EP1739296B1 - Method to optimise an operating parameter of a reciprocating combustion engine, and engine - Google Patents
Method to optimise an operating parameter of a reciprocating combustion engine, and engine Download PDFInfo
- Publication number
- EP1739296B1 EP1739296B1 EP06405226A EP06405226A EP1739296B1 EP 1739296 B1 EP1739296 B1 EP 1739296B1 EP 06405226 A EP06405226 A EP 06405226A EP 06405226 A EP06405226 A EP 06405226A EP 1739296 B1 EP1739296 B1 EP 1739296B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- angle
- injection
- rotational speed
- exhaust
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 47
- 238000002347 injection Methods 0.000 claims description 139
- 239000007924 injection Substances 0.000 claims description 139
- 239000000446 fuel Substances 0.000 claims description 53
- 230000010349 pulsation Effects 0.000 claims description 10
- 230000010355 oscillation Effects 0.000 claims description 6
- 230000002000 scavenging effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 12
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 238000005457 optimization Methods 0.000 description 3
- 239000000567 combustion gas Substances 0.000 description 2
- 239000000779 smoke Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/10—Introducing corrections for particular operating conditions for acceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1497—With detection of the mechanical response of the engine
- F02D41/1498—With detection of the mechanical response of the engine measuring engine roughness
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/26—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
- F02D41/28—Interface circuits
- F02D2041/286—Interface circuits comprising means for signal processing
- F02D2041/288—Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2250/00—Engine control related to specific problems or objectives
- F02D2250/28—Control for reducing torsional vibrations, e.g. at acceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/401—Controlling injection timing
Definitions
- the invention relates to a method for optimizing an operating parameter of a reciprocating internal combustion engine, as well as a reciprocating internal combustion engine according to the preamble of the independent claim of the respective category.
- operating parameter is to be understood as meaning any parameter which relates or characterizes an operating state of the reciprocating internal combustion engine.
- a fuel consumption, a pollutant emission, a vibration or vibration variable, a component of a gas pulsation and any other parameter that describes an operating state of the internal combustion engine can be understood.
- An example of such behavior may be certain types of vibrations, such as gas pulsations, as described, for example, in US Pat DE 20 2004 002 185 U1 or torsional vibrations of large diesel engines, which are used for example in ships or land-based for the production of electrical energy.
- Other examples are in the WO 2005/124 132 and EP-A-0 447 697 described.
- the Fourier components depending on the number of cylinders of the reciprocating internal combustion engine, can add in certain orders, in narrowly defined speed ranges, to maxima, so that strong vibrations can occur in this speed range which are intolerable.
- torsional vibrations e.g. in a large diesel engine to be installed in a ship. Since the large diesel engine in the installed state with the ship as a whole forms a vibration system, it is possible that in the installed state depending on the speed of the Fourier components of a vibration in certain orders in narrowly defined speed ranges can add to maxima, so a kind of resonance occurs in the removed state, eg do not occur on a test stand with one and the same engine or are also not exactly predictable, because the exact geometry and the exact structure of the ship is not known in detail to the smallest detail or not all the details can be included in the calculation models and therefore not can be incorporated into corresponding simulations in advance.
- the invention thus relates to a method for optimizing an operating parameter of a reciprocating internal combustion engine, in particular a two-stroke large diesel engine with longitudinal rinsing.
- the reciprocating internal combustion engine comprises a reciprocating piston arranged in a cylinder, wherein the cylinder has an exhaust valve and an injection nozzle, and with the injector at a predetermined injection angle, a fuel is injected into the cylinder and at an outlet angle, the exhaust valve is actuated.
- Essential for the invention is thus that a component of an operating parameter of the reciprocating internal combustion engine is optimized by taking measures in a predetermined speed range between a first speed and a second speed, whereby the gas pressure profile in the cylinder is changed such that a component of the operating parameter a predetermined value is changed.
- a control parameter for example, a crank angle at which a certain process, such as the fuel injection , the actuation of the exhaust valve, etc. takes place, be changed between the first speed and the second speed to a predetermined value, and then returned to the value of the second crank angle.
- the measures for optimizing the operating parameter that is, the manner and magnitude of the change of a component of the operating parameter to a predetermined value between the first speed and the second speed depend not only on the design and type of the particular reciprocating internal combustion engine, but in particular Also, for example, from the ship, in which the reciprocating internal combustion engine is installed, may depend on the expert in practice can not help but, using the present inventive teaching for the exact setting of the parameters described in more detail below additional simple experiments which ultimately give it the exact parameters, such as the exact value for setting the third injection angle, or the third outlet angle, which will vary somewhat from case to case.
- the fuel is injected between the first rotational speed and the second rotational speed at a third injection angle that is greater than the first injection angle or smaller than the second injection angle.
- the injection angle ie the crank angle at which the injection takes place or is started, is changed depending on the speed from the first injection angle to the second injection angle such that the injection angle between the first injection angle and the second injection angle in dependence on the speed and assumes at least a maximum and / or a minimum value with respect to the first injection angle and the second injection angle.
- a component of a vibration, or a gas pulsation or pollutant emission or other operating parameters of the internal combustion engine starting from the first speed with increasing or decreasing speed of the injection angle at which the fuel in the Cylinder is injected, first lowered to a minimum value between the first speed and the second speed, and is then raised again to the value of the second injection angle, or vice versa. That is, it is also possible that, starting from the first speed with increasing or decreasing speed of the injection angle at which the fuel is injected into the cylinder is first lowered to a maximum value between the first speed and the second speed, then back on the value of the second injection angle is lowered.
- the injection angle at which the fuel is injected into the cylinder in a more complicated manner in Depending on the speed between the first speed and the second speed can be varied as previously described.
- the change in the injection angle is far from the only way to change the gas pressure profile in the cylinder such that a component of the operating parameter can be changed or optimized to a predetermined value.
- the amount of fuel injected into the cylinder between the first rotational speed and the second rotational speed in an injection process is different from the quantity of the fuel , which is injected during an injection process at the first injection angle and / or at the second injection angle.
- the change in the amount of fuel injected in a given injection process can be realized in various ways.
- the amount of injected fuel is changed by providing at least two injection nozzles on a cylinder and at least one injection nozzle being at least temporarily closed between the first rotational speed and the second rotational speed during the injection process. It is understood that the last two ways of changing the amount described the injected fuel can also be advantageously combined with each other.
- Another possibility of realizing the method according to the invention is to suitably control the exhaust valves between the first rotational speed and the second rotational speed.
- the outlet angle at which the exhaust valve is actuated during an exhaust time between the first speed and the second speed is changed to a third exhaust angle that is greater than the first exhaust angle or less than the second exhaust angle.
- the outlet angle ie the crank angle at which the outlet of the combustion gases from the cylinder of the internal combustion engine takes place or at which the outlet of the combustion gases from the cylinder starts or the crank angle at which the exhaust valve is actuated, is a function of varies the speed from the first outlet angle to the second outlet angle such that the outlet angle between the first outlet angle and the second outlet angle depending on the speed and with respect to the first outlet angle and the second outlet angle assumes at least one maximum and / or minimum value.
- the outlet angle initially to a minimum value is lowered between the first speed and the second speed, and is then raised again to the value of the second outlet angle, or vice versa. That is, it is also possible that, starting from the first speed with increasing or decreasing speed, the outlet angle at which the fuel is injected into the cylinder is first raised to a maximum value between the first speed and the second speed, then lowered back to the value of the second outlet angle.
- outlet angle can also be varied in a more complicated manner as a function of the rotational speed between the first rotational speed and the second rotational speed, as described above.
- the duration of the actuation of the exhaust valve at the outlet angle between the first speed and the second speed in particular the duration of the actuation of the exhaust valve at the third outlet angle, different from the duration of actuation of the exhaust valve at the first outlet angle and / or at the second outlet angle.
- the time period for which the exhaust valve is open at the third exhaust angle may be longer and / or shorter than the period for which the exhaust valve at the first rotational speed and / or the second Speed is open. It is possible that the time duration for which the exhaust valve is opened between the first rotational speed and the second rotational speed in each cycle of the reciprocating internal combustion engine in a complicated manner is a function of the rotational speed, if thereby corrects the component of the operating parameter particularly advantageous or can be changed.
- a vibration in particular a torsional vibration, a longitudinal vibration, a transverse vibration or a gas pulsation.
- vibrational processes may vary depending on the geometry as a whole, e.g.
- the geometry of the large diesel engine and the ship, in which the large diesel engine is installed show resonances that can be excited, among other things, depending on the speed of the engine in different ways and different degrees.
- Fourier components of a torsional vibration can add up to maxima that occur at a certain speed, e.g. between 70 revolutions per minute (RPM) and 120 revolutions per minute (RPM) are so strong that safe operation of the ship in this speed range is no longer guaranteed.
- RPM revolutions per minute
- RPM revolutions per minute
- Analogously e.g. a vibration component, but also the components of other operating parameters, thereby optimized or changed, that simultaneously or alternatively to change the injection angle between the first speed and the second speed, the amount of injected fuel and / or a change of the outlet angle for actuating the exhaust valve and / or a variation in the time duration for which the exhaust valve is actuated is suitably varied between the first speed and the second speed.
- the inventive method is used in a large diesel engine with electronic camshaft, such as in an engine of the type Wärtsilä and the type RT-Flex or Sulzer RTA, in particular, but not only, in a motor with 14 cylinders.
- the injection angle at which the fuel is injected into the cylinder and / or the outlet angle at which the outlet valve is actuated, as well as the duration of actuation of the injection valve and / or of the outlet valve can be chosen completely freely in which, by means of a computer-assisted control, the injection valve and / or the outlet valve is opened or closed at a freely selectable time independently of the crank angle and / or for a freely selectable period of time.
- an operating parameter for example a Torsions vibration
- any further expensive mechanical measures such as attaching weights to the crankshaft or the adjustment of the camshaft, are needed.
- the component of the operating parameter to be optimized or modified is a Fourier component of first and / or higher order, in particular a Fourier component of a torsional vibration.
- a specific component of the operating parameter for example a 11th order forcing component of a torsional vibration, is optimized or changed by the previously described measures relating to the injection process and / or the actuation of the exhaust valve.
- a Fourier component of first and / or higher order of a torsional vibration or another vibration or another type of vibration can also be optimized or changed between the first and the second rotational speed by the previously described measures with respect to the injection process and / or the actuation of the exhaust valve, in a specific example, be minimized.
- a Fourier component in a manner known per se means a component which occurs at the simple rotational frequency of the reciprocating internal combustion engine, a second-order component which occurs at twice the rotational frequency and correspondingly an nth-order component which is at n times the rotational frequency of the reciprocating internal combustion engine occurs.
