EP1706598B1 - Method and installation for converting heat energy from refrigerating machines - Google Patents
Method and installation for converting heat energy from refrigerating machines Download PDFInfo
- Publication number
- EP1706598B1 EP1706598B1 EP04804983.7A EP04804983A EP1706598B1 EP 1706598 B1 EP1706598 B1 EP 1706598B1 EP 04804983 A EP04804983 A EP 04804983A EP 1706598 B1 EP1706598 B1 EP 1706598B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- component
- working medium
- low
- absorption
- vaporizer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
- F01K25/065—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K25/00—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
- F01K25/06—Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
Definitions
- the invention relates to a method for the conversion of heat energy, which is obtained in a refrigerator from the condensation of a refrigerant, into mechanical energy, in which in an evaporator by the heat energy, a working fluid is evaporated, which is expanded in a relaxation device while the heat energy at least partially is converted into mechanical energy. Furthermore, the invention relates to a system for converting thermal energy into mechanical energy.
- thermal power plants are known in which in a boiler, a working fluid at a high pressure isobarically heated to the boiling point, evaporated and then overheated in a superheater. The steam is then adiabatically expanded in a turbine while performing work and liquefied in a condenser with heat release. The liquid is pressurized by the feed water pump and returned to the boiler.
- a working fluid at a high pressure isobarically heated to the boiling point, evaporated and then overheated in a superheater.
- the steam is then adiabatically expanded in a turbine while performing work and liquefied in a condenser with heat release.
- the liquid is pressurized by the feed water pump and returned to the boiler.
- One of the disadvantages of these devices is that in the relaxation processes in turbines high pressures of more than 15 bar to 200 bar must be generated, since in turbines, the realized pressure ratio of the relaxation for the achieved efficiency is crucial.
- chillers are known in which condensation heat is obtained, which is disadvantageously dissipated as heat loss.
- the invention has for its object to provide a method and a system for the conversion of heat energy into mechanical energy, which avoid the disadvantages mentioned, in particular have improved efficiency.
- the invention provides that the relaxation takes place in a low-pressure expansion device and the energy contained in the relaxed vaporous working medium is traceable into the evaporator, which is used for the evaporation of additional working fluid.
- the method comprises a first component of the working fluid, which is formed by a mixture, is absorbed into and / or after the low-pressure expansion device by means of an absorbent, wherein heat on the remaining, vaporous second component passes, which is traceable.
- the mixture is a minimum boiling point azeotrope for a given mixing ratio of the components.
- the evaporation temperatures can be lowered, depending on the type, so that they are below the condensation temperatures of the individual components. If the first component is adiabatically absorbed from the vapor mixture, the corresponding heat is transferred to the second component remaining in vapor form. The removal of the heat of condensation can be done at an elevated temperature level. In particular, with suitably selected azeotrope mixtures, the second vaporous component can be condensed in the evaporator of the working medium itself while releasing the heat of condensation, so that the corresponding proportion of the heat energy can be returned to the process. If the first component to be absorbed is water, it is possible for example to use an alkaline silicate solution as absorption medium.
- the working fluid for example an azeotropic mixture of water and perchlorethylene
- the absorption in which according to the invention the heat of absorption is transferred to the second component remaining in vapor form, whereby this component is heated to a temperature level above the boiling temperature of the azeotropic mixture, can take place in and / or after the expansion device.
- One of the significant advantages here is that by relaxing the azeotropic mixture mechanical energy can be "recovered” and at the same time the relaxed working fluid, which has already done “work” in the relaxation process, by the separation (absorption) of the first of the second component itself heated due to the released heat of absorption.
- the remaining working fluid can be returned to the relaxation, for example, to give off its heat in a heat exchanger.
- the remaining working means only second component
- a heat exchanger evaporator
- the efficiency of the process for converting thermal energy into mechanical energy can be substantially improved.
- the working medium is preferably formed by an azeotropic mixture with boiling point minimum or nearly azeotropic mixture.
- an azeotropic mixture of course, the invention can also be based on almost azeotropic mixtures or non-azeotropic mixtures. High efficiencies can be achieved especially with an azeotropic or an almost azeotropic mixture.
- the evaporation temperatures can be lowered, so that they are below the evaporation temperatures of the individual components.
- the working fluid has a low volume-specific or low molar enthalpy of vaporization. This ensures that a large amount of motive steam is generated with a given amount of heat energy.
