EP1724526A1 - Shell for a Combustion Chamber, Gas Turbine and Method for Powering up and down a Gas Turbine. - Google Patents
Shell for a Combustion Chamber, Gas Turbine and Method for Powering up and down a Gas Turbine. Download PDFInfo
- Publication number
- EP1724526A1 EP1724526A1 EP05010539A EP05010539A EP1724526A1 EP 1724526 A1 EP1724526 A1 EP 1724526A1 EP 05010539 A EP05010539 A EP 05010539A EP 05010539 A EP05010539 A EP 05010539A EP 1724526 A1 EP1724526 A1 EP 1724526A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- combustion chamber
- shell
- outlet end
- gas turbine
- openings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 185
- 238000000034 method Methods 0.000 title claims abstract description 18
- 239000012530 fluid Substances 0.000 claims abstract description 37
- 238000009434 installation Methods 0.000 claims abstract description 8
- 238000005496 tempering Methods 0.000 claims description 12
- 238000007789 sealing Methods 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 60
- 239000000567 combustion gas Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 description 28
- 238000001816 cooling Methods 0.000 description 9
- 230000007704 transition Effects 0.000 description 7
- 230000035882 stress Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 5
- 239000002826 coolant Substances 0.000 description 3
- 239000012809 cooling fluid Substances 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000011449 brick Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/002—Wall structures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M5/00—Casings; Linings; Walls
- F23M5/08—Cooling thereof; Tube walls
- F23M5/085—Cooling thereof; Tube walls using air or other gas as the cooling medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/50—Combustion chambers comprising an annular flame tube within an annular casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/42—Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
- F23R3/60—Support structures; Attaching or mounting means
Definitions
- the present invention relates to a combustion chamber shell for a combustion chamber, in particular a combustion chamber outer shell for an annular combustion chamber with a combustion chamber outlet enabling the exit of a hot combustion exhaust gas, wherein the combustion chamber shell comprises an outlet end surrounding the combustion chamber outlet.
- the present invention relates to a gas turbine plant and a method for starting or stopping a gas turbine plant.
- the outlet end of a combustion chamber shell in particular the outlet end of a combustion chamber outer shell of a gas turbine combustion chamber (also called Aftend) heats up much slower during the start-up than the rest of the combustion chamber itself.
- the slower heating leads during the start-up phase to a lower thermal expansion of the combustion chamber shell at its outlet end in comparison to the other areas. If the outer shell is divided, then the outlet end may invaginate due to the different heating. Due to the different thermal expansion deformations occur, which can lead to high mechanical stresses at the outlet end.
- the lower thermal expansion of the outlet end in a rotationally symmetrical combustion chamber with a circular outlet end, such as an annular combustion chamber leads to a constriction at the outlet end and thus to ovalization of the combustion chamber cross section at the outlet end.
- the high voltages occurring due to the uneven deformation can, in particular in the transition section between the outlet end and an adjacent region with passage openings for the passage of compressed air of the Compressor mass flow through the combustion chamber shell lead to damage to the supporting structure.
- axially symmetric combustion chambers such as annular combustion chambers usually have two-part combustion chamber outer shells, which are screwed together along an axial outline by means of screws.
- the high mechanical stresses occurring when the gas turbine starts up in the transition region between the outlet end and the rest of the combustion chamber shell can exceed the load limit of the screw located directly at the outlet end. This screw can therefore be exposed to enormous bending loads, which can ultimately lead to the destruction of the screw.
- the turbine vanes of the first vane ring of the turbine are integrated into the outlet end of the combustion chamber, for example by being screwed to the outlet end of combustion chamber shells, in particular to the outlet end of combustion chamber outer shells of annular combustion chambers. Deformation of the exit end results in displacement of these vanes.
- the turbine blades would radially displace according to ovalization. Therefore, large gaps must be kept between the exit end and the vanes to allow the vanes to shift to prevent the vanes from hitting the housing. The size of the gap is measured according to the deformations of the outlet end occurring in transient conditions of the gas turbine plant and in particular when starting up the gas turbine plant.
- the object of the present invention is therefore to provide a combustion chamber shell, in particular a combustion chamber outer shell, and a gas turbine plant with which the stated problems can be reduced.
- Another object of the present invention is to provide a method for starting up a gas turbine plant in which the above-mentioned problems occur to a lesser degree.
- the first object is achieved by a combustion chamber shell according to claim 1 or a gas turbine plant according to claim 8 and the second object by a method for starting a gas turbine plant according to claim 11.
- the dependent claims contain advantageous embodiments of the combustion chamber shell or of the method.
- a combustion chamber shell according to the invention for a combustion chamber with a combustion chamber outlet enabling the exit of a hot combustion exhaust gas comprises an outlet end surrounding the combustion chamber exit, which is provided with a temperature control device, that is to say a heating and / or cooling device.
- the combustion chamber shell can in particular be designed to form a combustion chamber outer wall either alone or in conjunction with at least one further combustion chamber shell.
- the present invention is based on the finding that the temperature difference between the outlet end and the combustion chamber shell can be reduced if the outlet end of the combustion chamber shell can be tempered, that is to say can be heated or cooled. Temperature differences between the outlet end and the adjacent remaining regions of the combustion chamber shell can be equalized. The reduction of the temperature difference leads to an approximation of the thermal expansion and thus to a reduction of the stresses in the transition region. As a result, the relative gaps between the exit end and guide vanes attached thereto can be reduced, thereby increasing the efficiency of the gas turbine plant.
- the tempering that is, the heating or cooling of the outlet end can be structurally relatively simply achieved in that the temperature control device for the outlet end fluid channels includes, which are associated with a Temperierfluidzussel, ie a dressedfluidzuschreib and / or a cooling fluid supply.
- the tempering fluid is the compressor mass flow or a part of the compressor mass flow. If air from the compressor mass flow is used as a tempering fluid, then it is possible in a particularly simple and elegant manner to bring about an approximation of the temperature of the outlet end to the immediately adjacent regions of the combustion chamber shell.
- Combustion chambers often have a rotational symmetry, so that they have an axial direction and a circumferential direction.
- the axial direction would be given by the axis of the turbine shaft, in contrast, in a silo combustion chamber by the flow direction of the combustion exhaust gases in the combustion chamber. Accordingly, even with the combustion chamber shells, from which these combustion chambers constructed are also an axial direction and a circumferential direction can be specified.
- the fluid channels may extend at least partially in the axial direction through the exit end in such a combustion chamber shell.
- the combustion chamber shell has an outer side which, after installation in a gas turbine plant, faces in particular the combustion chamber plenum of the installation and an inner side which faces the combustion chamber interior.
- there are then fluid passages which are provided to openings open towards the outside of the combustion chamber shell, i. with openings that open into the Brennschplenum after installation in a gas turbine plant.
- fluid channels are provided with opening to the combustion chamber interior openings, which are fluidly connected to the opening into the Brennschplenum openings. The fluidic connection of said openings makes it possible to guide the tempering fluid after flowing through the outlet end of the combustion chamber shell in flow channels, which are formed between the combustion chamber shell and towards the combustion chamber interior upstream heat shield elements.
- the compressor medium is used as a tempering fluid, in particular in the case of stationary gas turbine states, this embodiment makes it possible to achieve cooling of the heat shield elements in the region of the combustion chamber adjoining the outlet end. In combustion chamber shells according to the prior art, this would only be possible with great effort.
- the fluidic connection for example, be achieved in that all fluid channels also have openings which open into a groove which is arranged in a turbine stage of a gas turbine plant zuillerden portion of the outlet end and extending in the circumferential direction of the combustion chamber shell.
- the groove is covered with at least one cover member and forms in the covered state together with the cover a flow channel.
- This configuration makes it possible to resort to a proven sealing concept in which a seal around the outlet end of the combustion chamber shell is arranged around.
- the purpose of the gasket is to seal the turbine section of the gas turbine plant against the higher pressure in the plenum chamber. A failure of the seal would lead to a leakage mass flow with which further operation of the gas turbine plant would not be possible.
- the seal can be arranged between the openings of the fluid channels opening into the combustion chamber plenum and the combustion chamber outlet, without departing from the proven sealing concept.
- the combustion chamber shell according to the invention can in particular be equipped as a combustion chamber outer shell of an annular combustion chamber for gas turbine plants.
- a gas turbine plant according to the invention then comprises a combustion chamber plenum with at least one combustion chamber arranged therein and a turbine stage downstream of the combustion chamber.
- the combustion chamber has at least one combustion chamber shell according to the invention.
- the combustion chamber shell comprises fluid channels, which have openings opening into the combustion chamber plenum on the outside of the combustion chamber shell.
- this can be realized, for example, in that all the fluid channels have additional openings which open into a groove which is present in a section of the outlet end facing a turbine stage.
- a cover member By covering the groove by means of a cover member, a flow channel is formed.
- the compressor air can then through further fluid channels and the interior of the combustion chamber facing openings in the direction of the interior of the Be forwarded combustion chamber.
- the combustor plenum can be sealed against the turbine stage by a gasket tightly surrounding the outlet end of the combustion chamber shell.
- the seal surrounds the exit end in the region between the portion of the exit end facing the turbine stage and the openings of the fluid channels opening into the combustion chamber plenum.
- it can be arranged between a turbine guide vane surrounding the outlet end of the combustion chamber shell and the outlet end of the combustion chamber shell.
- the outlet end is tempered during the startup or shutdown process.
- Tempering the exit end reduces the deformations and stresses in the transition area between the exit end and the remainder of the combustion chamber shell.
