[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1843833B1 - Method and device for dosing and mixing small amounts of liquid, apparatus and use - Google Patents

Method and device for dosing and mixing small amounts of liquid, apparatus and use Download PDF

Info

Publication number
EP1843833B1
EP1843833B1 EP05820542A EP05820542A EP1843833B1 EP 1843833 B1 EP1843833 B1 EP 1843833B1 EP 05820542 A EP05820542 A EP 05820542A EP 05820542 A EP05820542 A EP 05820542A EP 1843833 B1 EP1843833 B1 EP 1843833B1
Authority
EP
European Patent Office
Prior art keywords
liquid
reservoir
accordance
reservoirs
passage structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05820542A
Other languages
German (de)
French (fr)
Other versions
EP1843833A1 (en
Inventor
Christoph Gauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advalytix AG
Original Assignee
Advalytix AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advalytix AG filed Critical Advalytix AG
Publication of EP1843833A1 publication Critical patent/EP1843833A1/en
Application granted granted Critical
Publication of EP1843833B1 publication Critical patent/EP1843833B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/86Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with vibration of the receptacle or part of it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/87Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations transmitting the vibratory energy by means of a fluid, e.g. by means of air shock waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/089Virtual walls for guiding liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0436Moving fluids with specific forces or mechanical means specific forces vibrational forces acoustic forces, e.g. surface acoustic waves [SAW]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0493Specific techniques used
    • B01L2400/0496Travelling waves, e.g. in combination with electrical or acoustic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0688Valves, specific forms thereof surface tension valves, capillary stop, capillary break
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502776Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for focusing or laminating flows

Definitions

  • the invention relates to a method for integrated metering and mixing of small amounts of liquid, a device and an apparatus for carrying out this method and a use.
  • Diagnostic assays are now largely automated.
  • defined volumes of sample liquid and reagents are pipetted into a cuvette or into the well of a microtiter plate and mixed.
  • a first reference measurement is carried out in which, for example, the optical transmission through the cuvette is determined.
  • a second measurement of the same parameter is made. By comparing the two measured values results in the concentration of the sample with respect to a particular ingredient or even the presence of the ingredient.
  • Typical volumes are in the sum of a few hundred microliters, whereby necessary mixing ratios of sample to reagent between 1: 100 and 100: 1 can occur.
  • reagents may be provided for mixing with a sample.
  • high throughput instruments which are typically found in specialized laboratories, there are also efforts to make assays decentralized and without much instrumental effort. It would be desirable if the recently introduced "lab-on-a-chip" technology could be used, in which the Processing of liquids can be performed on or integrated into a chip. Assay times of less than one hour are desirable.
  • microfluidic systems are used to move the liquids, in which liquid is moved by electro-osmotic potentials, see for example Anne Y. Fu, et al. "A micro fabricated fluorescence-activated cell sorter", Nature Biotechnology Vol. 17, November 1999, p. 1109 et seq ,
  • a method for mixing liquids in the microliter range is in DE 103 25 307 B3 described in which small volumes of liquid in microtiter plates are mixed by means of sound-induced flow.
  • Another method of generating motion in small quantities of fluid on a solid surface describes DE 101 42 789 C1 , Here, a liquid is mixed with the help of surface sound waves or mixed several liquids together.
  • an amount of liquid is brought to a region of a substantially planar surface, the wetting properties of which differ from the surrounding surface in such a way that the liquid preferably resides on it, being held together by their surface tension. Movement of the amount of liquid can be generated by the momentum transfer of a surface acoustic wave to the liquid.
  • volume For dosing, it is necessary to precisely define volumes of liquid quantities. This is geometrically feasible, for example.
  • the wetting properties of the surface can determine a volume, as in FIG DE 100 55 318 A1 is described.
  • the volumes are defined by hydrophilic and hydrophobic regions over the wetting angle on a substantially smooth surface. If several volumes have been defined in this way which are to be reacted, the volumes are moved toward one another in order to achieve this.
  • liquid residues or liquid molecules of the analyte or the reagent can adhere to the surface, so that the movement of a volume loss or a concentration reduction of unknown level can not be excluded.
  • provision must be made against the evaporation which can be problematic especially at longer assay times.
  • channels of defined cross-section which are filled with liquid capillary. If the liquid is an aqueous solution, then at the end of the channel a hydrophobic barrier is attached, which can not be filled capillary. Furthermore, there is a lateral branch on this channel with a likewise hydrophobic surface, which can not be capillary filled.
  • the cross-section and length of the channel between the hydrophobic barrier and the hydrophobic branch now define a volume which can be separated and moved by pneumatic pressure through the branch ( Burns et al., An integrated nanoliter DNA analysis device, Science 282, 484 (1998 )). This type of volume definition creates high costs due to the necessary wetting structuring the surface (hydrophilic for filling the channel itself and hydrophobic for the barrier and the branch).
  • US 5,674,742 describes a device for manipulating, reacting and detecting small amounts of liquid with a first reservoir for a first quantity of liquid, a reaction reservoir and a connection channel structure connecting the reservoir, which has a cross-section in a region in the direction of the connecting line of the reservoir, which is smaller than the cross-sections of the reservoirs is.
  • the apparatus includes means for generating flow along the connection channel structure and mixing the amounts of liquid in the second reservoir.
  • liquid in the present text includes i.a. pure liquids, mixtures, dispersions and suspensions; and liquids containing solid particles, for example, biological material.
  • dosing and mixing liquids may also be two or more similar solutions that differ in ingredients dissolved therein that are to be reacted.
  • the object of the present invention is to provide a method and a device by means of which a precise metering of liquid quantities on or in an integrated chip is possible and which enable precise mixing of the liquids.
  • a first liquid is produced placed in or on a first reservoir.
  • a second liquid is brought into or onto a second reservoir in such a way that it is completely filled.
  • the first and second liquids are brought into contact via at least one first connection channel structure which comprises at least one region which has a smaller cross section than the reservoirs themselves in the direction of the connection line of the two reservoirs.
  • Liquid exchange is effected by laminar flow in the connection channel structure and the liquids are mixed in and on the second reservoir.
  • the liquids come into contact via the connecting channel structure. At the interface between the two liquids, only negligible diffusion occurs because the cross-section of the connection channel structure is comparatively small.
  • a laminar flow is generated along the connection channel structure in the direction of the second reservoir, the first liquid is moved through the connection channel structure in the direction of the second reservoir. For example, by accurately selecting the period of time over which the laminar flow is generated in the connection channel structure, or the flow rate, a precise definition of the volume of the first liquid to be metered to the second liquid is made.
  • the amount of the second liquid is precisely determined by the size of the reservoir. In or on the second reservoir then optionally takes place the reaction between the liquids.
  • the second reservoir thus constitutes a reaction chamber.
  • the method according to the invention enables the metering and mixing of liquids in a large dynamic range. Thus, the mixing ratio of reagents to sample liquid z. B. from 1: 100 to 100: 1 can be set.
  • pipettes and / or corresponding filling structures can be used.
  • the precision requirements of these elements are low, since the definition of the volumes of liquid participating in the reaction are determined by the method according to the invention or the device itself, in particular by the duration or the velocity of the laminar flow in the connection channel structure and the Volume of the second reservoir.
  • the laminar flow is preferably caused by the irradiation of sound waves towards at least a part of the connection channel structure.
  • the reservoirs and the connection channel structure may be configured three-dimensionally or two-dimensionally.
  • the reservoirs and interconnect channel structures may be correspondingly shaped depressions in a surface.
  • Other configurations are correspondingly shaped cavities.
  • the reservoirs and connection channel structures are formed by correspondingly shaped regions of a surface, which are wetted by the liquids more preferably than the surrounding regions of the surface.
  • wetting-modulated surfaces are, for example, in DE 100 55 318 A1 described. The liquids are held by their surface tension on the preferably wetted areas.
  • the amount of the second liquid participating in the reaction is determined by the dimensions of the second reservoir. If the second reservoir, for example via corresponding filling structures, for. As filling channels and / or filling, filled, any existing supernatants of liquid in these filling structures outside of the reservoir for geometric reasons do not participate in the mixing, especially when the mixing is effected by laminar flow pattern.
  • the laminar flow is generated in or on the connecting channel structure with the aid of sound waves.
  • surface acoustic waves are used, which can be generated for example with one or more interdigital transducers.
  • Surface sound waves transmit their impulse to the liquid or substances contained in it in order to put it in motion.
  • the latter has a radiation direction in the direction of the extension of at least one part of the connection channel structure.
  • the first and second liquids may be contacted via the connection channel structure using, for example, capillary forces.
  • the connecting channel structure is chosen so small in its lateral dimensions, that at least one of the liquids is pulled by the capillary forces along the channel. So z.
  • a first liquid can be brought onto or into the first reservoir, which propagates through the capillary forces in or on the connection channel structure.
  • the liquid stops its movement, since only small capillary forces act through the larger cross-section of the reservoir compared to the connecting channel structure.
  • the second liquid is applied, which comes into contact with the first liquid at the entry point of the connecting channel structure in the second reservoir.
  • connection between the two liquids is made via a small "bridge drop" which is placed between the two liquids and creates a liquid bridge.
  • the bridge drop has a much smaller volume than either of the two liquid quantities.
  • pipettes and / or corresponding filling structures can be used.
  • the requirements for the precision of these elements are low, since the definition of the participating in the reaction volumes of liquid by the inventive method or the inventive Device itself, in particular by the duration or the speed of the laminar flow in the connection channel structure and the volume of the second reservoir.
  • the filling structures may also comprise filling channel structures with small cross-sections compared to the reservoirs.
  • the production of a corresponding structure is very simple, since the same process steps are used, which are also used in the production of the reservoir or in the connecting channel structure.
  • the comparatively small cross-sections effectively prevent any supernatants present after filling in the filling channel structures from taking part in the mixing. In this way it is prevented that possibly existing liquid supernatants in the filling channel structures make the specification of the liquid volumes participating in the mixing inaccurate.
  • Such filling channel structures can have a small cross-section, which ensures that the liquid moves through the filling channel structures or on the filling channel structures due to capillary action in the direction of the reservoirs. For a precise filling is easy to carry out.
  • the inventive method can be carried out with a single connection channel structure between the two reservoirs.
  • This is the first reservoir at least partially emptied by the laminar outflow of the first liquid.
  • Another embodiment according to the invention comprises at least two connecting channel structures between the two reservoirs.
  • a laminar flow is generated by means of surface acoustic waves, which serves for moving the first liquid from the first reservoir in the direction of the second reservoir.
  • the first fluid in the first reservoir is thus becoming less and less due to the laminar outflow.
  • second liquid flows into the first reservoir from the second reservoir via the second connection channel structure.
  • the liquids are mixed. It is particularly favorable if this mixing process is effected by generating substantially laminar flow patterns. This ensures that any supernatants at the filling structures take part in the mixing as little as possible or not at all.
  • sound waves which are radiated into the second reservoir, are suitable for generating such flow patterns.
  • the surface acoustic waves can be used to radiate sound waves through a solid, such as a reservoir bottom, into the liquid.
  • known per se interdigital transducers can be used, which can be easily produced by lithographic techniques.
  • the invention also includes embodiments in which the laminar flow and the mixing are produced with the same device.
  • the method according to the invention is not limited to the metering and mixing of only two quantities of liquid.
  • additional reservoirs may be connected to the second reservoir in addition via further connecting channel structures, from which further fluids are metered into the second reservoir.
  • the addition can be done simultaneously or sequentially.
  • a device for metering small quantities of liquid has a first reservoir for a first liquid, a second reservoir for a quantity of a second liquid and at least one connecting channel structure which connects the two reservoirs and has at least in one region a cross section in the direction of the line of connection of the reservoirs which is smaller than the cross sections of the reservoirs.
  • the reservoirs and the at least one connecting channel structure may be formed as depressions or cavities in a solid body.
  • the reservoirs and the at least one connecting channel structure are formed by surface areas which are more preferably wetted by the liquids.
  • the device according to the invention furthermore has at least one device for generating laminar flow along the at least one connecting channel structure.
  • a preferred embodiment comprises a device for generating sound waves, preferably surface acoustic waves.
  • the use is at least particularly simple an interdigital transducer for generating surface acoustic waves, which can be easily produced by lithographic techniques.
  • the device according to the invention has at least one device for mixing the quantities of liquid in or on the second reservoir.
  • a second sound wave generating device is provided for generating sound waves entering the second reservoir.
  • the device according to the invention can be designed as a cost-effective and practical disposable part.
  • a device according to the invention which is to be used for metering and mixing of more than two quantities of liquid, has a corresponding number of reservoirs with a corresponding number of connection channel structures for integrated metering and mixing of more than two quantities of liquid.
  • the method according to the invention and the device according to the invention can be used particularly effectively for the metering and mixing of biological fluids, in which a precise metering of very small amounts of fluid is necessary.
  • the devices according to the invention can be operated automatically with a correspondingly designed automatic machine.
  • FIGS Fig. 1 to 4 includes a disposable part made of plastic, for example. While Fig. 1 shows the horizontal cross-section to illustrate the arrangement of the individual elements, shows Fig. 2 a section along the line AB and Fig. 3 a section along the line CD.
  • the individual elements are, as it is in the Fig. 2 to 4 clearly recognizable cavities in the plastic part. In the lateral sectional figures, only the cavities are shown.
  • the structures can be formed for example by pressing metallic counterparts of the molds and subsequently with a film - here from below - be completed.
  • the plastic part can be produced as an injection molded part.
  • the reservoir 1 is connected via two further channels 7 with upwardly open filling nozzle 17.
  • the channels 7 also have such a small cross-section that capillary forces act on a liquid therein.
  • the reservoir 3 is connected via a capillary channel 11 with the filling nozzle 19.
  • the dimensions and the process control are chosen so that the Reynolds number of the considered liquids is in the range of the laminar flow.
  • the necessary parameters can be determined in preliminary tests. Typical viscosities of liquids used are in the range of 1 mPa.s to several 100 mPa.s at speeds of 1 mm per second to 1 cm per second. Suitable system cross sections are then in the range of a few 100 microns with a total length of a few cm.
  • acoustic chip 13 denotes an acoustic chip. This is, for example, a piezoelectric solid-state chip on which an interdigital transducer for generating surface acoustic waves is applied in a manner known per se.
  • the interdigital transducer on the acoustic chip 13 is a unidirectional radiating transducer which generates surface acoustic waves only in the direction of the reservoir 1.
  • acoustic chip 15 designates a further acoustic chip, which likewise carries an interdigital transducer in a manner known per se.
  • This interdigital transducer is configured in such a way that the surface sound waves generated with it enable sound wave radiation into the reservoir 1.
  • the emission of sound waves into a liquid volume, the is removed by a solid from the surface acoustic wave generating interdigital transducer is in DE 103 25 307 B3 described.
  • the acoustic chip 15 may, for. B. also be provided on the other side of the reservoir 1.
  • the acoustic chips 13, 15 are connected via electrical connections, not shown, to an AC voltage source, with which an AC voltage of a frequency of a few tens of MHz can be generated in order to produce surface acoustic waves with the interdigital transducers.
  • Such a device is used as follows for carrying out the method according to the invention.
  • the reservoir 3 is filled with a small amount of liquid. Due to capillary forces, this liquid enters the channel 5. However, the liquid does not enter the reservoir 1, because there the cross-section is considerably larger and so the capillary force is abruptly weaker.
  • the reservoir 1 is pressurized, for. B. completely filled by a pipette with a larger amount of another liquid. It is harmless if 17 supernatants remain in liquid in the filling channels 7 for the reservoir 1 or the filling nozzle. These do not participate in the mixing process to be carried out later by generating laminar flow patterns in the reservoir 1 for geometrical reasons and are therefore not relevant for the determination of the liquid volume participating in the mixing process.
  • a laminar flow is generated by the momentum transfer of the surface acoustic waves to the liquid in the channel 5.
  • the time duration over which the interdigital transducer is operated, or the pumping power the amount of liquid which flows laminarly via the capillary channel 5 into the reservoir 1 can be precisely determined.
  • the determination of the necessary time duration or the pumping power can be determined for example on the basis of preliminary tests.
  • the laminar flow thus ensures a defined supply of liquid.
  • the reservoir 1 then serves as a reaction chamber in which a reaction of the two defined amounts of liquid or their ingredients can take place.
  • Fig. 5 shows a modification of the embodiment of the Fig. 1 to 4 ,
  • the capillary channel 6 between the reservoir 3 and the reservoir 1 is not rectilinear.
  • An acoustic chip 14 with an interdigital transducer is used, which does not have to radiate unidirectionally here. It is sufficient if the acoustic chip 14 is arranged such that one of its emission directions points in the direction of the capillary channel 6.
  • a surface acoustic wave is radiated in the indicated direction, the momentum transfer of which leads to the liquid in the capillary channel 6 to a laminar flow.
  • the 6 and 7 show an embodiment that can be realized on the surface of a solid state chip.
  • the reservoirs 101 and 103 include surface regions whose wetting properties are selected such that they are preferably wetted by a liquid.
  • the reservoirs 101, 103 are hydrophilic compared to the surrounding solid surface. This is z. B. achieved by silanization of the surrounding surface, which leads to a hydrophobic surface.
  • the reservoirs 101 and 103 are connected by a laminar connection channel structure 105 whose wetting properties are also selected.
  • a laminar connection channel structure 105 On the surface is located in a manner not shown, an interdigital transducer whose emission direction along the channel 105 goes to produce laminar flow in the channel 105.
  • the channel 105 is selected so narrow that capillary forces act on liquid thereon.
  • Such a device is used as follows.
  • a liquid drop 123 of a first liquid is applied to the reservoir 103 and, due to the described wetting properties of the surface, does not move outward from the reservoir 103 and is held together by its surface tension. Due to capillary forces, this liquid moves along the channel structure 105. The abruptly decreasing capillary forces at the junction between the channel structure 105 and the larger reservoir surface 101 stops the movement of the liquid at the juncture between the channel structure 105 and the reservoir surface 101.
  • a second liquid drop 121 is applied to the reservoir surface 101. Also, this liquid drop 121 is held together by the selected wetting properties of the surface and its surface tension. Its size is selected so that the reservoir surface 101 is completely filled. By selecting the size of the surface 101 so that the volume is determined.
  • interdigital transducer In the area of the reservoir surface 101 is an interdigital transducer, with the aid of which a laminar flow pattern for mixing the liquids is produced.
  • the interdigital transducer is in the 6 and 7 also not shown for the sake of clarity.
  • the liquid drop 121 on the reservoir surface 101, the liquid drop 123 on the reservoir surface 103, and the liquid bridge 125 along the channel structure 105 can be seen.
  • FIG. 8 and 9 show a modification of the embodiment of the 6 and 7 ,
  • the reservoir surfaces 101 and 103 are not interconnected by a channel structure 105 here.
  • a connection of the amounts of liquid 121 and 123 is done here by deliberately introducing a "bridge drop" 127 small volume, which provides a liquid bridge between the two liquid quantities, via which by means of the as in the embodiment of 6 and 7 generated laminar flow in the manner described a liquid transport can take place.
  • Fig. 10 serves the schematic representation of another procedure.
  • Reservoirs 201 and 203 are interconnected via two capillary structures 223, 227.
  • An interdigital transducer 213, which is indicated only schematically, has at least one emission direction along the channel structure 227.
  • Beneath the reservoir 201 is a surface acoustic wave generation device 215, eg, a surface acoustic wave generator 215.
  • B. also an interdigital transducer, which can emit a sound wave in the liquid in the overlying reservoir similar to the surface acoustic wave generating device 15 already described.
  • a first liquid is introduced in the reservoir 203.
  • the liquid enters the capillaries 223, 227 due to the capillary force.
  • a second liquid is introduced into the reservoir 201 for its complete filling.
  • the operation of the interdigital transducer 213 generates a surface acoustic wave at least in the direction indicated. By the momentum transfer of the surface acoustic wave to the liquid in the channel 227, a laminar flow is generated there.
  • the liquid from the channel 227 enters the reservoir 201 and is replenished from the reservoir 203.
  • the liquid boundaries 229, 231 move accordingly. Since it is a laminar and not a turbulent flow, apart from the diffusion at the liquid boundaries 229, 231 no mixing takes place. It creates a state like him in Fig. 10b is shown.
  • the respective proportion of the liquids in the reservoir 201 can be determined.
  • a surface acoustic wave is generated, which leads to the radiation of a sound wave in the liquid in the reservoir 201 and there causes corresponding flow pattern for mixing the two liquids. It creates a mixture 233, as in Fig. 10c indicated.
  • connection channel structures between the reservoirs can be carried out both two-dimensionally with corresponding wetting structures as well as three-dimensionally with corresponding recesses or cavities.
  • the figures are not to scale. This is the ratio of the volumes the channel structures to the volume of the reservoirs z. Between 1/10 and 1/100.
  • the method according to the invention and the devices according to the invention make it possible to precisely meter in a quantity of liquid to a quantity of liquid defined by the volume of the second reservoir, for example by selecting the time during which a laminar flow is generated along the connection channel structure of the devices according to the invention.
  • the method is easy to carry out and the device can be made small, compact and possibly disposable.
  • the embodiments according to the invention can be operated in an automaton.
  • a machine has z.
  • a receptacle for a device according to the invention which makes electrical contact with the interdigital transducers.
  • Automatically operated pipetting heads and / or dispensers are provided, which are arranged in such a way that they are arranged above the reservoirs or the filling structures when the device is inserted in the receptacle.
  • a control preferably provided with a microprocessor unit, which serves for timing the pipetting heads / dispensers and the interdigital transducer in order to process a desired metering and mixing protocol.
  • the evaluation instruments such. B. optical measuring devices, etc., to detect the possibly triggered by the mixing process reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