- the working fluid is a solvent mixture comprising organic and / or inorganic solvent components.
- examples include mixtures of water and selected silicones.
- at least one component may be a protic solvent.
- the absorbent is a reversible immobilisable solvent which in the non-immobilized state of matter is the first Component of the working fluid is.
- the reversible solvent in the boiling agent may advantageously be altered by physico-chemical changes in which it can be changed from the unimmobilized state to the reversibly immobilized state by ionization or complexation from the vapor phase and in the non-immobilized form as an absorbent for the Work equipment acts.
- the vaporous working fluid already contains the absorbent (in the non-immobilized state) prior to relaxation.
- the reversibly immobilized solvent is in a vaporous state and undergoes physico-chemical changes - such as pH shift, change in mole fraction and temperature in its volatility and / or in its vapor pressure - to the liquid state (comparable to vapor as Solvent in non-immobilized form and water as reversibly immobilisable solvent).
- physico-chemical changes such as pH shift, change in mole fraction and temperature in its volatility and / or in its vapor pressure - to the liquid state (comparable to vapor as Solvent in non-immobilized form and water as reversibly immobilisable solvent).
- the advantage here is that the working fluid consists of two components, wherein at the same time the one component in the reversible immobilized state acts as an absorbent for the other component.
- pH-dependent reversible immobilizable solvents for example, cyclic nitrogen compounds - such as pyridines - can be used.
- the absorption of the first component can already take place, for example, in the low-pressure expansion device.
- an absorption device for example designed as a scrubber, which is connected downstream of the low-pressure expansion device.
- the ionization of the reversibly immobilizable solvent can be carried out in the absorption device by electrolysis or by addition of electrolytes, whereby the solvent is formed in its immobilized form as an absorbent from the working fluid.
- the vapors of the working medium flowing through the absorbent are also ionized, so that the vapor pressure is lowered so that the vapor of the reversible immobilisable component is deposited in the working medium.
- the azeotropic working fluid is thus passed through the absorbent, which is the first component absorbs, wherein the released absorption energy is transferred to the remaining vaporous second component.
- the absorbent can then be passed back into the evaporator, where it is converted, for example, by deionization in a non-ionic state and is re-evaporated with the condensed phase of the remaining second component as an azeotrope.
- the molar ratio of the working fluid is selected such that the pressure in the expansion decreases by reducing the number of remaining in the gas phase molecules more than the pressure increases by the heating of the remaining gas, so that the structure of an otherwise resulting back pressure after the expansion device is avoided.
- the relaxed vaporous working fluid is transformed by means of a heat pump to a temperature level above the boiling point of the working fluid.
- This energy return can be realized via a one-component working fluid.
- the heat pump with a liquid-superimposed compressor system such as a liquid ring pump or a screw compressor operated and used for the operation of the heat pump, a working fluid, the molar enthalpy of evaporation a multiple, preferably more than four times, more preferably more than five times the enthalpy of enthalpy of the working fluid for the relaxation is.
- an excess of the energy return via the drive energy of the heat pump is thereby achieved.
- a device may be used in which neither the mass of the steam nor the pressure ratio, but only the pressure difference is relevant.
- the low pressure expansion device is designed as a Roots blower - as Roots blower - or in the form of oval wheel pumps. It is advantageous that the Roots blower can work as a relaxation devices (relaxation motors) with a pressure difference of 500 mbar with full efficiency and can be used in a closed system at pressures of 10 to 0.5 bar.
- the Roots blower can be designed with at least one injection opening, through which the absorbent and / or a protic solvent can be introduced into the Roots blower.
- a pressure-controlled injection takes place to prevent liquid damage.
- Another advantage is that in the said expansion devices only the pressure difference and not the mass or the expansion ratio is decisive for the efficiency. With already small pressure differences of less than two bar, full efficiency can be achieved.
- the Roots blower on a gas-tight seal between the pumping chamber and the gear compartment, wherein in another embodiment, the Roots blower comprises multi-bladed rotors.
- the Roots blower further comprises a shaft which can be connected to the generator, whereby the mechanical can be converted into electrical energy.
- the use of a Roots blower as Niederbuchenthovsvoriques opens, especially when using waste heat with a temperature of less than about 100 ° C, for driving such as pumps or generators the ability to support the process by injection of absorbents, and other because of the low pressure and temperature differences, the condensation energy of the working fluid, for example, with a heat pump to raise again to an elevated temperature level.