- a radially symmetrical combustion chamber shell such as the combustion chamber outer shell of an annular combustion chamber
- the already mentioned ovalization can thus be reduced.
- the reduction of the ovalization also leads to a reduction of the relative gaps between the combustion chamber shell and the turbine guide vanes screwed thereto, whereby cooling concepts can be realized more easily.
- the efficiency of the gas turbine plant is increased and there is a lower load of arranged in the vicinity of the outlet end screws for screwing combustion chamber half shells together.
- the temperature control of the outlet end can be achieved by passing a temperature control fluid through fluid channels arranged in the outlet end.
- a temperature control fluid passes through fluid channels arranged in the outlet end.
- a tempering fluid at least a portion of the compressor mass flow is passed through the fluid channels.
- Both the combustion chamber shell according to the invention and the method according to the invention lead overall to an increase in the service life of the combustion chamber support structure in the region of the combustion chamber exit and to a reduction in the load of hot gas-conducting heat shield elements arranged in this region on the inside of the combustion chamber shell.
- Fig. 1 shows a gas turbine plant in a partially sectioned side view.
- Fig. 2 shows the combustion chamber of a gas turbine plant in a sectional side view.
- Fig. 3 shows the outlet end of a combustion chamber outer shell in detail in a sectional perspective view.
- Fig. 4 shows a section of the outlet end of the combustion chamber in a simplified perspective view.
- FIG. 5 shows a section through the outlet end of the combustion chamber along the line A-A in FIG. 3.
- FIG. 6 shows the outlet end of the combustion chamber shown in perspective in FIG. 3 in a plan view of the sectional plane.
- FIG. 1 shows by way of example a gas turbine 100 in a longitudinal partial section.
- the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
- a compressor 105 for example a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
- the annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
- annular annular hot gas channel 111 for example.
- turbine stages 112 connected in series form the turbine 108.
- Each turbine stage 112 is formed, for example, from two blade rings. As seen in the direction of flow of a working medium 113, in the hot gas channel 111 of a row of guide vanes 115, a series 125 formed of rotor blades 120 follows.
- the vanes 130 are secured to an inner shell 138 of a stator 143, whereas the vanes 120 of a row 125 are mounted to the rotor 103 by means of a turbine disk 133, for example.
- air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
- the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
- the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
- the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
- the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
- the components exposed to the hot working medium 113 are subject to thermal during operation of the gas turbine 100 Charges.
- the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106.
- the annular combustion chamber 110 comprises a combustion chamber outer shell 54 and combustion chamber inner shell 64 which delimits the combustion chamber 51 in the direction of the shaft 8.
- the combustion chamber shells to the combustion chamber interior upstream heat shield elements 56 can be seen in FIG.
- the heat shield elements 56 serve not only to protect the combustion chamber shells 54, 64 from excessive thermal stress during operation of the gas turbine plant, but also to guide the expanding hot combustion exhaust gases to the combustor exit 55.
- flow channels 57 are formed, through which a cooling medium for cooling the heat shield elements 56 is passed.
- the cooling medium enters the flow channel 57 between the outer combustion chamber shell 54 and the heat shield elements 56 through passage openings 58 in the outer combustion chamber 54, which are arranged in the vicinity of the Brennschgangs 55 (see FIG 3) and flows either to the burner 52, where it the supplied fuel is mixed for combustion or is introduced through gaps between the heat shield elements 56 directly into the combustion chamber 110 to block the gaps against the penetration of the hot combustion exhaust gases.
- Compressor air is used as cooling fluid, ie at least part of the compressor mass flow is passed through the combustion chamber plenum 53 through the supply openings 58 in the Flow channel 57 between the heat shield elements 56 and the combustion chamber outer shell 54 introduced.
- the compressed air is usually already preheated, on the one hand due to the compression process and on the other hand optionally also by a preheater, is transferred via the heat of the exiting the turbine stage 112 exhaust gas to the compressed air.
- a preheater When preheating takes place by means of a preheater, less waste heat from the gas turbine process is uselessly lost, so that the efficiency of the gas turbine plant can be increased.
- the pollutant emissions can be reduced by air preheating.
- the temperature of the compressed air is still low, so that it can serve well as a cooling fluid.
- the preheated air in the stationary state of the gas turbine plant represents an excellent cooling possibility, it leads to a heating of the combustion chamber shells when starting the gas turbine plant, ie in a transient state (transition state), even if the preheating takes place only due to the compression.
- fluid channels are arranged as heating channels 60, 61 in the outlet end 59, through which the compressor mass flow flows. see Figures 3 to 6).
- heating channels 61 have openings 63 in the region of the outlet end 59 facing the combustion chamber plenum 53 and openings 64 in the section 65 of the outlet end 59 facing the turbine stage 112.
- Fig. 5 is a section through the Exit end 59 along the line AA shown in FIG 3, to recognize.
- the remaining heating channels 60 likewise have openings 64 in the turbine stage 112 facing section 65 of the outlet end 59.
- the latter heating channels 60 have none Opening 63 in the Brennschplenum 53 facing area. Instead, they have openings 66 which open to the interior of the combustion chamber, in particular into the flow channels 57 between the combustion chamber outer shell 54 and the heat shield elements 56th
- the turbine stage 112 facing portion 65 of the outlet end 59 is provided with a circumferentially extending the combustion chamber 54 profile groove 67, in the groove bottom 68, the openings 64 are arranged.
- the profile groove 67 can be covered with a cover plate 69, wherein the profile of the profile groove 67 is selected such that between the groove bottom 68 and the cover plate, a flow channel 70 is formed.
- heating channels 60 are fluidically connected to the heating channels 61 - and thus the Brenncroplenum 53 opening out openings 63 with the opening to the combustion chamber openings 66th
- the flow profile 71 of the compressor mass flow as heating fluid is indicated in FIG. 3 by arrows.
- the compressor mass flow enters the heating channels 61 through the openings 63 facing the combustion chamber plenum 53, flows through these and exits through the openings 64 arranged in the groove bottom 68 out of the heating channels 61 and into the flow channel 70.
- the compressor mass flow is deflected by the cover plate 69 (not shown in FIG. 3) so that it enters the heating channels 60 through the openings 64 of the heating channels 60.
- the compressor mass flow After flowing through the heating channels 60, the compressor mass flow passes through to the combustion chamber interior opening apertures 66 into the flow channels 57 formed between the combustion chamber outer shell 54 and the heat shield elements 56, where it can be used for cooling the heat shield elements 56, in particular in stationary gas turbine states. It can then be forwarded to the burner or introduced into the combustion chamber 110 via exit openings in heat shield elements 56 or gaps between heat shield elements 56.
- the preheated compressor mass flow passing through the exit end as described causes the exit end 59 of the combustor outer shell 54 to heat faster when starting the gas turbine installation than without the presence of heating channels 60, 61.
- the temperature differential between the exit end 59 and the adjacent sections of the combustor outer shell 54 in FIG the first few minutes of the starting process can thus be reduced and mechanical stresses at the transition from the flange of the outlet end 59 to the adjacent regions of the combustion chamber outer shell 54 can be reduced.
- This leads in the illustrated annular combustion chamber to a reduced ovalization of the outlet end when starting the gas turbine plant and thus to reduced relative gaps between the combustion chamber 51 and the turbine guide vanes attached thereto.
- the exit end 59 of the combustor shell 54 is surrounded by the turbine vane support 114 of the turbine stage 112.
- a portion 118 of the turbine vane support 114 engages a circumferential groove 119 of the combustion chamber shell 54.
- a seal 116 which extends around the entire circumference of the combustion chamber shell 54.
- This sealing concept is used in particular in gas turbine plants with combustion chamber shells without fluid channels for controlling the temperature of the outlet end 59 and can be adopted without modification for gas turbine plants with combustion chamber shells according to the invention.
- Existing experiences regarding the assembly, maintenance and dimensioning of the seal can be taken over.
- a good sealing performance can be ensured.
- the said alternative flow paths can also be combined with one another, for example by dividing the outlet end 59 into sections along the circumference of the combustion chamber outer shell 54, in each of which one of the described flow paths is realized.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft eine Brennkammerschale für eine Brennkammer, insbesondere eine Brennkammeraußenschale für eine Ringbrennkammer mit einem den Austritt eines heißen Verbrennungsabgases ermöglichenden Brennkammerausgang, wobei die Brennkammerschale ein den Brennkammerausgang umgebendes Austrittsende umfasst. Daneben betrifft die vorliegende Erfindung eine Gasturbinenanlage sowie ein Verfahren zum Anfahren oder Abfahren einer Gasturbinenanlage.The present invention relates to a combustion chamber shell for a combustion chamber, in particular a combustion chamber outer shell for an annular combustion chamber with a combustion chamber outlet enabling the exit of a hot combustion exhaust gas, wherein the combustion chamber shell comprises an outlet end surrounding the combustion chamber outlet. In addition, the present invention relates to a gas turbine plant and a method for starting or stopping a gas turbine plant.
