[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1710448B1 - Pressurized air supplied working member - Google Patents

Pressurized air supplied working member Download PDF

Info

Publication number
EP1710448B1
EP1710448B1 EP06002702A EP06002702A EP1710448B1 EP 1710448 B1 EP1710448 B1 EP 1710448B1 EP 06002702 A EP06002702 A EP 06002702A EP 06002702 A EP06002702 A EP 06002702A EP 1710448 B1 EP1710448 B1 EP 1710448B1
Authority
EP
European Patent Office
Prior art keywords
damping
operating
chamber
movement
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06002702A
Other languages
German (de)
French (fr)
Other versions
EP1710448A1 (en
Inventor
Thomas Feyrer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Publication of EP1710448A1 publication Critical patent/EP1710448A1/en
Application granted granted Critical
Publication of EP1710448B1 publication Critical patent/EP1710448B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/22Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke
    • F15B15/228Other details, e.g. assembly with regulating devices for accelerating or decelerating the stroke having shock absorbers mounted outside the actuator housing

Definitions

  • the invention relates to a working with compressed air working device, which has a pneumatic drive with an oscillating to each other opposite strokes driven working piston and which is equipped with damping means that allow a controlled braking of the moving working piston.
  • the WO 01/68490 A1 describes a designed as a handling device for repositioning of parts, pneumatically actuated working device.
  • a fluid-operated rotary drive is provided, the working piston is driven to oscillate to each other opposite pivoting strokes, the lifting movements cause the displacement of a gripper, can be detected with the umzuposition Schlode parts.
  • a part participating in the movement hits a fluidic shock absorber and is thereby braked to reduce the final impact position.
  • Working devices which comprise a pneumatic drive embodied as a linear drive can also have damping means for braking the working piston, which interact with the working piston or a part driven by the working piston, in particular when the working piston approaches an end position.
  • Such a working device is in DE 46600 disclosed.
  • the object of the present invention is to realize effective and at the same time cost-effective damping measures in a working device equipped with a pneumatic drive.
  • a working with compressed air working device having a pneumatic actuator
  • the piston is driven by controlled by control compressed air at least one of his limited working chambers via a connected to the respective working chamber, a throttle-containing control line oscillating to opposite reciprocating strokes and comprising at least one pneumatic damping cylinder having a damping damper defining a movable damper member capable of reducing the volume of the damper damper damping chamber and an opposite extension movement, and during a damper phase for carrying out the damper movement, drivingly or indirectly by the working piston acted upon, wherein the pneumatic drive and the at least one damping cylinder so fluidly interconnected in that, during the damping movement of the attenuator, the damping chamber is connected to the venting-connected working chamber on the upstream side of the throttle and, outside the damping phase, also communicates with either a vented working chamber or a pressurized working chamber of the pneumatic drive.
  • the throttle is switched into the control line, a check valve in parallel, which allows a free flow to the connected working chamber and thus allows a high lifting speed in the corresponding stroke direction.
  • another throttle may be turned on. This allows adjustment of the damping rate of the damping cylinder independently of influencing the lifting speed of the working piston outside the damping phase. One can therefore pretend the damping intensity relatively independent of the lifting speed of the working piston.
  • such a connection is provided that the damping chamber of the at least one damping cylinder is in fluid communication with one and the same working chamber independently of the instantaneous stroke movement of the working piston. If the working chamber is acted upon by compressed air via the throttle seated in the control line, a corresponding action is taken on the damping chamber and, consequently, a loading of the damping element in the direction of extension. If, on the other hand, the working chamber is vented, a simultaneous venting of the connected damping chamber takes place, whereby the outflow velocity is reduced by the throttle switched on in the control line, which leads to a backflow which ensures a damped, decelerated movement.
  • Such a design is particularly suitable for use in conventional pneumatic linear or rotary drives, wherein in each case an independent damping cylinder can be provided for the damping in the two stroke directions of the working piston, which is connected to one of the two working chambers.
  • a single damping cylinder is sufficient if damping in only one stroke direction is desired.
  • a connected to the working piston working part due to a specific kinematic coupling per stroke movement of the working piston performs an oscillatory movement with two opposite stroke phases. If a damping phase is desired only at the end of one of the lifting phases, it is possible to resort to a single damping cylinder, which is effective in both two-phase lifting movements. In particular, in such a case, it is advantageous if switching means are present, the at a Pressurization of each one working chamber cause a connection of the damping chamber of the damping cylinder with the currently vented other working chamber.
  • the damping chamber is set by the pressure of the respective one working chamber via the intermediate switching means with the currently vented working chamber in communication, so that it is vented together with this on the subsequent throttle.
  • the extension movement of the attenuator is in each case caused by the exhaust air of the vented working chamber, which accumulates at the switched on in the control line choke and thereby acts on the connected damping chamber.
  • the pneumatic drive can be a linear drive, both with and without a piston rod.
  • An embodiment as a rotary drive is also possible, for example, comparable to that in the DE 39 41 255 C2 described type in which the working piston performs a pivoting movement during operation.
  • All embodiments of the working device operated with compressed air together have the presence of a pneumatic drive 1 which has a drive housing 2 in which an oscillating reciprocating working piston 3 is located.
  • the working piston 3 divides the interior of the drive housing 2 into a first and a second working chamber 4, 5.
  • the first working chamber 4 communicates with a first fluidic control line 6 and the second working chamber 5 with a second fluidic control line 7 in connection.
  • both control lines 6, 7 are connected to control means in the form of an electrically actuatable control valve 8, which enables controlled pressurized air admission of the two working chambers 4, 5.
  • the control valve 8 is a 5/2-way valve in the embodiment.
  • the control means could include, for example, two mutually operable 3/2-way valves.
  • the control valve 8 is connected in a conventional manner to a compressed air source 12 and has communicating with the atmosphere outputs 13.
  • a compressed air source 12 By at least one electric valve drive 14 which is connected to an electronic control device, not shown, of the control means is, the switching position of the control valve 8 can be specified.
  • the respective one working chamber is switched to admission, so is connected to the compressed air source 12 in conjunction, while at the same time the other working chamber is switched to ventilation and communicates with the atmosphere.
  • 5 pressure gradient of the working piston 3 is driven to alternatively one of two oppositely directed lifting movements 15, 16. The latter are indicated in the drawing by arrows. So there is a reciprocating, oscillating movement of the working piston 3 available.
  • the pneumatic drive 1 is designed as a rotary drive 1a.
  • His working piston 3 is formed wing-like and pivotally mounted so that it is in the two strokes 15, 16 are oppositely directed pivoting movements.
  • the working piston 3 is non-rotatably connected to an output shaft 17, which is driven by the pivotal movement of the working piston 3 to a rotational movement about its own axis in one or the other direction.
  • the rotary drive 1a for example, in the in DE 39 41 255 C2 be formed described manner.
  • the pneumatic drive 1 is a linear drive 1b, so that the lifting movements 15, 16 of the working piston 3 are linear movements.
  • the linear drive 1b is a rodless linear drive whose drive housing 2 has a longitudinal slot which is penetrated by a driver 18 which is coupled in a motion-coupled manner to the working piston 3, externally to the latter Hubtownen 15, 16 can be tapped.
  • the basic structure of the linear drive 1b for example, in the EP 1 426 623 A correspond described.
  • the output member 17, 18 of the pneumatic actuator 1 is drivingly connected to a working part 22 and drives this when performing its strokes 15, 16 to a direction indicated by a double arrow, reciprocating working movement 23 at.
  • This working movement 23 is a linear movement in all embodiments, but could also be a pivoting or rotational movement.
  • the working device forms a handling device used for repositioning parts 24.
  • This has a preferably plate-like base 25, to which the pneumatically driven rotary drive 1a is mounted on the back, with its output shaft 17, the base 25 passes through and in the front of the base 25 carries a radially projecting pivot arm 26 which by the rotational movement of the output shaft 17 a reciprocating pivotal movement (arrow 27) is drivable.
  • the pivoting arm 26 is in driving connection with a rod-like handling part 28 in the exemplary embodiment, which is displaceably guided on a carriage 32 in the direction of a first movement axis 33, so that it can perform relative to the carriage 32 a first linear movement 35 indicated by a double arrow.
  • the carriage 32 is fixed to a base 25 fixed to the base 37 is adjustably guided in the direction of a second movement axis 34 perpendicular to the first movement axis 33, so that it can execute a second linear movement 36 perpendicular to the first linear movement 35 along the second movement axis 34.
  • a cross slide guide which makes it possible to move the handling part 28 including a arranged thereon, operated gripper operable gripper 38 in a two-dimensional coordinate system and position.
  • the movement path 42 which is executed by the handling part 28 or the gripper 38 is defined by a path presetting curve 43 which is fixed relative to the base 25. With this, the handling part 28 is engaged by a cam follower 44.
  • the path specification curve 43 extends a little way around the pivot axis 45 of the pivot arm 26 defined by the wear shaft 17.
  • the pivot arm 26 engages on the handling part 28 so that it causes a displacement of the cam follower 44 along the path specification curve 43 during its pivoting movement 27, from which the already mentioned movement path 42 is formed, which has a U-shaped configuration in the embodiment.
  • the path specification curve 43 is also U-shaped according to the desired trajectory 42 in the embodiment, so that the cam follower 44 simultaneously varies its distance with respect to the pivot axis 45 in its movement following the movement path 42.
  • the driving motion coupling between the pivot arm 26 and the handling member 28 via a formed in the pivot arm 26 longitudinal slot 46. Its slot flanks transmit the driving force, while allowing a relative movement along the longitudinal slot 46 to follow the mentioned radial movement.
  • Per stroke movement of the working piston 3 takes place a handling cycle in which the gripper 38 passes through the handling path 42 once, including two defined by the U-legs linear end portions 42a, 42b.
  • the carriage 32 carries out its working movement 23, which is initially a forward movement and subsequently an oppositely oriented reciprocation.
  • the kinematic coupling is designed so that the working part 22 per extending in one direction lifting movement 15 and 16 of the working piston 3 a linear both outgoing and forth going stroke phase of the working movement 23 performs.
  • the working part 22 is thus initially deflected per stroke movement of the working piston 3 and then returned to its basic position.
  • the carriage-like working part 22 is coupled in such a manner directly to the working piston 3 that the working movement 23 runs synchronously with the lifting movements 15, 16 and the working part 22 likewise displaces in only one direction per stroke movement of the working piston 3.
  • the pneumatic drive 1 is equipped with means 47 for exhaust air throttling for each stroke movement.
  • These include a throttle 48 which is switched into a respective control line 6, 7 and which is preferably adjustable with respect to its throttling intensity and a non-return valve 52 connected in parallel.
  • the check valve 52 is designed such that it permits compressed air flow toward the connected working chamber 4, 5 and blocks it in the opposite direction , Consequently, the compressed air displaced from a respective working chamber 4, 5 can always flow out only via a throttle 48, that is to say with a flow rate which is reduced as desired, so that the stroke speed of the working piston can be influenced via the selected throttling setting.
  • Each working device is additionally equipped with pneumatic damping means 53, which contribute to a slowing down of the working piston 3 when approaching an end position.
  • the damping means 53 expediently influence the piston speed only indirectly, by not interacting directly with the working piston 3, but with the working part 22 driven by it.
  • the driving connection between the working piston 3 and the generally larger mass having working part 22 is protected from overuse.
  • a direct interaction with the working piston would be possible.
  • These damping cylinder 54 are conventionally designed in the manner of so-called single-acting pneumatic cylinder and have a cylinder housing 55 with a seal guided therein displaceably guided piston 56, which is connected to a one side out of the cylinder housing 55 piston rod 57 is.
  • Piston 56 and piston rod 57 together form the movable damping member 58 of the damping cylinder 54, wherein the piston chamber 56 on the opposite side of the piston 56 lying cylinder chamber forms a damping chamber 62 still to be described function.
  • the opposite cylinder chamber is via a vent port 63 in constant unthrottled connection with the atmosphere.
  • the volume of the damping chamber 62 When the attenuator 58 is extended, the volume of the damping chamber 62 has a maximum.
  • the volume of the damping chamber 62 increasing movement of the attenuator 58 is referred to as the extension movement 64.
  • the opposite movement of the damping member 58, in the context of which the volume of the damping chamber 62 decreases, is referred to as damping movement 65.
  • the damping effect of a respective damping cylinder 54 is based on the fact that the extended damping member 58 is acted upon at least during a desired damping phase directly or indirectly by the working piston 3 and thereby causes the execution of the damping movement 65.
  • an indirect application by the working piston 22 driven by the working piston 3 is provided in each case.
  • the compressed air contained in the damping chamber 62 is ejected by the damping member 58.
  • This compressed air discharge is done together with the discharge of the compressed air from the currently switched on ventilation working chamber of the pneumatic actuator 1 via the switched on the associated control line 6 and 7 throttle 48 away.
  • the pneumatic drive 1 and the at least one damping cylinder 54 are fluidly interconnected in such a way that the damping chamber of the associated damping cylinder 54 on the upstream of the control means 8 upstream side of the throttle 48 with the switched on ventilation working chamber 4 or 5 is connected.
  • a damping cylinder 54 is outside the damping phase, that is, there is currently no damping movement, it is achieved by the fluidic connection that the damping chamber 62 either - as in the embodiment of FIGS. 1 and 2 - Also connected to the currently switched on ventilation working chamber or - as in the embodiment of FIGS. 3 and 4 - Is in communication with a switched on loading working chamber of the pneumatic actuator 1.
  • dam attenuator 58 is acted upon outside the damping phase by an effective pneumatic force in the extension direction, which has the result of extending the damping member 58 or at least supported.
  • damping cylinder 54 available, each responsible for a damping phase in one of the two strokes 15, 16.
  • the damping chamber 62 of a respective damping cylinder 54 is fluidly connected upstream of the throttle 48 with that working chamber 4, 5, which is connected to the exhaust stroke to be damped 15, 16 to vent.
  • FIGS. 3 and 4 is shown an intermediate position of the working piston 3 and the working part 22, as they can occur in one or the other lifting movement 15, 16.
  • the working part 22 is not yet with an attenuator 58th motion coupled and performs a solely on the setting of the throttle 48 influenced undamped lifting movement.
  • the damping phase begins when the working part 22 impacts on the piston rod 57 of the one or the other damping member 58 projecting towards it as part of the lifting movement, as indicated by dot-dash lines 66. From this moment, the damping member 58 is taken from the output member 22 and the working piston 3 and it is displaced the hitherto in the damping chamber 62 trapped compressed air to cause the damping movement.
  • the further throttle 66 does not influence the lifting speed of the working piston 3, but only has an effect on the damping intensity of the connected damping cylinder 54.
  • the damping intensity of the damping cylinder 54 and the lifting speed of the working piston 3 can be adjusted largely independently.
  • An increased damping does not affect the lifting speed of the working piston 3 outside the damping phase.
  • the further restrictor 66 is expediently connected in parallel with another check valve 67, which allows compressed air flow toward the connected damping chamber 62 and prevents it in the opposite direction. In this way, a fast filling of the damping chamber 62 is achieved with compressed air when switched on loading control line 6, 7, because the other throttle 66 is bypassed in this case.
  • the working part 32 per stroke movement of the working piston 3 from an oscillatory movement with two opposite stroke phases, corresponding to the passage of the two linear end portions 42 a, 42 b of the movement path 42.
  • the single damping cylinder 54 is arranged so that only at the end of the respective second stroke phase of the working part 22 is associated with a damping phase.
  • the attenuator 58 extends to retract during the subsequent second lifting phase by performing the damping movement 65.
  • the single damping chamber 62 is now connected by switching means 68 upstream of the throttled in the two control lines 6, 7 throttles 48 to both control lines such that the described switching characteristic occurs.
  • the switching means 68 preferably comprise a so-called two-pressure valve with a working port 69 connected to the damping chamber 62 and two control ports 73, 74 connected to one of the two control lines 6, 7.
  • the differential pressure acting on the two control ports 73, 74 causes the valve member 76 of FIG Switching means 68 connected in each one of two possible switching positions, in which case the lower pressure having control port is connected to the working port 69 and the higher pressure having control port is shut off.
  • the two-way valve acting as a changeover valve is switched over the control line 8 currently switched to admission control line so that the current connected to vent other control line is connected to the damping chamber 62.
  • the once set connection is present during a respective entire stroke 15 or 16 of the working piston 3, so in both this occurring lifting phases of the working part 22.
  • the damping chamber 62 is filled per stroke first with extending damping member 58 with compressed air from the currently vented control line and In the subsequent damping phase, the compressed air contained in the damping chamber 62 is ejected back into the same control line, so that it flows off in throttled fashion via the associated throttle 48, with simultaneous damping action.
  • the fixed connection has the advantage that the extension movement of the attenuator 58 is synchronized with the correspondingly directed movement of the working part 22 and is also available at high operating speed during the subsequent damping phase of the entire damping stroke available.
  • the back pressure prevailing in the damping chamber connected to the currently vented control line can nevertheless be sufficient to ensure the full extension movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Actuator (AREA)
  • Nozzles (AREA)