- a separating arrangement may be provided which separates the absorbed first component from the absorbent.
- the separation arrangement may be formed, for example, as a membrane system, which is connected downstream of the absorption device.
- the desorbed liquid, first component is conveniently passed back into the evaporator where it evaporates together with the second liquid component as an azeotropic working fluid.
- the absorbent may be directed to the expansion device where it is injected into the relaxing working fluid.
- the absorbent may be recycled to a scrubber where absorption of the first component from the working fluid occurs.
- the absorption medium used may be oils from which the first component of the working medium can be driven out completely, for example by a membrane system.
- the separation of the first absorbed component in the absorbent may alternatively be carried out by an evaporation process of the absorbed component.
- the second component remaining after the absorption device, which according to the invention has absorbed heat despite relaxation due to the absorption of the first component is passed into a heat exchanger in the evaporator, in which the second component condenses.
- the condensate is pumped back into the evaporator.
- the first and second components are evaporated as working fluid.
- liquids can be used from which the first component of the working fluid can be driven out completely, for example, by the membrane system or evaporation.
- the working fluid is an azeotropic mixture of water and silicone.
- the water is here the first component to be absorbed and silicone the second component.
- the absorbent is a silicate.
- the absorbent is an alkaline molecular disperse silicate solution, wherein the water absorbed in the alkaline silicate solution is desorbed, for example, by heating. The thermal desorption is advantageously realized in a separate from the evaporator Ausseraggregat
- the object of the invention is also achieved by a system for converting thermal energy into mechanical energy with the features of claim 19.
- preferred training are executed.
- the invention relates to a plant with an evaporator, in which a working fluid, which is formed by a mixture, preferably an azeotropic mixture, is evaporable, with a low-pressure expansion device, with an absorption device which integrates in the low-pressure expansion device and / or the low-pressure expansion device is connected downstream, with a refrigerator, which is connected to the evaporator, wherein means are provided for heat recovery, with which in the absorption device, a first component of the working fluid is absorbable by an absorbent and heat energy to the remaining, vaporous second component is transferable, which is traceable to the evaporator.
- the heat energy (waste heat) arising in the chiller during the condensation of the refrigerant in the condenser or in the condenser is used for the evaporation process in the evaporator, in which the working medium is vaporized and conducted into the expansion device.
- the heat energy is converted into mechanical energy.
- the expansion device may be connected to a generator, for example, so that the mechanical energy is converted into electrical energy. If the working fluid is formed as an azeotropic or an almost azeotropic mixture, then the system according to the invention is characterized by a particularly good efficiency.
- a large amount of mechanical energy in particular by the use of a Roots blower, which preferably after the conversion into electrical energy for proportionate coverage of the drive energy can be returned to the chiller process.
- the remaining, second component contains a sufficiently large amount of heat energy that can be used for the evaporation process of the liquid working fluid.
- FIG. 1 shows a plant for converting heat energy from a condenser of a chiller 8 into mechanical energy.
- the plant comprises a chiller 8 with a compressor 12.
- the compressor 12, which may be formed for example as a piston or as a turbo compressor sucks a vapor refrigerant from an evaporator 13 and compresses the steam to a certain pressure.
- the compressed vapor is then condensed in the heat exchanger 15, which is connected to a liquid working fluid evaporator 6, which is passed in a further separate process.
- the heat of condensation is used for the evaporation process of the working fluid.
- the condensed, liquefied refrigerant is expanded in the throttle valve 14 and then returns to the evaporator 13, where heat is added to it.
- the working fluid which in the present embodiment is an azeotropic mixture with a first and a second component, is vaporized by the heat energy of the chiller 8 and released in the downstream low-pressure expansion device 2, mechanical energy being "recovered".
- an absorption device 3 Downstream of the relaxation is an absorption device 3, in FIG. 1 designed as a scrubber 3, in which the vaporous working medium is washed with an absorbent.
- the first component is absorbed by the absorbent.
- the working fluid is an azeotropically evaporating mixture in which, depending on the composition, the evaporation temperatures can be lowered, so that they are below the condensation temperatures of the individual components. If the first component of the vaporous working medium is adiabatically absorbed, the heat corresponding to the entropy decrease is transferred to the remaining second component.
- the vaporous remaining, relaxed working fluid heated in spite of the relaxation, so that a certain part of the heat of the remaining working fluid can be returned to the evaporator 6 (heat recovery), whereby the efficiency of the system is substantially improved.
- the vaporous second component is passed back into a heat exchanger 7 in the evaporator 6, where it evaporates by condensation more liquid working fluid.
- the condensate is then pumped by the pump 9 into the evaporation space of the evaporator 6.
- the absorbed first component is passed together with the absorbent through a pump 10 into a membrane system 5 which separates the first component from the absorbent.
- the first component is then conveyed into the evaporator 6, the absorbent returns to the scrubber.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Sorption Type Refrigeration Machines (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Umwandlung von Wärmeenergie, die in einer Kältemaschine aus der Kondensation eines Kältemittels anfällt, in mechanische Energie, bei dem in einem Verdampfer durch die Wärmeenergie ein Arbeitsmittel verdampft wird, das in einer Entspannungsvorrichtung entspannt wird und dabei die Wärmeenergie zumindest teilweise in mechanische Energie umgewandelt wird. Des Weiteren betrifft die Erfindung eine Anlage zur Umwandlung von Wärmeenergie in mechanische Energie.The invention relates to a method for the conversion of heat energy, which is obtained in a refrigerator from the condensation of a refrigerant, into mechanical energy, in which in an evaporator by the heat energy, a working fluid is evaporated, which is expanded in a relaxation device while the heat energy at least partially is converted into mechanical energy. Furthermore, the invention relates to a system for converting thermal energy into mechanical energy.
Aus dem Stand der Technik sind eine Vielzahl von Anlagen sowie Verfahren zur Umwandlung von Wärmeenergie in mechanische Energie bekannt, wie zum Beispiel in den Dokumenten
Des Weiteren sind Kältemaschinen bekannt, bei denen Kondensationsabwärme anfällt, die nachteiligerweise als Verlustwärme abgeführt wird.Furthermore, chillers are known in which condensation heat is obtained, which is disadvantageously dissipated as heat loss.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren sowie eine Anlage zur Umwandlung von Wärmeenergie in mechanische Energie zu schaffen, die die genannten Nachteile vermeiden, insbesondere einen verbesserten Wirkungsgrad aufweisen.The invention has for its object to provide a method and a system for the conversion of heat energy into mechanical energy, which avoid the disadvantages mentioned, in particular have improved efficiency.
Zur Lösung dieser Aufgabe wird ein Verfahren mit den Merkmalen des Anspruches 1 vorgeschlagen. In den abhängigen Ansprüchen sind bevorzugte Weiterbildungen ausgeführtTo solve this problem, a method with the features of claim 1 is proposed. In the dependent claims preferred developments are carried out
Dazu ist erfindungsgemäß vorgesehen, dass die Entspannung in einer Niederdruck-Entspannungsvorrichtung erfolgt und die im entspannten dampfförmigen Arbeitsmittel enthaltende Energie in den Verdampfer rückführbar ist, die zur Verdampfung zusätzlichen Arbeitsmittels nutzbar ist. Vorzugsweise weist das Verfahren eine erste Komponente des Arbeitsmittels auf, das durch ein Gemisch gebildet ist, in und/oder nach der Niederdruck-Entspannungsvorrichtung mittels eines Absorptionsmittels absorbiert wird, wobei Wärme auf die verbleibende, dampfförmige zweite Komponente übergeht, die rückführbar ist. In einer Ausführungsform der Erfindung ist das Gemisch bei einem bestimmten Mischungsverhältnis der Komponenten ein Azeotrop mit Siedepunktminimum. Bei azeotrop verdampfenden Gemischen mit Siedepunktminimum lassen sich je nach Typ die Verdampfungstemperaturen absenken, so dass diese unter den Kondensationstemperaturen der einzelnen Komponenten liegen. Wird aus dem Dampfgemisch adiabat die erste Komponente absorbiert, so geht die entsprechende Wärme auf die dampfförmig verbleibende zweite Komponente über. Der Entzug der Kondensationswärme kann dadurch auf einem erhöhten Temperaturniveau erfolgen. Insbesondere kann bei geeignet ausgewählten Azeotropmischungen die zweite dampfförmige Komponente im Verdampfer des Arbeitsmittels selbst unter Abgabe der Kondensationswärme kondensiert werden, so dass der entsprechende Anteil der Wärmeenergie in den Prozess zurückgeführt werden kann. Sofern die zu absorbierende erste Komponente Wasser ist, kann als Absorptionsmittel beispielsweise eine alkalische Silikatlösung eingesetzt werden.For this purpose, the invention provides that the relaxation takes place in a low-pressure expansion device and the energy contained in the relaxed vaporous working medium is traceable into the evaporator, which is used for the evaporation of additional working fluid. Preferably, the method comprises a first component of the working fluid, which is formed by a mixture, is absorbed into and / or after the low-pressure expansion device by means of an absorbent, wherein heat on the remaining, vaporous second component passes, which is traceable. In one embodiment of the invention, the mixture is a minimum boiling point azeotrope for a given mixing ratio of the components. In the case of azeotropically evaporating mixtures with boiling point minimum, the evaporation temperatures can be lowered, depending on the type, so that they are below the condensation temperatures of the individual components. If the first component is adiabatically absorbed from the vapor mixture, the corresponding heat is transferred to the second component remaining in vapor form. The removal of the heat of condensation can be done at an elevated temperature level. In particular, with suitably selected azeotrope mixtures, the second vaporous component can be condensed in the evaporator of the working medium itself while releasing the heat of condensation, so that the corresponding proportion of the heat energy can be returned to the process. If the first component to be absorbed is water, it is possible for example to use an alkaline silicate solution as absorption medium.
Das Arbeitsmittel, beispielsweise ein azeotropes Gemisch aus Wasser und Perchloräthylen, wird durch die in der Kältemaschine anfallende Kondensationswärme verdampft. Die Absorption, bei der erfindungsgemäß die anfallende Absorptionswärme auf die zweite dampfförmig verbleibende Komponente übertragen wird, wodurch sich diese Komponente auf ein Temperaturniveau oberhalb der Siedetemperatur des azeotropen Gemisches erwärmt, kann in und/oder nach der Entspannungsvorrichtung erfolgen. Einer der wesentlichen Vorteile ist hierbei, dass durch die Entspannung des azeotropen Gemisches mechanische Energie "gewonnen" werden kann und gleichzeitig das entspannte Arbeitsmittel, das im Entspannungsprozess bereits "Arbeit" geleistet hat, durch die Trennung (Absorption) der ersten von der zweiten Komponente sich aufgrund der freiwerdenden Absorptionswärme erwärmt. Hierbei kann das verbleibende Arbeitsmittel nach der Entspannung zurückgeführt werden, um beispielsweise in einem Wärmetauscher seine Wärme abzugeben. Zum Beispiel ist es in einer Ausgestaltung der Erfindung möglich, dass das verbleibende Arbeitsmittel (nur zweite Komponente) in einen Wärmetauscher (Verdampfer) geleitet wird, in dem das verbleibende Arbeitsmittels kondensiert und aufgrund der entstehenden Kondensationswärme das flüssige Arbeitsmittel mit der ersten und der zweiten Komponente verdampft und anschließend wieder in die Entspannungsvorrichtung geführt wird. Hierdurch kann erfindungsgemäß der Wirkungsgrad des Verfahrens zur Umwandlung von Wärmeenergie in mechanische Energie wesentlich verbessert werden.The working fluid, for example an azeotropic mixture of water and perchlorethylene, is vaporized by the heat of condensation generated in the refrigerator. The absorption, in which according to the invention the heat of absorption is transferred to the second component remaining in vapor form, whereby this component is heated to a temperature level above the boiling temperature of the azeotropic mixture, can take place in and / or after the expansion device. One of the significant advantages here is that by relaxing the azeotropic mixture mechanical energy can be "recovered" and at the same time the relaxed working fluid, which has already done "work" in the relaxation process, by the separation (absorption) of the first of the second component itself heated due to the released heat of absorption. Here, the remaining working fluid can be returned to the relaxation, for example, to give off its heat in a heat exchanger. For example, in one embodiment of the invention, it is possible for the remaining working means (only second component) into a heat exchanger (evaporator) is passed, in which condenses the remaining working fluid and evaporated due to the heat of condensation, the liquid working fluid with the first and the second component and then fed back into the expansion device. As a result, according to the invention, the efficiency of the process for converting thermal energy into mechanical energy can be substantially improved.