Das Austrittsende einer Brennkammerschale, insbesondere das Austrittsende einer Brennkammeraußenschale einer Gasturbinenbrennkammer (auch Aftend genannt) erwärmt sich während des Anfahrvorganges wesentlich langsamer als der Rest der Brennkammerschale selbst. Die langsamere Erwärmung führt während der Anfahrphase zu einer geringeren thermischen Ausdehnung der Brennkammerschale an ihrem Austrittsende im Vergleich zu den übrigen Bereichen. Ist die Außenschale geteilt, so kann sich das Austrittsende auf Grund der unterschiedlichen Erwärmung nach innen einstülpen. Durch die unterschiedliche thermische Ausdehnung entstehen Verformungen, die zu hohen mechanischen Spannungen am Austrittsende führen können. Beispielsweise führt die geringere thermische Ausdehnung des Austrittsendes in einer rotationssymmetrischen Brennkammer mit kreisförmigem Austrittsende, wie beispielsweise einer Ringbrennkammer, zu einer Einschnürung am Austrittsende und damit zu einer Ovalisierung des Brennkammerquerschnittes am Austrittsende.The outlet end of a combustion chamber shell, in particular the outlet end of a combustion chamber outer shell of a gas turbine combustion chamber (also called Aftend) heats up much slower during the start-up than the rest of the combustion chamber itself. The slower heating leads during the start-up phase to a lower thermal expansion of the combustion chamber shell at its outlet end in comparison to the other areas. If the outer shell is divided, then the outlet end may invaginate due to the different heating. Due to the different thermal expansion deformations occur, which can lead to high mechanical stresses at the outlet end. For example, the lower thermal expansion of the outlet end in a rotationally symmetrical combustion chamber with a circular outlet end, such as an annular combustion chamber, leads to a constriction at the outlet end and thus to ovalization of the combustion chamber cross section at the outlet end.
Die aufgrund der ungleichmäßigen Verformung auftretenden hohen Spannungen können insbesondere im Übergangsabschnitt zwischen dem Austrittsende und einem angrenzenden Bereich mit Durchtrittsöffnungen zum Durchtritt von verdichteter Luft des Verdichtermassenstroms durch die Brennkammerschale zu einer Beschädigung der tragenden Struktur führen.The high voltages occurring due to the uneven deformation can, in particular in the transition section between the outlet end and an adjacent region with passage openings for the passage of compressed air of the Compressor mass flow through the combustion chamber shell lead to damage to the supporting structure.
Hinzu kommt, dass axialsymmetrische Brennkammern, wie etwa Ringbrennkammern in der Regel zweigeteilte Brennkammeraußenschalen aufweisen, die entlang einer axialen Außenlinie mittels Schrauben miteinander verschraubt sind. Die beim Anfahren der Gasturbine im Übergangsbereich zwischen dem Austrittsende und dem Rest der Brennkammerschale entstehenden hohen mechanischen Spannungen können die Belastungsgrenze der unmittelbar am Austrittsende gelegenen Schraube überschreiten. Diese Schraube kann daher enormen Biegebelastungen ausgesetzt sein, die letztendlich zur Zerstörung der Schraube führen können.In addition, axially symmetric combustion chambers, such as annular combustion chambers usually have two-part combustion chamber outer shells, which are screwed together along an axial outline by means of screws. The high mechanical stresses occurring when the gas turbine starts up in the transition region between the outlet end and the rest of the combustion chamber shell can exceed the load limit of the screw located directly at the outlet end. This screw can therefore be exposed to enormous bending loads, which can ultimately lead to the destruction of the screw.
Häufig sind zudem die Turbinenleitschaufeln des ersten Leitschaufelkranzes der Turbine in das Austrittsende der Brennkammer integriert, bspw. indem sie mit dem Austrittsende von Brennkammerschalen, insbesondere mit dem Austrittsende von Brennkammeraußenschalen von Ringbrennkammern, verschraubt sind. Eine Verformung des Austrittsendes führt zu einer Verschiebung dieser Leitschaufeln. Beispielsweise würden sich die Turbinenschaufeln bei einer Ringbrennkammer, bei der die oben genannte Ovalisierung auftritt, entsprechend der Ovalisierung radial verschieben. Es müssen daher große Spalte zwischen dem Austrittsende und den Leitschaufeln vorgehalten werden, damit sich die Leitschaufeln verschieben können, damit die Schaufeln nicht an das Gehäuse anschlagen. Die Größe der Spalte bemisst sich dabei nach den bei transienten Zuständen der Gasturbinenanlage und insbesondere beim Anfahren der Gasturbinenanlage auftretenden Verformungen des Austrittsendes. Große Spalte bereiten jedoch Probleme beim Erstellen eines Dichtungskonzeptes im Bereich des Übergangs zwischen den Turbinenleitschaufeln und der Brennkammerschale, die beim Dichtungskonzept berücksichtigt werden müssen. Zudem bedeuten große Spalte, dass vergleichsweise viel Arbeitsmedium der Gasturbinenanlage durch die Spalte austreten kann. Da das austretende Arbeitsmedium für das Antreiben der Turbine verloren ist, senken große Spalte den Wirkungsgrad der Gasturbinenanlage.Frequently, moreover, the turbine vanes of the first vane ring of the turbine are integrated into the outlet end of the combustion chamber, for example by being screwed to the outlet end of combustion chamber shells, in particular to the outlet end of combustion chamber outer shells of annular combustion chambers. Deformation of the exit end results in displacement of these vanes. For example, in an annular combustor where the aforementioned ovalization occurs, the turbine blades would radially displace according to ovalization. Therefore, large gaps must be kept between the exit end and the vanes to allow the vanes to shift to prevent the vanes from hitting the housing. The size of the gap is measured according to the deformations of the outlet end occurring in transient conditions of the gas turbine plant and in particular when starting up the gas turbine plant. However, large gaps present problems in creating a sealing concept in the area of the transition between the turbine guide vanes and the combustion chamber shell, which must be taken into account in the sealing concept. In addition, large gaps mean that comparatively much working medium of the gas turbine plant can escape through the gaps. As the escaping working medium for driving the turbine is lost, large column reduce the efficiency of the gas turbine plant.
Aufgabe der vorliegenden Erfindung ist es daher, eine Brennkammerschale, insbesondere eine Brennkammeraußenschale, und eine Gasturbinenanlage zur Verfügung zu stellen, mit der sich die genannten Probleme verringern lassen.The object of the present invention is therefore to provide a combustion chamber shell, in particular a combustion chamber outer shell, and a gas turbine plant with which the stated problems can be reduced.
Eine weitere Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Anfahren einer Gasturbinenanlage zur Verfügung zu stellen, in welchem die oben genannten Probleme in weniger gravierendem Maße auftreten.Another object of the present invention is to provide a method for starting up a gas turbine plant in which the above-mentioned problems occur to a lesser degree.
Die erste Aufgabe wird durch eine Brennkammerschale nach Anspruch 1 bzw. eine Gasturbinenanlage nach Anspruch 8 und die zweite Aufgabe durch ein Verfahren zum Anfahren einer Gasturbinenanlage nach Anspruch 11 gelöst. Die abhängigen Ansprüche enthalten vorteilhafte Ausgestaltungen der Brennkammerschale bzw. des Verfahrens.The first object is achieved by a combustion chamber shell according to claim 1 or a gas turbine plant according to claim 8 and the second object by a method for starting a gas turbine plant according to claim 11. The dependent claims contain advantageous embodiments of the combustion chamber shell or of the method.
Eine erfindungsgemäße Brennkammerschale für eine Brennkammer mit einem den Austritt eines heißen Verbrennungsabgases ermöglichenden Brennkammerausgang umfasst ein den Brennkammerausgang umgebendes Austrittsende, welches mit einer Temperiervorrichtung, also einer Heiz- und/oder Kühlvorrichtung versehen ist. Die Brennkammerschale kann insbesondere zum Bilden einer Brennkammeraußenwand entweder alleine oder in Verbindung mit wenigstens einer weiteren Brennkammerschale ausgebildet sein.A combustion chamber shell according to the invention for a combustion chamber with a combustion chamber outlet enabling the exit of a hot combustion exhaust gas comprises an outlet end surrounding the combustion chamber exit, which is provided with a temperature control device, that is to say a heating and / or cooling device. The combustion chamber shell can in particular be designed to form a combustion chamber outer wall either alone or in conjunction with at least one further combustion chamber shell.
In Brennkammerschalen nach Stand der Technik beruht die Tatsache, dass sich das Austrittsende der Brennkammerschale langsamer als der Rest der Schale erwärmt, darauf, dass die Brennkammerschale außer im Bereich des Austrittsendes vom Verdichtermassenstrom, also von Luft aus dem Verdichter der Gasturbinenanlage, umströmt wird. Die der Brennkammerschale zugeführte Verdichterluft ist jedoch vorgewärmt, sodass der Verdichtermassenstrom zu Beginn des Anfahrvorganges eine Erwärmung der von ihm umströmten Bereiche der Brennkammerschale herbeiführt. Das nicht umströmte Austrittsende erfährt dagegen keine Erwärmung durch den Verdichtermassenstrom.In prior art combustor cans, the fact that the exit end of the combustor shell heats up more slowly than the rest of the shell requires that the combustor shell be surrounded by the compressor mass flow, that is, air from the compressor of the gas turbine plant except at the exit end. However, the compressor air supplied to the combustion chamber shell is preheated so that the compressor mass flow is heated at the beginning of the starting process caused by him flows around the combustion chamber shell. The non-flow around the outlet end, however, experiences no heating by the compressor mass flow.