Abstract

The device has a pneumatic drive (1) with a working piston driven by stroke movement opposed to one another. A damping cylinder has a damping unit displaced by the piston. The unit limits a damping chamber that is deaerated during a damping phase concurrently with a working chamber via a throttle. The unit is delivered by compressed air which is diverted from a supply line to the working chamber during deaeration or ventilation phases.

Description

Die Erfindung betrifft eine mit Druckluft betriebene Arbeitsvorrichtung, die einen Pneumatikantrieb mit einem oszillierend zu einander entgegengesetzten Hubbewegungen antreibbaren Arbeitskolben aufweist und die mit Dämpfungsmitteln ausgestattet ist, die ein kontrolliertes Abbremsen des sich bewegenden Arbeitskolbens ermöglichen.The invention relates to a working with compressed air working device, which has a pneumatic drive with an oscillating to each other opposite strokes driven working piston and which is equipped with damping means that allow a controlled braking of the moving working piston.

Die WO 01/68490 A1 beschreibt eine als Handhabungsgerät zum Umpositionieren von Teilen ausgeführte, pneumatisch betätigbare Arbeitsvorrichtung. Für den Antrieb ist ein fluidbetätigter Drehantrieb vorgesehen, dessen Arbeitskolben oszillierend zu einander entgegengesetzten schwenkenden Hubbewegungen antreibbar ist, wobei die Hubbewegungen die Verlagerung eines Greifers bewirken, mit dem sich umzupositionierende Teile erfassen lassen. In den Endlagen der Bewegung trifft ein die Bewegung mitmachendes Teil auf einen fluidischen Stoßdämpfer und wird dadurch zur Verminderung des Endlagenaufpralls abgebremst.The WO 01/68490 A1 describes a designed as a handling device for repositioning of parts, pneumatically actuated working device. For the drive, a fluid-operated rotary drive is provided, the working piston is driven to oscillate to each other opposite pivoting strokes, the lifting movements cause the displacement of a gripper, can be detected with the umzupositionierende parts. In the end positions of the movement, a part participating in the movement hits a fluidic shock absorber and is thereby braked to reduce the final impact position.

Auch Arbeitsvorrichtungen, die einen als Linearantrieb ausgebildeten Pneumatikantrieb enthalten, können zum Abbremsen des Arbeitskolbens über Dämpfungsmittel verfügen, die mit dem Arbeitskolben oder einem von dem Arbeitskolben angetriebenen Teil zusammenwirken, insbesondere wenn der Arbeitskolben sich einer Endlage annähert.Working devices which comprise a pneumatic drive embodied as a linear drive can also have damping means for braking the working piston, which interact with the working piston or a part driven by the working piston, in particular when the working piston approaches an end position.

Eine solche Arbeitsvorrichtung ist in DE 46600 offenbart.Such a working device is in DE 46600 disclosed.

Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, bei einer mit einem Pneumatikantrieb ausgestatteten Arbeitsvorrichtung effektive und zugleich kostengünstige Dämpfungsmaßnahmen zu realisieren.The object of the present invention is to realize effective and at the same time cost-effective damping measures in a working device equipped with a pneumatic drive.