- crank angle at which the fuel is injected and / or the outlet angle at which the outlet valve is actuated are set electronically. That is, there are no mechanical measures, such as adjusting the camshaft or adjusting a mechanical drive of the injector made.
- a reciprocating internal combustion engine usable which is a working at constant pressure turbocharged engine with 14 cylinders in a single row, and at least two turbochargers and / or wherein the reciprocating internal combustion engine is designed such that a rotational angle difference for two pistons in at least two mutually igniting cylinders has a predetermined deviation from an integer multiple of 360 ° / 14.
- crank angle difference between two pistons in two different cylinders is not exactly an integer multiple of 360 ° / 14, as in the 14 cylinder engines known in the prior art, but may deviate from a uniform pitch by a certain angular amount and can thus have a non-uniform division.
- various operating parameters such as the power, the pollutant emissions, gas pulsations and all types of vibration types or other operating parameters can be set to more optimal values, as with even division of the crankshaft, so if the crank angle difference between two pistons in two different cylinders is always exactly an integer multiple of 360 ° / 14.
- one or more operating parameters can then be further optimized as a function of the rotational speed if the internal combustion engine is installed in a ship, for example, so that the concrete geometry of the ship must also be included in order to optimize the operating parameter.
- the invention relates to a reciprocating internal combustion engine, which is operable according to an inventive method.
- the invention relates in a particularly important embodiment for practical purposes a reciprocating internal combustion engine which is a working at constant pressure turbocharged internal combustion engine with 14 cylinders in a single row, at least two turbochargers comprises, and so is configured such that the time of injection of the fuel into the cylinder is electronically adjustable, preferably, but not necessarily, a Drehwinkeidifferenz for two pistons in at least two different cylinders has a predetermined deviation of an integer multiple of 360 ° / 14.
- Fig. 1 shows a schematic representation of a known from the prior art curve of a component K 'of an operating parameter B' as a function of speed D '.
- painted reference numerals always refer to the known prior art, while uncoated reference numerals refer to the present invention.
- positive injection angles E ' are plotted, that is to say in the mathematically positive direction of the ordinate positive injection angles E' are plotted, a positive injection angle E 'meaning that the injection takes place correspondingly later than at a negative injection angle E'.
- An injection angle of 0 ° means that the injection of the fuel occurs in the top dead center position of the piston in the corresponding cylinder.
- the magnitude of the component K 'of an operating parameter B' is plotted on the right-hand ordinate, the speed dependence of which is shown schematically by the dashed line.
- the dashed horizontal line K ' max symbolizes the maximum permissible variable K' max , which may not exceed the component K 'of the operating parameter B' in the operating state of the internal combustion engine.
- the component K ' may for example be a Fourier component K' of a torsional vibration.
- the in Fig. 1 shown course of the injection angle E 'as a function of the rotational speed D' is typical for the startup of a large diesel engine in a ship of speed 0 to a maximum full load speed D ' max , in which the large diesel engine is operated at full load.
- the fuel is operated up to a certain speed at a first positive injection angle E' A.
- the first positive injection angle E ' A for example, about 3 °, that is, it is injected about 3 ° after top dead center.
- a speed D ' which is about 70% of a maximum Rated speed D ' max may correspond, kept constant.
- the injection angle E' in which the fuel is injected into the cylinder, continuously up to a negative Value E ' E reduced, the injection angle E' E then again to the maximum speed D ' max is maintained.
- the injection angle E ' E ensures that, for example under full load at the speed D' max the large diesel engine runs optimally and, for example, the fuel consumption is minimized.
- the component K 'of the operating parameter B' in the speed range between D ' 1 and D' 2 has a kind of resonance point. That is, in the narrow speed range between D ' 1 and D' 2 , the size of the component K 'increases well beyond the maximum permissible value K' max , so that the large diesel engine can not be operated optimally in this speed range.
- the resonance may even affect significant safety aspects, for example when the operating parameter B 'is a torsional vibration and the component K' becomes so strong in the speed range between D ' 1 and D' 2 that the ship as such is affected.
- Fig. 2 On the other hand, an optimized course of a component K of an operating parameter B is shown schematically by the method according to the invention, which is referred to below by the reference numeral 1.
- the change according to the invention or optimization of the components K of the operating parameter B will be explained in more detail using the example of the change of the injection angle E in the figures. Since the component K of the operating parameter B can be changed analogously by the other measures described above in detail, the illustration can be restricted to the example of the injection angle E and need not be described again for the actuation of the exhaust valve using a separate drawing.
- Those skilled in the art will readily be able to convey the following description to the operation of the exhaust valve, particularly as important embodiments of the method according to the invention, which relate to the operation of the exhaust valve, have already been described in great detail above.
- positive injection angles E are plotted again, that is to say in the mathematically positive direction of the ordinate positive injection angles E are plotted, wherein a positive injection angle E means that the injection takes place correspondingly later than at a negative injection angle E.
- An injection angle E of 0 ° means that the injection of the fuel in the top dead center position of the piston takes place in the corresponding cylinder.
- the magnitude of the component K of the operating parameter B is plotted on the right-hand ordinate, the speed dependence of which is shown schematically by the dashed line.
- the dashed line K max symbolizes the maximum permissible variable K max , which may not exceed the component K of the operating parameter B in the operating state of the internal combustion engine.
- the component K of the operating parameter B may for example be a Fourier component K of a torsional vibration.
- Fig. 2 shows partially the already known characteristic curve of the injection angle E as a function of the rotational speed D, which is typical of a large diesel engine in a ship, the speed increased from 0 to a maximum full load speed D max , at which the large diesel engine is operated at full load becomes.
- D the rotational speed
- D max a maximum full load speed
- the fuel is injected up to a certain speed D at a positive injection angle E A.
- this injection angle E A for example, about 3 °, that is, it is injected about 3 ° after top dead center.
- This injection angle E A becomes, as in Fig. 1 shown schematically, up to a speed D, which correspond to about 70% of a maximum rated speed D max can, kept constant.
- the reason why in the lower part of the injection is preferably at a positive injection angle, for example, as in the description of Fig. 1 already explained, a desired reduction of smoke, but for example at the expense of higher consumption.
- the injection angle E at which the fuel is injected into the cylinder, is then initially reduced continuously in a first step and, for example, in the form of a linearly falling ramp with increasing rotational speed D, After a method step according to the invention has been carried out, it is further reduced to a negative value E E , the injection angle E E then being maintained again up to the maximum rotational speed D max .
- the injection angle E E ensures that, for example under full load at the speed D max of the large diesel engine runs optimally and, for example, the fuel consumption is minimized.
- the size of the component K of the operating parameter B as a function of the rotational speed D shows a characteristic course.
- the component K of the operating parameter B in the speed range between D 1 and D 2 has analogous to that in Fig. 1 Example shown in the prior art, a kind of resonance point.
- the size of the components K of the operating parameter B in the narrow rotational speed range between D 1 and D 2 does not exceed the maximum permissible value K max , but remains below the maximum permissible value K max , so that the internal combustion engine also in the speed range between D 1 and D 2 is operated optimally and safely.
- the fuel at a first injection angle E 1 is injected and at a second speed D. 2 the fuel is injected at a second injection angle E 2 , wherein the first injection angle E 1 is greater than the second injection angle E 2 and between the first speed D 1 and the second speed D 2 of the injection angle E, at which the fuel is injected, is changed to a third injection angle E 3 , which is greater than the first injection angle E 1 and greater than the second injection angle E 2 .
- Fig. 2 Exemplarily illustrated preferred embodiment of an inventive method 1 is to be understood only schematically and the change in the injection angle E in the narrow speed range between the first speed D 1 and the second speed D 2 , in which the fuel is injected, depending on the requirement, construction of Internal combustion engine and / or the ship and / or depending on which operating parameters to be optimized, may also have a different course.
- the injection angle E between the first rotational speed D 1 and the second rotational speed D 2 can also have a local minimum or have a more complicated course.
- both the injection angle E A which determines the injection timing at low rotational speeds D, may also be smaller than the crank angle E E , which determines the injection timing at high rotational speeds D.
- both E A and E E can have a positive or a negative value.
- the absolute values of the injection angle E and the Characteristic rotational speeds D depend in particular on the design of the internal combustion engine, as well as the ship and on the operating parameter to be optimized and can vary accordingly.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Optimierung eines Betriebsparameters einer Hubkolbenbrennkraftmaschine, sowie eine Hubkolbenbrennkraftmaschine gemäss dem Oberbegriff des unabhängigen Anspruchs der jeweiligen Kategorie.The invention relates to a method for optimizing an operating parameter of a reciprocating internal combustion engine, as well as a reciprocating internal combustion engine according to the preamble of the independent claim of the respective category.
Bei einem komplexen System wie einer Hubkolbenbrennkraftmaschine müssen eine ganze Reihe von Betriebsparametern eingestellt und optimiert werden, um einen einwandfreien Betrieb unter verschiedensten Bedingungen zu gewährleisten. Dabei ist im Rahmen dieser Anmeldung unter dem Begriff "Betriebsparameter" jeder Parameter zu verstehen, der einen Betriebszustand der Hubkolbenbrennkraftmaschine betrifft bzw. charakterisiert. So kann unter einem Betriebsparameter im Sinn der Anmeldung z.B. ein Kraftstoffverbrauch, eine Schadstoffemission, eine Schwingungs- oder Vibrationsgrösse, eine Komponente einer Gaspulsation und jeder andere Parameter, der einen Betriebszustand der Brennkraftmaschine beschreibt, verstanden werden.In a complex system such as a reciprocating internal combustion engine, a whole range of operating parameters must be set and optimized to ensure proper operation in a variety of conditions. In the context of this application, the term "operating parameter" is to be understood as meaning any parameter which relates or characterizes an operating state of the reciprocating internal combustion engine. Thus, under an operating parameter in the sense of the application, for example, a fuel consumption, a pollutant emission, a vibration or vibration variable, a component of a gas pulsation and any other parameter that describes an operating state of the internal combustion engine can be understood.
Dabei ist es bekannt, dass verschiedene Betriebsparameter sich in Abhängigkeit von der Drehzahl der Hubkolbenbrennkraftmaschine ändern können. Insbesondere ist es bekannt, dass bestimmte Betriebsparameter nur in ganz bestimmten, mehr oder weniger eng definierten Drehzahlbereichen der Brennkraftmaschine extreme Werte ausserhalb einer vorgegebenen Toleranz annehmen können und ausserhalb dieses Drehzahlbereichs innerhalb eines vorgegebenen Toleranzbereichs liegen.It is known that various operating parameters can change depending on the speed of the reciprocating internal combustion engine. In particular, it is known that certain operating parameters can assume extreme values outside a predetermined tolerance only in very specific, more or less narrowly defined engine speed ranges and within a predetermined tolerance range outside this engine speed range.