Die vorliegende Erfindung beruht auf der Erkenntnis, dass der Temperaturunterschied zwischen dem Austrittsende und der Brennkammerschale verringert werden kann, wenn das Austrittsende der Brennkammerschale temperierbar, also beheizbar oder kühlbar, ausgestaltet ist. Temperaturunterschiede zwischen dem Austrittsende und den angrenzenden übrigen Bereichen der Brennkammerschale lassen sich so einander angleichen. Die Verringerung des Temperaturunterschiedes führt zu einer Angleichung der thermischen Ausdehnung und damit zu einer Verringerung der Spannungen im Übergangsbereich. Als Folge können die Relativspalte zwischen dem Austrittsende und daran befestigten Leitschaufeln reduziert und damit der Wirkungsgrad der Gasturbinenanlage erhöht werden.The present invention is based on the finding that the temperature difference between the outlet end and the combustion chamber shell can be reduced if the outlet end of the combustion chamber shell can be tempered, that is to say can be heated or cooled. Temperature differences between the outlet end and the adjacent remaining regions of the combustion chamber shell can be equalized. The reduction of the temperature difference leads to an approximation of the thermal expansion and thus to a reduction of the stresses in the transition region. As a result, the relative gaps between the exit end and guide vanes attached thereto can be reduced, thereby increasing the efficiency of the gas turbine plant.
Das Temperieren, also das Heizen oder Kühlen des Austrittsendes lässt sich konstruktiv relativ einfach dadurch erreichen, dass die Temperiervorrichtung für das Austrittsende Fluidkanäle umfasst, welche mit einer Temperierfluidzufuhr, also einer Wärmefluidzufuhr und/oder einer Kühlfluidzufuhr in Verbindung stehen. Vorzugsweise ist das Temperierfluid der Verdichtermassenstrom oder ein Teil des Verdichtermassenstroms. Wenn Luft aus dem Verdichtermassenstrom als Temperierfluid Verwendung findet, so lässt sich damit in besonders einfacher und eleganter Weise eine Angleichung der Temperatur des Austrittsendes an die unmittelbar angrenzenden Bereiche der Brennkammerschale herbeiführen.The tempering, that is, the heating or cooling of the outlet end can be structurally relatively simply achieved in that the temperature control device for the outlet end fluid channels includes, which are associated with a Temperierfluidzufuhr, ie a Wärmefluidzufuhr and / or a cooling fluid supply. Preferably, the tempering fluid is the compressor mass flow or a part of the compressor mass flow. If air from the compressor mass flow is used as a tempering fluid, then it is possible in a particularly simple and elegant manner to bring about an approximation of the temperature of the outlet end to the immediately adjacent regions of the combustion chamber shell.
Brennkammern weisen häufig eine Rotationssymmetrie auf, sodass sie eine Axialrichtung und eine Umfangsrichtung besitzen. In der Ringbrennkammer einer Gasturbine wäre bspw. die Axialrichtung durch die Achse der Turbinenwelle gegeben, in einer Silobrennkammer dagegen durch die Strömungsrichtung der Verbrennungsabgase in der Brennkammer. Entsprechend kann auch bei den Brennkammerschalen, aus denen diese Brennkammern aufgebaut sind, ebenfalls eine Axialrichtung und eine Umfangsrichtung angegeben werden. Die Fluidkanäle können sich in einer derartigen Brennkammerschale wenigstens zum Teil in Axialrichtung durch das Austrittsende erstrecken.Combustion chambers often have a rotational symmetry, so that they have an axial direction and a circumferential direction. In the annular combustion chamber of a gas turbine, for example, the axial direction would be given by the axis of the turbine shaft, in contrast, in a silo combustion chamber by the flow direction of the combustion exhaust gases in the combustion chamber. Accordingly, even with the combustion chamber shells, from which these combustion chambers constructed are also an axial direction and a circumferential direction can be specified. The fluid channels may extend at least partially in the axial direction through the exit end in such a combustion chamber shell.
Die Brennkammerschale weist eine Außenseite auf, die nach dem Einbau in eine Gasturbinenanlage insbesondere dem Brennkammerplenum der Anlage zugewandt ist sowie eine Innenseite, die dem Brennkammerinneren zugewandt ist. In der Brennkammerschale sind dann Fluidkanäle vorhanden, die zur der Außenseite der Brennkammerschale hin offene Öffnungen versehen sind, d.h. mit Öffnungen, die nach dem Einbau in eine Gasturbinenanlage in das Brennkammerplenum münden. Außerdem sind Fluidkanäle mit zum Brennkammerinneren hin mündenden Öffnungen vorhanden, die mit den in das Brennkammerplenum mündenden Öffnungen strömungstechnisch verbunden sind. Das strömungstechnische Verbinden der genannten Öffnungen ermöglicht es, das Temperierfluid nach dem Durchströmen des Austrittsendes der Brennkammerschale in Strömungskanäle zu leiten, die zwischen der Brennkammerschale und zum Brennkammerinneren hin vorgelagerten Hitzeschildelementen gebildet sind. Wenn bspw. Verdichtermedium als Temperierfluid Verwendung findet, kann insbesondere bei stationären Gasturbinenzuständen durch diese Ausgestaltung eine Kühlung der Hitzeschildelemente im an das Austrittsende angrenzenden Bereich der Brennkammer erreicht werden. Bei Brennkammerschalen nach Stand der Technik wäre dies nur mit großem Aufwand zu realisieren.The combustion chamber shell has an outer side which, after installation in a gas turbine plant, faces in particular the combustion chamber plenum of the installation and an inner side which faces the combustion chamber interior. In the combustion chamber shell, there are then fluid passages which are provided to openings open towards the outside of the combustion chamber shell, i. with openings that open into the Brennkammerplenum after installation in a gas turbine plant. In addition, fluid channels are provided with opening to the combustion chamber interior openings, which are fluidly connected to the opening into the Brennkammerplenum openings. The fluidic connection of said openings makes it possible to guide the tempering fluid after flowing through the outlet end of the combustion chamber shell in flow channels, which are formed between the combustion chamber shell and towards the combustion chamber interior upstream heat shield elements. If, for example, the compressor medium is used as a tempering fluid, in particular in the case of stationary gas turbine states, this embodiment makes it possible to achieve cooling of the heat shield elements in the region of the combustion chamber adjoining the outlet end. In combustion chamber shells according to the prior art, this would only be possible with great effort.
Konstruktiv kann das strömungstechnische Verbinden bspw. dadurch erreicht werden dass alle Fluidkanäle außerdem Öffnungen aufweisen, welche in eine Nut münden, die in einem der Turbinenstufe einer Gasturbinenanlage zuzuwendenden Abschnitt des Austrittsendes angeordnet ist und die sich in Umfangsrichtung der Brennkammerschale erstreckt. Die Nut ist mit wenigstens einem Abdeckelement abzudecken und bildet im abgedeckten Zustand zusammen mit dem Abdeckelement einen Strömungskanal. Diese Ausgestaltung ermöglicht es, auf ein bewährtes Dichtkonzept zurückzugreifen, in dem eine Dichtung um das Austrittsende der Brennkammerschale herum angeordnet ist. Die Dichtung hat den Zweck, den Turbinenabschnitt der Gasturbinenanlage gegen den höheren Druck im Brennkammerplenum abzudichten. Ein Versagen der Dichtung würde zu einem Leckmassenstrom führen, mit dem ein weiterer Betrieb der Gasturbinenanlage nicht möglich wäre. Mit dem bewährten Dichtkonzept kann ein Versagen der Dichtung zuverlässig verhindert werden. Die Dichtung kann insbesondere zwischen den in das Brennkammerplenum mündenden Öffnungen der Fluidkanäle und dem Brennkammerausgang angeordnet werden, ohne vom bewährten Dichtkonzept abzuweichen.Constructively, the fluidic connection, for example, be achieved in that all fluid channels also have openings which open into a groove which is arranged in a turbine stage of a gas turbine plant zuwendenden portion of the outlet end and extending in the circumferential direction of the combustion chamber shell. The groove is covered with at least one cover member and forms in the covered state together with the cover a flow channel. This configuration makes it possible to resort to a proven sealing concept in which a seal around the outlet end of the combustion chamber shell is arranged around. The purpose of the gasket is to seal the turbine section of the gas turbine plant against the higher pressure in the plenum chamber. A failure of the seal would lead to a leakage mass flow with which further operation of the gas turbine plant would not be possible. With the proven sealing concept, a failure of the seal can be reliably prevented. In particular, the seal can be arranged between the openings of the fluid channels opening into the combustion chamber plenum and the combustion chamber outlet, without departing from the proven sealing concept.
Die erfindungsgemäße Brennkammerschale kann insbesondere als Brennkammeraußenschale einer Ringbrennkammer für Gasturbinenanlagen ausgestattet sein. Eine erfindungsgemäße Gasturbinenanlage umfasst dann ein Brennkammerplenum mit wenigstens einer darin angeordneten Brennkammer und eine der Brennkammer strömungstechnisch nachgeschalteten Turbinenstufe. Die Brennkammer weist wenigstens eine erfindungsgemäße Brennkammerschale auf.The combustion chamber shell according to the invention can in particular be equipped as a combustion chamber outer shell of an annular combustion chamber for gas turbine plants. A gas turbine plant according to the invention then comprises a combustion chamber plenum with at least one combustion chamber arranged therein and a turbine stage downstream of the combustion chamber. The combustion chamber has at least one combustion chamber shell according to the invention.