A method or device for integrated dosing and intermixing of small amounts of liquid, has a first liquid conveyed into or onto a first reservoir (3). A second reservoir (1) is entirely filled with a second liquid. The first and second liquids are brought into contact with each other via at least one joining duct structure (5) which has at least one area provided with a smaller cross section than the reservoirs (1,3) in the viewing direction of the connecting line between the two reservoirs (1,3). A laminar flow pattern is created along at least one portion of the joining duct structure (5), with the liquids thoroughly mixed in the second reservoir (1).

Description

Die Erfindung betrifft ein Verfahren zur integrierten Dosierung und Durchmischung kleiner Flüssigkeitsmengen, eine Vorrichtung und einen Apparat zur Durchführung dieses Verfahrens und eine Verwendung.The invention relates to a method for integrated metering and mixing of small amounts of liquid, a device and an apparatus for carrying out this method and a use.

Diagnostisches Assays, insbesondere im Bereich der klinischen Chemie und Immunochemie werden heutzutage zum großen Teil automatisiert durchgeführt. In den entsprechenden Automaten werden definierte Volumina von Probenflüssigkeit und Reagenzien in eine Küvette oder in die Vertiefung einer Mikrotiterplatte pipettiert und vermischt. Anschließend wird eine erste Referenzmessung durchgeführt, bei der zum Beispiel die optische Transmission durch die Küvette bestimmt wird. Nach einer gewissen Reaktionszeit zwischen Probe und Reagenzien wird eine zweite Messung des gleichen Parameters vorgenommen. Durch den Vergleich der beiden Messwerte ergibt sich die Konzentration der Probe bezüglich eines bestimmten Inhaltsstoffes oder auch nur das Vorhandensein des Inhaltsstoffes. Typische Volumina liegen in Summe bei einigen hundert Mikrolitern, wobei notwendige Mischungsverhältnisse von Probe zu Reagenz zwischen 1:100 und 100:1 vorkommen können. Gegebenenfalls können auch mehrere Reagenzien zur Mischung mit einer Probe vorgesehen sein. Neben den eben beschriebenen Instrumenten für hohen Durchsatz, die typischerweise in speziellen Labors zu finden sind, gibt es auch Bestrebungen, Assays dezentral und ohne großen instrumentellen Aufwand durchzuführen. Dabei wäre es wünschenswert, wenn die in jüngster Zeit vorgestellte "Lab-on-a-Chip"-Technologie eingesetzt werden könnte, bei der die Prozessierung von Flüssigkeiten auf bzw. in einem Chip integriert durchgeführt werden kann. Assayzeiten von weniger als einer Stunde sind wünschenswert.Diagnostic assays, especially in the field of clinical chemistry and immunochemistry, are now largely automated. In the appropriate machines, defined volumes of sample liquid and reagents are pipetted into a cuvette or into the well of a microtiter plate and mixed. Subsequently, a first reference measurement is carried out in which, for example, the optical transmission through the cuvette is determined. After a certain reaction time between sample and reagents, a second measurement of the same parameter is made. By comparing the two measured values results in the concentration of the sample with respect to a particular ingredient or even the presence of the ingredient. Typical volumes are in the sum of a few hundred microliters, whereby necessary mixing ratios of sample to reagent between 1: 100 and 100: 1 can occur. Optionally, several reagents may be provided for mixing with a sample. In addition to the high throughput instruments just described, which are typically found in specialized laboratories, there are also efforts to make assays decentralized and without much instrumental effort. It would be desirable if the recently introduced "lab-on-a-chip" technology could be used, in which the Processing of liquids can be performed on or integrated into a chip. Assay times of less than one hour are desirable.

Zur Bewegung der Flüssigkeiten werden dabei zum Beispiel mikrofluidische Systeme verwendet, in denen Flüssigkeit durch elektro-osmotische Potentiale bewegt wird, siehe zum Beispiel Anne Y. Fu, et al. "A micro fabricated fluorescence-activated cell sorter", Nature Biotechnology Vol. 17, November 1999, S. 1109 ff .For example, microfluidic systems are used to move the liquids, in which liquid is moved by electro-osmotic potentials, see for example Anne Y. Fu, et al. "A micro fabricated fluorescence-activated cell sorter", Nature Biotechnology Vol. 17, November 1999, p. 1109 et seq ,

Ein Verfahren zur Flüssigkeitsdurchmischung im Mikroliterbereich ist in DE 103 25 307 B3 beschrieben, bei der kleine Flüssigkeitsvolumina in Mikrotiterplatten mit Hilfe schallinduzierter Strömung gemischt werden. Eine andere Methode zur Erzeugung von Bewegung in kleinen Flüssigkeitsmengen auf einer Festkörperoberfläche beschreibt DE 101 42 789 C1 . Hier wird mit Hilfe von Oberflächenschallwellen eine Flüssigkeit durchmischt oder mehrere Flüssigkeiten miteinander vermischt.A method for mixing liquids in the microliter range is in DE 103 25 307 B3 described in which small volumes of liquid in microtiter plates are mixed by means of sound-induced flow. Another method of generating motion in small quantities of fluid on a solid surface describes DE 101 42 789 C1 , Here, a liquid is mixed with the help of surface sound waves or mixed several liquids together.