Ein Beispiel für ein solches Verhalten können bestimmte Schwingungstypen, wie etwa Gaspulsationen, wie sie zum Beispiel in der
Zur mathematischen Beschreibung vorgenannter Schwingungen oder Gaspulsationen werden diese zweckmässigerweise in ihre Fourierkomponenten zerlegt und in an sich bekannter Weise in eine Fourierreihe bis zu einer bestimmten Ordnung entwickelt.For the mathematical description of the aforementioned oscillations or gas pulsations, these are expediently decomposed into their Fourier components and developed in a manner known per se into a Fourier series up to a certain order.
So ist es beispielsweise bekannt, dass sich die Fourierkomponenten je nach Zahl der Zylinder der Hubkolbenbrennkraftmaschine in bestimmten Ordnungen, in eng definierten Drehzahlbereichen zu Maxima addieren können, so dass in diesem Drehzahlbereich starke Vibrationen auftreten können, die nicht tolerierbar sind.Thus, it is known, for example, that the Fourier components, depending on the number of cylinders of the reciprocating internal combustion engine, can add in certain orders, in narrowly defined speed ranges, to maxima, so that strong vibrations can occur in this speed range which are intolerable.
Es sind dabei verschiedene Massnahmen bekannt, um das Auftreten eines solchen Schwingungsmaximums einer Fourierkomponente zu verhindern, bzw. auf ein tolerierbares Mass zu reduzieren. Um zum Beispiel bestimmte Torsionsschwingungszustände, d.h. bestimmte Fourierkomponenten einer bestimmten Ordnung zu reduzieren, ist es bekannt, Ausgleichsgewichte an der Kurbelwelle des Grossdieselmotors anzubringen. Durch diese Massnahme können selbstverständlich Drehzahl abhängige Veränderungen eines Betriebsparameters, wie zum Beispiel eines Torsionsschwingungszustand, nur unzureichend, bzw. gar nicht kontrolliert werden.There are various measures known to prevent the occurrence of such a maximum vibration of a Fourierkomponente, or to reduce to a tolerable level. For example, to reduce certain torsional vibration states, ie, certain Fourier components of a particular order, it is known to apply balance weights to the crankshaft of the large diesel engine. Through this Measure can of course speed-dependent changes of an operating parameter, such as a Torsionsschwingungszustand, insufficient, or not at all controlled.
Besonders schwierig sind Torsionsschwingungen z.B. bei einem Grossdieselmotor, der in einem Schiff eingebaut werden soll, zu kontrollieren. Da der Grossdieselmotor im eingebauten Zustand mit dem Schiff insgesamt ein Schwingungssystem bildet, ist es möglich, dass sich im eingebauten Zustand in Abhängigkeit von der Drehzahl die Fourierkomponenten einer Schwingung in bestimmten Ordnungen in eng definierten Drehzahlbereichen zu Maxima addieren können, also eine Art von Resonanz auftritt, die im ausgebauten Zustand, z.B. auf einem Teststand bei ein und demselben Motor nicht auftreten bzw. auch nicht exakt vorausberechenbar sind, weil die genaue Geometrie und der exakte Aufbau des Schiffes insgesamt nicht bis ins kleinste Detail bekannt ist bzw. nicht alle Details in die Berechnungsmodelle übernommen werden können und daher nicht im voraus in entsprechende Simulationen einfliessen können.Particularly difficult are torsional vibrations, e.g. in a large diesel engine to be installed in a ship. Since the large diesel engine in the installed state with the ship as a whole forms a vibration system, it is possible that in the installed state depending on the speed of the Fourier components of a vibration in certain orders in narrowly defined speed ranges can add to maxima, so a kind of resonance occurs in the removed state, eg do not occur on a test stand with one and the same engine or are also not exactly predictable, because the exact geometry and the exact structure of the ship is not known in detail to the smallest detail or not all the details can be included in the calculation models and therefore not can be incorporated into corresponding simulations in advance.
In solchen Fällen ist es sehr schwierig solche Resonanzen noch zu beeinflussen, also zum Beispiel genügend stark zu unterdrücken, nachdem der Motor im Schiff installiert worden ist.In such cases, it is very difficult to influence such resonances, for example, to suppress them sufficiently strongly after the engine has been installed in the ship.
Diese Probleme waren bisher, wenn überhaupt, nur mit sehr aufwendigen oder komplizierten mechanischen Massnahmen in den Griff zu bekommen. Beispielsweise können im Nachhinein noch Ausgleichsgewichte an der Kurbelwelle zusätzlich angebracht werden, was im eingebauten Zustand mit grossen Schwierigkeiten verbunden ist, zumal eine Optimierung natürlich eine ganze Reihe entsprechender Drehzahl abhängiger Testläufe erfordert. Im schlimmsten Fall sind mit solchen Massnahmen Drehzahl abhängige Effekte gar nicht mehr oder nicht ausreichend korrigierbar.So far, these problems have only been dealt with, if at all, with very complex or complicated mechanical measures. For example, in retrospect balancing weights can be additionally attached to the crankshaft, which is associated with great difficulties in the installed state, especially since an optimization course requires a whole series of appropriate speed dependent test runs. In the worst case, speed-dependent effects are no longer or not sufficiently correctable with such measures.
In gewissen Grenzen können solche Drehzahl abhängigen Effekte z.B. dadurch korrigiert werden, dass in Abhängigkeit von der Drehzahl des Grossdieselmotors die Nocken der Nockenwelle verstellt werden, was natürlich zu Lasten von Drehmoment und Leistung des Grossdieselmotors, und somit zu höherem Kraftstoffverbrauch führt, und selbstverständlich einen ganz erheblichen konstruktiven Mehraufwand mit den damit verbundenen Nachteilen bedeutet.Within certain limits, such speed dependent effects may be e.g. be corrected by the fact that depending on the speed of the large diesel engine, the cams of the camshaft are adjusted, which of course at the expense of torque and power of the large diesel engine, and thus leads to higher fuel consumption, and of course a considerable amount of additional design effort with the associated disadvantages ,
Es ist daher eine Aufgabe der Erfindung, ein neues Verfahren vorzuschlagen, mit welchem ein Betriebsparameter einer Hubkolbenbrennkraftmaschine in einem vorgegebenen Drehzahlbereich optimiert werden kann. Ferner ist es eine Aufgabe der Erfindung eine entsprechende Hubkolbenbrennkraftmaschine bereit zu stellen.It is therefore an object of the invention to propose a new method with which an operating parameter of a reciprocating internal combustion engine can be optimized in a predetermined speed range. Furthermore, it is an object of the invention to provide a corresponding reciprocating internal combustion engine.
Die diese Aufgaben in verfahrenstechnischer und apparativer Hinsicht lösenden Gegenstände der Erfindung sind durch die Merkmale des unabhängigen Anspruchs der jeweiligen Kategorie gekennzeichnet.The objects of the invention which solve these objects in terms of process and apparatus are characterized by the features of the independent claim of the respective category.
Die jeweiligen abhängigen Ansprüche beziehen sich auf besonders vorteilhafte Ausführungsformen der Erfindung.The respective dependent claims relate to particularly advantageous embodiments of the invention.
Die Erfindung betrifft somit ein Verfahren zur Optimierung eines Betriebsparameters einer Hubkolbenbrennkraftmaschine, insbesondere eines Zweitakt-Grossdieselmotors mit Längsspülung. Die Hubkolbenbrennkraftmaschine umfasst einen in einem Zylinder hin- und her bewegbar angeordneten Kolben, wobei der Zylinder ein Auslassventil und eine Einspritzdüse aufweist, und mit der Einspritzdüse bei einem vorgegebenen Einspritzwinkel ein Kraftstoff in den Zylinder eingespritzt wird und bei einem Auslasswinkel das Auslassventil betätigt wird. Im Betriebszustand wird dabei die Drehzahl der Hubkolbenbrennkraftmaschine verändert, so dass bei einer ersten Drehzahl der Kraftstoff bei einem ersten Einspritzwinkel eingespritzt wird und das Auslassventil bei einem ersten Auslasswinkel geöffnet wird und bei einer zweiten Drehzahl der Kraftstoff bei einem zweiten Einspritzwinkel eingespritzt wird und das Auslassventil bei einem zweiten Auslasswinkel betätigt wird, und der erste Einspritzwinkel grösser oder gleich dem zweiten Einspritzwinkel ist und der erste Auslasswinkel grösser oder gleich dem zweiten Auslasswinkel ist. Zwischen der ersten Drehzahl und der zweiten Drehzahl wird dabei ein Gasdruckverlauf im Zylinder derart verändert, dass eine Komponente des Betriebsparameters auf einen vorgegebenen Wert verändert wird.The invention thus relates to a method for optimizing an operating parameter of a reciprocating internal combustion engine, in particular a two-stroke large diesel engine with longitudinal rinsing. The reciprocating internal combustion engine comprises a reciprocating piston arranged in a cylinder, wherein the cylinder has an exhaust valve and an injection nozzle, and with the injector at a predetermined injection angle, a fuel is injected into the cylinder and at an outlet angle, the exhaust valve is actuated. In the operating state while the speed of the reciprocating internal combustion engine is changed, so that at a first speed of the fuel is injected at a first injection angle and the exhaust valve is opened at a first outlet angle and at a second speed of the fuel at a second injection angle is injected and the exhaust valve is actuated at a second outlet angle, and the first injection angle is greater than or equal to the second injection angle and the first outlet angle is greater than or equal to the second outlet angle. In this case, a gas pressure profile in the cylinder is changed between the first rotational speed and the second rotational speed such that a component of the operating parameter is changed to a predetermined value.
Wesentlich für die Erfindung ist somit, dass eine Komponente eines Betriebsparameters der Hubkolbenbrennkraftmaschine dadurch optimiert wird, dass in einem vorgegebenen Drehzahlbereich zwischen einer ersten Drehzahl und einer zweiten Drehzahl Massnahmen ergriffen werden, wodurch der Gasdruckverlauf im Zylinder derart verändert wird, dass eine Komponente des Betriebsparameters auf einen vorgegebenen Wert verändert wird.Essential for the invention is thus that a component of an operating parameter of the reciprocating internal combustion engine is optimized by taking measures in a predetermined speed range between a first speed and a second speed, whereby the gas pressure profile in the cylinder is changed such that a component of the operating parameter a predetermined value is changed.