In einer besonders vorteilhaften Ausgestaltung der Gasturbinenanlage umfasst die Brennkammerschale Fluidkanäle, die an der Außenseite der Brennkammerschale in das Brennkammerplenum mündende Öffnungen aufweisen. Zudem weisen die Fluidkanäle zum Brennkammerinneren hin mündende Öffnungen auf, die mit den in das Brennkammerplenum mündenden Öffnungen strömungstechnisch verbunden sind. Konstruktiv kann dies bspw. realisiert werden, indem alle Fluidkanäle zusätzliche Öffnungen aufweisen, die in eine Nut münden, welche in einem einer Turbinenstufe zuzuwendenden Abschnitt des Austrittsendes vorhanden ist. Durch Abdecken der Nut mittels eines Abdeckelements wird ein Strömungskanal gebildet. Durch die in der Außenseite der Brennkammerschale angeordneten Öffnungen und die Fluidkanäle kann dann Verdichterluft aus dem Brennkammerplenum in die Nut einströmen. Von der Nut aus kann die Verdichterluft dann durch weitere Fluidkanäle und die dem Inneren der Brennkammer zugewandten Öffnungen in Richtung auf das Innere der Brennkammer weitergeleitet werden. Das Brennkammerplenum kann in dieser Ausgestaltung gegen die Turbinenstufe durch eine das Austrittsende der Brennkammerschale dicht umgebende Dichtung abgedichtet werden. Die Dichtung umgibt das Austrittsende im Bereich zwischen dem der Turbinenstufe zuzuwendenden Abschnitt des Austrittsendes und den in das Brennkammerplenum mündenden Öffnungen der Fluidkanäle. Sie kann insbesondere zwischen einem das Austrittsende der Brennkammerschale umgebenden Turbinenleitschaufelträger und dem Austrittsende der Brennkammerschale angeordnet sein.In a particularly advantageous embodiment of the gas turbine plant, the combustion chamber shell comprises fluid channels, which have openings opening into the combustion chamber plenum on the outside of the combustion chamber shell. In addition, the fluid channels to the combustion chamber interior towards opening openings, which are fluidly connected to the opening into the Brennkammerplenum openings. Constructively, this can be realized, for example, in that all the fluid channels have additional openings which open into a groove which is present in a section of the outlet end facing a turbine stage. By covering the groove by means of a cover member, a flow channel is formed. By the openings arranged in the outside of the combustion chamber and the fluid channels can then flow compressor air from the Brennkammerplenum in the groove. From the groove, the compressor air can then through further fluid channels and the interior of the combustion chamber facing openings in the direction of the interior of the Be forwarded combustion chamber. In this embodiment, the combustor plenum can be sealed against the turbine stage by a gasket tightly surrounding the outlet end of the combustion chamber shell. The seal surrounds the exit end in the region between the portion of the exit end facing the turbine stage and the openings of the fluid channels opening into the combustion chamber plenum. In particular, it can be arranged between a turbine guide vane surrounding the outlet end of the combustion chamber shell and the outlet end of the combustion chamber shell.
Im erfindungsgemäßen Verfahren zum An- oder Abfahren einer Gasturbinenanlage mit einer Brennkammer, welche einen den Austritt eines heißen Verbrennungsabgases ermöglichenden Brennkammerausgang und eine Brennkammerschale mit einem den Brennkammausgang umgebenden Austrittsende umfasst, erfolgt während des An- bzw. Abfahrvorgangs ein Temperieren des Austrittsendes.In the method according to the invention for starting or stopping a gas turbine plant with a combustion chamber, which comprises a combustion chamber outlet enabling the exit of a hot combustion exhaust gas and a combustion chamber shell having an outlet end surrounding the combustion chamber outlet, the outlet end is tempered during the startup or shutdown process.
Das Temperieren des Austrittsendes verringert die Verformungen und Spannungen im Übergangsbereich zwischen Austrittsende und dem Rest der Brennkammerschale. Im Falle einer radialsymmetrischen Brennkammerschale, wie etwa der Brennkammeraußenschale einer Ringbrennkammer, kann so die bereits zuvor erwähnte Ovalisierung verringert werden. Die Verringerung der Ovalisierung führt außerdem zu einer Verringerung der Relativspalte zwischen der Brennkammerschale und den daran angeschraubten Turbinenleitschaufeln, wodurch sich Kühlkonzepte einfacher realisieren lassen. Zudem wird der Wirkungsgrad der Gasturbinenanlage gesteigert und es tritt eine geringere Belastung von in der Nähe des Austrittsendes angeordneten Schrauben zum Verschrauben von Brennkammerhalbschalen miteinander auf.Tempering the exit end reduces the deformations and stresses in the transition area between the exit end and the remainder of the combustion chamber shell. In the case of a radially symmetrical combustion chamber shell, such as the combustion chamber outer shell of an annular combustion chamber, the already mentioned ovalization can thus be reduced. The reduction of the ovalization also leads to a reduction of the relative gaps between the combustion chamber shell and the turbine guide vanes screwed thereto, whereby cooling concepts can be realized more easily. In addition, the efficiency of the gas turbine plant is increased and there is a lower load of arranged in the vicinity of the outlet end screws for screwing combustion chamber half shells together.
Das Temperieren des Austrittsendes kann dadurch erreicht werden, dass ein Temperierfluid durch im Austrittsende angeordnete Fluidkanäle geleitet wird. Als Temperierfluid kann insbesondere wenigstens ein Teil des Verdichtermassenstroms durch die Fluidkanäle geleitet werden.The temperature control of the outlet end can be achieved by passing a temperature control fluid through fluid channels arranged in the outlet end. In particular, as a tempering fluid at least a portion of the compressor mass flow is passed through the fluid channels.
Sowohl die erfindungsgemäße Brennkammerschale als auch das erfindungsgemäße Verfahren führen insgesamt zu einer Erhöhung der Lebensdauer der Brennkammertragstruktur im Bereich des Brennkammerausgangs sowie zu einer Reduzierung der Belastung von in diesem Bereich an der Innenseite der Brennkammerschale angeordneten heißgasführenden Hitzeschildelementen.Both the combustion chamber shell according to the invention and the method according to the invention lead overall to an increase in the service life of the combustion chamber support structure in the region of the combustion chamber exit and to a reduction in the load of hot gas-conducting heat shield elements arranged in this region on the inside of the combustion chamber shell.
Weitere Merkmale, Eigenschaften und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels unter Bezugnahme auf die beiliegenden Figuren.Further features, properties and advantages of the present invention will become apparent from the following description of an embodiment with reference to the accompanying figures.
Fig. 1 zeigt eine Gasturbinenanlage in einer teilweise geschnittenen Seitenansicht.Fig. 1 shows a gas turbine plant in a partially sectioned side view.
Fig. 2 zeigt die Brennkammer einer Gasturbinenanlage in einer geschnittenen Seitenansicht.Fig. 2 shows the combustion chamber of a gas turbine plant in a sectional side view.
Fig. 3 zeigt das Austrittsende einer Brennkammeraußenschale im Detail in einer geschnittenen perspektivischen Ansicht.Fig. 3 shows the outlet end of a combustion chamber outer shell in detail in a sectional perspective view.
Fig. 4 zeigt einen Ausschnitt des Austrittsendes der Brennkammer in einer vereinfachten perspektivischen Darstellung.Fig. 4 shows a section of the outlet end of the combustion chamber in a simplified perspective view.
Fig. 5 zeigt einen Schnitt durch das Austrittsende der Brennkammer entlang der Linie A-A in Fig. 3.5 shows a section through the outlet end of the combustion chamber along the line A-A in FIG. 3.
Fig. 6 zeigt das Austrittsende der in Fig. 3 perspektivisch dargestellten Brennkammer in einer Draufsicht auf die Schnittebene.FIG. 6 shows the outlet end of the combustion chamber shown in perspective in FIG. 3 in a plan view of the sectional plane.
Die FIG 1 zeigt beispielhaft eine Gasturbine 100 in einem Längsteilschnitt. Die Gasturbine 100 weist im Inneren einen um eine Rotationsachse 102 drehgelagerten Rotor 103 auf, der auch als Turbinenläufer bezeichnet wird. Entlang des Rotors 103 folgen aufeinander ein Ansauggehäuse 104, ein Verdichter 105, eine beispielsweise torusartige Brennkammer 110, insbesondere Ringbrennkammer 106, mit mehreren koaxial angeordneten Brennern 107, eine Turbine 108 und das Abgasgehäuse 109.1 shows by way of example a
Die Ringbrennkammer 106 kommuniziert mit einem beispielsweise ringförmigen Heißgaskanal 111. Dort bilden beispielsweise vier hintereinandergeschaltete Turbinenstufen 112 die Turbine 108.The
Jede Turbinenstufe 112 ist beispielsweise aus zwei Schaufelringen gebildet. In Strömungsrichtung eines Arbeitsmediums 113 gesehen folgt im Heißgaskanal 111 einer Leitschaufelreihe 115 eine aus Laufschaufeln 120 gebildete Reihe 125.Each
Die Leitschaufeln 130 sind an einem Innengehäuse 138 eines Stators 143 befestigt, wohingegen die Laufschaufeln 120 einer Reihe 125 beispielsweise mittels einer Turbinenscheibe 133 am Rotor 103 angebracht sind.The
An dem Rotor 103 angekoppelt ist ein Generator oder eine Arbeitsmaschine (nicht dargestellt).Coupled to the
Während des Betriebes der Gasturbine 100 wird vom Verdichter 105 durch das Ansauggehäuse 104 Luft 135 angesaugt und verdichtet. Die am turbinenseitigen Ende des Verdichters 105 bereitgestellte verdichtete Luft wird zu den Brennern 107 geführt und dort mit einem Brennmittel vermischt. Das Gemisch wird dann unter Bildung des Arbeitsmediums 113 in der Brennkammer 110 verbrannt. Von dort aus strömt das Arbeitsmedium 113 entlang des Heißgaskanals 111 vorbei an den Leitschaufeln 130 und den Laufschaufeln 120. An den Laufschaufeln 120 entspannt sich das Arbeitsmedium 113 impulsübertragend, so dass die Laufschaufeln 120 den Rotor 103 antreiben und dieser die an ihn angekoppelte Arbeitsmaschine.During operation of the
Die dem heißen Arbeitsmedium 113 ausgesetzten Bauteile unterliegen während des Betriebes der Gasturbine 100 thermischen Belastungen. Die Leitschaufeln 130 und Laufschaufeln 120 der in Strömungsrichtung des Arbeitsmediums 113 gesehen ersten Turbinenstufe 112 werden neben den die Ringbrennkammer 106 auskleidenden Hitzeschildsteinen am meisten thermisch belastet.The components exposed to the hot working
Um den dort herrschenden Temperaturen standzuhalten, können diese mittels eines Kühlmittels gekühlt werden.To withstand the prevailing temperatures, they can be cooled by means of a coolant.