Gemäß einem in DE 100 55 318 A1 beschriebenen Verfahren wird eine Flüssigkeitsmenge auf einen Bereich einer im wesentlichen planaren Oberfläche gebracht, deren Benetzungseigenschaften sich von der umgebenden Oberfläche derart unterscheiden, dass sich die Flüssigkeit bevorzugt darauf aufhält, wobei sie durch ihre Oberflächenspannung zusammengehalten wird. Bewegung der Flüssigkeitsmenge kann dabei durch den Impulsübertrag einer Oberflächenschallwelle auf die Flüssigkeit erzeugt werden.According to a in DE 100 55 318 A1 described method, an amount of liquid is brought to a region of a substantially planar surface, the wetting properties of which differ from the surrounding surface in such a way that the liquid preferably resides on it, being held together by their surface tension. Movement of the amount of liquid can be generated by the momentum transfer of a surface acoustic wave to the liquid.

Problematisch ist insbesondere die Integration von Dosierung und Mischung von Probe und Reagenzien in einem kostengünstigen Lab-on-thechip-System. Eine homogene Durchmischung unterschiedlicher derart kleiner Flüssigkeitsmengen ist schwierig zu realisieren.In particular, the integration of metering and mixing of sample and reagents in a low-cost lab-on-the-chip system is problematic. A homogeneous mixing of different such small amounts of liquid is difficult to implement.

Zur Dosierung ist es notwendig, Volumina der Flüssigkeitsmengen genau zu definieren. Dies ist zum Beispiel geometrisch durchführbar. So können zum Beispiel in einem offenen System die Benetzungseigenschaften der Oberfläche ein Volumen bestimmen, wie es in DE 100 55 318 A1 beschrieben ist. Hier erfolgt die Definition der Volumina durch hydrophile und hydrophobe Bereiche über den Benetzungswinkel auf einer im Wesentlichen glatten Oberfläche. Wurden auf diese Weise mehrere Volumina definiert, die zur Reaktion gebracht werden sollen, so werden die Volumina aufeinander zu bewegt, um dies zu erreichen. Bei der Bewegung auf einer Oberfläche können Flüssigkeitsreste bzw. in der Flüssigkeit befindliche Moleküle des Analyten oder des Reagenzes an der Oberfläche haften bleiben, so dass durch die Bewegung ein Volumenverlust bzw. eine Konzentrationsverringerung unbekannter Höhe nicht auszuschließen ist. Außerdem müssen Vorkehrungen gegen die Verdunstung getroffen werden, die insbesondere bei längeren Assayzeiten problematisch sein kann.For dosing, it is necessary to precisely define volumes of liquid quantities. This is geometrically feasible, for example. For example, in an open system, the wetting properties of the surface can determine a volume, as in FIG DE 100 55 318 A1 is described. Here, the volumes are defined by hydrophilic and hydrophobic regions over the wetting angle on a substantially smooth surface. If several volumes have been defined in this way which are to be reacted, the volumes are moved toward one another in order to achieve this. When moving on a surface, liquid residues or liquid molecules of the analyte or the reagent can adhere to the surface, so that the movement of a volume loss or a concentration reduction of unknown level can not be excluded. In addition, provision must be made against the evaporation, which can be problematic especially at longer assay times.

Andere Ansätze benutzen Kanäle von definiertem Querschnitt, die mit Flüssigkeit kapillar befüllt werden. Ist die Flüssigkeit eine wässrige Lösung, so ist am Kanalende eine hydrophobe Barriere angebracht, die sich nicht kapillar befüllen lässt. Weiterhin gibt es an diesem Kanal einen seitlichen Abzweig mit einer ebenfalls hydrophoben Oberfläche, die sich nicht kapillar befüllen lässt. Querschnitt und Länge des Kanals zwischen der hydrophoben Barriere und dem hydrophoben Abzweig bestimmen nun ein Volumen, das durch pneumatischen Druck durch den Abzweig definiert abgetrennt und bewegt werden kann ( Burns et al., An integrated nanoliter DNA analysis device, Science 282, 484 (1998 )). Durch diese Art der Volumendefinition entstehen hohe Kosten durch die notwendige Benetzungsstrukturierung der Oberfläche (hydrophil zur Befüllung des Kanals selbst und hydrophob für die Barriere und den Abzweig). Außerdem muss mit Luftdruck gearbeitet werden, was entsprechende Vorrichtungen erfordert. Um die kapillare Befüllung des Messkanals zu ermöglichen, muss der Kanalquerschnitt klein sein. Bei großen Volumina im Bereich von einigen 100 Mikrolitern sind daher lange Kanäle erforderlich. Dies führt zwangsläufig zu großen unerwünschten Wechselwirkungen der Moleküle in der Flüssigkeit mit der Kanalwand. Eine effiziente Durchmischung mehrerer. Flüssigkeitsmengen ist in dieser Geometrie nahezu unmöglich.Other approaches use channels of defined cross-section, which are filled with liquid capillary. If the liquid is an aqueous solution, then at the end of the channel a hydrophobic barrier is attached, which can not be filled capillary. Furthermore, there is a lateral branch on this channel with a likewise hydrophobic surface, which can not be capillary filled. The cross-section and length of the channel between the hydrophobic barrier and the hydrophobic branch now define a volume which can be separated and moved by pneumatic pressure through the branch ( Burns et al., An integrated nanoliter DNA analysis device, Science 282, 484 (1998 )). This type of volume definition creates high costs due to the necessary wetting structuring the surface (hydrophilic for filling the channel itself and hydrophobic for the barrier and the branch). In addition, you must work with air pressure, which requires appropriate devices. In order to enable the capillary filling of the measuring channel, the channel cross-section must be small. For large volumes in the range of a few 100 microliters, therefore, long channels are required. This inevitably leads to large unwanted interactions of the molecules in the liquid with the channel wall. An efficient mixing of several. Liquid quantities are almost impossible in this geometry.

US 5,674,742 beschreibt eine Vorrichtung zur Manipulation, Reaktion und Detektion kleiner Flüssigkeitsmengen mit einem ersten Reservoir für eine erste Flüssigkeitsmenge, einem Reaktionsreservoir und einer die Reservoirs verbindenden Verbindungskanalstruktur, die in einem Bereich einen Querschnitt in Blickrichtung der Verbindungslinie der Reservoirs aufweist, der kleiner als die Querschnitte der Reservoirs ist. Die Vorrichtung weist eine Einrichtung zur Erzeugung von Strömung entlang der Verbindungskanalstruktur und zur Durchmischung der Flüssigkeitsmengen in dem zweiten Reservoir auf. US 5,674,742 describes a device for manipulating, reacting and detecting small amounts of liquid with a first reservoir for a first quantity of liquid, a reaction reservoir and a connection channel structure connecting the reservoir, which has a cross-section in a region in the direction of the connecting line of the reservoir, which is smaller than the cross-sections of the reservoirs is. The apparatus includes means for generating flow along the connection channel structure and mixing the amounts of liquid in the second reservoir.

Der Begriff "Flüssigkeit" umfasst im vorliegenden Text u.a. reine Flüssigkeiten, Mischungen, Dispersionen und Suspensionen sowie Flüssigkeiten, in denen sich feste Teilchen, zum Beispiel biologisches Material, befinden. Zu dosierende und zu mischende Flüssigkeiten können zum Beispiel auch zwei oder mehr gleichartige Lösungen sein, die sich durch darin gelöste Inhaltsstoffe unterscheiden, die zur Reaktion gebracht werden sollen.The term "liquid" in the present text includes i.a. pure liquids, mixtures, dispersions and suspensions; and liquids containing solid particles, for example, biological material. For example, dosing and mixing liquids may also be two or more similar solutions that differ in ingredients dissolved therein that are to be reacted.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren und eine Vorrichtung anzugeben, mit deren Hilfe eine präzise Dosierung von Flüssigkeitsmengen auf bzw. in einem integrierten Chip möglich ist und die eine präzise Durchmischung der Flüssigkeiten ermöglichen.The object of the present invention is to provide a method and a device by means of which a precise metering of liquid quantities on or in an integrated chip is possible and which enable precise mixing of the liquids.

Diese Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1, einer Vorrichtung mit den Merkmalen des Anspruchs 18 und einem Apparat mit den Merkmalen des Anspruches 28 gelöst. Unteransprüche sind auf bevorzugte Ausgestaltungen gerichtet. Eine vorteilhafte Verwendung ist. Gegenstand des Anspruches 29.This object is achieved by a method having the features of claim 1, a device having the features of claim 18 and an apparatus having the features of claim 28. Subclaims are directed to preferred embodiments. An advantageous use is. Subject of claim 29.

Bei einem erfindungsgemäßen Verfahren zur integrierten Dosierung und Durchmischung kleiner Flüssigkeitsvolumina wird eine erste Flüssigkeit in bzw. auf ein erstes Reservoir gebracht. Eine zweite Flüssigkeit wird derart in bzw. auf ein zweites Reservoir gebracht, dass es vollständig befüllt ist. Die erste und die zweite Flüssigkeit werden über wenigstens eine erste Verbindungskanalstruktur in Kontakt gebracht, die wenigstens einen Bereich umfasst, der in Blickrichtung der Verbindungslinie der zwei Reservoirs einen kleineren Querschnitt als die Reservoirs selbst aufweist. Flüssigkeitsaustausch wird durch laminare Strömung in der Verbindungskanalstruktur bewirkt und die Flüssigkeiten in bzw. auf dem zweiten Reservoir durchmischt.In a method according to the invention for the integrated metering and mixing of small volumes of liquid, a first liquid is produced placed in or on a first reservoir. A second liquid is brought into or onto a second reservoir in such a way that it is completely filled. The first and second liquids are brought into contact via at least one first connection channel structure which comprises at least one region which has a smaller cross section than the reservoirs themselves in the direction of the connection line of the two reservoirs. Liquid exchange is effected by laminar flow in the connection channel structure and the liquids are mixed in and on the second reservoir.

Bei dem erfindungsgemäßen Verfahren treten die Flüssigkeiten über die Verbindungskanalstruktur in Kontakt. An der Grenzfläche zwischen den zwei Flüssigkeiten kommt es nur zu vernachlässigbarer Diffusion, da der Querschnitt der Verbindungskanalstruktur vergleichsweise klein ist. Wird entlang der Verbindungskanalstruktur in Richtung des zweiten Reservoirs eine laminare Strömung erzeugt, so wird die erste Flüssigkeit durch die Verbindungskanalstruktur in Richtung des zweiten Reservoirs bewegt. Zum Beispiel durch genaue Auswahl des Zeitraumes, über den die laminare Strömung in der Verbindungskanalstruktur erzeugt wird, bzw. der Strömungsgeschwindigkeit erfolgt eine genaue Definition des Volumens der ersten Flüssigkeit, das zu der zweiten Flüssigkeit dosiert werden soll. Die Menge der zweiten Flüssigkeit ist durch die Größe des Reservoirs genau bestimmt. Im bzw. auf dem zweiten Reservoir findet dann gegebenenfalls die Reaktion zwischen den Flüssigkeiten statt. Das zweite Reservoir stellt insofern eine Reaktionskammer dar. Das erfindungsgemäße Verfahren ermöglicht die Dosierung und Mischung von Flüssigkeiten in einem großen dynamischen Bereich. So kann das Mischungsverhältnis von Reagenzien zu Probenflüssigkeit z. B. von 1:100 bis 100:1 eingestellt werden.In the method according to the invention, the liquids come into contact via the connecting channel structure. At the interface between the two liquids, only negligible diffusion occurs because the cross-section of the connection channel structure is comparatively small. If a laminar flow is generated along the connection channel structure in the direction of the second reservoir, the first liquid is moved through the connection channel structure in the direction of the second reservoir. For example, by accurately selecting the period of time over which the laminar flow is generated in the connection channel structure, or the flow rate, a precise definition of the volume of the first liquid to be metered to the second liquid is made. The amount of the second liquid is precisely determined by the size of the reservoir. In or on the second reservoir then optionally takes place the reaction between the liquids. The second reservoir thus constitutes a reaction chamber. The method according to the invention enables the metering and mixing of liquids in a large dynamic range. Thus, the mixing ratio of reagents to sample liquid z. B. from 1: 100 to 100: 1 can be set.

Zur Befüllung der Reservoirs zu Beginn des erfindungsgemäßen Verfahrens können Pipetten und/oder entsprechende Befüllstrukturen eingesetzt werden. Die Anforderungen an die Präzision dieser Elemente sind gering, da die Definition der an der Reaktion teilnehmenden Volumina an Flüssigkeit durch das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung selbst bestimmt werden, insbesondere durch die Dauer bzw. die Geschwindigkeit der laminaren Strömung in der Verbindungskanalstruktur und das Volumen des zweiten Reservoirs.To fill the reservoirs at the beginning of the process according to the invention, pipettes and / or corresponding filling structures can be used. The precision requirements of these elements are low, since the definition of the volumes of liquid participating in the reaction are determined by the method according to the invention or the device itself, in particular by the duration or the velocity of the laminar flow in the connection channel structure and the Volume of the second reservoir.

Die laminare Strömung wird vorzugsweise durch Einstrahlen von Schallwellen in Richtung zumindest eines Teiles der Verbindungskanalstruktur hervorgerufen.The laminar flow is preferably caused by the irradiation of sound waves towards at least a part of the connection channel structure.

Die Reservoirs und die Verbindungskanalstruktur können dreidimensional oder zweidimensional ausgestaltet sein. So können die Reservoirs und Verbindungskanalstrukturen entsprechend geformte Vertiefungen in einer Oberfläche sein. Bei anderen Ausgestaltungen handelt es sich um entsprechend geformte Hohlräume. Bei einer zweidimensionalen Ausgestaltung werden die Reservoirs und Verbindungskanalstrukturen durch entsprechend geformte Bereiche einer Oberfläche gebildet, die von den Flüssigkeiten bevorzugter benetzt werden als die umgebenden Bereiche der Oberfläche. Solche benetzungsmodulierten Oberflächen sind zum Beispiel in DE 100 55 318 A1 beschrieben. Die Flüssigkeiten werden dabei durch ihre Oberflächenspannung auf den bevorzugt benetzten Bereichen gehalten.The reservoirs and the connection channel structure may be configured three-dimensionally or two-dimensionally. Thus, the reservoirs and interconnect channel structures may be correspondingly shaped depressions in a surface. Other configurations are correspondingly shaped cavities. In a two-dimensional embodiment, the reservoirs and connection channel structures are formed by correspondingly shaped regions of a surface, which are wetted by the liquids more preferably than the surrounding regions of the surface. Such wetting-modulated surfaces are, for example, in DE 100 55 318 A1 described. The liquids are held by their surface tension on the preferably wetted areas.