So kann zur Optimierung des Betriebsparameters, beispielsweise einer Torsionsschwingung, oder einer Gaspulsation oder einer Schadstoffemission oder einer Leistung der Brennkraftmaschine, ausgehend von der ersten Drehzahl mit steigender oder abnehmender Drehzahl ein Steuerungsparameter, zum Beispiel ein Kurbelwinkel, bei welchem ein bestimmter Vorgang, wie die Brennstoffeinspritzung, die Betätigung des Auslassventils usw. stattfindet, zwischen der ersten Drehzahl und der zweiten Drehzahl auf einen vorgegeben Wert verändert werden, um dann wieder auf den Wert des zweiten Kurbelwinkels zurückgestellt zu werden.Thus, to optimize the operating parameter, for example a torsional vibration, or a gas pulsation or a pollutant emission or a power of the internal combustion engine, starting from the first speed with increasing or decreasing speed, a control parameter, for example, a crank angle at which a certain process, such as the fuel injection , the actuation of the exhaust valve, etc. takes place, be changed between the first speed and the second speed to a predetermined value, and then returned to the value of the second crank angle.
Da die Massnahmen zur Optimierung des Betriebsparameters, das heisst die Art und Weise und Grösse der Veränderung einer Komponente des Betriebsparameters auf einen vorgegebenen Wert zwischen der ersten Drehzahl und der zweiten Drehzahl nicht nur von der Konstruktion und dem Typ der speziellen Hubkolbenbrennkraftmaschine allein abhängen, sondern insbesondere auch zum Beispiel von dem Schiff, in das die Hubkolbenbrennkraftmaschine eingebaut wird, abhängen kann, wird der Fachmann in der Praxis nicht umhin kommen, bei Verwendung der vorliegenden erfindungsgemässen Lehre zur exakten Einstellung der unten näher beschriebenen Parameter zusätzliche einfache Versuche durchzuführen, die ihm letztendlich die genauen Parametern, also zum Beispiel den exakten Wert für die Festlegung des dritten Einspritzwinkel, oder des dritten Auslasswinkels liefern, die von Fall zu Fall etwas variieren werden.Since the measures for optimizing the operating parameter, that is, the manner and magnitude of the change of a component of the operating parameter to a predetermined value between the first speed and the second speed depend not only on the design and type of the particular reciprocating internal combustion engine, but in particular Also, for example, from the ship, in which the reciprocating internal combustion engine is installed, may depend on the expert in practice can not help but, using the present inventive teaching for the exact setting of the parameters described in more detail below additional simple experiments which ultimately give it the exact parameters, such as the exact value for setting the third injection angle, or the third outlet angle, which will vary somewhat from case to case.
In einer bevorzugten Ausführungsvariante des erfindungsgemässen Verfahrens wird der Kraftstoff zwischen der ersten Drehzahl und der zweiten Drehzahl bei einem dritten Einspritzwinkel eingespritzt, der grösser als der erste Einspritzwinkel oder kleiner als der zweite Einspritzwinkel ist.In a preferred embodiment of the method according to the invention, the fuel is injected between the first rotational speed and the second rotational speed at a third injection angle that is greater than the first injection angle or smaller than the second injection angle.
Das heisst, der Einspritzwinkel, also derjenige Kurbelwinkel bei dem der Einspritzvorgang stattfindet bzw. startet, wird in Abhängigkeit von der Drehzahl vom ersten Einspritzwinkel auf den zweiten Einspritzwinkel derart verändert, dass der Einspritzwinkel zwischen dem ersten Einspritzwinkel und dem zweiten Einspritzwinkel in Abhängigkeit von der Drehzahl und in Bezug auf den ersten Einspritzwinkel und den zweiten Einspritzwinkel mindestens einen maximalen und / oder minimalen Wert annimmt.That is, the injection angle, ie the crank angle at which the injection takes place or is started, is changed depending on the speed from the first injection angle to the second injection angle such that the injection angle between the first injection angle and the second injection angle in dependence on the speed and assumes at least a maximum and / or a minimum value with respect to the first injection angle and the second injection angle.
Je nach dem welcher Betriebsparameter der Hubkolbenbrennkraftmaschine optimiert werden soll, beispielsweise eine Komponente einer Schwingung, oder einer Gaspulsation oder einer Schadstoffemission oder ein anderer Betriebsparameter der Brennkraftmaschine, wird ausgehend von der ersten Drehzahl mit steigender oder abnehmender Drehzahl der Einspritzwinkel, bei dem der Kraftstoff in den Zylinder eingespritzt wird, zunächst auf einen minimalen Wert zwischen der ersten Drehzahl und der zweiten Drehzahl abgesenkt, und wird dann wieder auf den Wert des zweiten Einspritzwinkels angehoben, oder umgekehrt. Das heisst es ist auch möglich, dass ausgehend von der ersten Drehzahl mit steigender oder abnehmender Drehzahl der Einspritzwinkel, bei dem der Kraftstoff in den Zylinder eingespritzt wird, zunächst auf einen maximalen Wert zwischen der ersten Drehzahl und der zweiten Drehzahl abgesenkt wird, dann wieder auf den Wert des zweiten Einspritzwinkels abgesenkt wird.Depending on which operating parameters of the reciprocating internal combustion engine to be optimized, for example, a component of a vibration, or a gas pulsation or pollutant emission or other operating parameters of the internal combustion engine, starting from the first speed with increasing or decreasing speed of the injection angle at which the fuel in the Cylinder is injected, first lowered to a minimum value between the first speed and the second speed, and is then raised again to the value of the second injection angle, or vice versa. That is, it is also possible that, starting from the first speed with increasing or decreasing speed of the injection angle at which the fuel is injected into the cylinder is first lowered to a maximum value between the first speed and the second speed, then back on the value of the second injection angle is lowered.
Es versteht sich, dass in speziellen Fällen der Einspritzwinkel, bei dem der Kraftstoff in den Zylinder eingespritzt wird, auch auf kompliziertere Weise in Abhängigkeit von der Drehzahl zwischen der ersten Drehzahl und der zweiten Drehzahl variiert werden kann, als zuvor beschrieben.It is understood that in special cases, the injection angle at which the fuel is injected into the cylinder, in a more complicated manner in Depending on the speed between the first speed and the second speed can be varied as previously described.
Dabei ist die Veränderung des Einspritzwinkels bei weitem nicht die einzige Möglichkeit den Gasdruckverlauf im Zylinder derart zu verändern, dass eine Komponente des Betriebsparameters auf einen vorgegebenen Wert verändert bzw. optimiert werden kann.The change in the injection angle is far from the only way to change the gas pressure profile in the cylinder such that a component of the operating parameter can be changed or optimized to a predetermined value.
In einem zweiten Ausführungsbeispiel des erfindungsgemässen Verfahrens ist die Menge des Kraftstoffs, die zwischen der ersten Drehzahl und der zweiten Drehzahl in einem Einspritzvorgang in den Zylinder eingespritzt wird, insbesondere die Menge des Kraftstoffs, die beim dritten Einspritzwinkel eingespritzt wird, verschieden von der Menge des Kraftstoffs, die bei einem Einspritzvorgang beim ersten Einspritzwinkel und / oder beim zweiten Einspritzwinkel eingespritzt wird.In a second embodiment of the method according to the invention, the amount of fuel injected into the cylinder between the first rotational speed and the second rotational speed in an injection process, in particular the amount of fuel injected at the third injection angle, is different from the quantity of the fuel , which is injected during an injection process at the first injection angle and / or at the second injection angle.
Die Veränderung der in einem bestimmten Einspritzvorgang eingespritzten Kraftstoffmenge kann dabei auf verschiedene Arten realisiert werden.The change in the amount of fuel injected in a given injection process can be realized in various ways.
So ist in einer speziellen Variante des erfindungsgemässen Verfahrens eine Zeitdauer des Einspritzvorgangs der Einspritzung des Kraftstoffs in den Zylinder zwischen der ersten Drehzahl und der zweiten Drehzahl, insbesondere die Zeitdauer der Einspritzung beim dritten Einspritzwinkel, verschieden von der Zeitdauer der Einspritzung des Kraftstoffs beim ersten Einspritzwinkel und / oder beim zweiten Einspritzwinkel, so dass beim dritten Einspritzwinkel bei einem bestimmten Einspritzvorgang etwas mehr oder etwas weniger Kraftstoff in den Zylinder eingespritzt wird als beim ersten Einspritzwinkel und / oder beim zweiten Einspritzwinkel.Thus, in a specific variant of the method according to the invention, a time duration of the injection process of injection of the fuel into the cylinder between the first rotational speed and the second rotational speed, in particular the duration of the injection at the third injection angle, different from the duration of injection of the fuel at the first injection angle and / or at the second injection angle, so that at the third injection angle at a certain injection process slightly more or less fuel is injected into the cylinder than at the first injection angle and / or at the second injection angle.
In einer anderen speziellen Variante wird die Menge des eingespritzten Kraftstoffs dadurch verändert, dass an einem Zylinder mindestens zwei Einspritzdüsen vorgesehen sind und zwischen der ersten Drehzahl und der zweiten Drehzahl während des Einspritzvorgangs mindestens eine Einspritzdüse mindestens zeitweilig geschlossen ist. Es versteht sich, dass die beiden zuletzt beschriebenen Möglichkeiten zur Veränderung der Menge des eingespritzten Kraftstoffs auch vorteilhaft miteinander kombiniert werden können.In another specific variant, the amount of injected fuel is changed by providing at least two injection nozzles on a cylinder and at least one injection nozzle being at least temporarily closed between the first rotational speed and the second rotational speed during the injection process. It is understood that the last two ways of changing the amount described the injected fuel can also be advantageously combined with each other.
Eine andere Möglichkeit der Realisierung des erfindungsgemässen Verfahrens, also der Optimierung eines Betriebsparameters der Hubkolbenbrennkraftmaschine, besteht darin, zwischen der ersten Drehzahl und der zweiten Drehzahl die Auslassventile geeignet zu steuern.Another possibility of realizing the method according to the invention, ie the optimization of an operating parameter of the reciprocating internal combustion engine, is to suitably control the exhaust valves between the first rotational speed and the second rotational speed.
So wird bei einem weiteren Ausführungsbeispiel der Auslasswinkel, bei dem das Auslassventil während einer Auslasszeit zwischen der ersten Drehzahl und der zweiten Drehzahl betätigt wird, auf einen dritten Auslasswinkel verändert, der grösser als der erste Auslasswinkel oder kleiner als der zweite Auslasswinkel ist.Thus, in another embodiment, the outlet angle at which the exhaust valve is actuated during an exhaust time between the first speed and the second speed is changed to a third exhaust angle that is greater than the first exhaust angle or less than the second exhaust angle.
Das heisst, der Auslasswinkel, also derjenige Kurbelwinkel bei dem der Auslass der Verbrennungsgase aus dem Zylinder der Brennkraftmaschine stattfindet bzw. bei dem der Auslass der Verbrennungsgase aus dem Zylinder startet bzw. das derjenige Kurbelwinkel, bei dem das Auslassventil betätigt wird, wird in Abhängigkeit von der Drehzahl vom ersten Auslasswinkel auf den zweiten Auslasswinkel derart verändert, dass der Auslasswinkel zwischen dem ersten Auslasswinkel und dem zweiten Auslasswinkel in Abhängigkeit von der Drehzahl und in Bezug auf den ersten Auslasswinkel und den zweiten Auslasswinkel mindestens einen maximalen und / oder minimalen Wert annimmt.That is, the outlet angle, ie the crank angle at which the outlet of the combustion gases from the cylinder of the internal combustion engine takes place or at which the outlet of the combustion gases from the cylinder starts or the crank angle at which the exhaust valve is actuated, is a function of varies the speed from the first outlet angle to the second outlet angle such that the outlet angle between the first outlet angle and the second outlet angle depending on the speed and with respect to the first outlet angle and the second outlet angle assumes at least one maximum and / or minimum value.
Je nach dem welcher Betriebsparameter der Hubkolbenbrennkraftmaschine optimiert werden soll, beispielsweise eine Komponente einer Schwingung, oder einer Gaspulsation oder einer Schadstoffemission oder ein anderer Betriebsparameter der Brennkraftmaschine, wird, ausgehend von der ersten Drehzahl mit steigender oder abnehmender Drehzahl, der Auslasswinkel zunächst auf einen minimalen Wert zwischen der ersten Drehzahl und der zweiten Drehzahl abgesenkt, und wird dann wieder auf den Wert des zweiten Auslasswinkels angehoben, oder umgekehrt. Das heisst es ist auch möglich, dass ausgehend von der ersten Drehzahl mit steigender oder abnehmender Drehzahl der Auslasswinkel, bei dem der Kraftstoff in den Zylinder eingespritzt wird, zunächst auf einen maximalen Wert zwischen der ersten Drehzahl und der zweiten Drehzahl angehoben wird, dann wieder auf den Wert des zweiten Auslasswinkels abgesenkt wird.Depending on which operating parameter of the reciprocating internal combustion engine is to be optimized, for example, a component of a vibration, or a gas pulsation or pollutant emission or other operating parameters of the internal combustion engine, starting from the first speed with increasing or decreasing speed, the outlet angle initially to a minimum value is lowered between the first speed and the second speed, and is then raised again to the value of the second outlet angle, or vice versa. That is, it is also possible that, starting from the first speed with increasing or decreasing speed, the outlet angle at which the fuel is injected into the cylinder is first raised to a maximum value between the first speed and the second speed, then lowered back to the value of the second outlet angle.
Es versteht sich, dass in speziellen Fällen der Auslasswinkel auch auf kompliziertere Weise in Abhängigkeit von der Drehzahl zwischen der ersten Drehzahl und der zweiten Drehzahl variiert werden kann, als zuvor beschrieben.It is understood that in special cases the outlet angle can also be varied in a more complicated manner as a function of the rotational speed between the first rotational speed and the second rotational speed, as described above.
Aber nicht nur der Zeitpunkt, bzw. der Wert des Auslasswinkels als solches, bei dem das Auslassventil betätigt wird, kann zur Optimierung des Betriebsparameters der Brennkraftmaschine variiert werden, sondern auch die Dauer, für die das Auslassventil geöffnet ist, bzw. der genaue zeitliche Verlauf des Öffnungs- und Schliessvorgangs, kann die Komponente des Betriebsparameters beeinflussen.But not only the time, or the value of the outlet angle as such, in which the exhaust valve is actuated, can be varied to optimize the operating parameter of the internal combustion engine, but also the duration for which the exhaust valve is open, or the exact time course the opening and closing process, may affect the component of the operating parameter.
Daher ist bei einer anderen Variante des erfindungsgemässen Verfahrens die Zeitdauer der Betätigung des Auslassventils beim Auslasswinkel zwischen der ersten Drehzahl und der zweiten Drehzahl, insbesondere die Zeitdauer der Betätigung des Auslassventils beim dritten Auslasswinkel, verschieden von der Zeitdauer der Betätigung des Auslassventils beim ersten Auslasswinkel und / oder beim zweiten Auslasswinkel.Therefore, in another variant of the inventive method, the duration of the actuation of the exhaust valve at the outlet angle between the first speed and the second speed, in particular the duration of the actuation of the exhaust valve at the third outlet angle, different from the duration of actuation of the exhaust valve at the first outlet angle and / or at the second outlet angle.
Das heisst, zwischen der ersten Drehzahl und der zweiten Drehzahl kann zum Beispiel die Zeitdauer, für die das Auslassventil beim dritten Auslasswinkel geöffnet ist länger und / oder kürzer sein, als diejenige Zeitdauer, für die das Auslassventil bei der ersten Drehzahl und / oder der zweiten Drehzahl geöffnet ist. Dabei ist es möglich, dass die Zeitdauer, für die das Auslassventil zwischen der ersten Drehzahl und der zweiten Drehzahl jeweils bei einem Zyklus der Hubkolbenbrennkraftmaschine geöffnet wird, in komplizierter Art und Weise eine Funktion der Drehzahl ist, wenn dadurch die Komponente des Betriebsparameters besonders vorteilhaft korrigiert bzw. verändert werden kann.That is, between the first rotational speed and the second rotational speed, for example, the time period for which the exhaust valve is open at the third exhaust angle may be longer and / or shorter than the period for which the exhaust valve at the first rotational speed and / or the second Speed is open. It is possible that the time duration for which the exhaust valve is opened between the first rotational speed and the second rotational speed in each cycle of the reciprocating internal combustion engine in a complicated manner is a function of the rotational speed, if thereby corrects the component of the operating parameter particularly advantageous or can be changed.
Es versteht sich von selbst und der Fachmann weiss selbstverständlich, dass alle in dieser Anmeldung beschriebenen Ausführungsbeispiele erfindungsgemässer Verfahren je nach Anforderung auch erfolgreich kombiniert werden können.It goes without saying and the expert knows of course that all described in this application embodiments of the invention process can also be combined successfully depending on the requirements.
Besonders vorteilhaft lässt sich mit dem erfindungsgemässen Verfahren eine Schwingung, insbesondere eine Torsionsschwingung, eine longitudinale Schwingung, eine transversale Schwingung oder eine Gaspulsation optimieren.With the method according to the invention, it is particularly advantageous to optimize a vibration, in particular a torsional vibration, a longitudinal vibration, a transverse vibration or a gas pulsation.
Schwingungsvorgänge können nämlich, wie bereits erwähnt, in Abhängigkeit von der Geometrie insgesamt, z.B. der Geometrie des Grossdieselmotors und des Schiffs, in den der Grossdieselmotor eingebaut ist, Resonanzen zeigen, die unter anderem in Abhängigkeit von der Drehzahl des Motors in unterschiedlicher Weise und unterschiedlich stark angeregt werden können. So hat sich beispielsweise gezeigt, dass sich bei einem 14 Zylinder Grossdieselmotor, aber nicht nur bei 14 Zylinder Motoren, unter bestimmten Umständen Fourierkomponenten einer Torsionsschwingung zu Maxima addieren können, die bei einer bestimmten Drehzahl, z.B. zwischen 70 Umdrehungen pro Minute (U/min) und 120 Umdrehungen pro Minute (U/min) so stark werden, dass ein sicherer Betrieb des Schiffes in diesem Drehzahlbereich nicht mehr gewährleistet ist.Namely, as already mentioned, vibrational processes may vary depending on the geometry as a whole, e.g. The geometry of the large diesel engine and the ship, in which the large diesel engine is installed, show resonances that can be excited, among other things, depending on the speed of the engine in different ways and different degrees. For example, it has been found that in a 14 cylinder large diesel engine, but not just 14 cylinder engines, under certain circumstances Fourier components of a torsional vibration can add up to maxima that occur at a certain speed, e.g. between 70 revolutions per minute (RPM) and 120 revolutions per minute (RPM) are so strong that safe operation of the ship in this speed range is no longer guaranteed.
Überraschender Weise hat sich gezeigt, dass, wenn gemäss der Erfindung zum Beispiel der Einspritzwinkel, bei dem der Kraftstoff in den Zylinder eingespritzt wird, zwischen dem ersten Kurbelwinkel bei ca. 80 U/min und dem zweiten Kurbelwinkel bei 95/min um ca. ein bis zwei Grad nachgestellt wird, das heisst wenn der Kraftstoff zwischen der ersten Drehzahl und der zweiten Drehzahl etwas später eingespritzt als bei der ersten Drehzahl und der zweiten Drehzahl, bestimmte Fourierkomponneten, z.B. eine Fourierkomponente elfter Ordnung einer Torsionsschwingung so weit reduziert werden können, so dass ein sicherer Betrieb des Grossdieselmotors auch in diesem Drehzahlbereich wieder gewährleistet ist.Surprisingly, it has been found that when according to the invention, for example, the injection angle at which the fuel is injected into the cylinder, between the first crank angle at about 80 U / min and the second crank angle at 95 / min by about one is readjusted to two degrees, that is, when the fuel between the first speed and the second speed injected a little later than the first speed and the second speed, certain Fourierkomponneten, for example, a Fourier component eleventh order of a torsional vibration can be reduced so far safe operation of the large diesel engine is guaranteed even in this speed range again.
Ganz analog kann z.B. eine Schwingungskomponente, aber auch die Komponenten anderer Betriebsparameter, dadurch optimiert bzw. verändert werden, dass gleichzeitig oder alternativ zur Veränderung des Einspritzwinkels zwischen der ersten Drehzahl und der zweiten Drehzahl, die Menge des eingespritzten Kraftstoffs und / oder eine Änderung des Auslasswinkels zur Betätigung des Auslassventils und / oder eine Veränderung der Zeitdauer, für die das Auslassventil betätigt wird, zwischen der ersten Drehzahl und der zweiten Drehzahl geeignet variiert wird.Analogously, e.g. a vibration component, but also the components of other operating parameters, thereby optimized or changed, that simultaneously or alternatively to change the injection angle between the first speed and the second speed, the amount of injected fuel and / or a change of the outlet angle for actuating the exhaust valve and / or a variation in the time duration for which the exhaust valve is actuated is suitably varied between the first speed and the second speed.
In besonders vorteilhafter Weise wird das erfindungsgemässe Verfahren dabei bei einem Grossdieselmotor mit elektronischer Nockenwelle, wie zum Beispiel bei einem Motor der Art von Wärtsilä und dem Typ RT-Flex oder Sulzer RTA, insbesondere, aber nicht nur, bei einem Motor mit 14 Zylindern verwendet. Bei Motoren mit elektronischer Nockenwelle kann nämlich unter anderem der Einspritzwinkel, bei dem der Kraftstoff in den Zylinder eingespritzt wird, und / oder der Auslasswinkel bei dem das Auslassventil betätigt wird, sowie die Dauer der Betätigung des Einspritzventils und / oder des Auslassventils völlig frei gewählt werden, in dem mittels einer Computer unterstützten Steuerung bzw. Regelung das Einspritzventil und / oder das Auslassventil zu einem, unabhängig vom Kurbelwinkel, frei wählbaren Zeitpunkt und / oder für eine frei wählbare Zeitdauer geöffnet bzw. geschlossen wird. Dadurch lässt sich auf besonders einfache Weise durch Änderung des Einspritzzeitpunkts und / oder der Dauer der Kraftstoffeinspritzung und / oder des Zeitpunkts des Öffnens des Auslassventils und / oder der Dauer des Öffnens des Auslassventils durch Änderung des Einspritzwinkels und / oder des Auslasswinkels ein Betriebsparameter, beispielsweise eine Torsionsschwingung, optimieren, ohne dass irgendwelche weiteren aufwendigen mechanischen Massnahmen, wie zum Beispiel das Anbringen von Gewichten an die Kurbelwelle oder das Verstellen der Nockenwelle, vonnöten sind.In a particularly advantageous manner, the inventive method is used in a large diesel engine with electronic camshaft, such as in an engine of the type Wärtsilä and the type RT-Flex or Sulzer RTA, in particular, but not only, in a motor with 14 cylinders. In the case of engines with an electronic camshaft, among other things, the injection angle at which the fuel is injected into the cylinder and / or the outlet angle at which the outlet valve is actuated, as well as the duration of actuation of the injection valve and / or of the outlet valve can be chosen completely freely in which, by means of a computer-assisted control, the injection valve and / or the outlet valve is opened or closed at a freely selectable time independently of the crank angle and / or for a freely selectable period of time. As a result, by changing the injection timing and / or the duration of the fuel injection and / or the time of opening the exhaust valve and / or the duration of opening the exhaust valve by changing the injection angle and / or the outlet angle, an operating parameter, for example a Torsions vibration, without any further expensive mechanical measures, such as attaching weights to the crankshaft or the adjustment of the camshaft, are needed.
Dabei hat sich gezeigt, dass sich durch Verwendung des erfindungsgemässen Verfahrens auch andere Betriebsparameter einer Hubkolbenbrennkraftmaschine, wie zum Beispiel eine Gaspulsation gemäss
In einer für die Praxis besonders wichtigen Ausführungsvariante ist die zu optimierende bzw. zu verändernde Komponente des Betriebsparameters eine Fourierkomponente erster und / oder höherer Ordnung, insbesondere eine Fourierkomponente einer Torsionsschwingung.In an embodiment variant that is particularly important for practice, the component of the operating parameter to be optimized or modified is a Fourier component of first and / or higher order, in particular a Fourier component of a torsional vibration.
Bei einer bevorzugten Ausführungsvariante des erfindungsgemässen Verfahrens wird dabei nur eine bestimmte Komponente des Betriebsparameters, zum Beispiel eine Forierkomponente 11. Ordnung einer Torsionsschwingung durch die zuvor eingehend geschilderten Massnahmen bzgl. des Einspritzvorgangs und / oder der Betätigung des Auslassventils optimiert bzw. verändert.In a preferred embodiment of the method according to the invention, only a specific component of the operating parameter, for example a 11th order forcing component of a torsional vibration, is optimized or changed by the previously described measures relating to the injection process and / or the actuation of the exhaust valve.
Selbstverständlich kann auch eine Fourierkomponente erster und / oder höherer Ordnung einer Torsionsschwingung oder einer anderen Schwingung oder eines anderen Schwingungstyps durch die zuvor eingehend geschilderten Massnahmen bzgl. des Einspritzvorgangs und / oder der Betätigung des Auslassventils zwischen der ersten und der zweiten Drehzahl optimiert bzw. verändert, in einem speziellen Beispiel, minimiert werden. Dabei bedeutet eine Fourierkomponente in an sich bekannter Weise eine Komponente, die bei der einfachen Rotationsfrequenz der Hubkolbenbrennkraftmaschine auftritt, eine Komponente zweiter Ordnung, die bei der doppelten Rotationsfrequenz auftritt und entsprechend eine Komponente n-ter Ordnung, die bei der n-fachen Rotationsfrequenz der Hubkolbenbrennkraftmaschine auftritt.Of course, a Fourier component of first and / or higher order of a torsional vibration or another vibration or another type of vibration can also be optimized or changed between the first and the second rotational speed by the previously described measures with respect to the injection process and / or the actuation of the exhaust valve, in a specific example, be minimized. In this case, a Fourier component in a manner known per se means a component which occurs at the simple rotational frequency of the reciprocating internal combustion engine, a second-order component which occurs at twice the rotational frequency and correspondingly an nth-order component which is at n times the rotational frequency of the reciprocating internal combustion engine occurs.
Wie bereits erwähnt, wird in einem für die Praxis besonders wichtigen Ausführungsbeispiel des erfindungsgemässen Verfahrens der Kurbelwinkel, bei dem der Kraftstoff eingespritzt wird und / oder der Auslasswinkel, bei dem das Auslassvetil betätigt wird, elektronisch festgelegt. Das heisst, es werden keinerlei mechanische Massnahmen, wie beispielsweise ein Verstellen der Nockenwelle oder ein Verstellen eines mechanischen Antriebs der Einspritzdüse vorgenommen.As already mentioned, in a particularly important embodiment of the method according to the invention, the crank angle at which the fuel is injected and / or the outlet angle at which the outlet valve is actuated are set electronically. That is, there are no mechanical measures, such as adjusting the camshaft or adjusting a mechanical drive of the injector made.
Besonders vorteilhaft ist das erfindungsgemässe Verfahren bei einer Hubkolbenbrennkraftmaschine verwendbar, die eine bei Konstantdruck arbeitende turboladende Brennkraftmaschine mit 14 Zylindern in einer einzigen Reihe ist, und mindestens zwei Turbolader umfasst und / oder wobei die Hubkolbenbrennkraftmaschine derart ausgestaltet ist, dass eine Drehwinkeldifferenz für zwei Kolben in mindestens zwei aufeinander zündenden Zylinder eine vorgegebene Abweichung von einem ganzzahligen Vielfachen von 360°/14 hat.Particularly advantageous is the inventive method in a reciprocating internal combustion engine usable, which is a working at constant pressure turbocharged engine with 14 cylinders in a single row, and at least two turbochargers and / or wherein the reciprocating internal combustion engine is designed such that a rotational angle difference for two pistons in at least two mutually igniting cylinders has a predetermined deviation from an integer multiple of 360 ° / 14.
Das heisst, die Kurbelwinkeldifferenz zwischen zwei Kolben in zwei verschiedenen Zylindern ist nicht exakt ein ganzzahliges Vielfaches von 360°/14, wie bei den aus dem Stand der Technik bekannten 14 Zylinder Motoren, sondern kann um einen bestimmten Winkelbetrag von einer gleichmässigen Teilung abweichen und kann somit eine nicht gleichmässige Teilung haben. Durch eine solche nicht gleichmässige Teilung der Kurbelwelle können verschiedene Betriebsparameter, wie die Leistung, die Schadstoffemissionen, Gaspulsationen und alle Arten von Schwingungstypen oder andere Betriebsparameter auf optimalere Werte eingestellt werden, als bei gleichmässiger Teilung der Kurbelwelle, also wenn die Kurbelwinkeldifferenz zwischen zwei Kolben in zwei verschiedenen Zylindern stets genau ein ganzzahliges Vielfaches von 360°/14 ist.That is, the crank angle difference between two pistons in two different cylinders is not exactly an integer multiple of 360 ° / 14, as in the 14 cylinder engines known in the prior art, but may deviate from a uniform pitch by a certain angular amount and can thus have a non-uniform division. By such a non-uniform division of the crankshaft, various operating parameters, such as the power, the pollutant emissions, gas pulsations and all types of vibration types or other operating parameters can be set to more optimal values, as with even division of the crankshaft, so if the crank angle difference between two pistons in two different cylinders is always exactly an integer multiple of 360 ° / 14.
In Kombination mit dem erfindungsgemässen Verfahren können dann einer oder mehrere Betriebsparameter in Abhängigkeit von der Drehzahl noch weiter optimiert werden, wenn die Brennkraftmaschine zum Beispiel in einem Schiff eingebaut ist, so dass zur Optimierung des Betriebsparameters auch die konkrete Geometrie des Schiffes mit einbezogen werden muss.In combination with the method according to the invention, one or more operating parameters can then be further optimized as a function of the rotational speed if the internal combustion engine is installed in a ship, for example, so that the concrete geometry of the ship must also be included in order to optimize the operating parameter.
Desweiteren betrifft die Erfindung eine Hubkolbenbrennkraftmaschine, die nach einem erfindungsgemässen Verfahren betreibbar ist.Furthermore, the invention relates to a reciprocating internal combustion engine, which is operable according to an inventive method.
Dabei betrifft die Erfindung in einem für die Praxis besonders wichtigen Ausführungsbeispiel eine Hubkolbenbrennkraftmaschine die eine bei Konstantdruck arbeitende turboladende Brennkraftmaschine mit 14 Zylindern in einer einzigen Reihe ist, mindestens zwei Turbolader umfasst, und so ausgestaltet ist, dass der Zeitpunkt des Einspritzens des Kraftstoffs in den Zylinder elektronisch einstellbar ist, wobei bevorzugt, aber nicht notwendig, eine Drehwinkeidifferenz für zwei Kolben in mindestens zwei verschiedenen Zylindern eine vorgegebene Abweichung von einem ganzzahligen Vielfachen von 360°/14 hat.The invention relates in a particularly important embodiment for practical purposes a reciprocating internal combustion engine which is a working at constant pressure turbocharged internal combustion engine with 14 cylinders in a single row, at least two turbochargers comprises, and so is configured such that the time of injection of the fuel into the cylinder is electronically adjustable, preferably, but not necessarily, a Drehwinkeidifferenz for two pistons in at least two different cylinders has a predetermined deviation of an integer multiple of 360 ° / 14.
Im folgenden wird die Erfindung wird an Hand der schematischen Zeichnung näher erläutert. Es zeigen:
- Fig. 1
- ein aus dem Stand der Technik bekannter Verlauf einer Komponente eines Betriebsparameters als Funktion der Drehzahl;
- Fig. 2
- ein nach dem erfindungsgemässen Verfahren optimierter Verlauf einer Komponente eines Betriebsparameters als Funktion der Drehzahl.
- Fig. 1
- a known from the prior art course of a component of an operating parameter as a function of speed;
- Fig. 2
- an optimized according to the inventive method course of a component of an operating parameter as a function of speed.
In
Es sei an dieser Stelle bemerkt, dass in der sehr schematischen Darstellung der
Die Argumentation und die Darstellung der Probleme verläuft analog. Aus Gründen der Übersichtlichkeit werden die Probleme des Standes der Technik im folgenden unter Betrachtung der Veränderung des Einspritzwinkels in Abhängigkeit von der Drehzahl diskutiert.The reasoning and the presentation of the problems are analogous. For the sake of clarity, the problems of the prior art will be discussed below considering the change of the injection angle as a function of the rotational speed.
Darstellunggemäss nach oben sind positive Einspritzwinkel E' aufgetragen, das heisst in mathematisch positiver Richtung der Ordinate sind positive Einspritzwinkel E' aufgetragen, wobei ein positiver Einspritzwinkel E' bedeutet, das die Einspritzung entsprechend später erfolgt, als bei einem negativen Einspritzwinkel E'. Ein Einspritzwinkel von 0° bedeutet, dass die Einspritzung des Kraftstoffs in der oberen Totpunktstellung des Kolbens in dem entsprechenden Zylinder erfolgt.According to the diagram above, positive injection angles E 'are plotted, that is to say in the mathematically positive direction of the ordinate positive injection angles E' are plotted, a positive injection angle E 'meaning that the injection takes place correspondingly later than at a negative injection angle E'. An injection angle of 0 ° means that the injection of the fuel occurs in the top dead center position of the piston in the corresponding cylinder.
Gleichzeitig ist auf der rechten Ordinate die Grösse der Komponente K' eines Betriebsparameters B' aufgetragen, dessen Drehzahlabhängigkeit durch die gestrichelte Linie schematisch dargestellt ist. Die gestrichelte waagerechte Linie K'max symbolisiert die maximal zulässige Grösse K'max, die die Komponente K' des Betriebsparameter B' im Betriebszustand der Brennkraftmaschine nicht überschreiten darf. Die Komponente K' kann beispielsweise eine Fourierkomponente K' einer Torsionsschwingung sein.At the same time, the magnitude of the component K 'of an operating parameter B' is plotted on the right-hand ordinate, the speed dependence of which is shown schematically by the dashed line. The dashed horizontal line K ' max symbolizes the maximum permissible variable K' max , which may not exceed the component K 'of the operating parameter B' in the operating state of the internal combustion engine. The component K 'may for example be a Fourier component K' of a torsional vibration.
Der in
Beim weiteren Erhöhen der Drehzahl D' der Brennkraftmaschine auf die Nenndrehzahl D'max wird dann zum Beispiel in Form einer linear fallenden Rampe mit anwachsender Drehzahl D' der Einspritzwinkel E', bei welchem der Kraftstoff in den Zylinder eingespritzt wird, kontinuierlich bis zu einem negativen Wert E'E verkleinert, wobei der Einspritzwinkel E'E dann wieder bis zur maximalen Drehzahl D'max beibehalten wird. Der Einspritzwinkel E'E stellt dabei sicher, dass zum Beispiel unter Vollast bei der Drehzahl D'max der Grossdieselmotor optimal läuft und zum Beispiel der Treibstoffverbrauch minimiert wird.When further increasing the speed D 'of the internal combustion engine to the rated speed D' max is then, for example in the form of a linearly decreasing ramp with increasing speed D ', the injection angle E', in which the fuel is injected into the cylinder, continuously up to a negative Value E ' E reduced, the injection angle E' E then again to the maximum speed D ' max is maintained. The injection angle E ' E ensures that, for example under full load at the speed D' max the large diesel engine runs optimally and, for example, the fuel consumption is minimized.
Dabei zeigt, wie aus
Wenn zum Beispiel nach dem Einbau des Motors in ein Schiff bei einer Komponente K' des Betriebsparameters B' der in
In
Analog zu
Darstellungsgemäss nach oben sind wieder positive Einspritzwinkel E aufgetragen, das heisst in mathematisch positiver Richtung der Ordinate sind positive Einspritzwinkel E aufgetragen, wobei ein positiver Einspritzwinkel E bedeutet, das die Einspritzung entsprechend später erfolgt, als bei einem negativen Einspritzwinkel E. Ein Einspritzwinkel E von 0° bedeutet, dass die Einspritzung des Kraftstoffs in der oberen Totpunktstellung des Kolbens in dem entsprechenden Zylinder erfolgt.As shown above, positive injection angles E are plotted again, that is to say in the mathematically positive direction of the ordinate positive injection angles E are plotted, wherein a positive injection angle E means that the injection takes place correspondingly later than at a negative injection angle E. An injection angle E of 0 ° means that the injection of the fuel in the top dead center position of the piston takes place in the corresponding cylinder.
Gleichzeitig ist, wie erwähnt, auf der rechten Ordinate die Grösse der Komponente K des Betriebsparameters B aufgetragen, dessen Drehzahlabhängigkeit durch die gestrichelte Linie schematisch dargestellt ist. Die gestrichelte Linie Kmax symbolisiert die maximal zulässige Grösse Kmax, die die Komponente K des Betriebsparameter B im Betriebszustand der Brennkraftmaschine nicht überschreiten darf. Die Komponente K des Betriebsparameter B kann beispielsweise eine Fourierkomponente K einer Torsionsschwingung sein.At the same time, as mentioned, the magnitude of the component K of the operating parameter B is plotted on the right-hand ordinate, the speed dependence of which is shown schematically by the dashed line. The dashed line K max symbolizes the maximum permissible variable K max , which may not exceed the component K of the operating parameter B in the operating state of the internal combustion engine. The component K of the operating parameter B may for example be a Fourier component K of a torsional vibration.
Beim weiteren Erhöhen der Drehzahl D der Brennkraftmaschine auf die Nenndrehzahl Dmax wird dann zum Beispiel in Form einer linear fallenden Rampe mit anwachsender Drehzahl D der Einspritzwinkel E, bei welchem der Kraftstoff in den Zylinder eingespritzt wird, zunächst in einem ersten Schritt kontinuierlich verkleinert und, nachdem ein erfindungsgemässer Verfahrensschritt durchgeführt wurde, bis zu einem negativen Wert EE weiter verringert, wobei der Einspritzwinkel EE dann wieder bis zur maximalen Drehzahl Dmax beibehalten wird. Der Einspritzwinkelwinkel EE stellt dabei sicher, dass zum Beispiel unter Vollast bei der Drehzahl Dmax der Grossdieselmotor optimal läuft und zum Beispiel der Treibstoffverbrauch minimiert wird.Upon further increasing the rotational speed D of the internal combustion engine to the nominal rotational speed D max , the injection angle E, at which the fuel is injected into the cylinder, is then initially reduced continuously in a first step and, for example, in the form of a linearly falling ramp with increasing rotational speed D, After a method step according to the invention has been carried out, it is further reduced to a negative value E E , the injection angle E E then being maintained again up to the maximum rotational speed D max . The injection angle E E ensures that, for example under full load at the speed D max of the large diesel engine runs optimally and, for example, the fuel consumption is minimized.
Dabei zeigt die Grösse der Komponente K des Betriebsparameters B in Abhängigkeit von der Drehzahl D einen charakteristischen Verlauf. Im hier dargestellten Beispiel hat die Komponente K des Betriebsparameters B im Drehzahlbereich zwischen D1 und D2 analog zu dem in
Im Unterschied zum Stand der Technik gemäss
Erreicht wird die in
Durch eine derartige Änderung des Einspritzwinkels E in dem eng begrenzten Drehzahlbereich zwischen der ersten Drehzahl D1 und der zweiten Drehzahl D2 wird die Grösse der Komponenten K des Betriebsparameters B, die ohne die erfindungsgemässe Änderung des Einspritzwinkels E in Abhängigkeit von der Drehzahl D, bei dem der Kraftstoff in den Zylinder eingespritzt wird, über den maximal zulässigen Wert Kmax hinaus wachsen würde, auf einen Wert reduziert, der deutlich kleiner ist als der maximal zulässige Wert Kmax ist.By such a change in the injection angle E in the narrow rotational speed range between the first rotational speed D 1 and the second rotational speed D 2 , the size of the components K of the operating parameter B, without the inventive change in the injection angle E as a function of the rotational speed D, at in which the fuel is injected into the cylinder, would grow beyond the maximum allowable value K max , reduced to a value which is significantly smaller than the maximum allowable value K max .
Es versteht sich von selbst, dass das in
Claims (13)
- A method of optimizing an operating parameter (B) of a reciprocating piston combustion engine, in particular of a large two stroke diesel engine with longitudinal scavenging, having a piston arranged moveable to and fro within a cylinder, wherein the operating parameter (B) is an oscillation (B) and the cylinder includes an exhaust valve and an injection nozzle, and wherein a fuel is injected into the cylinder by the injection nozzle at a pre-determined injection angle (E) and the exhaust valve is actuated at an exhaust angle (A), with the rotational speed (D) of the reciprocating piston combustion engine being changed in the operating state, so that, at a first rotational speed (D1), the fuel is injected at a first injection angle (E1) and the exhaust valve is opened at a first exhaust angle (A1) and, at a second rotational speed (D2), the fuel is injected at a second injection angle (E2) and the exhaust valve is actuated at a second exhaust angle (A2), with the first injection angle (E1) being larger than the second injection angle (E2) and the first exhaust angle (A1) being larger than the second exhaust angle (A2), and a gas pressure gradient within the cylinder is changed between the first rotational speed (D1) and the second rotational speed (D2), such that a component (K) of the operating parameter (B) is changed to a pre-determined value,
characterized in that
the fuel is injected between the first rotational speed (Di) and the second rotational speed (D2) at a third injection angle (E3), which is larger than the first injection angle (E1) or smaller than the second injection angle (E2), and/or
in that the exhaust angle (A), at which the exhaust valve is actuated during an exhaust time between the first rotational speed (D1) and the second rotational speed (D2), is changed to a third exhaust angle (A3) that is larger than the first exhaust angle (A1) or that is smaller than the second exhaust angle (A2). - The method in accordance with claim 1, wherein the quantity of the fuel that is injected in an injection cycle between the first rotational speed (D1) and the second rotational speed (D2), in particular the quantity of the fuel that is injected at the third injection angle (E3), is different from the quantity of fuel that is injected at an injection cycle at the first injection angle (E1) and/or at the second injection angle (E2).
- The method in accordance with any one of the preceding claims, wherein a time duration of the injection cycle of the injection of the fuel into the cylinder between the first rotational speed (D1) and the second rotational speed (D2), in particular the time duration of the injection at a third injection angle (E3), is different from the time duration of the injection of the fuel at the first injection angle (E1) and/or at the second injection angle (E2).
- The method in accordance with any one of the preceding claims, wherein at least two injection nozzles are provided at one cylinder and wherein at least one injection nozzle is at least temporarily closed during the injection cycle between the first rotational speed (D1) and the second rotational speed (D2).
- The method in accordance with any one of the preceding claims, wherein the time duration of the actuation of the exhaust valve at the exhaust angle (A) between the first rotational speed (D1) and the second rotational speed (D2), in particular the time duration of the actuation of the exhaust valve by a third exhaust angle (A3), is different from the time duration of the actuation of the exhaust valve at the first exhaust angle (A1) and/or at the second exhaust angle (A2).
- The method in accordance with any of the preceding claims, wherein the operating parameter (B) is a torsional oscillation, a longitudinal oscillation, a transverse oscillation or a gas pulsation.
- The method in accordance with any one of the preceding claims, wherein a power, a torque, an exhaust emission or a temperature of the reciprocating piston combustion engine is optimized through the change of the component (K) of the operating parameter (B).
- The method in accordance with any one of the preceding claims, wherein the component (K) of the operating parameter (B) is a Fourier component (K) of a first and/or higher order, and is in particular a Fourier component of a torsional oscillation.
- The method in accordance with any one of the preceding claims, wherein the injection angle (E), at which the fuel is injected, and/or the exhaust angle (A), at which the exhaust valve is actuated, is electronically determined.
- The method in accordance with any one of the preceding claims, wherein the reciprocating piston combustion engine is a turbo-charged combustion engine operating at a constant pressure having 14 cylinders in a single row and includes at least two turbochargers.
- The method in accordance with any one of the preceding claims, wherein the reciprocating piston combustion engine is constructed, such that a rotational angle difference for two pistons of two different cylinders has a pre-determined deviation from an integer multiple of 360°/14.
- A reciprocating piston combustion engine having an electronic cam shaft and with a computer supported control or regulation for carrying out the method in accordance with any one of the preceding claims.
- The reciprocating piston combustion engine in accordance with claim 12 that is turbo-charged combustion engine operating at a constant pressure having 14 cylinders in a single row which includes at least two turbochargers, and is so constructed that the time point of the injection of the fuel into the cylinder and/or the actuation of the exhaust valve is electronically adjustable, wherein a rotational angle difference for two pistons of two different cylinders has a pre-determined deviation from an integer multiple of 360°/14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06405226A EP1739296B1 (en) | 2005-06-30 | 2006-05-24 | Method to optimise an operating parameter of a reciprocating combustion engine, and engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05405417 | 2005-06-30 | ||
EP06405226A EP1739296B1 (en) | 2005-06-30 | 2006-05-24 | Method to optimise an operating parameter of a reciprocating combustion engine, and engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1739296A1 EP1739296A1 (en) | 2007-01-03 |
EP1739296B1 true EP1739296B1 (en) | 2013-03-06 |
Family
ID=35355815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06405226A Not-in-force EP1739296B1 (en) | 2005-06-30 | 2006-05-24 | Method to optimise an operating parameter of a reciprocating combustion engine, and engine |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1739296B1 (en) |
JP (2) | JP2007009912A (en) |
KR (1) | KR101250363B1 (en) |
CN (1) | CN100554668C (en) |
DK (1) | DK1739296T3 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100862623B1 (en) * | 2007-09-14 | 2008-10-09 | (주)조은시스템 | A guarding apparatus for using fense with tension-detecting-sensor |
KR20150111047A (en) | 2014-03-25 | 2015-10-05 | 두산인프라코어 주식회사 | Engine |
JP6938141B2 (en) * | 2016-11-30 | 2021-09-22 | 三菱重工業株式会社 | Marine diesel engine |
JP7129755B2 (en) * | 2016-11-30 | 2022-09-02 | 三菱重工業株式会社 | marine diesel engine |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH674398A5 (en) * | 1986-06-23 | 1990-05-31 | Sulzer Ag | |
JP3004307B2 (en) * | 1990-03-23 | 2000-01-31 | 三菱重工業株式会社 | Diesel engine crankshaft torsional vibration suppressor |
JP3389270B2 (en) * | 1992-05-15 | 2003-03-24 | シンボル テクノロジイズ インコーポレイテッド | Small barcode scanner |
DK170123B1 (en) * | 1993-06-04 | 1995-05-29 | Man B & W Diesel Gmbh | Method for reducing extra stresses from torsional vibrations in a main shaft to a large two-stroke diesel engine |
JP3991674B2 (en) * | 2001-12-18 | 2007-10-17 | 株式会社デンソー | Control device for internal combustion engine |
DE202004002185U1 (en) * | 2004-01-28 | 2004-07-22 | Man B & W Diesel A/S | Two-stroke internal combustion engine with turbocharging, constant pressure and 14 cylinders in a single row |
WO2005124133A1 (en) * | 2004-06-17 | 2005-12-29 | Man B & W Diesel A/S | Vibration reduction by combustion parameter control of large diesel engines |
-
2006
- 2006-05-24 EP EP06405226A patent/EP1739296B1/en not_active Not-in-force
- 2006-05-24 DK DK06405226.9T patent/DK1739296T3/en active
- 2006-06-29 CN CNB2006100996554A patent/CN100554668C/en not_active Expired - Fee Related
- 2006-06-29 JP JP2006178881A patent/JP2007009912A/en active Pending
- 2006-06-29 KR KR1020060059427A patent/KR101250363B1/en active IP Right Grant
-
2012
- 2012-01-04 JP JP2012000003U patent/JP3174346U/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
CN100554668C (en) | 2009-10-28 |
EP1739296A1 (en) | 2007-01-03 |
KR101250363B1 (en) | 2013-04-05 |
DK1739296T3 (en) | 2013-06-03 |
CN1892005A (en) | 2007-01-10 |
KR20070003624A (en) | 2007-01-05 |
JP2007009912A (en) | 2007-01-18 |
JP3174346U (en) | 2012-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102011086622B4 (en) | Method for switching off and activating a cylinder of an internal combustion engine | |
DE602005002355T2 (en) | Apparatus and method for controlling load and combustion in an internal combustion engine by valve operation with multiple valve lift per cycle | |
DE102016011069B4 (en) | Method for operating a drive device and corresponding drive device | |
DE3247916A1 (en) | DEVICE FOR CONTROLLING THE VALVES OF AN INTERNAL COMBUSTION ENGINE OVER A CAMSHAFT | |
DE102005010912A1 (en) | Output control system for an internal combustion engine | |
EP1739296B1 (en) | Method to optimise an operating parameter of a reciprocating combustion engine, and engine | |
DE10238060B4 (en) | Method and system for operating an internal combustion engine with spark ignition and direct injection having variable compression ratio modes | |
DE10318197B4 (en) | Valve timing control system for an internal combustion engine and control method therefor | |
DE10315881B4 (en) | Method for speed control | |
DE102010000928B3 (en) | Method for approximately adjusting air/fuel ratio in exhaust gas of e.g. diesel engine, involves determining fuel path reference lambda value, and adjusting air/fuel ratio under consideration of values for reaching lambda-set value | |
DE102004008261B3 (en) | Method for controlling and regulating an internal combustion engine-generator unit | |
EP1331382A2 (en) | Method, computer programme, control and/or regulation device for operation of an internal combustion engine and internal combustion engine | |
DE102005014920A1 (en) | Method to adjust injection times of individual cylinders of an internal combustion engine depending on their dimensions derived from the crank shaft rotations to compensate for fluctuations in injection quantities | |
DE102005048419B4 (en) | Inlet quantity control device for an internal combustion engine | |
WO2016184552A1 (en) | Method for smoothly connecting a load during an activated cylinder deactivation process of an internal combustion engine | |
EP3320199B1 (en) | Method for efficiency optimised switching of a four stroke internal combustion engine with several cylinders and fully variable valve drive between a full cylinder operation and reduced cylinder operation | |
DE102004061110B4 (en) | Method for operating an internal combustion engine | |
DE102004043528B4 (en) | A method for optimizing an internal direct start of a spark-ignition variable compression ratio internal combustion engine | |
DE10318342B4 (en) | Method and arrangement for deriving the intake manifold pressure in a variable compression ratio engine | |
DE102013016699A1 (en) | Method for operating a diesel engine | |
DE102004015973B3 (en) | Method for controlling and regulating an internal combustion engine-generator unit | |
DE102005050785A1 (en) | Internal combustion engine controlling method for motor vehicle, involves applying phase difference to set point air charge, when torque is reduced, so that real torque based on air charge is more than real torque based on ignition angle | |
DE102010062319B4 (en) | Cylinder deactivation in an internal combustion engine with variable valve lift | |
DE102020201845A1 (en) | Method for controlling an internal combustion engine when the engine is started | |
DE102015214930B4 (en) | A method of changing a split to manifold injection and direct injection in an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20070606 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20070919 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WEBER, MARKUS Inventor name: KELLER, HEINZ Inventor name: GLAESER, ROBERT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 599760 Country of ref document: AT Kind code of ref document: T Effective date: 20130315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006012572 Country of ref document: DE Effective date: 20130502 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130606 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130617 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130306 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130607 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130706 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130708 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
BERE | Be: lapsed |
Owner name: WARTSILA SCHWEIZ A.G. Effective date: 20130531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 |
|
26N | No opposition filed |
Effective date: 20131209 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130606 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006012572 Country of ref document: DE Effective date: 20131209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130606 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 599760 Country of ref document: AT Kind code of ref document: T Effective date: 20130524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130524 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20060524 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20190523 Year of fee payment: 14 Ref country code: DE Payment date: 20190521 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006012572 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 |