FIG 2 zeigt einen Ausschnitt aus der Ringbrennkammer 110 in einer vergrößerten Darstellung. Die Ringbrennkammer 110 umfasst eine Brennkammeraußenschale 54 sowie Brennkammerinnenschale 64, welche die Brennkammer 51 in Richtung auf die Welle 8 begrenzt. In FIG 2 sind außerdem den Brennkammerschalen zum Brennkammerinneren hin vorgelagerte Hitzeschildelemente 56 zu erkennen. Die Hitzeschildelemente 56 dienen nicht nur dazu, die Brennkammerschalen 54, 64 beim Betrieb der Gasturbinenanlage vor übermäßiger thermischer Beanspruchung zu schützen, sondern auch dazu, die expandierenden heißen Verbrennungsabgase zum Brennkammerausgang 55 zu führen.2 shows a section of the
Zwischen den Hitzeschildelementen und den Brennkammeraußenschalen 54, 64 sind Strömungskanäle 57 gebildet, durch die ein Kühlmedium zum Kühlen der Hitzeschildelemente 56 geleitet wird. Das Kühlmedium tritt durch Durchtrittsöffnungen 58 in der Brennkammeraußenschale 54, die in der Nähe des Brennkammerausgangs 55 angeordnet sind (s. FIG 3), in den Strömungskanal 57 zwischen der Brennkammeraußenschale 54 und den Hitzeschildelementen 56 ein und strömt entweder zum Brenner 52, wo es mit dem zugeführten Brennstoff zur Verbrennung vermischt wird oder wird durch Spalte zwischen den Hitzeschildelementen 56 direkt in die Brennkammer 110 eingeleitet, um die Spalte gegen das Eindringen der heißen Verbrennungsabgase zu sperren.Between the heat shield elements and the combustion chamber
Als Kühlfluid kommt Verdichterluft zur Anwendung, d.h. wenigstens ein Teil des Verdichtermassenstroms wird über das Brennkammerplenum 53 durch die Zufuhröffnungen 58 in den Strömungskanal 57 zwischen der Hitzeschildelementen 56 und der Brennkammeraußenschale 54 eingeleitet.Compressor air is used as cooling fluid, ie at least part of the compressor mass flow is passed through the
Die verdichtete Luft ist in der Regel bereits vorgewärmt, einerseits aufgrund des Verdichtungsprozesses und andererseits gegebenenfalls auch durch eine Vorwärmvorrichtung, über die Wärme des aus der Turbinenstufe 112 austretenden Abgases an die verdichtete Luft übertragen wird. Wenn ein Vorwärmen mittels einer Vorwärmvorrichtung stattfindet, geht weniger Abwärme des Gasturbinenprozesses nutzlos verloren, sodass sich der Wirkungsgrad der Gasturbinenanlage erhöhen lässt. Außerdem können die Schadstoffemissionen durch Luftvorwärmung vermindert werden. Im Vergleich zur Temperatur der Verbrennungsabgase ist die Temperatur der verdichteten Luft jedoch immer noch niedrig, sodass diese gut als Kühlfluid dienen kann.The compressed air is usually already preheated, on the one hand due to the compression process and on the other hand optionally also by a preheater, is transferred via the heat of the exiting the
Während die vorgewärmte Luft im stationären Zustand der Gasturbinenanlage eine hervorragende Kühlmöglichkeit darstellt, führt sie beim Anfahren der Gasturbinenanlage, also in einem transienten Zustand (Übergangszustand), zu einer Erwärmung der Brennkammerschalen, selbst dann wenn das Vorwärmen lediglich aufgrund der Verdichtung erfolgt.While the preheated air in the stationary state of the gas turbine plant represents an excellent cooling possibility, it leads to a heating of the combustion chamber shells when starting the gas turbine plant, ie in a transient state (transition state), even if the preheating takes place only due to the compression.
Um das Eingangs genannte Problem, dass sich insbesondere die Brennkammeraußenschale 54 im Bereich des Austrittsendes 59 beim Anfahren der Gasturbinenanlage weniger stark erwärmt als die angrenzenden Bereiche der Brennkammeraußenschale 54, sind im Austrittsende 59 Fluidkanäle als Heizkanäle 60, 61 angeordnet, die vom Verdichtermassenstrom durchströmt werden (vgl. Figuren 3 bis 6).In order to avoid the problem mentioned at the outset that, in particular, the combustion chamber
Einige der Heizkanäle 61 weisen Öffnungen 63 im dem Brennkammerplenum 53 zugewandten Bereich des Austrittsendes 59 und Öffnungen 64 in dem der Turbinenstufe 112 zugewandten Abschnitt 65 des Austrittsendes 59 auf. Der Verlauf dieser Heizkanäle 61 ist in Fig. 5, die einen Schnitt durch das Austrittsende 59 entlang der in FIG 3 dargestellten Linie A-A zeigt, zu erkennen.Some of the
Die übrigen Heizkanäle 60, deren Verlauf in FIG 3 zu erkennen und in FIG 6 vergrößert dargestellt ist, besitzen ebenfalls Öffnungen 64 im der Turbinenstufe 112 zugewandten Abschnitt 65 des Austrittsendes 59. Im Unterschied zu den zuvor genannten Heizkanälen 61 weisen die letztgenannten Heizkanäle 60 jedoch keine Öffnung 63 im dem Brennkammerplenum 53 zugewandten Bereich auf. Stattdessen weisen sie Öffnungen 66 auf, die zum Brennkammerinneren hin münden, insbesondere in die Strömungskanäle 57 zwischen der Brennkammeraußenschale 54 und den Hitzeschildelementen 56.The remaining
Der der Turbinenstufe 112 zugewandte Abschnitt 65 des Austrittsendes 59 ist mit einer sich in Umfangsrichtung der Brennkammerschale 54 erstreckenden Profilnut 67 versehen, in deren Nutboden 68 die Öffnungen 64 angeordnet sind. Die Profilnut 67 kann mit einer Abdeckplatte 69 abgedeckt werden, wobei das Profil der Profilnut 67 derart gewählt ist, dass zwischen dem Nutboden 68 und der Abdeckplatte ein Strömungskanal 70 gebildet wird. Durch diesen Strömungskanal 70 sind Heizkanäle 60 mit den Heizkanälen 61 strömungstechnisch verbunden - und damit die zum Brennkammerplenum 53 hin mündenden Öffnungen 63 mit den zum Brennkammerinneren hin mündenden Öffnungen 66.The
Der Strömungsverlauf 71 des Verdichtermassenstroms als Heizfluid ist in FIG 3 durch Pfeile angedeutet. Der Verdichtermassenstrom tritt durch die dem Brennkammerplenum 53 zugewandten Öffnungen 63 in die Heizkanäle 61 ein, durchströmt diese und tritt durch die im Nutboden 68 angeordneten Öffnungen 64 aus den Heizkanälen 61 aus und in den Strömungskanal 70 ein. Dort wird der Verdichtermassenstrom von der Abdeckplatte 69 (in FIG 3 nicht dargestellt) abgelenkt, sodass er durch die Öffnungen 64 der Heizkanäle 60 in die Heizkanäle 60 eintritt. Nach dem Durchströmen der Heizkanäle 60 tritt der Verdichtermassenstrom durch die zum Brennkammerinneren hin mündenden Öffnungen 66 in die zwischen der Brennkammeraußenschale 54 und den Hitzeschildelementen 56 gebildeten Strömungskanäle 57 ein, wo er insbesondere bei stationären Gasturbinenzuständen zum Kühlen der Hitzeschildelemente 56 Verwendung finden kann. Er kann dann zum Brenner weitergeleitet oder über Austrittsöffnungen in Hitzeschildelementen 56 oder Spalte zwischen Hitzeschildelementen 56 in die Brennkammer 110 eingeleitet werden.The
Der wie beschrieben durch das Austrittsende strömende vorgewärmte Verdichtermassenstrom führt dazu, dass sich das Austrittsende 59 der Brennkammeraußenschale 54 beim Anfahren der Gasturbinenanlage schneller erwärmt, als ohne Vorhandensein von Heizkanälen 60, 61. Der Temperaturunterschied zwischen dem Austrittsende 59 und den angrenzenden Abschnitten der Brennkammeraußenschale 54 in den ersten Minuten des Anfahrvorganges kann so verringert werden und mechanische Spannungen am Übergang vom Flansch des Austrittsendes 59 zu den angrenzenden Bereichen der Brennkammeraußenschale 54 lassen sich verringern. Dies führt bei der dargestellten Ringbrennkammer zu einer verminderten Ovalisierung des Austrittsendes beim Anfahren der Gasturbinenanlage und damit zu verringerten Relativspalten zwischen der Brennkammer 51 und den daran angebauten Turbinenleitschaufeln. Außerdem kann die Biegebelastung von in der Nähe des Austrittsendes 59 angeordneten Schrauben 62 (vgl. Figur 4), welche beispielsweise zwei Halbschalen 54, 54' miteinander verbinden, verringert werden. Zudem verringert sich die Belastung von Hitzeschildelementen 56, die im Bereich des Austrittsendes 59 mit der Brennkammeraußenschale 54 verschraubt sind.The preheated compressor mass flow passing through the exit end as described causes the exit end 59 of the combustor