Diese Aufgabe wird durch eine mit Druckluft betriebene Arbeitsvorrichtung gelöst, die einen Pneumatikantrieb aufweist, dessen Arbeitskolben durch von Steuermitteln gesteuerte Druckluftbeaufschlagung wenigstens einer der von ihm begrenzten Arbeitskammern über eine an die betreffende Arbeitskammer angeschlossene, eine Drossel enthaltende Steuerleitung hinweg oszillierend zu einander entgegengesetzten Hubbewegungen antreibbar ist, und die mindestens einen pneumatischen Dämpfungszylinder enthält, der ein eine Dämpfungskammer begrenzendes bewegliches Dämpfungsglied aufweist, das eine das Volumen der Dämpfungskammer verringernde Dämpfungsbewegung und einer dieser entgegengesetzte Ausfahrbewegung ausführen kann, wobei es während einer Dämpfungsphase zur Durchführung der Dämpfungsbewegung antriebsmäßig direkt oder indirekt durch den Arbeitskolben beaufschlagt ist, wobei der Pneumatikantrieb und der mindestens eine Dämpfungszylinder derart fluidtechnisch miteinander verschaltet sind, dass die Dämpfungskammer während der Dämpfungsbewegung des Dämpfungsgliedes auf der den Steuermitteln entgegengesetzten Stromaufseite der Drossel mit der auf Entlüftung geschalteten Arbeitskammer verbunden ist und außerhalb der Dämpfungsphase mit entweder ebenfalls einer auf Entlüftung geschalteten Arbeitskammer oder einer auf Beaufschlagung geschalteten Arbeitskammer des Pneumatikantriebes in Verbindung steht.This object is achieved by a working with compressed air working device having a pneumatic actuator, the piston is driven by controlled by control compressed air at least one of his limited working chambers via a connected to the respective working chamber, a throttle-containing control line oscillating to opposite reciprocating strokes and comprising at least one pneumatic damping cylinder having a damping damper defining a movable damper member capable of reducing the volume of the damper damper damping chamber and an opposite extension movement, and during a damper phase for carrying out the damper movement, drivingly or indirectly by the working piston acted upon, wherein the pneumatic drive and the at least one damping cylinder so fluidly interconnected in that, during the damping movement of the attenuator, the damping chamber is connected to the venting-connected working chamber on the upstream side of the throttle and, outside the damping phase, also communicates with either a vented working chamber or a pressurized working chamber of the pneumatic drive.

Auf diese Weise findet während der Dämpfungsphase eine Verdrängung der in der Dämpfungskammer des Dämpfungszylinders befindlichen Luft statt, die gemeinsam mit der aus der angeschlossenen, entlüfteten Arbeitskammer verdrängten Luft über die in die Steuerleitung eingeschaltete Drossel abströmt. Durch die gedrosselte Abströmung baut sich in der Dämpfungskammer ein Widerstand auf, der zu einem Abbremsen der Geschwindigkeit der zugeordneten Hubbewegung beiträgt. Außerhalb der Dämpfungsphase steht die Dämpfungskammer entweder ebenfalls mit einer entlüfteten Arbeitskammer oder mit einer momentan beaufschlagten Arbeitskammer des Pneumatikantriebes in Verbindung und wird somit von unter einem mehr oder weniger hohen Druck stehender Druckluft beaufschlagt. Dieser Druck unterstützt oder bewirkt die Ausfahrbewegung des Dämpfungsgliedes als Vorbereitung für die als nächstes anstehende Dämpfungsphase. Durch derartige Dämpfungsmaßnahmen können bei optimiertem Schwingungsverhalten relativ hohe Massen wirksam abgebremst werden, was die Einsatzmöglichkeiten der Arbeitsvorrichtung erweitert, bei verhältnismäßig kostengünstiger Realisierung.In this way, takes place during the damping phase, a displacement of the air in the damping chamber of the damping cylinder, which together with the displaced from the connected, vented working chamber over air which is switched on in the control line choke flows. Due to the throttled outflow, a resistance builds up in the damping chamber, which contributes to a deceleration of the speed of the associated stroke movement. Outside the damping phase, the damping chamber is either also with a vented working chamber or with a currently acted upon working chamber of the pneumatic actuator in communication and is thus acted upon by standing under a more or less high pressure compressed air. This pressure assists or causes the extension movement of the attenuator in preparation for the next upcoming stall phase. By such damping measures relatively high masses can be effectively decelerated with optimized vibration behavior, which extends the capabilities of the working device, with relatively inexpensive implementation.

Vorteilhafte Weiterbildungen der Erfindung gehen aus den Unteransprüchen hervor.Advantageous developments of the invention will become apparent from the dependent claims.

Zweckmäßigerweise ist der in die Steuerleitung eingeschalteten Drossel ein Rückschlagventil parallelgeschaltet, das eine freie Strömung hin zur angeschlossenen Arbeitskammer zulässt und folglich eine hohe Hubgeschwindigkeit in der entsprechenden Hubrichtung zulässt.Appropriately, the throttle is switched into the control line, a check valve in parallel, which allows a free flow to the connected working chamber and thus allows a high lifting speed in the corresponding stroke direction.

In die Verbindung zwischen der Dämpfungskammer und der zugeordneten Arbeitskammer kann eine weitere Drossel eingeschaltet sein. Dies ermöglicht eine Einstellung der Dämpfungsrate des Dämpfungszylinders unabhängig von einer Beeinflussung der Hubgeschwindigkeit des Arbeitskolbens außerhalb der Dämpfungsphase. Man kann mithin die Dämpfungsintensität relativ unabhängig von der Hubgeschwindigkeit des Arbeitskolbens vorgeben.In the connection between the damping chamber and the associated working chamber, another throttle may be turned on. This allows adjustment of the damping rate of the damping cylinder independently of influencing the lifting speed of the working piston outside the damping phase. One can therefore pretend the damping intensity relatively independent of the lifting speed of the working piston.

Bei einer besonders kostengünstigen Bauform ist eine dahingehende Verschaltung vorgesehen, dass die Dämpfungskammer des mindestens einen Dämpfungszylinders unabhängig von der momentanen Hubbewegung des Arbeitskolbens mit ein und derselben Arbeitskammer in Fluidverbindung steht. Wird die Arbeitskammer über die in der Steuerleitung sitzende Drossel hinweg mit Druckluft beaufschlagt, erfolgt eine entsprechende Beaufschlagung der Dämpfungskammer und folglich eine Beaufschlagung des Dämpfungsgliedes im Ausfahrsinne. Wird die Arbeitskammer hingegen entlüftet, erfolgt folglich eine gleichzeitige Entlüftung der angeschlossenen Dämpfungskammer, wobei durch die in der Steuerleitung eingeschaltete Drossel die Ausströmgeschwindigkeit verringert wird, was zu einem Rückstau führt, der für eine gedämpfte, abgebremste Bewegung sorgt.In a particularly cost-effective design, such a connection is provided that the damping chamber of the at least one damping cylinder is in fluid communication with one and the same working chamber independently of the instantaneous stroke movement of the working piston. If the working chamber is acted upon by compressed air via the throttle seated in the control line, a corresponding action is taken on the damping chamber and, consequently, a loading of the damping element in the direction of extension. If, on the other hand, the working chamber is vented, a simultaneous venting of the connected damping chamber takes place, whereby the outflow velocity is reduced by the throttle switched on in the control line, which leads to a backflow which ensures a damped, decelerated movement.

Eine solche Bauform eignet sich insbesondere zur Anwendung bei konventionellen pneumatischen Linear- oder Drehantrieben, wobei für die Dämpfung in den beiden Hubrichtungen des Arbeitskolbens jeweils ein eigenständiger Dämpfungszylinder vorgesehen sein kann, der an eine der beiden Arbeitskammern angeschlossen ist. Ein einziger Dämpfungszylinder reicht aus, wenn eine Dämpfung in nur einer Hubrichtung gewünscht ist.Such a design is particularly suitable for use in conventional pneumatic linear or rotary drives, wherein in each case an independent damping cylinder can be provided for the damping in the two stroke directions of the working piston, which is connected to one of the two working chambers. A single damping cylinder is sufficient if damping in only one stroke direction is desired.

Bei anderen Bauformen der Arbeitsvorrichtung kann vorgesehen sein, dass ein mit dem Arbeitkolben verbundenes Arbeitsteil auf Grund einer bestimmten kinematischen Kopplung pro Hubbewegung des Arbeitskolbens eine Oszillationsbewegung mit zwei einander entgegengesetzten Hubphasen ausführt. Ist hierbei lediglich zum Ende einer der Hubphasen eine Dämpfungsphase gewünscht, kann auf einen einzigen Dämpfungszylinder zurückgegriffen werden, der bei beiden zweiphasigen Hubbewegungen wirksam ist. Insbesondere in einem solchen Fall ist es von Vorteil, wenn Umschaltmittel vorhanden sind, die bei einer Druckbeaufschlagung der jeweils einen Arbeitskammer eine Verbindung der Dämpfungskammer des Dämpfungszylinders mit der momentan entlüfteten anderen Arbeitskammer hervorrufen. Bei jeder Hubrichtung des Arbeitskolbens wird folglich die Dämpfungskammer durch den der jeweils einen Arbeitskammer aufgeschalteten Druck über die zwischengeschalteten Umschaltmittel mit der momentan entlüfteten Arbeitskammer in Verbindung gesetzt, so dass sie gemeinsam mit dieser über die anschließende Drossel entlüftet wird. Die Ausfahrbewegung des Dämpfungsgliedes wird hierbei jeweils durch die Abluft der entlüfteten Arbeitskammer hervorgerufen, die sich an der in die Steuerleitung eingeschalteten Drossel staut und dadurch auch die angeschlossene Dämpfungskammer beaufschlagt.In other designs of the working device can be provided that a connected to the working piston working part due to a specific kinematic coupling per stroke movement of the working piston performs an oscillatory movement with two opposite stroke phases. If a damping phase is desired only at the end of one of the lifting phases, it is possible to resort to a single damping cylinder, which is effective in both two-phase lifting movements. In particular, in such a case, it is advantageous if switching means are present, the at a Pressurization of each one working chamber cause a connection of the damping chamber of the damping cylinder with the currently vented other working chamber. In each stroke direction of the working piston consequently the damping chamber is set by the pressure of the respective one working chamber via the intermediate switching means with the currently vented working chamber in communication, so that it is vented together with this on the subsequent throttle. The extension movement of the attenuator is in each case caused by the exhaust air of the vented working chamber, which accumulates at the switched on in the control line choke and thereby acts on the connected damping chamber.

Bei dem Pneumatikantrieb kann es sich um einen Linearantrieb handeln, sowohl mit als auch ohne Kolbenstange. Eine Ausgestaltung als Drehantrieb ist ebenfalls möglich, beispielsweise vergleichbar der in der DE 39 41 255 C2 beschriebenen Art, bei der der Arbeitskolben im Betrieb eine Schwenkbewegung ausführt.The pneumatic drive can be a linear drive, both with and without a piston rod. An embodiment as a rotary drive is also possible, for example, comparable to that in the DE 39 41 255 C2 described type in which the working piston performs a pivoting movement during operation.