Zur einfacheren Darstellung seien im vorliegenden Text jeweils dreidimensionale und zweidimensionale Realisierungen umfasst, wenn es nicht explizit anders angegeben ist, auch wenn Begriffe gewählt sind, die nur eine Möglichkeit zu beschreiben scheinen. So wird zum Beispiel auch für das Aufbringen einer Flüssigkeit auf eine zweidimensionale Reservoirfläche der Begriff "Einbringen in ein Reservoir" oder "Befüllen" verwendet. Ähnlich wird z. B. auch für die Bewegung von Flüssigkeit auf einer zweidimensionalen Verbindungsstruktur der Begriff "Bewegung durch die Verbindungsstruktur" verwendet etc. Das "Volumen" oder die Größe eines "Querschnitts" bedeuten bei zweidimensionalen Realisierungen in analoger Weise die Fläche bzw. die Breite.For ease of illustration, three-dimensional and two-dimensional implementations are included in the present text, unless explicitly stated otherwise, even if terms are chosen that seem to describe only one possibility. So for example for the Applying a liquid to a two-dimensional reservoir surface uses the term "introduction into a reservoir" or "filling". Similarly, z. For example, the term "movement through the connection structure" is used also for the movement of fluid on a two-dimensional connection structure. The "volume" or the size of a "cross-section" in two-dimensional implementations analogously means the area or the width.

Die an der Reaktion teilnehmende Menge der zweiten Flüssigkeit ist durch die Ausmaße des zweiten Reservoirs bestimmt. Wird das zweite Reservoir zum Beispiel über entsprechende Befüllstrukturen, z. B. Befüllkanälen und/oder Befüllstutzen, befüllt, so nehmen eventuell existierende Überstände an Flüssigkeit in diesen Befüllstrukturen außerhalb des Reservoirs aus geometrischen Gründen nicht an der Durchmischung teil, insbesondere wenn die Durchmischung durch laminare Strömungsmuster bewirkt wird.The amount of the second liquid participating in the reaction is determined by the dimensions of the second reservoir. If the second reservoir, for example via corresponding filling structures, for. As filling channels and / or filling, filled, any existing supernatants of liquid in these filling structures outside of the reservoir for geometric reasons do not participate in the mixing, especially when the mixing is effected by laminar flow pattern.

Bei einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird die laminare Strömung in bzw. auf der Verbindungskanalstruktur mit Hilfe von Schallwellen erzeugt. Vorzugsweise werden Oberflächenschallwellen eingesetzt, die zum Beispiel mit einem oder mehreren Interdigitaltransducern erzeugt werden können. Oberflächenschallwellen übertragen dabei ihren Impuls auf die Flüssigkeit bzw. darin enthaltene Stoffe um sie so in Bewegung zu versetzen. Allgemein ist der Impulsübertrag von Oberflächenschallwellen, die mit Hilfe von Interdigitaltransducern erzeugt werden, auf Flüssigkeiten auf Oberflächen in DE 100 55 318 A1 beschrieben.In an advantageous embodiment of the method according to the invention, the laminar flow is generated in or on the connecting channel structure with the aid of sound waves. Preferably surface acoustic waves are used, which can be generated for example with one or more interdigital transducers. Surface sound waves transmit their impulse to the liquid or substances contained in it in order to put it in motion. In general, the momentum transfer from surface acoustic waves generated by interdigital transducers to liquids on surfaces in DE 100 55 318 A1 described.

Bei einer erfindungsgemäßen Weiterbildung unter Einsatz eines Interdigitaltransducers weist dieser eine Abstrahlrichtung in Richtung der Erstreckung zumindest eines Teiles der Verbindungskanalstruktur auf.In a development according to the invention using an interdigital transducer, the latter has a radiation direction in the direction of the extension of at least one part of the connection channel structure.

Die erste und die zweite Flüssigkeit können über die Verbindungskanalstruktur zum Beispiel unter Ausnutzung von Kapillarkräften in Kontakt gebracht werden. Dazu wird die Verbindungskanalstruktur in ihren seitlichen Dimensionen so klein gewählt, dass zumindest eine der Flüssigkeiten durch die Kapillarkräfte entlang des Kanals gezogen wird. So kann z. B. gemäß einer bevorzugten Verfahrensführung eine erste Flüssigkeit auf bzw. in das erste Reservoir gebracht werden, die sich durch die Kapillarkräfte in bzw. auf der Verbindungskanalstruktur ausbreitet. An der Eintrittstelle der Verbindungskanalstruktur in das zweite Reservoir stoppt die Flüssigkeit ihre Bewegung, da durch den größeren Querschnitt des Reservoirs im Vergleich zu der Verbindungskanalstruktur nur noch geringe Kapillarkräfte wirken. In bzw. auf das zweite Reservoir wird die zweite Flüssigkeit aufgebracht, die an der Eintrittsstelle der Verbindungskanalstruktur in das zweite Reservoir mit der ersten Flüssigkeit in Kontakt kommt.The first and second liquids may be contacted via the connection channel structure using, for example, capillary forces. For this purpose, the connecting channel structure is chosen so small in its lateral dimensions, that at least one of the liquids is pulled by the capillary forces along the channel. So z. For example, according to a preferred method, a first liquid can be brought onto or into the first reservoir, which propagates through the capillary forces in or on the connection channel structure. At the point of entry of the connecting channel structure into the second reservoir, the liquid stops its movement, since only small capillary forces act through the larger cross-section of the reservoir compared to the connecting channel structure. In or on the second reservoir, the second liquid is applied, which comes into contact with the first liquid at the entry point of the connecting channel structure in the second reservoir.

Bei einer anderen Verfahrensführung wird die Verbindung zwischen den beiden Flüssigkeiten über einen kleinen "Brückentropfen" hergestellt, der zwischen die beiden Flüssigkeiten gebracht wird und eine Flüssigkeitsbrücke erzeugt. Der Brückentropfen hat dabei ein sehr viel kleineres Volumen als jede der beiden Flüssigkeitsmengen.In another process, the connection between the two liquids is made via a small "bridge drop" which is placed between the two liquids and creates a liquid bridge. The bridge drop has a much smaller volume than either of the two liquid quantities.

Zur Befüllung der Reservoirs zu Beginn des erfindungsgemäßen Verfahrens können Pipetten und/oder entsprechende Befüllstrukturen eingesetzt werden. Die Anforderungen an die Präzision dieser Elemente sind gering, da die Definition der an der Reaktion teilnehmenden Volumina an Flüssigkeit durch das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Vorrichtung selbst bestimmt werden, insbesondere durch die Dauer bzw. die Geschwindigkeit der laminaren Strömung in der Verbindungskanalstruktur und das Volumen des zweiten Reservoirs.To fill the reservoirs at the beginning of the process according to the invention, pipettes and / or corresponding filling structures can be used. The requirements for the precision of these elements are low, since the definition of the participating in the reaction volumes of liquid by the inventive method or the inventive Device itself, in particular by the duration or the speed of the laminar flow in the connection channel structure and the volume of the second reservoir.

Die Befüllstrukturen können ebenfalls Befüllkanalstrukturen mit im Vergleich zu den Reservoirs kleinen Querschnitten umfassen. Die Herstellung einer entsprechenden Struktur ist sehr einfach, da dieselben Prozessschritte eingesetzt werden, die auch bei der Herstellung der Reservoirs bzw. bei der Verbindungskanalstruktur verwendet werden.The filling structures may also comprise filling channel structures with small cross-sections compared to the reservoirs. The production of a corresponding structure is very simple, since the same process steps are used, which are also used in the production of the reservoir or in the connecting channel structure.

Die vergleichsweise kleinen Querschnitte verhindern effektiv, dass möglicherweise nach der Befüllung in den Befüllkanalstrukturen vorhandene Flüssigkeitsüberstände an der Durchmischung teilnehmen. Auf diese Weise wird verhindert, dass möglicherweise in den Befüllkanalstrukturen noch vorhandene Flüssigkeitsüberstände die Festlegung der an der Durchmischung teilnehmenden Flüssigkeitsvolumina ungenau machen.The comparatively small cross-sections effectively prevent any supernatants present after filling in the filling channel structures from taking part in the mixing. In this way it is prevented that possibly existing liquid supernatants in the filling channel structures make the specification of the liquid volumes participating in the mixing inaccurate.

Außerdem wird durch geringe Querschnitte der Befüllstrukturen zusätzlich gewährleistet, dass eine unkontrollierte Diffusion durch in den Befüllstrukturen möglicherweise vorhandene Flüssigkeitsgrenzen aufgrund des geringen Querschnittes vernachlässigbar sind.In addition, it is additionally ensured by small cross sections of the filling structures that uncontrolled diffusion due to liquid boundaries possibly present in the filling structures is negligible due to the small cross section.

Derartige Befüllkanalstrukturen können einen geringen Querschnitt aufweisen, der gewährleistet, dass sich die Flüssigkeit durch die Befüllkanalstrukturen bzw. auf den Befüllkanalstrukturen aufgrund von Kapillarwirkung in Richtung der Reservoirs bewegt. Damit ist eine präzise Befüllung einfach durchführbar.Such filling channel structures can have a small cross-section, which ensures that the liquid moves through the filling channel structures or on the filling channel structures due to capillary action in the direction of the reservoirs. For a precise filling is easy to carry out.

Das erfindungsgemäße Verfahren ist mit einer einzelnen Verbindungskanalstruktur zwischen den beiden Reservoirs durchführbar. Dabei wird das erste Reservoir durch die laminare Abströmung der ersten Flüssigkeit zumindest teilweise entleert. Eine andere erfindungsgemäße Ausgestaltung umfasst zumindest zwei Verbindungskanalstrukturen zwischen den beiden Reservoirs. In einer dieser Verbindungskanalstrukturen wird zum Beispiel mit Hilfe von Oberflächenschallwellen eine laminare Strömung erzeugt, die zur Bewegung der ersten Flüssigkeit aus dem ersten Reservoir in Richtung des zweiten Reservoirs dient. Die erste Flüssigkeit im ersten Reservoir wird durch die laminare Abströmung also immer weniger. Über die zweite Verbindungskanalstruktur fließt aus dem zweiten Reservoir gleichzeitig zweite Flüssigkeit in das erste Reservoir nach.The inventive method can be carried out with a single connection channel structure between the two reservoirs. This is the first reservoir at least partially emptied by the laminar outflow of the first liquid. Another embodiment according to the invention comprises at least two connecting channel structures between the two reservoirs. In one of these connecting channel structures, for example, a laminar flow is generated by means of surface acoustic waves, which serves for moving the first liquid from the first reservoir in the direction of the second reservoir. The first fluid in the first reservoir is thus becoming less and less due to the laminar outflow. At the same time, second liquid flows into the first reservoir from the second reservoir via the second connection channel structure.

Nach der Zudosierung der gewünschten Menge der ersten Flüssigkeit zu der zweiten Flüssigkeit in dem zweiten Reservoir werden die Flüssigkeiten durchmischt. Besonders günstig ist es, wenn dieser Mischprozess durch Erzeugung von im Wesentlichen laminaren Strömungsmustern bewirkt wird. Damit ist sichergestellt, dass eventuelle Überstände an den Befüllstrukturen möglichst wenig oder gar nicht an der Durchmischung teilnehmen.After adding the desired amount of the first liquid to the second liquid in the second reservoir, the liquids are mixed. It is particularly favorable if this mixing process is effected by generating substantially laminar flow patterns. This ensures that any supernatants at the filling structures take part in the mixing as little as possible or not at all.

Zur Erzeugung solcher Strömungsmuster eignen sich insbesondere Schallwellen, die in das zweite Reservoir eingestrahlt werden. Sie können z. B. mit Hilfe von Oberflächenschallwellen erzeugt werden. Diese können direkt eingesetzt werden, um durch ihren Impulsübertrag Strömung in der Flüssigkeit zu erzeugen. Bei anderen Realisierungen können die Oberflächenschallwellen eingesetzt werden, um durch einen Festkörper, zum Beispiel einen Reservoirboden, hindurch Schallwellen in die Flüssigkeit einzustrahlen. Zur Erzeugung von Oberflächenschallwellen können an sich bekannte Interdigitaltransducer eingesetzt werden, die einfach mit lithographischen Techniken herstellbar sind.In particular sound waves, which are radiated into the second reservoir, are suitable for generating such flow patterns. You can z. B. be generated using surface acoustic waves. These can be used directly to generate flow in the liquid by their momentum transfer. In other implementations, the surface acoustic waves can be used to radiate sound waves through a solid, such as a reservoir bottom, into the liquid. For the generation of surface acoustic waves known per se interdigital transducers can be used, which can be easily produced by lithographic techniques.

Bevorzugt ist es, wenn zur Erzeugung der laminaren Strömung und der Durchmischung getrennte Einrichtungen eingesetzt werden. Die Erfindung umfasst jedoch auch Ausführungen, bei denen die laminare Strömung und die Durchmischung mit derselben Einrichtung erzeugt werden.It is preferred if separate devices are used to produce the laminar flow and the mixing. However, the invention also includes embodiments in which the laminar flow and the mixing are produced with the same device.