Das Austrittsende 59 der Brennkammerschale 54 ist vom Turbinenleitschaufelträger 114 der Turbinenstufe 112 umgeben. Ein Abschnitt 118 des Turbinenleitschaufelträgers 114 (FIG 5 und 6) greift in eine Umfangsnut 119 der Brennkammerschale 54 ein. Um die Turbinenstufe 112, in der ein um ca. 10 bar niedrigerer Druck als im Brennkammerplenum 53 herrscht, gegen den Druck im Brennkammerplenum 53 abzudichten, ist zwischen dem Abschnitt 118 des Turbinenleitschaufelträgers 114 und dem Boden der Umfangsnut 119 eine Dichtung 116 angeordnet, die sich um den gesamten Umfang der Brennkammerschale 54 erstreckt. Dieses Dichtkonzept kommt insbesondere in Gasturbinenanlagen mit Brennkammerschalen ohne Fluidkanäle zum Temperieren des Austrittsendes 59 zur Anwendung und kann ohne Umbau für Gasturbinenanlagen mit erfindungsgemäßen Brennkammerschalen übernommen werden. Vorhandene Erfahrungen bezüglich der Montage, Wartung und Dimensionierung der Dichtung können so übernommen werden. Zudem kann eine gute Dichtleistung gewährleistet werden.The
Alternativ zum zuvor beschriebenen Strömungsverlauf ist es auch möglich, die Strömungsverhältnisse so einzustellen, dass der Verdichtermassenstrom durch die der Turbinenstufe 112 zugewandten Öffnungen 64 des Austrittsendes 59 zur Turbinenstufe hin weitergeleitet wird. In diesem Fall können alle Heizkanäle den in FIG 5 dargestellten Verlauf aufweisen. Eine Profilnut und eine Abdeckplatte sind in dieser Ausgestaltung des Strömungsverlaufes nicht notwendig. In diesem Fall ist jedoch ein angepasstes Dichtkonzept notwendig, um ein Einströmen von Verdichterluft in die Fluidkanäle zu ermöglichen.As an alternative to the flow path described above, it is also possible to adjust the flow conditions so that the compressor mass flow is passed on to the turbine stage through the
In einer weiteren Alternative zu den zuvor beschriebenen Strömungsverläufen ist es auch möglich, die Strömungsverhältnisse so einzustellen, dass durch die Durchtrittsöffnungen 58 in den Strömungskanal 57 eintretender Verdichtermassenstrom teilweise in die Heizkanäle 60 gelenkt und von diesen an die Turbinenstufe 112 weitergeleitet wird. Auf diese Weise kann der durch die Heizkanäle 60 strömende Verdichtermassenstrom im späteren stationären Zustand der Gasturbinenanlage zum Kühlen des Austrittsendes 59 und der Turbinenstufe 112, etwa der Leitschaufeln in der Turbinenstufe 112, herangezogen werden. In diesem Fall können alle Heizkanäle bspw. den in FIG 8 dargestellten Verlauf aufweisen. Eine Abdeckplatte ist nicht notwendig.In a further alternative to the flow paths described above, it is also possible to adjust the flow conditions so that compressor mass flow entering the
Die genannten alternativen Strömungsverläufe können auch miteinander kombiniert werden, bspw. indem das Austrittsende 59 entlang des Umfangs der Brennkammeraußenschale 54 in Sektionen eingeteilt wird, in denen jeweils einer der beschriebenen Strömungsverläufe realisiert ist.The said alternative flow paths can also be combined with one another, for example by dividing the
Die mit den Heizkanälen beim Anfahren der Gasturbinenanlage erzielbaren Vorteile ergeben sich sinngemäß auch beim Abfahrvorgang der Gasturbinenanlage und bei anderen transienten Gasturbinenzuständen, sofern diese eine hinreichend große Temperaturänderung mit sich bringen. Beim Abfahrvorgang führen die "Heizkanäle" statt zu einem schnelleren Erwärmen des Austrittsendes, wie dies beim Anfahrvorgang der Fall ist, zu einem schnelleren Abkühlen des Austrittsendes. Auch hierbei werden Spannungen aufgrund inhomogener Temperaturverteilungen verringert.The achievable with the heating channels when starting the gas turbine plant advantages arise analogously also during the shutdown of the gas turbine plant and other transient gas turbine conditions, if they bring a sufficiently large change in temperature with it. During the shutdown process, the "heating channels" instead of a faster heating of the outlet end, as is the case during the starting process, lead to a faster cooling of the outlet end. Again, stresses due to inhomogeneous temperature distributions are reduced.
Claims (13)
wobei die Brennkammerschale (54) ein den Brennkammerausgang (55) umgebendes Austrittsende (59) umfasst,
dadurch gekennzeichnet, dass
das Austrittsende (59) mit einer Temperiervorrichtung (60, 61, 70) versehen ist.Combustion chamber shell (54) for a combustion chamber (110) with a combustion chamber outlet (55) enabling the exit of a hot combustion exhaust gas,
wherein the combustion chamber shell (54) comprises an outlet end (59) surrounding the combustion chamber exit (55),
characterized in that
the outlet end (59) is provided with a tempering device (60, 61, 70).
dadurch gekennzeichnet, dass
die Temperiervorrichtung Fluidkanäle (60, 61, 70) umfasst, welche mit einer Temperierfluidzufuhr (53) in Verbindung stehen.Combustion chamber shell (54) according to claim 1,
characterized in that
the temperature control device comprises fluid channels (60, 61, 70) which are in communication with a temperature-control fluid supply (53).
dadurch gekennzeichnet, dass
die Temperierfluidzufuhr zum Zuführen wenigstens eines Teils des Verdichtermassenstromes ausgestaltet ist.Combustion chamber shell (54) according to claim 1,
characterized in that
the Temperierfluidzufuhr is configured for supplying at least a portion of the compressor mass flow.
dadurch gekennzeichnet, dass
sie eine Axialrichtung und eine Umfangsrichtung aufweist und dass sich die Fluidkanäle (60, 61) wenigstens teilweise in Axialrichtung durch das Austrittsende (59) erstrecken.Combustor shell (54) according to claim 2 or 3,
characterized in that
it has an axial direction and a circumferential direction and that the fluid passages (60, 61) extend at least partially in the axial direction through the exit end (59).
dadurch gekennzeichnet, dass
characterized in that
dadurch gekennzeichnet, dass
alle Fluidkanäle (60, 61) Öffnungen (64) aufweisen, die in eine Profilnut münden, welche in einem einer Turbinenstufe (112) zuzuwendenden Abschnitt (65) des Austrittsendes (59) vorhanden ist, und dass wenigstens ein Abdeckelement (69) zum Abdecken der Profilnut (67) vorhanden ist, welches bei Abdeckung der Profilnut (67) mit dieser Zusammen einen Strömungskanal (70) bildet.Combustion chamber shell (54) according to claim 5,
characterized in that
all the fluid channels (60, 61) have openings (64) which open into a profile groove which is present in a section (65) of the outlet end (59) facing a turbine stage (112), and in that at least one covering element (69) for covering the profile groove (67) is present, which forms a flow channel (70) when covering the profile groove (67) with this combination.
gekennzeichnet durch
ihre Ausgestaltung als Brennkammeraußenschale einer Ringbrennkammer für Gasturbinenanlagen.Combustion chamber shell (54) according to one of the preceding claims,
marked by
their design as a combustion chamber outer shell of an annular combustion chamber for gas turbine plants.
mit einem wenigstens eine Brennkammer (110) beinhaltenden Brennkammerplenum (53) und
einem der Brennkammer strömungstechnisch nachgeschalteten Turbinenstufe (112),
dadurch gekennzeichnet, dass
die Brennkammer (110) eine Brennkammerschale (54) nach einem der vorangehenden Ansprüche umfasst.Gas turbine plant
with a combustor plenum (53) and at least one combustion chamber (110)
one of the combustion chamber fluidly downstream turbine stage (112),
characterized in that
the combustion chamber (110) comprises a combustion chamber shell (54) according to one of the preceding claims.
dadurch gekennzeichnet, dass
characterized in that
dadurch gekennzeichnet, dass
die Turbinenstufe (112) einen das Austrittsende (59) der Brennkammerschale (54) umgebenden Turbinenleitschaufelträger (114) umfasst und die Dichtung (116) zwischen dem Turbinenleitschaufelträger (114) und dem Austrittsende (59) der Brennkammerschale (54) angeordnet ist.Gas turbine plant according to claim 9,
characterized in that
the turbine stage (112) includes a turbine vane support (114) surrounding the exit end (59) of the combustor shell (54) and the seal (116) is disposed between the turbine vane support (114) and the exit end (59) of the combustor shell (54).
dadurch gekennzeichnet, dass
während des Anfahrvorganges bzw. des Abfahrvorganges ein Temperieren des Austrittsendes (59) erfolgt.Method for starting up or shutting down a gas turbine installation having a combustion chamber (110) which has a combustion chamber outlet (55) enabling the exit of a hot combustion exhaust gas and a combustion chamber shell (54) having an outlet end (59) surrounding the combustion chamber outlet (55),
characterized in that
during the starting process or the Abfahrvorganges a tempering of the outlet end (59).