Nachfolgend wird die Erfindung anhand der beiliegenden Zeichnung näher erläutert. In dieser zeigen:

Figur 1
eine mit den erfindungsgemäßen Dämpfungsmaßnahmen ausgestattete Arbeitsvorrichtung in Gestalt eines zur Umpositionierung von Teilen verwendbaren Handhabungsgerätes in perspektivischer Darstellung,
Figur 2
die Arbeitsvorrichtung aus Figur 1 in einer Darstellung als vereinfachtes Schaltbild unter zusätzlicher Abbildung der fluidtechnischen Verschaltungsmaßnahmen,
Figur 3
in schematischer Darstellung eine weitere Bauform der erfindungsgemäßen Arbeitsvorrichtung, wobei als Pneumatikantrieb im Gegensatz zu dem bei der Bauform gemäß Figuren 1 und 2 eingesetzten Drehantrieb ein Linearantrieb vorhanden ist, und
Figur 4
eine bezüglich der Bauform gemäß Figur 3 modifizierte weitere Ausführungsform der erfindungsgemäßen Arbeitsvorrichtung.
The invention will be explained in more detail with reference to the accompanying drawings. In this show:
FIG. 1
a working device equipped with the damping measures according to the invention in the form of a handling device which can be used for the repositioning of parts, in perspective representation,
FIG. 2
the working device off FIG. 1 in a representation as a simplified circuit diagram with additional illustration of the fluidic interconnection measures,
FIG. 3
in a schematic representation of another design of the working device according to the invention, wherein as a pneumatic drive in contrast to that in the design according to FIGS. 1 and 2 used rotary drive a linear drive is present, and
FIG. 4
a respect to the design according to FIG. 3 modified further embodiment of the working device according to the invention.

Allen Ausführungsbeispielen der mit Druckluft betriebenen Arbeitsvorrichtung ist gemeinsam das Vorhandensein eines Pneumatikantriebes 1, der ein Antriebsgehäuse 2 aufweist, in dem sich ein oszillierend hin und her bewegbarer Arbeitskolben 3 befindet.All embodiments of the working device operated with compressed air together have the presence of a pneumatic drive 1 which has a drive housing 2 in which an oscillating reciprocating working piston 3 is located.

Der Arbeitskolben 3 unterteilt den Innenraum des Antriebsgehäuses 2 in eine erste und eine zweite Arbeitskammer 4, 5. Die erste Arbeitskammer 4 steht mit einer ersten fluidischen Steuerleitung 6 und die zweite Arbeitskammer 5 mit einer zweiten fluidischen Steuerleitung 7 in Verbindung. Beide Steuerleitungen 6, 7 sind andererseits an Steuermittel in Gestalt eines elektrisch betätigbaren Steuerventils 8 angeschlossen, die eine gesteuerte Druckluftbeaufschlagung der beiden Arbeitskammern 4, 5 ermöglichen. Das Steuerventil 8 ist beim Ausführungsbeispiel ein 5/2-Wegeventil. Alternativ könnten die Steuermittel auch beispielsweise zwei aufeinander abgestimmt betätigbare 3/2-Wegeventile beinhalten.The working piston 3 divides the interior of the drive housing 2 into a first and a second working chamber 4, 5. The first working chamber 4 communicates with a first fluidic control line 6 and the second working chamber 5 with a second fluidic control line 7 in connection. On the other hand, both control lines 6, 7 are connected to control means in the form of an electrically actuatable control valve 8, which enables controlled pressurized air admission of the two working chambers 4, 5. The control valve 8 is a 5/2-way valve in the embodiment. Alternatively, the control means could include, for example, two mutually operable 3/2-way valves.

Das Steuerventil 8 ist in an sich bekannter Weise an eine Druckluftquelle 12 angeschlossen und besitzt mit der Atmosphäre kommunizierende Ausgänge 13. Durch mindestens einen elektrischen Ventilantrieb 14, der an eine nicht näher dargestellte elektronische Steuereinrichtung der Steuermittel angeschlossen ist, kann die Schaltstellung des Steuerventils 8 vorgegeben werden.The control valve 8 is connected in a conventional manner to a compressed air source 12 and has communicating with the atmosphere outputs 13. By at least one electric valve drive 14 which is connected to an electronic control device, not shown, of the control means is, the switching position of the control valve 8 can be specified.

Je nach Schaltstellung des Steuerventils 8 wird die jeweils eine Arbeitskammer auf Beaufschlagung geschaltet, steht also mit der Druckluftquelle 12 in Verbindung, während gleichzeitig die jeweils andere Arbeitskammer auf Entlüftung geschaltet wird und mit der Atmosphäre in Verbindung steht. Durch das dadurch in den beiden Arbeitskammern 4, 5 herrschende Druckgefälle wird der Arbeitskolben 3 zu alternativ einer von zwei einander entgegengesetzt gerichteten Hubbewegungen 15, 16 angetrieben. Letztere sind in der Zeichnung durch Pfeile angedeutet. Es ist also eine hin und her gehende, oszillierende Bewegung des Arbeitskolbens 3 erhältlich.Depending on the switching position of the control valve 8, the respective one working chamber is switched to admission, so is connected to the compressed air source 12 in conjunction, while at the same time the other working chamber is switched to ventilation and communicates with the atmosphere. By thus prevailing in the two working chambers 4, 5 pressure gradient of the working piston 3 is driven to alternatively one of two oppositely directed lifting movements 15, 16. The latter are indicated in the drawing by arrows. So there is a reciprocating, oscillating movement of the working piston 3 available.

Bei der Arbeitsvorrichtung der Figuren 1 und 2 ist der Pneumatikantrieb 1 als Drehantrieb 1a ausgebildet. Sein Arbeitskolben 3 ist flügelartig ausgebildet und verschwenkbar gelagert, so dass es sich bei den beiden Hubbewegungen 15, 16 um einander entgegengesetzt gerichtete Schwenkbewegungen handelt. Der Arbeitskolben 3 ist drehfest mit einer Abtriebswelle 17 verbunden, die durch die Schwenkbewegung des Arbeitskolbens 3 zu einer Drehbewegung um ihre eigene Achse in der einen oder anderen Richtung antreibbar ist. Der Drehantrieb 1a kann beispielsweise in der in der DE 39 41 255 C2 beschriebenen Weise ausgebildet sein.At the working device of FIGS. 1 and 2 the pneumatic drive 1 is designed as a rotary drive 1a. His working piston 3 is formed wing-like and pivotally mounted so that it is in the two strokes 15, 16 are oppositely directed pivoting movements. The working piston 3 is non-rotatably connected to an output shaft 17, which is driven by the pivotal movement of the working piston 3 to a rotational movement about its own axis in one or the other direction. The rotary drive 1a, for example, in the in DE 39 41 255 C2 be formed described manner.

Bei den Ausführungsbeispielen der Figuren 3 und 4 ist der Pneumatikantrieb 1 ein Linearantrieb 1b, so dass die Hubbewegungen 15, 16 des Arbeitskolbens 3 Linearbewegungen sind. Beispielhaft ist der Linearantrieb 1b ein kolbenstangenloser Linearantrieb, dessen Antriebsgehäuse 2 einen Längsschlitz aufweist, der von einem mit dem Arbeitskolben 3 bewegungsgekoppelten Mitnehmer 18 durchsetzt ist, von dem extern die Hubbewegungen 15, 16 abgegriffen werden können. Der grundsätzliche Aufbau des Linearantriebes 1b kann beispielweise dem in der EP 1 426 623 A beschriebenen entsprechen.In the embodiments of the FIGS. 3 and 4 the pneumatic drive 1 is a linear drive 1b, so that the lifting movements 15, 16 of the working piston 3 are linear movements. By way of example, the linear drive 1b is a rodless linear drive whose drive housing 2 has a longitudinal slot which is penetrated by a driver 18 which is coupled in a motion-coupled manner to the working piston 3, externally to the latter Hubbewegungen 15, 16 can be tapped. The basic structure of the linear drive 1b, for example, in the EP 1 426 623 A correspond described.

Bei einem mit einer Kolbenstange ausgestatteten Linearantrieb würde der Bewegungsabgriff an einer mit dem Arbeitskolben 3 verbundenen Kolbenstange stattfinden.In the case of a linear drive equipped with a piston rod, the movement tap would take place on a piston rod connected to the working piston 3.

Bei allen Ausführungsbeispielen ist das Abtriebsteil 17, 18 des Pneumatikantriebes 1 mit einem Arbeitsteil 22 antriebsmäßig verbunden und treibt dieses bei Durchführung seiner Hubbewegungen 15, 16 zu einer durch einen Doppelpfeil angedeuteten, hin und her gehenden Arbeitsbewegung 23 an. Diese Arbeitsbewegung 23 ist bei allen Ausführungsbeispielen eine Linearbewegung, könnte aber ebenso eine Schwenk- bzw. Drehbewegung sein.In all embodiments, the output member 17, 18 of the pneumatic actuator 1 is drivingly connected to a working part 22 and drives this when performing its strokes 15, 16 to a direction indicated by a double arrow, reciprocating working movement 23 at. This working movement 23 is a linear movement in all embodiments, but could also be a pivoting or rotational movement.

Im Falle der Figuren 1 und 2 bildet die Arbeitsvorrichtung ein zur Umpositionierung von Teilen 24 dienendes Handhabungsgerät. Dieses besitzt eine bevorzugt plattenartige Basis 25, an die der pneumatisch antreibbare Drehantrieb 1a rückseitig angebaut ist, wobei seine Abtriebswelle 17 die Basis 25 durchgreift und im Bereich der Vorderseite der Basis 25 einen radial abstehenden Schwenkarm 26 trägt, der durch die Drehbewegung der Abtriebswelle 17 zu einer hin und her gehenden Schwenkbewegung (Pfeil 27) antreibbar ist.In case of FIGS. 1 and 2 the working device forms a handling device used for repositioning parts 24. This has a preferably plate-like base 25, to which the pneumatically driven rotary drive 1a is mounted on the back, with its output shaft 17, the base 25 passes through and in the front of the base 25 carries a radially projecting pivot arm 26 which by the rotational movement of the output shaft 17 a reciprocating pivotal movement (arrow 27) is drivable.

Der Schwenkarm 26 steht mit einem beim Ausführungsbeispiel stangenartigen Handhabungsteil 28 in antriebsmäßiger Verbindung, das an einem Schlitten 32 in Richtung einer ersten Bewegungsachse 33 verschiebbar geführt ist, so dass es relativ zu dem Schlitten 32 eine durch einen Doppelpfeil angedeutete erste Linearbewegung 35 ausführen kann. Der Schlitten 32 seinerseits ist an einer bezüglich der Basis 25 ortsfesten Linearführungseinrichtung 37 in Richtung einer zu der ersten Bewegungsachse 33 rechtwinkeligen zweiten Bewegungsachse 34 verstellbar geführt, so dass er eine zu der ersten Linearbewegung 35 rechtwinkelige zweite Linearbewegung 36 entlang der zweiten Bewegungsachse 34 ausführen kann. Somit liegt insgesamt eine Kreuzschlittenführung vor, die es ermöglicht, das Handhabungsteil 28 einschließlich eines daran angeordneten, gesteuert betätigbaren Greifers 38 in einem zweidimensionalen Koordinatensystem zu verfahren und zu positionieren.The pivoting arm 26 is in driving connection with a rod-like handling part 28 in the exemplary embodiment, which is displaceably guided on a carriage 32 in the direction of a first movement axis 33, so that it can perform relative to the carriage 32 a first linear movement 35 indicated by a double arrow. The carriage 32, in turn, is fixed to a base 25 fixed to the base 37 is adjustably guided in the direction of a second movement axis 34 perpendicular to the first movement axis 33, so that it can execute a second linear movement 36 perpendicular to the first linear movement 35 along the second movement axis 34. Thus, there is a total of a cross slide guide, which makes it possible to move the handling part 28 including a arranged thereon, operated gripper operable gripper 38 in a two-dimensional coordinate system and position.

Die hierbei von dem Handhabungsteil 28 bzw. dem Greifer 38 ausgeführte Bewegungsbahn 42 wird durch eine bezüglich der Basis 25 ortsfeste Bahnvorgabekurve 43 definiert. Mit dieser steht das Handhabungsteil 28 durch einen Kurvenfolger 44 in Eingriff. Die Bahnvorgabekurve 43 erstreckt sich ein Stück weit um die von der Abriebswelle 17 definierte Schwenkachse 45 des Schwenkarmes 26 herum.The movement path 42 which is executed by the handling part 28 or the gripper 38 is defined by a path presetting curve 43 which is fixed relative to the base 25. With this, the handling part 28 is engaged by a cam follower 44. The path specification curve 43 extends a little way around the pivot axis 45 of the pivot arm 26 defined by the wear shaft 17.

Der Schwenkarm 26 greift derart an dem Handhabungsteil 28 an, dass er bei seiner Schwenkbewegung 27 eine Verlagerung des Kurvenfolgers 44 entlang der Bahnvorgabekurve 43 veranlasst, woraus die schon erwähnte Bewegungsbahn 42 entsteht, die beim Ausführungsbeispiel eine U-förmige Gestalt hat. Die Bahnvorgabekurve 43 ist entsprechend der gewünschten Bewegungsbahn 42 beim Ausführungsbeispiel ebenfalls U-förmig gestaltet, so dass der Kurvenfolger 44 bei seiner der Bewegungsbahn 42 folgenden Bewegung gleichzeitig seinen Abstand bezüglich der Schwenkachse 45 variiert. Damit diese überlagerte Bewegung möglich ist, erfolgt die antriebsmäßige Bewegungskopplung zwischen dem Schwenkarm 26 und dem Handhabungsteil 28 über einen im Schwenkarm 26 ausgebildeten Längsschlitz 46. Dessen Schlitzflanken übertragen die Antriebskraft, bei gleichzeitiger Gestattung einer Relativbewegung entlang des Längsschlitzes 46 zur Nachvollziehung der erwähnten Radialbewegung.The pivot arm 26 engages on the handling part 28 so that it causes a displacement of the cam follower 44 along the path specification curve 43 during its pivoting movement 27, from which the already mentioned movement path 42 is formed, which has a U-shaped configuration in the embodiment. The path specification curve 43 is also U-shaped according to the desired trajectory 42 in the embodiment, so that the cam follower 44 simultaneously varies its distance with respect to the pivot axis 45 in its movement following the movement path 42. In order for this superimposed movement is possible, the driving motion coupling between the pivot arm 26 and the handling member 28 via a formed in the pivot arm 26 longitudinal slot 46. Its slot flanks transmit the driving force, while allowing a relative movement along the longitudinal slot 46 to follow the mentioned radial movement.

Pro Hubbewegung des Arbeitskolbens 3 findet ein Handhabungszyklus statt, bei dem der Greifer 38 die Handhabungsbahn 42 einmal durchläuft, einschließlich zweier von den U-Schenkeln definierter linearer Endabschnitte 42a, 42b. Beim Durchlaufen dieser linearen Endabschnitte 42a, 42b führt der Schlitten 32 seine Arbeitsbewegung 23 aus, bei der es sich zunächst um eine Hinbewegung und anschließend um eine entgegengesetzt orientierte Herbewegung handelt.Per stroke movement of the working piston 3 takes place a handling cycle in which the gripper 38 passes through the handling path 42 once, including two defined by the U-legs linear end portions 42a, 42b. When passing through these linear end portions 42a, 42b, the carriage 32 carries out its working movement 23, which is initially a forward movement and subsequently an oppositely oriented reciprocation.

Der gleiche Bewegungsablauf findet mit umgekehrten Vorzeichen statt, wenn der Arbeitskolben 3 anschließend zu seiner entgegengesetzten Hubbewegung angetrieben wird, so dass er wieder in die Ausgangsstellung zurückkehrt.The same movement takes place with the opposite sign when the working piston 3 is then driven to its opposite stroke, so that it returns to the starting position.

Der Schlitten 32 bildet das durch den Pneumatikantrieb 1 zu einer Arbeitsbewegung 23 antreibbare Arbeitsteil 22. Aus dem zuvor Geschilderten ist ersichtlich, dass die kinematische Kopplung so ausgeführt ist, dass das Arbeitsteil 22 pro in einer Richtung verlaufender Hubbewegung 15 bzw. 16 des Arbeitskolbens 3 eine linear sowohl hin als auch her gehende Hubphase der Arbeitsbewegung 23 ausführt. Das Arbeitsteil 22 wird also pro Hubbewegung des Arbeitskolbens 3 zunächst ausgelenkt und dann wieder in seine Grundstellung zurückgebracht.From the above, it can be seen that the kinematic coupling is designed so that the working part 22 per extending in one direction lifting movement 15 and 16 of the working piston 3 a linear both outgoing and forth going stroke phase of the working movement 23 performs. The working part 22 is thus initially deflected per stroke movement of the working piston 3 and then returned to its basic position.

Anders ist dies bei der Ausführungsform der Figuren 3 und 4. Hier ist das schlittenartige Arbeitsteil 22 derart direkt mit dem Arbeitskolben 3 bewegungsgekoppelt, dass die Arbeitsbewegung 23 synchron mit den Hubbewegungen 15, 16 verläuft und sich das Arbeitsteil 22 pro Hubbewegung des Arbeitskolbens 3 ebenfalls in nur einer Richtung verlagert.This is different in the embodiment of the FIGS. 3 and 4 , Here, the carriage-like working part 22 is coupled in such a manner directly to the working piston 3 that the working movement 23 runs synchronously with the lifting movements 15, 16 and the working part 22 likewise displaces in only one direction per stroke movement of the working piston 3.

Bei allen Ausführungsbeispielen ist der Pneumatikantrieb 1 für jede Hubbewegung mit Mitteln 47 zur Abluftdrosselung ausgestattet. Diese beinhalten eine in eine jeweilige Steuerleitung 6, 7 eingeschaltete, hinsichtlich ihrer Drosselungsintensität bevorzugt einstellbare Drossel 48 und ein dieser parallelgeschaltetes Rückschlagventil 52. Das Rückschlagventil 52 ist so ausgeführt, dass es eine Druckluftströmung hin zur angeschlossenen Arbeitskammer 4, 5 zulässt und in der Gegenrichtung sperrt. Die aus einer jeweiligen Arbeitskammer 4, 5 verdrängte Druckluft kann mithin stets nur über eine Drossel 48 abströmen, also mit einer wunschgemäß verringerten Strömungsrate, so dass über die gewählte Drosselungseinstellung die Hubgeschwindigkeit des Arbeitskolbens beeinflusst werden kann.In all embodiments, the pneumatic drive 1 is equipped with means 47 for exhaust air throttling for each stroke movement. These include a throttle 48 which is switched into a respective control line 6, 7 and which is preferably adjustable with respect to its throttling intensity and a non-return valve 52 connected in parallel. The check valve 52 is designed such that it permits compressed air flow toward the connected working chamber 4, 5 and blocks it in the opposite direction , Consequently, the compressed air displaced from a respective working chamber 4, 5 can always flow out only via a throttle 48, that is to say with a flow rate which is reduced as desired, so that the stroke speed of the working piston can be influenced via the selected throttling setting.

Jede Arbeitsvorrichtung ist zusätzlich mit pneumatischen Dämpfungsmitteln 53 ausgestattet, die zu einer Verlangsamung des Arbeitskolbens 3 beitragen, wenn sich dieser einer Endlage annähert. Die Dämpfungsmittel 53 beeinflussen die Kolbengeschwindigkeit hierbei jedoch zweckmäßigerweise nur indirekt, indem sie nicht direkt mit dem Arbeitskolben 3, sondern mit dem von diesem angetriebenen Arbeitsteil 22 zusammenwirken. Dadurch wird die Mitnahmeverbindung zwischen dem Arbeitskolben 3 und dem in der Regel eine größere Masse aufweisenden Arbeitsteil 22 vor Überbeanspruchung geschützt. Allerdings wäre auch ein direktes Zusammenwirken mit dem Arbeitskolben möglich.Each working device is additionally equipped with pneumatic damping means 53, which contribute to a slowing down of the working piston 3 when approaching an end position. However, the damping means 53 expediently influence the piston speed only indirectly, by not interacting directly with the working piston 3, but with the working part 22 driven by it. As a result, the driving connection between the working piston 3 and the generally larger mass having working part 22 is protected from overuse. However, a direct interaction with the working piston would be possible.

Die Dämpfungsmittel 53 enthalten beim Ausführungsbeispiel der Figuren 1 und 2 einen und beim Ausführungsbeispiel der Figuren 3 und 4 zwei pneumatische Dämpfungszylinder 54. Diese Dämpfungszylinder 54 sind konventionell nach Art sogenannter einfachwirkender Pneumatikzylinder ausgebildet und besitzen ein Zylindergehäuse 55 mit einem darin unter Abdichtung verschiebbar geführten Kolben 56, der mit einer einseitig aus dem Zylindergehäuse 55 herausgeführten Kolbenstange 57 verbunden ist. Kolben 56 und Kolbenstange 57 bilden gemeinsam das bewegliche Dämpfungsglied 58 des Dämpfungszylinders 54, wobei die auf der der Kolbenstange 57 entgegengesetzten Seite des Kolbens 56 liegende Zylinderkammer eine Dämpfungskammer 62 noch zu beschreibender Funktion bildet. Die entgegengesetzte Zylinderkammer steht über einen Entlüftungsanschluss 63 in ständiger ungedrosselter Verbindung mit der Atmosphäre.The damping means 53 included in the embodiment of FIGS. 1 and 2 one and in the embodiment of FIGS. 3 and 4 two pneumatic damping cylinder 54. These damping cylinder 54 are conventionally designed in the manner of so-called single-acting pneumatic cylinder and have a cylinder housing 55 with a seal guided therein displaceably guided piston 56, which is connected to a one side out of the cylinder housing 55 piston rod 57 is. Piston 56 and piston rod 57 together form the movable damping member 58 of the damping cylinder 54, wherein the piston chamber 56 on the opposite side of the piston 56 lying cylinder chamber forms a damping chamber 62 still to be described function. The opposite cylinder chamber is via a vent port 63 in constant unthrottled connection with the atmosphere.

Bei ausgefahrenem Dämpfungsglied 58 besitzt das Volumen der Dämpfungskammer 62 ein Maximum. Die das Volumen der Dämpfungskammer 62 vergrößernde Bewegung des Dämpfungsgliedes 58 sei als Ausfahrbewegung 64 bezeichnet. Die entgegengesetzte Bewegung des Dämpfungsgliedes 58, im Rahmen derer sich das Volumen der Dämpfungskammer 62 verringert, sei als Dämpfungsbewegung 65 bezeichnet.When the attenuator 58 is extended, the volume of the damping chamber 62 has a maximum. The volume of the damping chamber 62 increasing movement of the attenuator 58 is referred to as the extension movement 64. The opposite movement of the damping member 58, in the context of which the volume of the damping chamber 62 decreases, is referred to as damping movement 65.

Die Dämpfungswirkung eines jeweiligen Dämpfungszylinders 54 basiert darauf, dass das ausgefahrene Dämpfungsglied 58 zumindest während einer gewünschten Dämpfungsphase direkt oder indirekt durch den Arbeitskolben 3 beaufschlagt und dadurch zur Ausführung der Dämpfungsbewegung 65 veranlasst wird. Beim Ausführungsbeispiel ist jeweils eine indirekte Beaufschlagung durch das vom Arbeitskolben 3 angetriebene Arbeitsteil 22 vorgesehen.The damping effect of a respective damping cylinder 54 is based on the fact that the extended damping member 58 is acted upon at least during a desired damping phase directly or indirectly by the working piston 3 and thereby causes the execution of the damping movement 65. In the embodiment, an indirect application by the working piston 22 driven by the working piston 3 is provided in each case.

Bei dieser Dämpfungsbewegung 65 wird durch das Dämpfungsglied 58 die in der Dämpfungskammer 62 befindliche Druckluft ausgestoßen. Dieser Druckluftausstoß geschieht gemeinsam mit dem Ausstoß der Druckluft aus der momentan auf Entlüftung geschalteten Arbeitkammer des Pneumatikantriebes 1 über die in die zugeordnete Steuerleitung 6 bzw. 7 eingeschaltete Drossel 48 hinweg. Daraus resultiert ein Luftrückstau mit der Folge einer abgebremsten Dämpfungsbewegung 65 und einer daraus resultierenden Verringerung der Geschwindigkeit der Arbeitsbewegung 23 bzw. Hubbewegung 15, 16. Zumindest während dieser Dämpfungsphase sind der Pneumatikantrieb 1 und der mindestens eine Dämpfungszylinder 54 derart fluidtechnisch miteinander verschaltet, dass die Dämpfungskammer des zugehörigen Dämpfungszylinders 54 auf der den Steuermitteln 8 entgegengesetzten Stromaufseite der Drossel 48 mit der auf Entlüftung geschalteten Arbeitskammer 4 bzw. 5 verbunden ist.In this damping movement 65, the compressed air contained in the damping chamber 62 is ejected by the damping member 58. This compressed air discharge is done together with the discharge of the compressed air from the currently switched on ventilation working chamber of the pneumatic actuator 1 via the switched on the associated control line 6 and 7 throttle 48 away. This results in an air backlog with the result of a decelerated damping movement 65 and a resulting reduction in the speed of the working movement At least during this damping phase, the pneumatic drive 1 and the at least one damping cylinder 54 are fluidly interconnected in such a way that the damping chamber of the associated damping cylinder 54 on the upstream of the control means 8 upstream side of the throttle 48 with the switched on ventilation working chamber 4 or 5 is connected.

Befindet sich ein Dämpfungszylinder 54 außerhalb der Dämpfungsphase, führt also momentan keine Dämpfungsbewegung aus, wird durch die fluidtechnische Verschaltung erreicht, dass die Dämpfungskammer 62 entweder - wie beim Ausführungsbeispiel der Figuren 1 und 2 - ebenfalls mit der momentan auf Entlüftung geschalteten Arbeitskammer verbunden ist oder - wie beim Ausführungsbeispiel der Figuren 3 und 4 - mit einer auf Beaufschlagung geschalteten Arbeitskammer des Pneumatikantriebes 1 in Verbindung steht. Dadurch wird dam Dämpfungsglied 58 außerhalb der Dämpfungsphase mit einer in der Ausfahrrichtung wirksamen pneumatischen Druckkraft beaufschlagt, die das Ausfahren des Dämpfungsgliedes 58 zur Folge hat oder zumindest unterstützt.If a damping cylinder 54 is outside the damping phase, that is, there is currently no damping movement, it is achieved by the fluidic connection that the damping chamber 62 either - as in the embodiment of FIGS. 1 and 2 - Also connected to the currently switched on ventilation working chamber or - as in the embodiment of FIGS. 3 and 4 - Is in communication with a switched on loading working chamber of the pneumatic actuator 1. As a result, dam attenuator 58 is acted upon outside the damping phase by an effective pneumatic force in the extension direction, which has the result of extending the damping member 58 or at least supported.

Bei den Ausführungsbeispielen der Figuren 3 und 4 sind zwei Dämpfungszylinder 54 vorhanden, die jeweils für eine Dämpfungsphase bei einer der beiden Hubbewegungen 15, 16 zuständig sind. Die Dämpfungskammer 62 eines jeweiligen Dämpfungszylinders 54 ist stromauf der Drossel 48 ständig mit derjenigen Arbeitskammer 4, 5 fluidisch verbunden, die bei der zu dämpfenden Hubbewegung 15, 16 auf Entlüftung geschaltet ist.In the embodiments of the FIGS. 3 and 4 are two damping cylinder 54 available, each responsible for a damping phase in one of the two strokes 15, 16. The damping chamber 62 of a respective damping cylinder 54 is fluidly connected upstream of the throttle 48 with that working chamber 4, 5, which is connected to the exhaust stroke to be damped 15, 16 to vent.

In Figuren 3 und 4 ist eine Zwischenstellung des Arbeitskolbens 3 und des Arbeitsteils 22 gezeigt, wie sie bei der einen oder anderen Hubbewegung 15, 16 auftreten kann. Das Arbeitsteil 22 ist dabei noch nicht mit einem Dämpfungsglied 58 bewegungsgekoppelt und führt eine allein von der Einstellung der Drossel 48 beeinflusste ungedämpfte Hubbewegung aus. Die Dämpfungsphase beginnt, wenn das Arbeitsteil 22 im Rahmen der Hubbewegung auf die ihm entgegenragende Kolbenstange 57 des einen oder anderen Dämpfungsgliedes 58 aufprallt, wie dies strichpunktiert bei 66 angedeutet ist. Ab diesem Moment wird das Dämpfungsglied 58 vom Abtriebsteil 22 bzw. vom Arbeitskolben 3 mitgenommen und es wird die bis dahin in der Dämpfungskammer 62 eingeschlossene Druckluft unter Hervorrufung der Dämpfungsbewegung verdrängt.In FIGS. 3 and 4 is shown an intermediate position of the working piston 3 and the working part 22, as they can occur in one or the other lifting movement 15, 16. The working part 22 is not yet with an attenuator 58th motion coupled and performs a solely on the setting of the throttle 48 influenced undamped lifting movement. The damping phase begins when the working part 22 impacts on the piston rod 57 of the one or the other damping member 58 projecting towards it as part of the lifting movement, as indicated by dot-dash lines 66. From this moment, the damping member 58 is taken from the output member 22 and the working piston 3 and it is displaced the hitherto in the damping chamber 62 trapped compressed air to cause the damping movement.

Gleichzeitig wird aber über die jeweils andere, durch das Steuerventil 8 auf Beaufschlagung geschaltete Steuerleitung hinweg Druckluft nicht nur in die eine Arbeitskammer, sondern auch in die an diese angeschlossene Dämpfungskammer 62 des zugeordneten Dämpfungszylinders 54 eingespeist. Dies führt dazu, dass das Dämpfungsglied 58 des momentan in Dämpfungshinsicht nicht aktiven Dämpfungszylinders 54 in die Bereitschaftsposition ausgefahren wird, so dass sie für eine Dämpfungsbewegung bei der umgekehrten Hubbewegung des Arbeitskolbens 3 zur Verfügung steht.At the same time, however, compressed air is not only fed into the one working chamber, but also into the damping chamber 62 of the associated damping cylinder 54 connected to it via the control line 8 which is acted upon by the control valve 8. As a result, the damping member 58 of the damper cylinder 54, which is not currently active in damping view, is extended to the standby position, so that it is available for damping movement during the reverse stroke movement of the working piston 3.

Das zuvor geschilderte Funktionsprinzip gilt sowohl für die Ausführungsform der Figur 3 als auch diejenige der Figur 4. Letztere zeichnet sich darüber hinaus allerdings noch dadurch aus, dass eine weitere Drossel 66 in die Verbindung zwischen die Dämpfungskammer 62 eines jeweiligen Dämpfungszylinders 54 und die damit verbundene Arbeitskammer 4, 5 eingeschaltet ist, und zwar so, dass diese weitere Drossel 66 außerhalb der Verbindung zwischen der betreffenden Arbeitskammer und der vorgeschalteten Drossel 48 liegt. Auf diese Weise wird erreicht, dass in der unmittelbaren Verbindung zwischen dem Steuerventil 8 und einer Arbeitskammer 4, 5 nur die für die Abluftdrosselung zuständige Drossel 48 angeordnet ist, während in der Verbindung zwischen dem Steuerventil 8 und einer jeweiligen Dämpfungskammer 62 zusätzlich zu der Drossel 48 auch noch die in Reihe geschaltete weitere Drossel 66 liegt.The above-described principle of operation applies both to the embodiment of the FIG. 3 as well as the one of FIG. 4 , However, the latter is also characterized by the fact that a further throttle 66 in the connection between the damping chamber 62 of a respective damping cylinder 54 and the associated working chamber 4, 5 is turned on, in such a way that this further throttle 66 outside the connection between the relevant working chamber and the upstream throttle 48 is located. In this way it is achieved that in the direct connection between the control valve 8 and a working chamber 4, 5, only the responsible for the exhaust throttling throttle 48 is disposed while in the connection between the control valve 8 and a respective damping chamber 62 in addition to the throttle 48 and the series connected further throttle 66 is located.

Die weitere Drossel 66 beeinflusst nicht die Hubgeschwindigkeit des Arbeitskolbens 3, sondern wirkt sich lediglich auf die Dämpfungsintensität des angeschlossenen Dämpfungszylinders 54 aus. Somit können die Dämpfungsintensität der Dämpfungszylinder 54 und die Hubgeschwindigkeit des Arbeitskolbens 3 weitgehend unabhängig voneinander eingestellt werden. Eine verstärkte Dämpfung wirkt sich nicht auf die Hubgeschwindigkeit des Arbeitskolbens 3 außerhalb der Dämpfungsphase aus.The further throttle 66 does not influence the lifting speed of the working piston 3, but only has an effect on the damping intensity of the connected damping cylinder 54. Thus, the damping intensity of the damping cylinder 54 and the lifting speed of the working piston 3 can be adjusted largely independently. An increased damping does not affect the lifting speed of the working piston 3 outside the damping phase.

Der weiteren Drossel 66 ist zweckmäßigerweise ein weiteres Rückschlagventil 67 parallel geschaltet, das eine Druckluftströmung hin zur angeschlossenen Dämpfungskammer 62 zulässt und in der Gegenrichtung unterbindet. Auf diese Weise wird bei auf Beaufschlagung geschalteter Steuerleitung 6, 7 eine rasche Befüllung der Dämpfungskammer 62 mit Druckluft erreicht, weil die weitere Drossel 66 hierbei umgangen wird.The further restrictor 66 is expediently connected in parallel with another check valve 67, which allows compressed air flow toward the connected damping chamber 62 and prevents it in the opposite direction. In this way, a fast filling of the damping chamber 62 is achieved with compressed air when switched on loading control line 6, 7, because the other throttle 66 is bypassed in this case.

Während also bei den Ausführungsbeispielen der Figuren 3 und 4 die Dämpfungskammer 62 eines jeweiligen Dämpfungszylinders 54 bei jeder Hubbewegung 15, 16 des Arbeitskolbens 3 mit ein und derselben Arbeitskammer 4 bzw. 5 in Fluidverbindung steht, so dass sie bei Beaufschlagung der angeschlossenen Arbeitskammer ebenfalls beaufschlagt und bei Entlüftung der angeschlossenen Arbeitskammer ebenfalls gedrosselt entlüftet wird, ist beim Ausführungsbeispiel der Figuren 1 und 2 eine dahingehende Verschaltung vorgesehen, dass bei Druckbeaufschlagung der jeweils einen Arbeitskammer 4, 5 eine Verbindung der Dämpfungskammer 62 des hier einzigen Dämpfungszylinders 54 mit der momentan entlüfteten anderen Arbeitskammer 5, 4 hervorgerufen wird.So while in the embodiments of the FIGS. 3 and 4 the damping chamber 62 of a respective damping cylinder 54 in each lifting movement 15, 16 of the working piston 3 is in fluid communication with one and the same working chamber 4, so that it is also acted upon when the connected working chamber is pressurized and also vented when the connected working chamber is vented, is in the embodiment of FIGS. 1 and 2 a pertinent interconnection provided that upon pressurization of the respective one working chamber 4, 5, a compound of the damping chamber 62 of the single damping cylinder here 54 with the currently vented other working chamber 5, 4 is caused.

Wie schon erläutert, führt beim Ausführungsbeispiel der Figuren 1 und 2 das Arbeitsteil 32 pro Hubbewegung des Arbeitskolbens 3 eine Oszillationsbewegung mit zwei einander entgegengesetzten Hubphasen aus, die dem Durchlaufen der beiden linearen Endabschnitte 42a, 42b der Bewegungsbahn 42 entsprechen. Der einzige Dämpfungszylinder 54 ist so angeordnet, dass lediglich zum Ende der jeweiligen zweiten Hubphase des Arbeitsteils 22 eine Dämpfungsphase zugeordnet ist. Bei der jeweiligen ersten Hubphase fährt das Dämpfungsglied 58 aus, um während der sich anschließenden zweiten Hubphase unter Ausführung der Dämpfungsbewegung 65 wieder einzufahren.As already explained, leads in the embodiment of FIGS. 1 and 2 the working part 32 per stroke movement of the working piston 3 from an oscillatory movement with two opposite stroke phases, corresponding to the passage of the two linear end portions 42 a, 42 b of the movement path 42. The single damping cylinder 54 is arranged so that only at the end of the respective second stroke phase of the working part 22 is associated with a damping phase. During the respective first lifting phase, the attenuator 58 extends to retract during the subsequent second lifting phase by performing the damping movement 65.

Die einzige Dämpfungskammer 62 ist nun durch Umschaltmittel 68 stromauf der in die beiden Steuerleitungen 6, 7 eingeschalteten Drosseln 48 an beide Steuerleitungen derart angeschlossen, dass die geschilderte Umschaltcharakteristik auftritt. Die Umschaltmittel 68 beinhalten vorzugsweise ein sogenanntes Zweidruckventil mit einem an die Dämpfungskammer 62 angeschlossenen Arbeitsanschluss 69 und zwei an je eine der beiden Steuerleitungen 6, 7 angeschlossenen Steueranschlüssen 73, 74. Durch den an den beiden Steueranschlüssen 73, 74 anliegenden Differenzdruck wird das Ventilglied 76 der Umschaltmittel 68 in jeweils eine von zwei möglichen Schaltstellungen geschaltet, wobei dann der den niedrigeren Druck aufweisende Steueranschluss mit dem Arbeitsanschluss 69 verbunden ist und der den höheren Druck aufweisende Steueranschluss abgesperrt ist.The single damping chamber 62 is now connected by switching means 68 upstream of the throttled in the two control lines 6, 7 throttles 48 to both control lines such that the described switching characteristic occurs. The switching means 68 preferably comprise a so-called two-pressure valve with a working port 69 connected to the damping chamber 62 and two control ports 73, 74 connected to one of the two control lines 6, 7. The differential pressure acting on the two control ports 73, 74 causes the valve member 76 of FIG Switching means 68 connected in each one of two possible switching positions, in which case the lower pressure having control port is connected to the working port 69 and the higher pressure having control port is shut off.

Somit wird das als Umschaltventil fungierende Zweidruckventil über die durch das Steuerventil 8 momentan auf Beaufschlagung geschaltete Steuerleitung so umgeschaltet, dass die momentan auf Entlüftung geschaltete andere Steuerleitung mit der Dämpfungskammer 62 verbunden ist. Die einmal eingestellte Verbindung liegt während einer jeweiligen gesamten Hubbewegung 15 bzw. 16 des Arbeitskolbens 3 vor, also bei beiden hierbei stattfindenden Hubphasen des Arbeitsteils 22. Somit wird die Dämpfungskammer 62 pro Hubbewegung zunächst bei ausfahrendem Dämpfungsglied 58 mit Druckluft aus der momentan entlüfteten Steuerleitung gefüllt und wird bei der anschließenden Dämpfungsphase die in der Dämpfungskammer 62 befindliche Druckluft in die gleiche Steuerleitung zurück ausgestoßen, so dass sie über die zugeordnete Drossel 48 hinweg gedrosselt abströmt, bei gleichzeitiger Dämpfungswirkung.Thus, the two-way valve acting as a changeover valve is switched over the control line 8 currently switched to admission control line so that the current connected to vent other control line is connected to the damping chamber 62. The once set connection is present during a respective entire stroke 15 or 16 of the working piston 3, so in both this occurring lifting phases of the working part 22. Thus, the damping chamber 62 is filled per stroke first with extending damping member 58 with compressed air from the currently vented control line and In the subsequent damping phase, the compressed air contained in the damping chamber 62 is ejected back into the same control line, so that it flows off in throttled fashion via the associated throttle 48, with simultaneous damping action.

Während bei dem Ausführungsbeispiel der Figuren 1 und 2 eine ständige Mitnahmeverbindung zwischen dem Dämpfungsglied 58 und dem Arbeitsteil 22 und somit dem Arbeitskolben 3 vorliegt, kann hier auch eine nur lose Verbindung vorhanden sein, derart, dass das Arbeitsteil 22 nur in der Richtung der Dämpfungsbewegung 65 eine Antriebskraft auf das Dämpfungsglied 58 ausüben kann und nicht auch bei der entgegengesetzten Ausfahrbewegung. Die feste Verbindung hat allerdings den Vorteil, dass die Ausfahrbewegung des Dämpfungsgliedes 58 mit der entsprechend gerichteten Bewegung des Arbeitsteils 22 synchronisiert ist und auch bei hoher Arbeitsgeschwindigkeit während der anschließenden Dämpfungsphase der gesamte Dämpfungshub zur Verfügung steht. Insbesondere bei geringen Arbeitsgeschwindigkeiten kann jedoch der in der an die momentan entlüftete Steuerleitung angeschlossenen Dämpfungskammer herrschende Rückstaudruck gleichwohl ausreichen, um die volle Ausfahrbewegung zu gewährleisten.While in the embodiment of the FIGS. 1 and 2 a permanent driving connection between the attenuator 58 and the working part 22 and thus the working piston 3 is present, there may also be only a loose connection, such that the working part 22 only in the direction of the damping movement 65 can exert a driving force on the attenuator 58 and not even with the opposite extension movement. However, the fixed connection has the advantage that the extension movement of the attenuator 58 is synchronized with the correspondingly directed movement of the working part 22 and is also available at high operating speed during the subsequent damping phase of the entire damping stroke available. However, especially at low operating speeds, the back pressure prevailing in the damping chamber connected to the currently vented control line can nevertheless be sufficient to ensure the full extension movement.

Das beschriebene Zusammenschalten einer Dämpfungskammer 62 und einer Arbeitskammer 4, 5 geschieht insbesondere dadurch, dass eine von der Dämpfungskammer 62 wegführende Zweigleitung 75 stromauf der Drossel 48 an die zugeordnete erste bzw. zweite Steuerleitung 6, 7 angeschlossen ist (Anschlussstelle 76). Es wäre allerdings auch möglich, die Zweigleitung 75 direkt in die zugeordnete Arbeitskammer 4, 5 einmünden zu lassen. Auf jeden Fall befindet sich bei der Ausführungsform der Figur 4 die weitere Drossel 66 im Verlauf der Zweigleitung 75.The described interconnection of a damping chamber 62 and a working chamber 4, 5 takes place in particular in that a branch line leading away from the damping chamber 62 75 upstream of the throttle 48 to the associated first and second control line 6, 7 is connected (connection point 76). However, it would also be possible to have the branch line 75 open directly into the associated working chamber 4, 5. In any case, in the embodiment of the FIG. 4 the further throttle 66 in the course of the branch line 75th

Claims (16)

  1. Pneumatically operated operating device, with a pneumatic drive (1), the operating piston (3) of which can be driven to perform oscillating stroking movements (15, 16) in opposite directions by means of the pressurisation of at least one of the operating chambers (4, 5) bounded thereby under the control of control means (8) via a control line (6, 7) connected to the respective operating chamber (4, 5) and containing a restrictor (48), and with at least one pneumatic damping cylinder (54) with a movable damping member (58) bounding a damping chamber (62) and capable of performing a damping movement (65) reducing the volume of the damping chamber (62) and an opposing extension movement (64), wherein it is, in a damping phase, directly or indirectly driven and pressurised by the operating piston (3) to perform the damping movement (65), wherein the pneumatic drive (1) and the at least one damping cylinder (54) are interconnected in terms of fluid technology, so that the damping chamber (62) is during the damping movement (65) of the damping member (58) connected to the operating chamber (4 or 5) set to venting on the upstream side of the restrictor (48) opposite the control means (8) and is outside the damping phase connected either to an operating chamber (4 or 5) of the pneumatic drive (1) which is likewise set to venting or to an operating chamber (4 or 5) set to pressurisation.
  2. Operating device according to claim 1, characterised in that a check valve (52) allowing a compressed air flow towards the connected operating chamber (4, 5) and blocking in the opposite direction is connected in parallel with the restrictor (48).
  3. Operating device according to claim 1 or 2, characterised in that a further restrictor (66) is installed between the restrictor (48) and the damping chamber (62) of the respective damping cylinder (54) outside the connection provided between the restrictor (48) and the associated operating chamber (4, 5).
  4. Operating device according to claim 3, characterised in that a check valve (67) allowing a compressed air flow towards the damping chamber (62) and blocking in the opposite direction is connected in parallel with the restrictor (66).
  5. Operating device according to any of claims 1 to 4, characterised in that the damping chamber (62) of the at least one damping cylinder (54) is in fluid connection with one and the same operating chamber (4, 5) in each stroking movement (15, 16) of the operating piston (3) in such a way that it can be pressurised as the connected operating chamber (4, 5) is pressurised and vented in a restricted manner as the connected operating chamber is vented.
  6. Operating device according to any of claims 1 to 5, characterised by two damping cylinders (54), of which one is responsible for a damping phase during one stroking movement (15) and the other is responsible for a damping phase during the opposing stroking movement (16), wherein their damping chambers (62) are connected to different operating chambers (4, 5) upstream of the associated restrictor (48) in such a way that the damping chambers (62) are pressurised if the connected operating chamber (4, 5) is set to pressurisation, and in that the associated damping member (58) is pressurised towards extension, while the connected damping chamber (62) can likewise be vented via the associated restrictor (48) if an operating chamber (4, 5) is set to venting.
  7. Operating device according to any of claims 1 to 4, characterised by switch-over means (68) establishing a connection between the at least one damping cylinder (54) and the currently vented other operating chamber (5 or 4) if one of the operating chambers (4 or 5) is pressurised.
  8. Operating device according to claim 7, characterised in that the switch-over means (68) comprise a switch-over valve designed in particular as a dual-pressure valve, which is connected to the damping chamber (62) on the one hand and to the two operating chambers (4, 5) upstream of the associated restrictor (48) on the other hand, its switching position being predetermined by the pressure differential between the two operating chamber ports (73, 74).
  9. Operating device according to any of claims 1 to 8, characterised in that the operating piston (3) indirectly acts together with the damping member (58) of the at least one damping cylinder (54) via an operating part (22) driven thereby.
  10. Operating device according to claim 9 in conjunction with claim 7 or 8, characterised in that the operating part (22) performs an oscillating movement in two opposite stroke phases for each stroking movement (15, 16) of the operating piston (3).
  11. Operating device according to claim 10, characterised in that a damping phase is allocated only to the end of a stroking phase.
  12. Operating device according to any of claims 1 to 11, characterised in that the damping chamber (62) is, via a branch line (75), connected to the control line (6, 7) running between the control means (8) and each operating chamber (4, 5) upstream of the restrictor (48) installed into the control line (6, 7).
  13. Operating device according to any of claims 1 to 12, characterised by being designed as a handling device suitable for the re-positioning of parts.
  14. Operating device according to any of claims 1 to 13, characterised in that the pneumatic drive is a rotary drive (1 a).
  15. Operating device according to any of claims 1 to 13, characterised in that the pneumatic drive is a linear drive (1 b).
  16. Operating device according to any of claims 1 to 15, characterised in that the control means (8) comprise at least one electrically operated control valve.
EP06002702A 2005-04-07 2006-02-10 Pressurized air supplied working member Not-in-force EP1710448B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005015949A DE102005015949B4 (en) 2005-04-07 2005-04-07 Pneumatically operated working device

Publications (2)

Publication Number Publication Date
EP1710448A1 EP1710448A1 (en) 2006-10-11
EP1710448B1 true EP1710448B1 (en) 2008-03-19

Family

ID=36446609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06002702A Not-in-force EP1710448B1 (en) 2005-04-07 2006-02-10 Pressurized air supplied working member

Country Status (3)

Country Link
EP (1) EP1710448B1 (en)
AT (1) ATE389815T1 (en)
DE (2) DE102005015949B4 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169359A (en) * 2010-02-17 2011-09-01 Koganei Corp Shock absorber and shock absorber unit
DE102010029809B4 (en) * 2010-06-08 2012-04-19 Schunk Gmbh & Co. Kg Spann- Und Greiftechnik Handling unit for moving parts and method therefor
ITMI20130725A1 (en) * 2013-05-03 2014-11-04 Cosberg Spa MANIPULATOR FOR THE COLLECTION AND POSITIONING OF PIECES
ITMI20130726A1 (en) * 2013-05-03 2014-11-04 Cosberg Spa MANIPULATOR FOR THE COLLECTION AND POSITIONING OF PIECES
GB2575879A (en) * 2018-07-27 2020-01-29 Moog Bv Actuator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD46600A1 (en) * 1964-12-03 1966-03-20 Wolfgang Helmholz Auxiliary cylinder for double-acting working cylinder
DE3718858A1 (en) * 1987-06-05 1988-12-22 Aros Hydraulik Alternating damper with a pivoted piston
JP2575439B2 (en) * 1988-01-19 1997-01-22 日本発条株式会社 accumulator
DE3941255C2 (en) * 1989-12-14 1994-02-03 Festo Kg Fluid operated swing piston motor
DE20004746U1 (en) * 2000-03-15 2000-08-10 Festo AG & Co, 73734 Esslingen Handling device for repositioning parts
DE10258147B4 (en) 2002-12-03 2007-10-04 Festo Ag & Co. Rodless linear drive

Also Published As

Publication number Publication date
DE102005015949B4 (en) 2007-01-25
DE502006000469D1 (en) 2008-04-30
EP1710448A1 (en) 2006-10-11
DE102005015949A1 (en) 2006-10-12
ATE389815T1 (en) 2008-04-15

Similar Documents

Publication Publication Date Title
EP1987257B1 (en) Pneumatic drive system
DE102008045426B4 (en) Drive device with a double-stroke cylinder actuated by fluid power
DE10013194A1 (en) Drive device; has closed hydraulic circuit with hydraulic pump, which is operated by electric motor, where operation state of hydraulic pump determines activation of hydraulic drive
EP1710448B1 (en) Pressurized air supplied working member
EP1987255A1 (en) Pneumatic drive system
EP1847720B1 (en) Linear actuator
EP1656224B1 (en) Device for controlling the drawing process in a transfer press
EP0561185B1 (en) Hydraulic valve spool control for actuators with uneven piston velocities
DE202005018038U1 (en) Fluid operated cylinder with end position lock
EP0335939B1 (en) Hydraulic drive system
EP1980756B1 (en) Fluid-actuated rotary drive
DE19709593C2 (en) Device for decelerating a moving mass
DE102008027655B3 (en) Fluid-operated drive device for use in automation engineering, has controlling device provided for simultaneously loading operating chambers of operating cylinders with drive fluid, such that working movement result from relative movements
DE4422528A1 (en) Fluid-operated drive unit
EP0229330B1 (en) Swing gear driven by two separate cylinder-crank mechanisms
DE10138026A1 (en) Control of piston movement in pneumatic drives e.g. for handling electronic components, using two simple interacting path valves to control supply and evacuation of compressed air
DE19625131C2 (en) Pressurized wiper motor
DE102008024338B4 (en) Electro-pneumatic drive system and method for its operation
DE1477455C3 (en) Hydraulic feed gear
DE102008004803B4 (en) Piston-cylinder arrangement
DE102008007892A1 (en) Fluid-operated multi-position cylinder, has fluid absorption device whose components are present at front drive unit and rear drive unit and cooperating during bringing of front drive unit at short absorption phase
DE19613128C2 (en) Machine tool with a device which can be actuated by a piston-cylinder unit
DE2944471A1 (en) Pneumatic actuator generating rotary movement - has hydraulic damping chamber discharged via throttle on movement of rack
DE1203563B (en) Hydraulic gear for linear alternating movements
DE10045811B4 (en) Pneumatic door drive arrangement, in particular for sliding doors of machine tools

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060810

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REF Corresponds to:

Ref document number: 502006000469

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080630

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

26N No opposition filed

Effective date: 20081222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

BERE Be: lapsed

Owner name: FESTO A.G. & CO.

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20120223

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120123

Year of fee payment: 7

Ref country code: IT

Payment date: 20120228

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140218

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151210

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006000469

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901