Das erfindungsgemäße Verfahren ist nicht auf die Dosierung und Durchmischung von nur zwei Flüssigkeitsmengen beschränkt. So können zum Beispiel an das zweite Reservoir zusätzlich über weitere Verbindungskanalstrukturen weitere Reservoirs angeschlossen sein, aus denen weitere Flüssigkeiten in das zweite Reservoir dosiert werden. Die Zudosierung kann dabei gleichzeitig oder nacheinander geschehen.The method according to the invention is not limited to the metering and mixing of only two quantities of liquid. Thus, for example, additional reservoirs may be connected to the second reservoir in addition via further connecting channel structures, from which further fluids are metered into the second reservoir. The addition can be done simultaneously or sequentially.

Eine erfindungsgemäße Vorrichtung zum Dosieren kleiner Flüssigkeitsmengen weist ein erstes Reservoir für eine erste Flüssigkeit, ein zweites Reservoir für eine Menge einer zweiten Flüssigkeit und wenigstens eine Verbindungskanalstruktur auf, die die zwei Reservoirs verbindet und wenigstens in einem Bereich einen Querschnitt in Blickrichtung der Verbindungslinie der Reservoirs hat, der kleiner als die Querschnitte der Reservoirs ist. Die Reservoirs und die wenigstens eine Verbindungskanalstruktur können als Vertiefungen oder Hohlräume in einem Festkörper ausgebildet sein. Bei einer zweidimensionalen Ausgestaltung der erfindungsgemäßen Vorrichtung werden die Reservoirs und die wenigstens eine Verbindungskanalstruktur durch Oberflächenbereiche gebildet, die von den Flüssigkeiten bevorzugter benetzt werden.A device according to the invention for metering small quantities of liquid has a first reservoir for a first liquid, a second reservoir for a quantity of a second liquid and at least one connecting channel structure which connects the two reservoirs and has at least in one region a cross section in the direction of the line of connection of the reservoirs which is smaller than the cross sections of the reservoirs. The reservoirs and the at least one connecting channel structure may be formed as depressions or cavities in a solid body. In a two-dimensional embodiment of the device according to the invention, the reservoirs and the at least one connecting channel structure are formed by surface areas which are more preferably wetted by the liquids.

Die erfindungsgemäße Vorrichtung weist weiterhin wenigstens eine Einrichtung zur Erzeugung laminarer Strömung entlang der wenigstens einen Verbindungskanalstruktur auf. Eine bevorzugte Ausführungsform umfasst dazu eine Vorrichtung zur Erzeugung von Schallwellen, vorzugsweise Oberflächenschallwellen. Besonders einfach ist die Verwendung wenigstens eines Interdigitaltransducers zur Erzeugung der Oberflächenschallwellen, der einfach mit lithographischen Techniken hergestellt werden kann.The device according to the invention furthermore has at least one device for generating laminar flow along the at least one connecting channel structure. A preferred embodiment comprises a device for generating sound waves, preferably surface acoustic waves. The use is at least particularly simple an interdigital transducer for generating surface acoustic waves, which can be easily produced by lithographic techniques.

Außerdem weist die erfindungsgemäße Vorrichtung wenigstens eine Einrichtung zur Durchmischung der Flüssigkeitsmengen in bzw. auf dem zweiten Reservoir auf. Bei einer bevorzugten Ausführungsform ist dazu eine zweite Schallwellenerzeugungseinrichtung zur Erzeugung von in das zweite Reservoir eintretenden Schallwellen vorgesehen.In addition, the device according to the invention has at least one device for mixing the quantities of liquid in or on the second reservoir. In a preferred embodiment, a second sound wave generating device is provided for generating sound waves entering the second reservoir.

Die erfindungsgemäße Vorrichtung kann als kostengünstiges und praktisches Einwegteil ausgestaltet sein.The device according to the invention can be designed as a cost-effective and practical disposable part.

Eine erfindungsgemäße Vorrichtung, die zur Dosierung und Durchmischung von mehr als zwei Flüssigkeitsmengen verwendet werden soll, weist eine entsprechende Anzahl von Reservoirs mit einer entsprechenden Anzahl von Verbindungskanalstrukturen zur integrierten Dosierung und Durchmischung von mehr als zwei Flüssigkeitsmengen auf.A device according to the invention, which is to be used for metering and mixing of more than two quantities of liquid, has a corresponding number of reservoirs with a corresponding number of connection channel structures for integrated metering and mixing of more than two quantities of liquid.

Vorteile der erfindungsgemäßen Vorrichtung und bevorzugte Ausführungsformen der Unteransprüche ergeben sich aus der obigen Beschreibung der Vorteile und bevorzugten Ausgestaltungen des erfindungsgemäßen Verfahrens.Advantages of the device according to the invention and preferred embodiments of the dependent claims will become apparent from the above description of the advantages and preferred embodiments of the method according to the invention.

Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung können besonders effektiv zur Dosierung und Durchmischung biologischer Flüssigkeiten eingesetzt werden, bei denen eine präzise Dosierung kleinster Flüssigkeitsmengen notwendig ist.The method according to the invention and the device according to the invention can be used particularly effectively for the metering and mixing of biological fluids, in which a precise metering of very small amounts of fluid is necessary.

Die erfindungsgemäßen Vorrichtungen können automatisch mit einem entsprechend ausgestalteten Automaten betrieben werden.The devices according to the invention can be operated automatically with a correspondingly designed automatic machine.

Ausführungsformen und Ausgestaltungen der Erfindung werden anhand der anliegenden Figuren im Detail erläutert. Die Figuren sind nicht notwendigerweise maßstabsgetreu und dienen der schematischen Darstellung. Es zeigt:

Fig. 1
einen waagerechten Querschnitt durch eine erfindungsgemäße Vorrichtung,
Fig. 2
einen Schnitt durch eine erfindungsgemäße Vorrichtung der Fig. 1 entlang der Linie A-B,
Fig. 3
einen Schnitt durch eine erfindungsgemäße Vorrichtung der Fig. 1 entlang der Linie C-D,
Fig. 4
den Schnitt der Fig. 2 bei Durchführung eines Schrittes des erfindungsgemäßen Verfahrens,
Fig. 5
eine Abwandlung der erfindungsgemäßen Vorrichtung der Fig. 1 im waagerechten Querschnitt,
Fig. 6
den Ausschnitt einer Oberfläche einer weiteren Ausführungsform der erfindungsgemäßen Vorrichtung mit benetzungsmodulierter Oberfläche,
Fig. 7
eine seitliche Teilansicht der Ausführungsform der Fig. 6 während der Durchführung des erfindungsgemäßen Verfahrens,
Fig. 8
eine Teilansicht auf eine Oberfläche einer Abwandlung der Ausführungsform der Fig. 6,
Fig. 9
eine seitliche Teilansicht dieser Ausführungsform während der Durchführung eines Schrittes des erfindungsgemäßen Verfahrens, und
Fig. 10a - 10c
waagerechte Querschnitte durch eine erfindungsgemäße Ausführungsform während dreier unterschiedlicher Verfahrenszustände.
Embodiments and embodiments of the invention will be explained in detail with reference to the attached figures. The figures are not necessarily to scale and are for schematic illustration. It shows:
Fig. 1
a horizontal cross section through a device according to the invention,
Fig. 2
a section through an inventive device of Fig. 1 along the line AB,
Fig. 3
a section through an inventive device of Fig. 1 along the line CD,
Fig. 4
the cut of the Fig. 2 when performing a step of the method according to the invention,
Fig. 5
a modification of the device according to the invention the Fig. 1 in horizontal cross section,
Fig. 6
the detail of a surface of a further embodiment of the device according to the invention with wetting-modulated surface,
Fig. 7
a partial side view of the embodiment of the Fig. 6 during the implementation of the method according to the invention,
Fig. 8
a partial view of a surface of a modification of the embodiment of the Fig. 6 .
Fig. 9
a partial side view of this embodiment during the implementation of a step of the method according to the invention, and
Fig. 10a - 10c
horizontal cross sections through an embodiment of the invention during three different process states.

Die Ausführungsform, die schematisch in den Fig. 1 bis 4 dargestellt ist, umfasst ein zum Beispiel aus Plastik hergestelltes Einwegteil. Während Fig. 1 den waagerechten Querschnitt zeigt, um die Anordnung der einzelnen Elemente zu verdeutlichen, zeigt Fig. 2 einen Schnitt entlang der Linie A-B und Fig. 3 einen Schnitt entlang der Linie C-D.The embodiment schematically illustrated in FIGS Fig. 1 to 4 includes a disposable part made of plastic, for example. While Fig. 1 shows the horizontal cross-section to illustrate the arrangement of the individual elements, shows Fig. 2 a section along the line AB and Fig. 3 a section along the line CD.

Die einzelnen Elemente sind, wie es in den Fig. 2 bis 4 deutlich erkennbar ist, Hohlräume in dem Plastikteil. In den seitlichen Schnittfiguren sind dabei nur die Hohlräume gezeigt. Die Strukturen können zum Beispiel durch Einpressen metallischer Gegenstücke der Formen gebildet werden und nachträglich mit einer Folie - hier von unten - abgeschlossen werden. Alternativ kann das Kunststoffteil als Spritzgussteil erzeugt werden.The individual elements are, as it is in the Fig. 2 to 4 clearly recognizable cavities in the plastic part. In the lateral sectional figures, only the cavities are shown. The structures can be formed for example by pressing metallic counterparts of the molds and subsequently with a film - here from below - be completed. Alternatively, the plastic part can be produced as an injection molded part.

Das Reservoir 1 fasst zum Beispiel ein von Volumen von 100 oder 150 µl, während das Reservoir 3 ein Volumen von 5 µl fasst. Reservoire 1 und 3 sind über einen Kapillarkanal 5 miteinander verbunden.The reservoir 1, for example, occupies a volume of 100 or 150 μl, while the reservoir 3 holds a volume of 5 μl. Reservoirs 1 and 3 are connected to each other via a capillary channel 5.

Das Reservoir 1 ist über zwei weitere Kanäle 7 mit nach oben offenen Befüllstutzen 17 verbunden. Die Kanäle 7 haben ebenfalls einen derart kleinen Querschnitt, dass Kapillarkräfte auf eine Flüssigkeit darin wirken. Das Reservoir 3 ist über einen Kapillarkanal 11 mit dem Befüllstutzen 19 verbunden.The reservoir 1 is connected via two further channels 7 with upwardly open filling nozzle 17. The channels 7 also have such a small cross-section that capillary forces act on a liquid therein. The reservoir 3 is connected via a capillary channel 11 with the filling nozzle 19.

Die Dimensionen und die Verfahrensführung werden dabei so gewählt, dass die Reynoldszahl der betrachteten Flüssigkeiten im Bereich der laminaren Strömung liegt. Die dazu notwendigen Parameter können in Vorversuchen festgestellt werden. Typische Viskositäten verwendeter Flüssigkeiten liegen im Bereich von 1 mPa·s bis einige 100 mPa·s bei Geschwindigkeiten von 1 mm pro Sekunde bis 1 cm pro Sekunde. Geeignete Systemquerschnitte sind dann im Bereich von einigen 100 µm bei einer Gesamtlänge von einigen cm.The dimensions and the process control are chosen so that the Reynolds number of the considered liquids is in the range of the laminar flow. The necessary parameters can be determined in preliminary tests. Typical viscosities of liquids used are in the range of 1 mPa.s to several 100 mPa.s at speeds of 1 mm per second to 1 cm per second. Suitable system cross sections are then in the range of a few 100 microns with a total length of a few cm.

13 bezeichnet einen akustischen Chip. Es handelt sich dabei zum Beispiel um einen piezoelektrischen Festkörperchip, auf dem in an sich bekannter Weise ein Interdigitaltransducer zur Erzeugung von Oberflächenschallwellen aufgebracht ist.13 denotes an acoustic chip. This is, for example, a piezoelectric solid-state chip on which an interdigital transducer for generating surface acoustic waves is applied in a manner known per se.

Bei der gezeigten Ausführungsform handelt es sich bei dem Interdigitaltransducer auf dem akustischen Chip 13 um einen unidirektional abstrahlenden Transducer, der Oberflächenschallwellen nur in Richtung des Reservoirs 1 erzeugt.In the embodiment shown, the interdigital transducer on the acoustic chip 13 is a unidirectional radiating transducer which generates surface acoustic waves only in the direction of the reservoir 1.

15 bezeichnet einen weiteren akustischen Chip, der ebenfalls in an sich bekannter Weise einen Interdigitaltransducer trägt. Dieser Interdigitaltransducer ist derart ausgestaltet, dass die mit ihm erzeugten Oberflächenschallwellen eine Schallwellenabstrahlung in das Reservoir 1 ermöglichen. Die Abstrahlung von Schallwellen in ein Flüssigkeitsvolumen, das durch einen Festkörper von dem Oberflächenschallwellen erzeugenden Interdigitaltransducer entfernt ist, ist in DE 103 25 307 B3 beschrieben. Der akustische Chip 15 kann z. B. auch auf der anderen Seite des Reservoirs 1 vorgesehen sein.15 designates a further acoustic chip, which likewise carries an interdigital transducer in a manner known per se. This interdigital transducer is configured in such a way that the surface sound waves generated with it enable sound wave radiation into the reservoir 1. The emission of sound waves into a liquid volume, the is removed by a solid from the surface acoustic wave generating interdigital transducer is in DE 103 25 307 B3 described. The acoustic chip 15 may, for. B. also be provided on the other side of the reservoir 1.