dadurch gekennzeichnet, dass
zum Temperieren ein Temperierfluid durch im Austrittsende (59) angeordnete Fluidkanäle (60, 61, 70) geleitet wird.Method according to claim 11,
characterized in that
for tempering, a tempering fluid is passed through fluid passages (60, 61, 70) arranged in the outlet end (59).
dadurch gekennzeichnet, dass
als Temperierfluid wenigstens ein Teil des Verdichtermassenstromes durch die Fluidkanäle (60, 61, 70) geleitet wird.Method according to claim 12,
characterized in that
as the tempering at least a portion of the compressor mass flow through the fluid channels (60, 61, 70) is passed.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05010539A EP1724526A1 (en) | 2005-05-13 | 2005-05-13 | Shell for a Combustion Chamber, Gas Turbine and Method for Powering up and down a Gas Turbine. |
US11/920,397 US8091364B2 (en) | 2005-05-13 | 2006-05-10 | Combustion chamber wall, gas turbine installation and process for starting or shutting down a gas turbine installation |
PCT/EP2006/062181 WO2006120204A1 (en) | 2005-05-13 | 2006-05-10 | Combustion chamber wall, gas turbine installation and process for starting or shutting down a gas turbine installation |
EP06755116A EP1880140A1 (en) | 2005-05-13 | 2006-05-10 | Combustion chamber wall, gas turbine installation and process for starting or shutting down a gas turbine installation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05010539A EP1724526A1 (en) | 2005-05-13 | 2005-05-13 | Shell for a Combustion Chamber, Gas Turbine and Method for Powering up and down a Gas Turbine. |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1724526A1 true EP1724526A1 (en) | 2006-11-22 |
Family
ID=35615549
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05010539A Withdrawn EP1724526A1 (en) | 2005-05-13 | 2005-05-13 | Shell for a Combustion Chamber, Gas Turbine and Method for Powering up and down a Gas Turbine. |
EP06755116A Withdrawn EP1880140A1 (en) | 2005-05-13 | 2006-05-10 | Combustion chamber wall, gas turbine installation and process for starting or shutting down a gas turbine installation |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06755116A Withdrawn EP1880140A1 (en) | 2005-05-13 | 2006-05-10 | Combustion chamber wall, gas turbine installation and process for starting or shutting down a gas turbine installation |
Country Status (3)
Country | Link |
---|---|
US (1) | US8091364B2 (en) |
EP (2) | EP1724526A1 (en) |
WO (1) | WO2006120204A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2119966A1 (en) * | 2008-05-15 | 2009-11-18 | ALSTOM Technology Ltd | Combustor with reduced carbon monoxide emissions |
US7726019B2 (en) | 2008-05-15 | 2010-06-01 | Alstom Technology Ltd. | Method for reducing emissions from a combustor |
EP2442033A1 (en) * | 2010-10-12 | 2012-04-18 | Siemens Aktiengesellschaft | Anchoring segment for combustion chamber and combustion chamber outer shell |
EP2442032A1 (en) * | 2010-10-12 | 2012-04-18 | Siemens Aktiengesellschaft | Wear segment in the turbine stator vane anchoring of the external shell of an annular combustion chamber |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2009216831B2 (en) * | 2008-02-20 | 2014-11-20 | General Electric Technology Gmbh | Gas turbine |
US8353165B2 (en) * | 2011-02-18 | 2013-01-15 | General Electric Company | Combustor assembly for use in a turbine engine and methods of fabricating same |
US9255484B2 (en) * | 2011-03-16 | 2016-02-09 | General Electric Company | Aft frame and method for cooling aft frame |
US20130318986A1 (en) * | 2012-06-05 | 2013-12-05 | General Electric Company | Impingement cooled combustor |
DE102014206018A1 (en) * | 2014-03-31 | 2015-10-01 | Siemens Aktiengesellschaft | Gas turbine plant |
US11480337B2 (en) * | 2019-11-26 | 2022-10-25 | Collins Engine Nozzles, Inc. | Fuel injection for integral combustor and turbine vane |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4480436A (en) * | 1972-12-19 | 1984-11-06 | General Electric Company | Combustion chamber construction |
US4901522A (en) * | 1987-12-16 | 1990-02-20 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) | Turbojet engine combustion chamber with a double wall converging zone |
WO1998013645A1 (en) * | 1996-09-26 | 1998-04-02 | Siemens Aktiengesellschaft | Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas |
EP1239117A2 (en) * | 2001-02-16 | 2002-09-11 | Mitsubishi Heavy Industries, Ltd. | Gas turbine combustor transition piece outlet structure, transition piece, combustor and gas turbine |
EP1528322A2 (en) * | 2003-10-23 | 2005-05-04 | United Technologies Corporation | Combustor |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2622395A (en) * | 1947-01-02 | 1952-12-23 | Parsons C A & Co Ltd | Combustion system for gas turbines with heat exchangers |
US3965066A (en) * | 1974-03-15 | 1976-06-22 | General Electric Company | Combustor-turbine nozzle interconnection |
US5291732A (en) * | 1993-02-08 | 1994-03-08 | General Electric Company | Combustor liner support assembly |
EP1312865A1 (en) * | 2001-11-15 | 2003-05-21 | Siemens Aktiengesellschaft | Gas turbine annular combustion chamber |
-
2005
- 2005-05-13 EP EP05010539A patent/EP1724526A1/en not_active Withdrawn
-
2006
- 2006-05-10 WO PCT/EP2006/062181 patent/WO2006120204A1/en not_active Application Discontinuation
- 2006-05-10 US US11/920,397 patent/US8091364B2/en not_active Expired - Fee Related
- 2006-05-10 EP EP06755116A patent/EP1880140A1/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4480436A (en) * | 1972-12-19 | 1984-11-06 | General Electric Company | Combustion chamber construction |
US4901522A (en) * | 1987-12-16 | 1990-02-20 | Societe Nationale D'etude Et De Construction De Moteurs D'aviation (Snecma) | Turbojet engine combustion chamber with a double wall converging zone |
WO1998013645A1 (en) * | 1996-09-26 | 1998-04-02 | Siemens Aktiengesellschaft | Thermal shield component with cooling fluid recirculation and heat shield arrangement for a component circulating hot gas |
EP1239117A2 (en) * | 2001-02-16 | 2002-09-11 | Mitsubishi Heavy Industries, Ltd. | Gas turbine combustor transition piece outlet structure, transition piece, combustor and gas turbine |
EP1528322A2 (en) * | 2003-10-23 | 2005-05-04 | United Technologies Corporation | Combustor |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2119966A1 (en) * | 2008-05-15 | 2009-11-18 | ALSTOM Technology Ltd | Combustor with reduced carbon monoxide emissions |
US7726019B2 (en) | 2008-05-15 | 2010-06-01 | Alstom Technology Ltd. | Method for reducing emissions from a combustor |
US7827777B2 (en) | 2008-05-15 | 2010-11-09 | Alstom Technology Ltd. | Combustor with reduced carbon monoxide emissions |
EP2442033A1 (en) * | 2010-10-12 | 2012-04-18 | Siemens Aktiengesellschaft | Anchoring segment for combustion chamber and combustion chamber outer shell |
EP2442032A1 (en) * | 2010-10-12 | 2012-04-18 | Siemens Aktiengesellschaft | Wear segment in the turbine stator vane anchoring of the external shell of an annular combustion chamber |
Also Published As
Publication number | Publication date |
---|---|
US8091364B2 (en) | 2012-01-10 |
EP1880140A1 (en) | 2008-01-23 |
US20090094986A1 (en) | 2009-04-16 |
WO2006120204A1 (en) | 2006-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10303088B4 (en) | Exhaust casing of a heat engine | |
EP1880140A1 (en) | Combustion chamber wall, gas turbine installation and process for starting or shutting down a gas turbine installation | |
EP1443275B1 (en) | Combustion chamber | |
EP1611315B1 (en) | Turbomachine | |
EP2340397B1 (en) | Burner insert for a gas turbine combustion chamber and gas turbine | |
EP2148977B1 (en) | Gas turbine | |
EP2342427B1 (en) | Axial segmented vane support for a gas turbine | |
EP1389690A1 (en) | Screw interiorly cooled | |
EP1904717B1 (en) | Hot gas-conducting housing element, protective shaft jacket, and gas turbine system | |
EP0491966B1 (en) | Support device of a thermal turbomachine | |
EP2808611B1 (en) | Injector for introducing a fuel-air mixture into a combustion chamber | |
WO2013060663A2 (en) | Gas turbine | |
WO2010052053A1 (en) | Gas turbine with securing plate between blade base and disk | |
EP2206885A1 (en) | Gas turbine | |
EP2347101B1 (en) | Gas turbine and corresponding gas or steam turbine plant | |
EP3399144A1 (en) | Jet engine comprising a cooling device | |
DE3424141A1 (en) | AIR STORAGE GAS TURBINE | |
DE2140337B2 (en) | Gas turbine engine with a shaft that can move in terms of heat | |
EP1636461B1 (en) | Turbomachine, in particular gas turbine | |
EP2180148A1 (en) | Gas turbine with cooling insert | |
EP1731715A1 (en) | Transition between a combustion chamber and a turbine | |
EP1529181B1 (en) | Gas turbine combustion chamber | |
EP1744014A1 (en) | Gas turbine inlet guide vane mounting arrangement | |
EP1429077A1 (en) | Gas turbine | |
DE102006010863B4 (en) | Turbomachine, in particular compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
AKX | Designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20070523 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |