer zu wässriger Phase von 3,87:1 wird der Phenolgehalt im Rohanilin durch eine zweistufige Gegenstromextraktion in Mixer-Settler Apparaten mit 0,8 Gew.-% Natronlauge (0,8 Gew.% NaOH bezogen auf das Gewicht der NaOH-Lösung) von 388 ppm auf 26 ppm abgereichert. Die Betriebsparameter sind in Tabelle 3 zusammengefasst. Dabei ist die wässrige Phase in den Phasentrenn-Behältern (Settler) die untere Phase. Tabelle 3
    Tempe ratur °C Rohanlin Phenol ppm Zulaufmenge Anilinphase g/h NaOH-Lösung g/h NaOH-Lösung ml/h NaOH-Konz. Gew.-% Phasenverhältnis G.t. OP/WP Molarer Überschuss x fach Abl. Extr.. Phenol ppm
    90 388 2420 624,7 620 0,8 3,87 12,52 26
  • In einer anschließenden Destillation in einer Seitenstromkolonne wird ein Reinanilin als Seitenstromprodukt abgezogen. Die Betriebsparameter und die erreichten Konzentrationen und Phenolabreicherung zeigt Tabelle 4: Tabelle 4
    Zulauf Feed kg/h Zulauf Phenol ppm R/E Betriebsdruck mbar (abs) Seitenstrom kg/h Seitenstrom Phenolgehalt ppm LS/H S ppm Wasser-konz. ppm Kopfkondensat wässrige Phase g/h Org. Phase g/h (Kreislauf)
    2,1 26 0,8 133 1,8 9 81/72 1100 190 2,3
  • Beispiel 3
  • In Beispiel 3 werden 50 g eines phenolhaltiges Rohanilins durch eine zweistufige Kreuzstromextraktion in Schütteltrichtern bei 90°C und einem Verhältnis organischer zu wässriger Phase von 5,0:1 mit 1,5 Gew.-% NaOH-Lösung (1,5 Gew.% NaOH bezogen auf das Gewicht der NaOH-Lösung) extrahiert. Dabei ist die wässrige Phase in den Phasentrenn-Behältern (Settler) die untere Phase. Anschließend wird das erhaltene gereinigte Anilin einer Wasserwäsche zur Reduzierung des Rest-Na-Gehalts zugeführt. Der Phenolgehalt im Rohanilin wird dadurch von 494 ppm auf 50 ppm reduziert. Durch eine nachfolgende Wasserwäsche wird der Phenolgehalt von 50 ppm auf 40 ppm abgesenkt, der Na-Gehalt der organischen Phase sinkt von 27 ppm auf 9 ppm (siehe Tabelle 5). Die Betriebsparameter sind ebenfalls in Tabelle 5 zusammengefasst. Tabelle 5
    Rohanilin Ablauf 1. Extraktionstufe Ablauf 2. Extraktionsstufe Ablauf Wasserwäsche
    Phenol (ppm) 494 140 50 40
    Na (ppm) 0,9 72 27 9,4

Claims (15)

  1. Verfahren zur Herstellung von Anilin, bei dem
    a) Roh-Anilin durch Hydrierung von Nitrobenzol in Gegenwart eines Katalysators hergestellt wird, und
    b) das Roh-Anilin mit wässriger Alkalimetallhydroxid-Lösung extrahiert und anschließend die wässrige und die organische Phase voneinander getrennt werden, wobei die Konzentration dereingesetzten Alkalimetallhydroxid-Lösung und die Temperatur während der Extraktion so eingestellt werden, dass bei derTrennung derwässrigen und der organischen Phase die wässrige Phase die untere Phase darstellt, wobei die Alkalimetallhydroxid-lösung das Alkalimetallhydroxid in Konzentrationen von > 0,7 Gew.%, bezogen auf das Gewicht der Alkalimetallhydroxidlösung, enthält.
  2. Verfahren nach Anspruch 1 bei dem die Hydrierung des Nitrobenzols in der Gasphase unter adiabatischen Bedingungen in Festbettreaktoren und unter Rückführung von während der Hydrierung nicht umgesetztem Wasserstoff in Gegenwart eines Pd-haftigen Katalysators durchgeführt wird.
  3. Verfahren nach einem der Ansprüche 1 oder 2, bei dem die Alkalimetallhydroxid-Lösung durch Verdünnung einer höher konzentrierten Alkalimetallhydroxid-Lösung mit Wasser hergestellt wird, wobei das Wasser zumindest teilweise bei der Hydrierung von Nitrobenzol anfällt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, bei dem als Alkalimetallhydroxid Natrium-und/oder Kaliumhydroxid eingesetzt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem die Alkalimetallhydroxid-Lösung das Alkalimetallhydroxid in Konzentrationen von zwischen 0,71 und 35 Gew.%, bezogen auf das Gewicht der Alkalimetallhydroxid-Lösung, enthält.
  6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem die Extraktion bei Temperaturen von 20°C bis 140°C durchgeführt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, bei dem die eingesetzte Alkalimetallhydroxid-Lösung nach der Extraktion und Phasentrennung gegebenenfalls gereinigt und aufkonzentriert und anschließend in die Extraktion zurückgeführt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem das Roh-Anilin vor der Extraktion und/oder das in der Extraktion erhaltene gereinigte Anilin in einer ein- oder mehrstufigen Destillation gereinigt wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, bei dem das In der Extraktion erhaltene gereinigte Anilin in einer ein- oder mehrstufigen Wasserwäsche gereinigt wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, bei dem das in der Extraktion erhaltene gereinigte Anilin in einer ein-oder mehrstufigen Wasserwäsche und einer daran anschießenden ein- oder mehrstufigen Destillation gereinigt wird.
  11. Verfahren nach Anspruch 8, bei dem die Destillation des in der Extraktion erhaltenen gereinigten Anilins, ggf. nach einer ein- oder mehrstufigen Wasserwäsche, einstufig in einer Seitenstromkolonne durchgeführt wird, wobei die Leichtsieder über Kopf, die Schwersieder als Sumpfprodukt und das Reinanilin als Seitenstrom abgeführt wird.
  12. Verfahren nach Anspruch 8, bei dem die Destillation des in der Extraktion erhaltenen gereinigten Anilins, ggf. nach einer ein- oder mehrstufigen Wasserwäsche, einstufig in einer Trennwandkolonne durchgeführt wird, wobei die Leichtsieder über Kopf, die Schwersieder als Sumpfprodukt und das Reinanilin als Seitenstrom abgeführt wird.
  13. Verfahren nach einem der Ansprüche 11 oder 12, bei dem die in der Seitenstromkolonne oderTrennwandkolonne am Kopf abgezogenen Brüden in einer zweistufigen Kondensation kondensiert werden.
  14. Verfahren zur Herstellung von Di- und Polyaminen der Diphenylmethanreihe, bei dem Anilin nach dem Verfahren gemäß Anspruch 1 hergestellt wird und anschließend das Anilin mit Formaldehyd in Gegenwart eines sauren Katalysators zu den Di- und Polyaminen umgesetzt wird.
  15. Verfahren zur Herstellung von Di- und Polyisocyanaten der Diphenylmethanreihe, bei dem Anilin nach dem Verfahren gemäß Anspruch 1 hergestellt wird und anschließend das Anilin mit Formaldehyd in Gegenwart eines sauren Katalysators zu Di- und Polyaminen umgesetzt wird und anschließend die Di- und Polyamine mit Phosgen zu den Di- und Polyisocyanaten umgesetzt werden.
EP07075104.5A 2006-02-18 2007-02-06 Verfahren zur Herstellung von Anilin Active EP1845080B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006007619A DE102006007619A1 (de) 2006-02-18 2006-02-18 Verfahren zur Herstellung von Anilin

Publications (2)

Publication Number Publication Date
EP1845080A1 EP1845080A1 (de) 2007-10-17
EP1845080B1 true EP1845080B1 (de) 2014-03-26

Family

ID=38164418

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07075104.5A Active EP1845080B1 (de) 2006-02-18 2007-02-06 Verfahren zur Herstellung von Anilin

Country Status (9)

Country Link
US (1) US20070238901A1 (de)
EP (1) EP1845080B1 (de)
JP (1) JP5204413B2 (de)
KR (1) KR20070082896A (de)
CN (1) CN101024615B (de)
BR (1) BRPI0700425A (de)
DE (1) DE102006007619A1 (de)
PT (1) PT1845080E (de)
TW (1) TW200736191A (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006052989A1 (de) * 2006-11-10 2008-05-15 Bayer Materialscience Ag Verfahren zur Entfernung von Verbindungen mit phenolischen Hydroxygruppen aus aromatischen Aminen
DE102007039091A1 (de) * 2007-08-18 2009-02-19 Bayer Materialscience Ag Verfahren zur Reinigung von aromatischen Aminen
DE102007047434A1 (de) * 2007-10-04 2009-04-09 Bayer Technology Services Gmbh Sinterstabiler Katalysator für die Hydrierung und Dehydrierungen und Verfahren zu dessen Herstellung
DE102008015123A1 (de) * 2008-03-20 2009-09-24 Bayer Materialscience Ag Verfahren zur Herstellung von Di- und Polyaminen der Diphenylmethanreihe
EP2429983B1 (de) 2009-05-14 2017-07-26 Basf Se Verfahren zur herstellung von anilin
JP5530516B2 (ja) * 2009-06-17 2014-06-25 ハンツマン・インターナショナル・エルエルシー 化学装置
DE102009025374A1 (de) 2009-06-18 2010-12-23 Bayer Materialscience Ag Verfahren zur Herstellung von aromatischen Aminen
DE102010042731A1 (de) * 2010-10-21 2012-04-26 Bayer Materialscience Aktiengesellschaft Verfahren zur Reinigung von Anilin aus Gasphasenhydrierungen
US8809587B2 (en) * 2010-12-30 2014-08-19 Kellogg Brown & Root Llc Systems and methods for producing aromatic amines and removing phenol therefrom
DE102011081897A1 (de) 2011-08-31 2013-02-28 Bayer Materialscience Aktiengesellschaft Katalysator und Verfahren zur Herstellung von aromatischen Aminen in der Gasphase
EP2641892A1 (de) * 2012-03-23 2013-09-25 Bayer MaterialScience AG Verfahren zur Reinigung von Anilin aus Gasphasenhydrierungen
CN102701994A (zh) * 2012-06-01 2012-10-03 中国科学院研究生院 一种粗苯胺分离精制工艺方法
TW201546027A (zh) * 2014-02-20 2015-12-16 Bayer Materialscience Ag 經由胺茴酸鹽製造苯胺
US9162970B2 (en) 2014-03-04 2015-10-20 Kellogg Brown & Root Llc Promotion of imine formatin via cationic resin catalyst
CN104926663A (zh) * 2015-05-28 2015-09-23 国药集团化学试剂有限公司 一种含痕量硝基化合物的高纯苯胺的制备方法
WO2018002088A1 (de) 2016-06-29 2018-01-04 Covestro Deutschland Ag Verfahren zur herstellung von anilin oder eines anilinfolgeprodukts
CN110088080A (zh) 2016-12-20 2019-08-02 科思创德国股份有限公司 制备氨基苯甲酸或氨基苯甲酸后续产物的方法
CN110563069B (zh) * 2018-06-06 2020-12-22 中国石油化工股份有限公司 硝基苯焦油和苯胺废水综合利用的方法
US11453897B2 (en) 2018-06-07 2022-09-27 Covestro Intellectual Property Gmbh & Co. Kg Method for producing aminobenzoic acid or an aminobenzoic acid derivative product
CN110627651B (zh) * 2018-06-25 2022-06-14 中国石油化工股份有限公司 一种降低苯胺中苯酚含量的方法
HUE060351T2 (hu) 2018-07-27 2023-02-28 Covestro Intellectual Property Gmbh & Co Kg Eljárás anilin vagy anilin-származék elõállítására
CN110229068B (zh) * 2019-06-10 2022-02-25 陕西科技大学 一种In2.24(NCN)3催化硝基苯加氢还原制备苯胺的方法
CN114096512B (zh) * 2019-07-03 2024-10-11 科思创德国股份有限公司 提纯苯胺的方法
WO2022071874A1 (en) * 2020-10-03 2022-04-07 Sui Jianjun Process for the purification of phenylenediamines
CN113019270B (zh) * 2021-03-25 2022-10-28 高洪东 一种液相硝基苯加氢催化剂循环工艺及其装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136818A (en) * 1960-01-15 1964-06-09 Basf Ag Production of aniline
BE793928A (fr) * 1972-01-13 1973-05-02 Deggendorfer Werft Eisenbau Appareil pour la mise en oeuvre de processus chimiques exothermiques et endothermiques
DE2849002A1 (de) * 1978-11-11 1980-05-22 Bayer Ag Verfahren zur katalytischen hydrierung von nitrobenzol
DE4428018A1 (de) * 1994-08-08 1996-02-15 Bayer Ag Verfahren zur Herstellung von aromatischen Aminen
DE4428017A1 (de) * 1994-08-08 1996-02-15 Bayer Ag Verfahren zur Herstellung von aromatischen Aminen
JP3804082B2 (ja) * 1995-04-27 2006-08-02 住友化学株式会社 アニリンの精製方法
IT1307020B1 (it) * 1999-03-03 2001-10-23 Finmeccanica Spa Procedimento di n-denitrazione di n-nitro-dinitro-anilene in faseomogenea.
DE10228734A1 (de) * 2002-06-27 2004-01-22 Bayer Ag Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe mit vermindertem Farbwert
DE10245703A1 (de) * 2002-09-30 2004-04-01 Bayer Ag Verfahren zur Herstellung von Polyisocyanaten der Diphenylmethanreihe durch Phosgenierung von nichtneutralisiertem Polyamin der Diphenylmethanreihe
US7049471B2 (en) * 2003-10-10 2006-05-23 E. I. Du Pont De Nemours And Company Separation of amine from a phenolic compound

Also Published As

Publication number Publication date
JP2007217417A (ja) 2007-08-30
CN101024615A (zh) 2007-08-29
BRPI0700425A (pt) 2007-11-06
EP1845080A1 (de) 2007-10-17
TW200736191A (en) 2007-10-01
CN101024615B (zh) 2013-01-09
PT1845080E (pt) 2014-05-29
JP5204413B2 (ja) 2013-06-05
KR20070082896A (ko) 2007-08-22
US20070238901A1 (en) 2007-10-11
DE102006007619A1 (de) 2007-08-23

Similar Documents

Publication Publication Date Title
EP1845080B1 (de) Verfahren zur Herstellung von Anilin
EP1845079B1 (de) Verfahren zur Herstellung von Anilin
EP2598474B1 (de) Verfahren zur kontinuierlichen herstellung von nitrobenzol
EP2507202B2 (de) Verfahren zur destillation von gemischen enthaltend ethylendiamin, n-methylethylendiamin und wasser und damit erhältliche gemische aus ethylendiamin und n-methylethylendiamin mit einem geringen n-methylethylendiamingehalt
EP1935871B1 (de) Verfahren zur Herstellung von aromatischen Aminen
EP2877443B1 (de) Verfahren zur herstellung von nitrobenzol durch adiabate nitrierung
EP2263997A1 (de) Verfahren zur Herstellung von aromatischen Aminen
EP2844635B1 (de) Verfahren zur behandlung eines ein aromatisches amin umfassenden stoffgemisches, insbesondere von roh-anilin
EP2719682B1 (de) Verfahren zur kontinuierlichen Herstellung von Nitrobenzol
EP1993990B1 (de) Verfahren zur destillativen abtrennung von dinitrotoluol aus einem prozessabwasser aus der herstellung von dinitrotoluol durch nitrierung von toluol mit nitriersäure
EP3700885B1 (de) Abtrennung von n-methylethylendiamin aus eda-haltigen gemischen
EP2986562B1 (de) Verfahren zur aufarbeitung von abwasser aus der nitro-benzolherstellung
EP2828233B1 (de) Verfahren zur reinigung von anilin aus gasphasenhydrierungen
EP2630117B1 (de) Verfahren zur reinigung von anilin aus gasphasenhydrierungen
EP2986563B1 (de) Verfahren zur aufarbeitung von abwasser aus der nitrobenzolherstellung
EP1921060B1 (de) Verfahren zur Entfernung von Verbindungen mit phenolischen Hydroxygruppen aus aromatischen Aminen
DE102018219557A1 (de) Verfahren zur Herstellung und Reinigung von Propylenglykol
EP3994121B1 (de) Verfahren zur reinigung von anilin
EP3700886B1 (de) Verfahren zur herstellung von ethylenaminen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080417

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110202

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007012899

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER MATERIALSCIENCE AKTIENGESELLSCHAFT, 51373 LEVERKUSEN, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 658897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007012899

Country of ref document: DE

Effective date: 20140508

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140520

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140626

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140726

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012899

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E021909

Country of ref document: HU

26N No opposition filed

Effective date: 20150106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007012899

Country of ref document: DE

Effective date: 20150106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150206

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007012899

Country of ref document: DE

Owner name: COVESTRO DEUTSCHLAND AG, DE

Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH, 40789 MONHEIM, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 658897

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160222

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160210

Year of fee payment: 10

Ref country code: HU

Payment date: 20160211

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140627

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20160922 AND 20160928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170207

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20230124

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230206

Year of fee payment: 17

Ref country code: GB

Payment date: 20230119

Year of fee payment: 17

Ref country code: DE

Payment date: 20230117

Year of fee payment: 17

Ref country code: BE

Payment date: 20230125

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007012899

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240806

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20240206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240806

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240206