Die akustischen Chips 13, 15 sind über nicht gezeigte elektrische Verbindungen an eine Wechselspannungsquelle angeschlossen, mit der eine Wechselspannung einer Frequenz von einigen 10 MHz erzeugt werden kann, um mit den Interdigitaltransducern Oberflächenschallwellen zu erzeugen.The acoustic chips 13, 15 are connected via electrical connections, not shown, to an AC voltage source, with which an AC voltage of a frequency of a few tens of MHz can be generated in order to produce surface acoustic waves with the interdigital transducers.

Eine derartige Vorrichtung wird wie folgt zur Durchführung des erfindungsgemäßen Verfahrens eingesetzt. Über den Befüllstutzen 19 und den Kapillarkanal 11 wird das Reservoir 3 mit einer kleinen Menge Flüssigkeit befüllt. Aufgrund von Kapillarkräften tritt diese Flüssigkeit in den Kanal 5 ein. Die Flüssigkeit tritt jedoch nicht in das Reservoir 1 ein, da dort der Querschnitt erheblich größer ist und so die Kapillarkraft abrupt schwächer wird.Such a device is used as follows for carrying out the method according to the invention. About the filling nozzle 19 and the capillary channel 11, the reservoir 3 is filled with a small amount of liquid. Due to capillary forces, this liquid enters the channel 5. However, the liquid does not enter the reservoir 1, because there the cross-section is considerably larger and so the capillary force is abruptly weaker.

Das Reservoir 1 wird mit Hilfe von Druck, z. B. durch eine Pipette mit einer größeren Menge einer anderen Flüssigkeit vollständig befüllt. Dabei ist es unschädlich, wenn in den Befüllkanälen 7 für das Reservoir 1 oder den Befüllstutzen 17 Überstände an Flüssigkeit verbleiben. Diese nehmen an dem später durchzuführenden Mischprozess durch Erzeugung laminarer Strömungsmuster in dem Reservoir 1 aus geometrischen Gründen nicht teil und sind daher für die Festlegung des an dem Mischprozess teilnehmenden Flüssigkeitsvolumens nicht relevant.The reservoir 1 is pressurized, for. B. completely filled by a pipette with a larger amount of another liquid. It is harmless if 17 supernatants remain in liquid in the filling channels 7 for the reservoir 1 or the filling nozzle. These do not participate in the mixing process to be carried out later by generating laminar flow patterns in the reservoir 1 for geometrical reasons and are therefore not relevant for the determination of the liquid volume participating in the mixing process.

Es entsteht automatisch ein Kontakt zwischen der ersten Flüssigkeit, die in dem Kanal 5 steht und der zweiten Flüssigkeit, die das Reservoir 1 auffüllt. An dieser fluidischen Verbindung kommt es aufgrund des geringen Querschnittes des Kanales 5 nur zu einer vernachlässigbaren Diffusion zwischen den beiden Flüssigkeiten.There is automatically a contact between the first liquid, which is in the channel 5 and the second liquid, which fills the reservoir 1. Due to the small cross-section of the channel 5, only a negligible diffusion between the two liquids occurs at this fluidic connection.

Mit Hilfe des unidirektionalen Transducers auf dem Chip 13, dessen Abstrahlrichtung in Richtung des Reservoirs 1 geht, wird durch den Impulsübertrag der Oberflächenschallwellen auf die Flüssigkeit in dem Kanal 5 eine laminare Strömung erzeugt. Durch Auswahl der Zeitdauer, über die der Interdigitaltransducer betrieben wird, bzw. die Pumpleistung kann die Flüssigkeitsmenge, die laminar über den Kapillarkanal 5 in das Reservoir 1 fließt, genau festgelegt werden. Die Festlegung der notwendigen Zeitdauer bzw. der Pumpleistung kann zum Beispiel anhand von Vorabversuchen festgestellt werden. Die laminare Strömung sorgt also für eine definierte Flüssigkeitszufuhr.By means of the unidirectional transducer on the chip 13, whose emission direction is directed towards the reservoir 1, a laminar flow is generated by the momentum transfer of the surface acoustic waves to the liquid in the channel 5. By selecting the time duration over which the interdigital transducer is operated, or the pumping power, the amount of liquid which flows laminarly via the capillary channel 5 into the reservoir 1 can be precisely determined. The determination of the necessary time duration or the pumping power can be determined for example on the basis of preliminary tests. The laminar flow thus ensures a defined supply of liquid.

Die Flüssigkeit, die auf diese Weise aus dem Kanal 5 in das Reservoir 1 eindringt, wird durch Flüssigkeit ersetzt, die aus dem Reservoir 3 abgezogen wird.The liquid, which in this way penetrates from the channel 5 into the reservoir 1, is replaced by liquid, which is withdrawn from the reservoir 3.

Anlegen eines elektrischen Wechselfeldes an den Interdigitaltransducer des akustischen Chips 15 unterhalb des Reservoirs 1 führt zu einer Durchmischung der Flüssigkeiten mit Hilfe eines laminaren Strömungsmusters, wie es in Fig. 4 angedeutet ist. Die auf diese Weise erzeugte Einstrahlung von Schallwellen in die Flüssigkeit auf dem Reservoir 1 sorgt für ein im Wesentlichen laminares Strömungsmuster, das zur Durchmischung der Flüssigkeiten führt. Das im Wesentlichen laminare Strömungsmuster garantiert dabei, dass eventuell vorhandene Überstände an Flüssigkeit in den Befüllstrukturen aus geometrischen Gründen an der Durchmischung nicht teilnehmen.Applying an alternating electric field to the interdigital transducer of the acoustic chip 15 below the reservoir 1 leads to a mixing of the liquids with the aid of a laminar flow pattern, as shown in FIG Fig. 4 is indicated. The thus generated irradiation of sound waves in the liquid on the reservoir 1 provides a substantially laminar flow pattern, which leads to the mixing of the liquids. The substantially laminar flow pattern thereby guarantees that any supernatants of liquid in the filling structures do not participate in the mixing due to geometric reasons.

Das Reservoir 1 dient dann als Reaktionskammer, in der eine Reaktion der zwei definierten Flüssigkeitsmengen bzw. ihrer Inhaltsstoffe stattfinden kann.The reservoir 1 then serves as a reaction chamber in which a reaction of the two defined amounts of liquid or their ingredients can take place.

Fig. 5 zeigt eine Abwandlung der Ausführungsform der Fig. 1 bis 4. Hier ist der Kapillarkanal 6 zwischen dem Reservoir 3 und dem Reservoir 1 nicht geradlinig. Ein akustischer Chip 14 mit einem Interdigitaltransducer wird eingesetzt, der hier nicht unidirektional abstrahlen muss. Es ist ausreichend, wenn der akustische Chip 14 derart angeordnet ist, dass eine seiner Abstrahlrichtungen in Richtung des Kapillarkanals 6 zeigt. Durch Betrieb des akustischen Chips 14 wird eine Oberflächenschallwelle in der angezeigten Richtung abgestrahlt, deren Impulsübertrag auf die Flüssigkeit in dem Kapillarkanal 6 zu einer laminaren Strömung führt. Fig. 5 shows a modification of the embodiment of the Fig. 1 to 4 , Here, the capillary channel 6 between the reservoir 3 and the reservoir 1 is not rectilinear. An acoustic chip 14 with an interdigital transducer is used, which does not have to radiate unidirectionally here. It is sufficient if the acoustic chip 14 is arranged such that one of its emission directions points in the direction of the capillary channel 6. By operation of the acoustic chip 14, a surface acoustic wave is radiated in the indicated direction, the momentum transfer of which leads to the liquid in the capillary channel 6 to a laminar flow.

Die Fig. 6 und 7 zeigen eine Ausführungsform, die auf der Oberfläche eines Festkörperchips realisiert werden kann. Hier umfassen des Reservoirs 101 und 103 Oberflächenbereiche, deren Benetzungseigenschaften derart gewählt sind, dass sie von einer Flüssigkeit bevorzugt benetzt werden. Im Falle wässriger Flüssigkeiten sind die Reservoirs 101, 103 hydrophil im Vergleich zur umgebenden Festkörperoberfläche. Dies wird z. B. durch Silanisierung der umgebenden Oberfläche erreicht, die zu einer hydrophoben Oberfläche führt.The 6 and 7 show an embodiment that can be realized on the surface of a solid state chip. Here, the reservoirs 101 and 103 include surface regions whose wetting properties are selected such that they are preferably wetted by a liquid. In the case of aqueous liquids, the reservoirs 101, 103 are hydrophilic compared to the surrounding solid surface. This is z. B. achieved by silanization of the surrounding surface, which leads to a hydrophobic surface.

Bei der Ausführungsform der Fig. 6 und 7 werden die Reservoirs 101 und 103 durch eine flächige Verbindungskanalstruktur 105 verbunden, deren Benetzungseigenschaften ebenso gewählt sind. Auf der Oberfläche befindet sich in nicht dargestellter Weise ein Interdigitaltransducer, dessen Abstrahlrichtung entlang des Kanals 105 geht, um laminare Strömung in dem Kanal 105 zu erzeugen. Der Kanal 105 ist derart schmal gewählt, dass Kapillarkräfte auf darauf befindliche Flüssigkeit wirken.In the embodiment of the 6 and 7 For example, the reservoirs 101 and 103 are connected by a laminar connection channel structure 105 whose wetting properties are also selected. On the surface is located in a manner not shown, an interdigital transducer whose emission direction along the channel 105 goes to produce laminar flow in the channel 105. The channel 105 is selected so narrow that capillary forces act on liquid thereon.

Eine solche Vorrichtung wird wie folgt eingesetzt. Auf das Reservoir 103 wird ein Flüssigkeitstropfen 123 einer ersten Flüssigkeit aufgebracht, der sich aufgrund der beschriebenen Benetzungseigenschaften der Oberfläche nicht nach außen von dem Reservoir 103 wegbewegt und von seiner Oberflächenspannung zusammengehalten wird. Aufgrund von Kapillarkräften bewegt sich diese Flüssigkeit entlang der Kanalstruktur 105. Die abrupt geringer werdenden Kapillarkräfte an der Verbindungsstelle zwischen der Kanalstruktur 105 und der größeren Reservoirfläche 101 stoppt die Bewegung der Flüssigkeit an der Verbindungsstelle zwischen der Kanalstruktur 105 und der Reservoirfläche 101. Ein zweiter Flüssigkeitstropfen 121 wird auf die Reservoirfläche 101 aufgebracht. Auch dieser Flüssigkeitstropfen 121 wird durch die gewählten Benetzungseigenschaften der Oberfläche und seine Oberflächenspannung zusammengehalten. Seine Größe wird so ausgewählt, dass die Reservoirfläche 101 vollständig befüllt ist. Durch die Auswahl der Größe der Fläche 101 ist damit das Volumen bestimmt. An der Verbindungsstelle zwischen der Kanalstruktur 105 und der Reservoirfläche 101 kommt es aufgrund des geringen Querschnittes der Kanalstruktur 105 nur zu vernachlässigbarer Diffusion der zwei Flüssigkeiten untereinander. Durch Betrieb des nicht gezeigten Interdigitaltransducers, dessen Abstrahlrichtung entlang der Kanalstruktur 105 geht, wird eine laminare Strömung entlang der Kanalstruktur 105 erzeugt, die ebenso wie bei den dreidimensionalen Ausführungsformen der Fig. 1 bis 5 zum Flüssigkeitstransport entlang der Kanalstruktur 105 führt.Such a device is used as follows. A liquid drop 123 of a first liquid is applied to the reservoir 103 and, due to the described wetting properties of the surface, does not move outward from the reservoir 103 and is held together by its surface tension. Due to capillary forces, this liquid moves along the channel structure 105. The abruptly decreasing capillary forces at the junction between the channel structure 105 and the larger reservoir surface 101 stops the movement of the liquid at the juncture between the channel structure 105 and the reservoir surface 101. A second liquid drop 121 is applied to the reservoir surface 101. Also, this liquid drop 121 is held together by the selected wetting properties of the surface and its surface tension. Its size is selected so that the reservoir surface 101 is completely filled. By selecting the size of the surface 101 so that the volume is determined. At the junction between the channel structure 105 and the reservoir surface 101, only negligible diffusion of the two liquids occurs due to the small cross section of the channel structure 105. By operation of the interdigital transducer, not shown, the emission direction of which runs along the channel structure 105, a laminar flow is generated along the channel structure 105, which, just as in the three-dimensional embodiments of FIGS Fig. 1 to 5 for liquid transport along the channel structure 105 leads.

Im Bereich der Reservoirfläche 101 befindet sich ein Interdigitaltransducer, mit dessen Hilfe ein laminares Strömungsmusters zur Durchmischung der Flüssigkeiten erzeugt wird. Der Interdigitaltransducer ist in den Fig. 6 und 7 der Übersichtlichkeit halber ebenfalls nicht dargestellt.In the area of the reservoir surface 101 is an interdigital transducer, with the aid of which a laminar flow pattern for mixing the liquids is produced. The interdigital transducer is in the 6 and 7 also not shown for the sake of clarity.

Die Funktionsweise der zweidimensionalen Struktur der Fig. 6 und 7 entspricht insofern der Funktionsweise der dreidimensionalen Strukturen der Fig. 1 bis 5.The functioning of the two - dimensional structure of 6 and 7 corresponds to the operation of the three-dimensional structures of the Fig. 1 to 5 ,

In der seitlichen Ansicht der Fig. 7 sind der Flüssigkeitstropfen 121 auf der Reservoirfläche 101, der Flüssigkeitstropfen 123 auf der Reservoirfläche 103 und die Flüssigkeitsbrücke 125 entlang der Kanalstruktur 105 erkennbar.In the side view of the Fig. 7 For example, the liquid drop 121 on the reservoir surface 101, the liquid drop 123 on the reservoir surface 103, and the liquid bridge 125 along the channel structure 105 can be seen.

Fig. 8 und 9 zeigen eine Abwandlung der Ausführungsform der Fig. 6 und 7. Die Reservoirflächen 101 und 103 sind hier nicht durch eine Kanalstruktur 105 miteinander verbunden. Eine Verbindung der Flüssigkeitsmengen 121 und 123 geschieht hier durch gezieltes Einbringen eines "Brückentropfens" 127 kleinen Volumens, der eine Flüssigkeitsbrücke zwischen den zwei Flüssigkeitsmengen bereitstellt, über die mit Hilfe der wie bei der Ausführungsform der Fig. 6 und 7 erzeugten laminaren Strömung in beschriebener Weise ein Flüssigkeitstransport stattfinden kann. 8 and 9 show a modification of the embodiment of the 6 and 7 , The reservoir surfaces 101 and 103 are not interconnected by a channel structure 105 here. A connection of the amounts of liquid 121 and 123 is done here by deliberately introducing a "bridge drop" 127 small volume, which provides a liquid bridge between the two liquid quantities, via which by means of the as in the embodiment of 6 and 7 generated laminar flow in the manner described a liquid transport can take place.

Fig. 10 dient der schematischen Darstellung einer anderen Verfahrensführung. Reservoirs 201 und 203 sind über zwei Kapillarstrukturen 223, 227 miteinander verbunden. Ein nur schematisch angedeuteter Interdigitaltransducer 213 hat zumindest eine Abstrahlrichtung entlang der Kanalstruktur 227. Unterhalb des Reservoirs 201 befindet sich eine Oberflächenschallwellenerzeugungseinrichtung 215, z. B. ebenfalls ein Interdigitaltransducer, die ähnlich der bereits beschriebenen Oberflächenschallwellenerzeugungseinrichtung 15 eine Schallwelle in die Flüssigkeit im darüber liegenden Reservoir abstrahlen kann. Fig. 10 serves the schematic representation of another procedure. Reservoirs 201 and 203 are interconnected via two capillary structures 223, 227. An interdigital transducer 213, which is indicated only schematically, has at least one emission direction along the channel structure 227. Beneath the reservoir 201 is a surface acoustic wave generation device 215, eg, a surface acoustic wave generator 215. B. also an interdigital transducer, which can emit a sound wave in the liquid in the overlying reservoir similar to the surface acoustic wave generating device 15 already described.

In das Reservoir 203 wird eine erste Flüssigkeit eingebracht. Die Flüssigkeit tritt in die Kapillaren 223, 227 aufgrund der Kapillarkraft ein. Eine zweite Flüssigkeit wird in das Reservoir 201 zu dessen vollständiger Befüllung eingebracht. Der Betrieb des Interdigitaltransducers 213 erzeugt eine Oberflächenschallwelle zumindest in der angezeigten Richtung. Durch den Impulsübertrag der Oberflächenschallwelle auf die Flüssigkeit in dem Kanal 227 wird dort eine laminare Strömung erzeugt.In the reservoir 203, a first liquid is introduced. The liquid enters the capillaries 223, 227 due to the capillary force. A second liquid is introduced into the reservoir 201 for its complete filling. The operation of the interdigital transducer 213 generates a surface acoustic wave at least in the direction indicated. By the momentum transfer of the surface acoustic wave to the liquid in the channel 227, a laminar flow is generated there.

Die Flüssigkeit aus dem Kanal 227 tritt in das Reservoir 201 ein und wird aus dem Reservoir 203 nachgeliefert. Dabei bewegen sich die Flüssigkeitsgrenzen 229, 231 entsprechend. Da es sich um eine laminare und nicht um eine turbulente Strömung handelt, findet außer der Diffusion an den Flüssigkeitsgrenzen 229, 231 keine Durchmischung statt. Es entsteht ein Zustand wie er in Fig. 10b gezeigt ist.The liquid from the channel 227 enters the reservoir 201 and is replenished from the reservoir 203. In this case, the liquid boundaries 229, 231 move accordingly. Since it is a laminar and not a turbulent flow, apart from the diffusion at the liquid boundaries 229, 231 no mixing takes place. It creates a state like him in Fig. 10b is shown.

Durch Auswahl der Zeitdauer und der Pumpleistung, während der der Interdigitaltransducer 213 zur Erzeugung der Oberflächenschallwelle verwendet wird, kann der jeweilige Anteil der Flüssigkeiten im Reservoir 201 bestimmt werden. Durch Betrieb des Interdigitaltransducers 215 wird eine Oberflächenschallwelle erzeugt, die zur Abstrahlung einer Schallwelle in die Flüssigkeit in dem Reservoir 201 führt und dort entsprechende Strömungsmuster zur Durchmischung der beiden Flüssigkeiten bewirkt. Es entsteht eine Mischung 233, wie in Fig. 10c angedeutet.By selecting the time duration and the pumping power during which the interdigital transducer 213 is used to generate the surface acoustic wave, the respective proportion of the liquids in the reservoir 201 can be determined. By operation of the interdigital transducer 215, a surface acoustic wave is generated, which leads to the radiation of a sound wave in the liquid in the reservoir 201 and there causes corresponding flow pattern for mixing the two liquids. It creates a mixture 233, as in Fig. 10c indicated.

Auch die Ausführungsform der Fig. 10 mit mehreren Verbindungskanalstrukturen zwischen den Reservoirs kann sowohl zweidimensional mit entsprechenden Benetzungsstrukturen als auch dreidimensional mit entsprechenden Vertiefungen oder Hohlräumen ausgeführt sein.Also, the embodiment of Fig. 10 with multiple connection channel structures between the reservoirs can be carried out both two-dimensionally with corresponding wetting structures as well as three-dimensionally with corresponding recesses or cavities.

Bei allen beschriebenen Ausführungsformen können Gesamtvolumina von bis zu 1 ml bei Einzelvolumina von z. B. nur 100 nl behandelt werden. Die Figuren sind nicht maßstabsgetreu. So beträgt das Verhältnis der Volumina der Kanalstrukturen zum Volumen der Reservoirs z. B. zwischen 1/10 bis 1/100.In all the described embodiments, total volumes of up to 1 ml for single volumes of e.g. B. only 100 nl be treated. The figures are not to scale. This is the ratio of the volumes the channel structures to the volume of the reservoirs z. Between 1/10 and 1/100.

Wird eine entsprechende Anzahl von Reservoirs und Verbindungskanalstrukturen vorgesehen, können mehrere Flüssigkeiten gleichzeitig oder sukzessive zudosiert und gemischt werden.If a corresponding number of reservoirs and connecting channel structures are provided, several liquids can be added simultaneously or successively and mixed.

Das erfindungsgemäße Verfahren und die erfindungsgemäßen Vorrichtungen ermöglichen eine genaue Zudosierung einer Flüssigkeitsmenge zu einem durch das Volumen des zweiten Reservoirs definierten Flüssigkeitsmenge zum Beispiel durch Auswahl der Zeit, in der eine laminare Strömung entlang der Verbindungskanalstruktur der erfindungsgemäßen Vorrichtungen erzeugt wird. Das Verfahren ist einfach durchführbar und die Vorrichtung kann klein, kompakt und ggf. als Einwegteil ausgeführt werden.The method according to the invention and the devices according to the invention make it possible to precisely meter in a quantity of liquid to a quantity of liquid defined by the volume of the second reservoir, for example by selecting the time during which a laminar flow is generated along the connection channel structure of the devices according to the invention. The method is easy to carry out and the device can be made small, compact and possibly disposable.

Die erfindungsgemäßen Ausführungsformen können in einem Automat betrieben werden. Ein solcher Automat weist z. B. eine Aufnahme für eine erfindungsgemäße Vorrichtung auf, die elektrischen Kontakt zu den Interdigitaltransducern herstellt. Automatisch zu betreibende Pipetierköpfe und/oder Dispenser sind vorgesehen, die derart angeordnet sind, dass sie bei in der Aufnahme eingelegter Vorrichtung oberhalb der Reservoirs bzw. der Befüllstrukturen angeordnet sind. Schließlich ist eine Steuerung, vorzugsweise mit einer Mikroprozessoreinheit vorgesehen, die zur zeitlichen Ansteuerung der Pipetierköpfe / Dispenser und der Interdigitaltransducer dient um ein gewünschtes Dosier- und Mischprotokoll abzuarbeiten. In den Automaten können auch die Auswerteinstrumente, wie z. B. optische Messgeräte etc. integriert sein, um die ggf. durch den Mischprozess ausgelöste Reaktion zu detektieren.The embodiments according to the invention can be operated in an automaton. Such a machine has z. Example, a receptacle for a device according to the invention, which makes electrical contact with the interdigital transducers. Automatically operated pipetting heads and / or dispensers are provided, which are arranged in such a way that they are arranged above the reservoirs or the filling structures when the device is inserted in the receptacle. Finally, a control, preferably provided with a microprocessor unit, which serves for timing the pipetting heads / dispensers and the interdigital transducer in order to process a desired metering and mixing protocol. In the machine and the evaluation instruments, such. B. optical measuring devices, etc., to detect the possibly triggered by the mixing process reaction.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Reservoir, ReaktionskammerReservoir, reaction chamber
33
Reservoirreservoir
5, 65, 6
VerbindungskapillarstrukturVerbindungskapillarstruktur
7, 117, 11
BefüllkanäleBefüllkanäle
13, 14, 1513, 14, 15
akustischer Chipacoustic chip
17, 1917, 19
Befüllstutzenfilling union
101101
Reservoirfläche, ReaktionskammerReservoir surface, reaction chamber
103103
Reservoirflächereservoir area
105105
flächige Verbindungskanalstrukturplanar connection channel structure
121, 123121, 123
Flüssigkeitstropfenliquid drops
125125
Flüssigkeitsbrückeliquid bridge
127127
Brückentropfenbridge drops
201201
Reservoir, ReaktionskammerReservoir, reaction chamber
203203
Reservoirreservoir
213, 215213, 215
Interdigitaltransducerinterdigital transducer
223, 227223, 227
VerbindungskanalstrukturenConnecting channel structures
229, 231229, 231
Flüssigkeitsgrenzenliquid boundaries
233233
Flüssigkeitsmischungliquid mixture

Claims (29)

  1. A method for the integrated metering and mixing of small quantities of liquid, wherein
    a first liquid is introduced into or onto a first reservoir (3, 103, 203);
    a second reservoir (1, 101, 201) is completely filled with a second liquid;
    the first and the second liquids are brought into contact via at least one connection passage structure (5, 6, 105, 227) which comprises at least one region which has a smaller cross-section than the reservoirs in the direction of view of the connection line of the two reservoirs;
    laminar flow is generated in the connection passage structure (5, 6, 105, 227) for the liquid exchange of the two liquids; and
    the liquids are mixed in or on the second reservoir (1, 101, 201).
  2. A method in accordance with claim 1, wherein the liquid exchange is effected by radiation of sound waves in the direction of at least one part of the connection passage structure (5, 6, 105, 227).
  3. A method in accordance with claim 2, wherein the radiation of sound waves for the generation of the liquid exchange in the laminar flow region is maintained over a defined time period.
  4. A method in accordance with one of the claims 2 or 3, wherein the laminar flow is generated with the help of the pulse transfer of surface sound waves.
  5. A method in accordance with claim 4, wherein the surface sound waves are generated using at least one interdigital transducer (213) with a radiation device in the direction along at least one part of a connection passage structure (5, 6, 105, 227).
  6. A method in accordance with any one of the claims 1 to 5, wherein at least one of the liquids is introduced into or onto the at least one connection passage structure (5, 6, 105, 227) while utilizing capillary forces.
  7. A method in accordance with claim 6, wherein initially a first liquid (123) is introduced into or onto the first reservoir (3, 103, 203) which spreads out through capillary forces through the connection passage structure (5, 105, 227) up to the second reservoir (1, 101, 201) and then a second liquid (121) is introduced into or onto the second reservoir (1, 101, 201) which comes into contact with the first liquid at the inlet position of the connection passage structure (5, 6, 105, 201) into the second reservoir (1, 101, 201).
  8. A method in accordance with any one of the claims 1 to 5, wherein the contact of the two quantities of liquid (121, 123) is established via a third quantity of liquid (125) having a volume smaller than both that of the first quantity of liquid and that of the second quantity of liquid which is introduced between the first quantity of liquid and the second quantity of liquid.
  9. A method in accordance with any one of the claims 1 to 8, wherein sound waves are used for the mixing of the liquids in or on the second reservoir (1, 101, 201).
  10. A method in accordance with claim 9, wherein surface sound waves are used for the generation of the sound waves for the mixing.
  11. A method in accordance with claim 10, wherein at least one interdigital transducer (215) is used for the generation of the surface sound waves.
  12. A method in accordance with any one of the claims 1 to 11, wherein the filling of the reservoir (1, 101, 201, 3, 103, 203) takes place via filling passage structures (7, 11).
  13. A method in accordance with any one of the claims 1 to 12, wherein the two reservoirs (201, 203) are in communication via at least two connection passage structures (223, 227).
  14. A method in accordance with any one of the claims 1 to 13, wherein correspondingly shaped wells are used in a surface as the reservoirs and/or at least one passage structure.
  15. A method in accordance with any one of the claims 1 to 13, wherein correspondingly shaped hollow spaces are used as the reservoirs (1, 3) and as at least one passage structure (5, 6, 7, 11).
  16. A method in accordance with any one of the claims 1 to 13, wherein correspondingly shaped regions of a surface are used as reservoirs (101, 103) and as at least one passage structure (105) and are more preferably wetted by the liquids (121, 123, 125) than the surrounding regions of the surface.
  17. A method in accordance with any one of the claims 1 to 16, wherein more than two liquids are metered and mixed with the help of a corresponding number of reservoirs and connection passage structures.
  18. A device for the integrated metering and mixing of small quantities of liquids comprising
    a first reservoir (3, 103, 203) for a first quantity of liquid (123);
    a second reservoir (1, 101, 201) for a second quantity of liquid (121);
    at least one connection passage structure (5, 6, 105, 227) which connects the two reservoirs and has a cross-section in at least one region in the direction of view of the connection line of the reservoirs which is smaller than the cross-sections of the reservoirs;
    at least one device for the generation of a laminar flow along the at least one connection passage structure (5, 6, 105, 227); and
    at least one device (15, 215) for the mixing of the quantities of liquid in or on the second reservoir (1, 101, 201),
    characterized in that
    the device comprises filling passage structures (7, 11) which are in communication with a reservoir at one respective end and with a filling device (17, 19) at the other respective end;
  19. A device in accordance with claim 18, wherein the at least one device for the generation of laminar flow includes at least one first sound wave generation device (13, 213) having at least one radiation device along at least one part of the at least one connection passage structure (5, 6, 105, 227).
  20. A device in accordance with claim 19, having at least one surface threshold generation device (13, 213), in particular an interdigital transducer (213), having a radiation direction in the direction of at least one region of the connection passage structure (5, 227) for the generation of the laminar flow in or on the connection passage structure.
  21. A device in accordance with any one of the claims 18 to 20, wherein the device for the mixing includes at least one second sound wave generation device (15, 215) for the generation of sound waves entering into the second reservoir (1, 101, 201).
  22. A device in accordance with claim 21, having at least one surface sound wave generation device (15, 215), in particular an interdigital transducer (215), in the region of the second reservoir (1, 101, 201) for the generation of sound waves entering into the second reservoir (1, 101, 201).
  23. A device in accordance with any one of the claims 18 to 22, wherein the at least one connection passage structure (5, 6, 105, 227) has such a narrow cross-section that capillary forces are exerted onto at least one of the liquids by the side boundaries.
  24. A device in accordance with any one of the claims 18 to 23, wherein the reservoirs and the at least one passage structure are formed by wells in a surface.
  25. A device in accordance with any one of the claims 18 to 23, wherein the reservoirs (1, 3) and the at least one passage structure (5, 6, 7, 11) are formed by hollow spaces.
  26. A device in accordance with any one of the claims 18 to 23, wherein the reservoirs (101, 103) and the at least one passage structure (105) are defined by regions on a surface which are more preferably wetted by the liquids (121, 123, 125) than the surrounding surface.
  27. A device in accordance with any one of the claims 18 to 26, having more than two reservoirs and a corresponding number of connection passage structures for the integrated metering and mixing of more than two quantities of liquid.
  28. An apparatus for the automatic carrying out of a method in accordance with any one of the claims 1 to 17, having
    a receiver for a device in accordance with any one of the claims 18 to 27,
    electrical contacts which, when the device is placed in the receiver, electrically contact the at least one device (5, 14, 213) for the generation of laminar flow along the at least one connection passage structure and the at least one device (15, 215) for the mixing of the quantities of liquid in or on the second reservoir;
    devices for the automatic supply of liquid to the reservoirs (1, 3, 101, 103, 201, 203) of the device placed in the receiver; and
    a control, preferably including a microprocessor, for the control of the at least one device (5, 14, 213) for the generation of laminar flow, of the at least one device (5, 215) for the mixing and of the devices for the automatic supply of liquid.
  29. Use of a method in accordance with any one of the claims 1 to 17, of a device in accordance with any one of the claims 18 to 27 or of an apparatus in accordance with claim 28 for the metering and mixing of biological liquids.
EP05820542A 2005-01-05 2005-12-16 Method and device for dosing and mixing small amounts of liquid, apparatus and use Not-in-force EP1843833B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005000835A DE102005000835B3 (en) 2005-01-05 2005-01-05 Method and device for dosing small quantities of liquid
PCT/EP2005/013598 WO2006072384A1 (en) 2005-01-05 2005-12-16 Method and device for dosing and mixing small amounts of liquid

Publications (2)

Publication Number Publication Date
EP1843833A1 EP1843833A1 (en) 2007-10-17
EP1843833B1 true EP1843833B1 (en) 2009-04-15

Family

ID=35911180

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05820542A Not-in-force EP1843833B1 (en) 2005-01-05 2005-12-16 Method and device for dosing and mixing small amounts of liquid, apparatus and use

Country Status (6)

Country Link
US (1) US8186869B2 (en)
EP (1) EP1843833B1 (en)
JP (1) JP4956439B2 (en)
AT (1) ATE428492T1 (en)
DE (2) DE102005000835B3 (en)
WO (1) WO2006072384A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1833598B1 (en) * 2005-01-05 2008-10-08 Olympus Life Science Research Europa GmbH Method and device for dosing and mixing small amounts of liquid
JP2008100182A (en) * 2006-10-20 2008-05-01 Hitachi Plant Technologies Ltd Emulsification apparatus and apparatus for manufacturing particulate
JP4852399B2 (en) * 2006-11-22 2012-01-11 富士フイルム株式会社 Two-component merger
DE102007020243B4 (en) * 2007-04-24 2009-02-26 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Acoustic mixing and / or conveying device and sample processing chip with such
JP5159197B2 (en) * 2007-07-25 2013-03-06 キヤノン株式会社 Liquid control device
JP5116112B2 (en) * 2009-02-19 2013-01-09 シャープ株式会社 Fluid mixing apparatus and fluid mixing method
EP2706361A1 (en) * 2012-09-06 2014-03-12 F. Hoffmann-La Roche AG System for dispensing a sample into a buffer liquid
CN111545439A (en) * 2020-06-29 2020-08-18 海积(北京)科技有限公司 Multipurpose high-power high-frequency sound field coupling vibration transmission device

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2685499A (en) * 1950-12-21 1954-08-03 Eastman Kodak Co Method of proeparing blanc fixe
US4955723A (en) * 1990-01-16 1990-09-11 Schneider John R Slurry mixing apparatus with dry powder conveyer
WO1993019827A1 (en) 1992-04-02 1993-10-14 Abaxis, Inc. Analytical rotor with dye mixing chamber
US5639423A (en) 1992-08-31 1997-06-17 The Regents Of The University Of Calfornia Microfabricated reactor
US6010316A (en) 1996-01-16 2000-01-04 The Board Of Trustees Of The Leland Stanford Junior University Acoustic micropump
US6012902A (en) 1997-09-25 2000-01-11 Caliper Technologies Corp. Micropump
JPH11347392A (en) * 1998-06-11 1999-12-21 Hitachi Ltd Stirrer
US6086243A (en) * 1998-10-01 2000-07-11 Sandia Corporation Electrokinetic micro-fluid mixer
US6601613B2 (en) 1998-10-13 2003-08-05 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6210128B1 (en) 1999-04-16 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Fluidic drive for miniature acoustic fluidic pumps and mixers
JP2003524738A (en) 1999-06-28 2003-08-19 カリフォルニア インスティチュート オブ テクノロジー Microfabricated elastomer valves and pump systems
US7381241B2 (en) * 1999-11-24 2008-06-03 Impulse Devices, Inc. Degassing procedure for a cavitation chamber
JP2001212469A (en) * 2000-02-01 2001-08-07 Seiko Epson Corp Pipette and reaction method and mixing method using the same
DE10055318A1 (en) * 2000-06-09 2001-12-20 Advalytix Ag Process for specific directed manipulation of small amounts of materials on solid body surfaces comprises producing an impulse along the solid body surface, and causing the impulse
US6777245B2 (en) 2000-06-09 2004-08-17 Advalytix Ag Process for manipulation of small quantities of matter
JP2002008753A (en) * 2000-06-16 2002-01-11 Matsushita Electric Works Ltd Connector
DE10041823C2 (en) * 2000-08-25 2002-12-19 Inst Mikrotechnik Mainz Gmbh Method and static micromixer for mixing at least two fluids
DE10062246C1 (en) * 2000-12-14 2002-05-29 Advalytix Ag Device for manipulating small amounts of liquid on solid body surface used in microanalysis comprises solid body substrate having surface with contacting regions, and unit for producing external force
DE10103954B4 (en) * 2001-01-30 2005-10-06 Advalytix Ag Method for analyzing macromolecules
US6576459B2 (en) 2001-03-23 2003-06-10 The Regents Of The University Of California Sample preparation and detection device for infectious agents
JP4566456B2 (en) * 2001-05-31 2010-10-20 独立行政法人理化学研究所 Trace liquid control mechanism and trace liquid control method
EP1270073B1 (en) 2001-06-28 2005-02-16 Agilent Technologies, Inc. (a Delaware corporation) Microfluidic system with controller
DE10136008B4 (en) 2001-07-24 2005-03-31 Advalytix Ag Method for analyzing macromolecules and method for producing an analysis device
DE10142789C1 (en) * 2001-08-31 2003-05-28 Advalytix Ag Movement element for small amounts of liquid
JP3749991B2 (en) 2001-10-18 2006-03-01 アイダエンジニアリング株式会社 Micro liquid weighing structure and microchip having the structure
DE10164357B4 (en) * 2001-12-28 2005-11-10 Advalytix Ag titration
US20040109793A1 (en) 2002-02-07 2004-06-10 Mcneely Michael R Three-dimensional microfluidics incorporating passive fluid control structures
US6811385B2 (en) 2002-10-31 2004-11-02 Hewlett-Packard Development Company, L.P. Acoustic micro-pump
DE10325313B3 (en) 2003-02-27 2004-07-29 Advalytix Ag Agitating fluid film in capillary gap to mix or promote exchange during e.g. chemical or biological analysis, transmits ultrasonic wave through substrate towards fluid film
ATE363942T1 (en) 2003-02-27 2007-06-15 Advalytix Ag METHOD AND DEVICE FOR MIXING SMALL QUANTITIES OF LIQUID IN MICROCAVITIES
DE10325307B3 (en) * 2003-02-27 2004-07-15 Advalytix Ag For the mixture of fluids in micro-cavities, in a micro-titration plate, at least one piezo electric sound converter generates an ultrasonic wave to give a wave-induced flow to the fluids
US7347617B2 (en) * 2003-08-19 2008-03-25 Siemens Healthcare Diagnostics Inc. Mixing in microfluidic devices
JP4341372B2 (en) * 2003-10-30 2009-10-07 コニカミノルタホールディングス株式会社 Liquid mixing method, mixing apparatus and mixing system
EP1833598B1 (en) * 2005-01-05 2008-10-08 Olympus Life Science Research Europa GmbH Method and device for dosing and mixing small amounts of liquid
JP5196304B2 (en) * 2008-07-29 2013-05-15 大日本印刷株式会社 Emulsion-forming microchip and method for producing the same

Also Published As

Publication number Publication date
DE102005000835B3 (en) 2006-09-07
WO2006072384A1 (en) 2006-07-13
US20080186799A1 (en) 2008-08-07
DE502005007112D1 (en) 2009-05-28
EP1843833A1 (en) 2007-10-17
ATE428492T1 (en) 2009-05-15
JP2008527338A (en) 2008-07-24
US8186869B2 (en) 2012-05-29
JP4956439B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
DE602004013339T2 (en) MIXING IN MICROFLUID DEVICES
DE60317305T2 (en) CONTACTLESS METHOD FOR DISTRIBUTING LOW LIQUID QUANTITIES
DE112011102770B4 (en) Microfluidic unit with auxiliary and side channels
DE60119513T2 (en) DEVICE AND METHOD FOR INJECTING LIQUIDS
DE10164357B4 (en) titration
DE10052819B4 (en) Pipette system and pipette array and method for filling a pipette system
EP2062643B1 (en) Analysis system and method for analysing a bodily fluid sample on an analyte contained therein
EP1685900B1 (en) Use of a device for analysing a liquid sample
DE102014224664B3 (en) DEVICE AND METHOD FOR DRY PRODUCTION
WO2009106331A2 (en) Apparatus for the separation of plasma
DE19935433A1 (en) Microfluidic reaction carrier
WO2008128534A1 (en) Cuvette for optical analysis of small volumes
WO2004071660A1 (en) Method and device for contacting a microfluid structure
EP1843833B1 (en) Method and device for dosing and mixing small amounts of liquid, apparatus and use
DE112017004280B4 (en) Microfluidic chip with bead integration system
DE102016222032A1 (en) Microfluidic device and method for analyzing nucleic acids
EP2285492A2 (en) Stopped-flow chip
DE10142788A1 (en) To form a thin liquid film on a carrier, for chemical/biological sample analysis, the flat carrier is shrouded by a spaced cover, for liquid to pass through a passage drilling and spread by capillary action
EP1833598B1 (en) Method and device for dosing and mixing small amounts of liquid
EP2156890A2 (en) Assembly and method for generating, manipulating and analysing compartments
DE102005000834B4 (en) Method and device for metering and mixing small quantities of liquid
DE102008004139B3 (en) Liquid moving device for moving liquid back and forth over sensor surface of analytic sensor utilized in bio analytics field, has channel designed in such manner that counter pressure difference opposite to pressure difference is produced
DE10164358C2 (en) Characterization process for functionalized surfaces
EP1534432A1 (en) Microfluidic system with high aspect ratio
WO2015032701A1 (en) Microfluidic analysis component and production method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070622

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RTI1 Title (correction)

Free format text: METHOD AND DEVICE FOR DOSING AND MIXING SMALL AMOUNTS OF LIQUID, APPARATUS AND USE

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005007112

Country of ref document: DE

Date of ref document: 20090528

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090915

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090815

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

26N No opposition filed

Effective date: 20100118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090715

BERE Be: lapsed

Owner name: ADVALYTIX A.G.

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20100722 AND 20100728

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20100819 AND 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090716

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091231

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090415

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20161228

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161227

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171216

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171216

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181231

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005007112

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701