Das Arbeitsmittel ist vorzugsweise durch ein azeotropes Gemisch mit Siedepunktminimum oder nahezu azeotropes Gemisch gebildet. Im folgenden wird die Erfindung mit einem azeotropen Gemisch beschrieben, selbstverständlich kann die Erfindung ebenfalls auf nahezu azeotrope Gemische beziehungsweise auf nicht azeotrope Gemische bezogen werden. Hohe Wirkungsgrade lassen sich besonders mit einem azeotropen oder einem nahezu azeotropen Gemisch erzielen. Bei einem Einsatz eines azeotropen Gemisches können je nach Typ die Verdampfungstemperaturen abgesenkt werden, so dass diese unter den Verdampfungstemperaturen der einzelnen Komponenten liegen.The working medium is preferably formed by an azeotropic mixture with boiling point minimum or nearly azeotropic mixture. In the following, the invention will be described with an azeotropic mixture, of course, the invention can also be based on almost azeotropic mixtures or non-azeotropic mixtures. High efficiencies can be achieved especially with an azeotropic or an almost azeotropic mixture. When using an azeotropic mixture, depending on the type, the evaporation temperatures can be lowered, so that they are below the evaporation temperatures of the individual components.
In einer bevorzugten Ausführungsform weist das Arbeitsmittel eine geringe volumenspezifische beziehungsweise geringe molare Verdampfungsenthalpie auf. Damit wird erreicht, dass mit einer vorgegebenen Menge an Wärmeenergie eine große Menge an Treibdampf erzeugt wird.In a preferred embodiment, the working fluid has a low volume-specific or low molar enthalpy of vaporization. This ensures that a large amount of motive steam is generated with a given amount of heat energy.
Vorzugsweise ist das Arbeitsmittel ein Lösemittelgemisch, das organische und/oder anorganische Lösemittelkomponenten aufweist. Beispiele hierfür sind etwa Gemische aus Wasser und ausgewählten Silikonen. Vorteilhafterweise kann mindestens eine Komponente ein protisches Lösemittel sein.Preferably, the working fluid is a solvent mixture comprising organic and / or inorganic solvent components. Examples include mixtures of water and selected silicones. Advantageously, at least one component may be a protic solvent.
Bei einer alternativen Ausführungsform ist das Absorptionsmittel ein reversibles immobilisierbares Lösemittel, das in dem nicht-immobilisierten Aggregatzustand die erste Komponente des Arbeitsmittels ist. Das reversible Lösemittel im siedenden Arbeitsmittel kann sich vorteilhafterweise durch physikalisch-chemische Veränderungen so verändern, in dem es durch Ionisieren oder Komplexbildung aus der Dampfphase von dem nichtimmobilisierten Zustand in den reversibel immobilisierten Zustand verändert werden kann und in der nicht-immobilisierten Form als Absorptionsmittel für das Arbeitsmittel wirkt. Somit enthält das dampfförmige Arbeitsmittel vor der Entspannung bereits das Absorptionsmittel (im nicht-immobilisierten Zustand). Das reversibel immobilisierte Lösemittel ist in einem dampfförmigen Aggregatzustand und geht durch physikalisch-chemische Veränderungen - wie zum Beispiel pH-Verschiebung, Veränderung des Molenbruches und der Temperatur in seiner Flüchtigkeit und/oder in seinem Dampfdruck - in den flüssigen Zustand über (vergleichbar mit Dampf als Lösemittel in nicht-immobilisierter Form und Wasser als reversibel immobilisierbares Lösemittel). Der Vorteil ist hierbei, dass das Arbeitsmittel aus zwei Komponenten besteht, wobei gleichzeitig die eine Komponente im reversiblen immobilisierten Zustand als Absorptionsmittel für die andere Komponente wirkt. Als pH-abhängige reversibel immobilisierbare Lösemittel können beispielsweise zyklische Stickstoffverbindungen - wie Pyridine - eingesetzt werden.In an alternative embodiment, the absorbent is a reversible immobilisable solvent which in the non-immobilized state of matter is the first Component of the working fluid is. The reversible solvent in the boiling agent may advantageously be altered by physico-chemical changes in which it can be changed from the unimmobilized state to the reversibly immobilized state by ionization or complexation from the vapor phase and in the non-immobilized form as an absorbent for the Work equipment acts. Thus, the vaporous working fluid already contains the absorbent (in the non-immobilized state) prior to relaxation. The reversibly immobilized solvent is in a vaporous state and undergoes physico-chemical changes - such as pH shift, change in mole fraction and temperature in its volatility and / or in its vapor pressure - to the liquid state (comparable to vapor as Solvent in non-immobilized form and water as reversibly immobilisable solvent). The advantage here is that the working fluid consists of two components, wherein at the same time the one component in the reversible immobilized state acts as an absorbent for the other component. As pH-dependent reversible immobilizable solvents, for example, cyclic nitrogen compounds - such as pyridines - can be used.
Die Absorption der ersten Komponente kann beispielsweise bereits in der Niederdruck-Entspannungsvorrichtung erfolgen. Des Weiteren ist es selbstverständlich möglich, dass eine Absorptionsvorrichtung, zum Beispiel als Wäscher ausgeführt, der der Niederdruck-Entspannungsvorrichtung nachgeschaltet ist. In einer möglichen Ausgestaltung kann in der Absorptionsvorrichtung die Ionisierung des reversibel immobilisierbaren Lösemittels durch eine Elektrolyse oder durch ein Zusetzen von Elektrolyten erfolgen, wodurch das Lösemittel in seiner immobilisierten Form als Absorptionsmittel aus dem Arbeitsmittel entsteht. Gleichzeitig werden die das Absorptionsmittel durchströmenden Dämpfe des Arbeitsmittels ebenfalls ionisiert, so dass der Dampfdruck so abgesenkt wird, dass sich der Dampf der reversiblen immobilisierbaren Komponente im Arbeitsmittel niederschlägt. Das azeotrope Arbeitsmittel wird somit durch das Absorptionsmittel geführt, das die erste Komponente aufnimmt (absorbiert), wobei die frei werdende Absorptionsenergie auf die dampfförmige verbleibende zweite Komponente übergeht. Das Absorptionsmittel kann anschließend wieder zurück in den Verdampfer geleitet werden, wo es beispielsweise durch Deionisation in einen nicht-ionischen Zustand überführt wird und mit der kondensierten Phase der verbliebenden zweiten Komponente als azeotropes Gemisch wieder verdampft wird.The absorption of the first component can already take place, for example, in the low-pressure expansion device. Furthermore, it is of course possible that an absorption device, for example designed as a scrubber, which is connected downstream of the low-pressure expansion device. In one possible embodiment, the ionization of the reversibly immobilizable solvent can be carried out in the absorption device by electrolysis or by addition of electrolytes, whereby the solvent is formed in its immobilized form as an absorbent from the working fluid. At the same time, the vapors of the working medium flowing through the absorbent are also ionized, so that the vapor pressure is lowered so that the vapor of the reversible immobilisable component is deposited in the working medium. The azeotropic working fluid is thus passed through the absorbent, which is the first component absorbs, wherein the released absorption energy is transferred to the remaining vaporous second component. The absorbent can then be passed back into the evaporator, where it is converted, for example, by deionization in a non-ionic state and is re-evaporated with the condensed phase of the remaining second component as an azeotrope.
Zweckmäßigerweise ist das Molverhältnis des Arbeitsmittels derart gewählt, dass der Druck in der Entspannung durch die Reduzierung der Anzahl der in der Gasphase verbleibenden Moleküle mehr abnimmt, als der Druck durch die Erwärmung des verbleibenden Gases zunimmt, damit der Aufbau eines sonst resultierenden Gegendruckes nach der Entspannungsvorrichtung vermieden wird.Conveniently, the molar ratio of the working fluid is selected such that the pressure in the expansion decreases by reducing the number of remaining in the gas phase molecules more than the pressure increases by the heating of the remaining gas, so that the structure of an otherwise resulting back pressure after the expansion device is avoided.
In einer weiteren erfindungsgemäßen Ausführungsform wird das entspannte dampfförmige Arbeitsmittel mit Hilfe einer Wärmepumpe auf ein Temperaturniveau oberhalb der Siedetemperatur des Arbeitsmittels transformiert. Diese Energierückführung kann hierbei über ein einkomponentiges Arbeitsmittels realisiert werden. Dazu wird die Wärmepumpe mit einem flüssigkeitsüberlagerten Verdichtersystem, beispielsweise einer Flüssigkeitsringpumpe oder einem Schraubenverdichter, betrieben und für den Betrieb der Wärmepumpe eine Betriebsflüssigkeit verwendet, deren molare Verdampfungsenthalpie ein Mehrfaches, vorzugsweise mehr als das Vierfache, besonders bevorzugt mehr als das Fünffache der Verdampfungsenthalpie des Arbeitsmittels für die Entspannung beträgt. Erfindungsgemäß wird dadurch ein Überschuss der Energierückführung über die Antriebsenergie der Wärmepumpe erreicht.In a further embodiment of the invention, the relaxed vaporous working fluid is transformed by means of a heat pump to a temperature level above the boiling point of the working fluid. This energy return can be realized via a one-component working fluid. For this purpose, the heat pump with a liquid-superimposed compressor system, such as a liquid ring pump or a screw compressor operated and used for the operation of the heat pump, a working fluid, the molar enthalpy of evaporation a multiple, preferably more than four times, more preferably more than five times the enthalpy of enthalpy of the working fluid for the relaxation is. According to the invention, an excess of the energy return via the drive energy of the heat pump is thereby achieved.
Als Niederdruck-Entspannungsvorrichtung kann eine Vorrichtung verwendet werden, bei der weder die Masse des Dampfes noch das Druckverhältnis, sondern allein die Druckdifferenz relevant ist.As a low-pressure expansion device, a device may be used in which neither the mass of the steam nor the pressure ratio, but only the pressure difference is relevant.
In einer besonders bevorzugten Ausführungsform ist die Niederdruck-Entspannungsvorrichtung als Wälzkolbengebläse - als Rootsgebläse - oder in Form von Ovalradpumpen ausgeführt. Vorteilhaft ist, dass das Wälzkolbengebläse als Entspannungsvorrichtungen (Entspannungsmotoren) schon mit einer Druckdifferenz von 500 mbar mit einem vollen Wirkungsgrad arbeiten können und in einem geschlossenen System bei Drücken von 10 bis 0,5 bar eingesetzt werden kann. Erfindungsgemäß kann das Wälzkolbengebläse mit mindestens einer Einspritzöffnung ausgeführt sein, durch die das Absorptionsmittel und/oder ein protisches Lösemittel in das Wälzkolbengebläse einbringbar ist. Vorteilhafterweise erfolgt eine druckgesteuerte Einspritzung zur Verhinderung von Flüssigkeitsschäden. Eine weiterer Vorteil ist, dass bei den genannten Entspannungsvorrichtungen nur die Druckdifferenz und nicht die Masse oder das Entspannungsverhältnis für den Wirkungsgrad maßgebend ist. Bei bereits kleinen Druckdifferenzen von weniger als zwei bar kann ein voller Wirkungsgrad erreicht werden.In a particularly preferred embodiment, the low pressure expansion device is designed as a Roots blower - as Roots blower - or in the form of oval wheel pumps. It is advantageous that the Roots blower can work as a relaxation devices (relaxation motors) with a pressure difference of 500 mbar with full efficiency and can be used in a closed system at pressures of 10 to 0.5 bar. According to the invention, the Roots blower can be designed with at least one injection opening, through which the absorbent and / or a protic solvent can be introduced into the Roots blower. Advantageously, a pressure-controlled injection takes place to prevent liquid damage. Another advantage is that in the said expansion devices only the pressure difference and not the mass or the expansion ratio is decisive for the efficiency. With already small pressure differences of less than two bar, full efficiency can be achieved.
Zweckmäßigerweise weist das Wälzkolbengebläse eine gasdichte Dichtung zwischen Schöpfraum und Getrieberaum auf, wobei in einer weiteren Ausführungsform das Wälzkolbengebläse mehrflügelige Rotoren umfasst.Conveniently, the Roots blower on a gas-tight seal between the pumping chamber and the gear compartment, wherein in another embodiment, the Roots blower comprises multi-bladed rotors.
Das Wälzkolbengebläse weist ferner eine Welle auf, die mit dem Generator verbunden werden kann, wodurch die mechanische in elektrische Energie umgewandelt werden kann. Die Verwendung von einem Wälzkolbengebläse als Niederdruckentspannungsvorrichtung eröffnet, insbesondere bei der Nutzung von Abwärme mit einer Temperatur von weniger als ungefähr 100°C, für den Antrieb von beispielsweise Pumpen oder Generatoren die Möglichkeit, zum einen den Prozess durch Einspritzung von Absorptionsmitteln zu unterstützten, und zum anderen wegen der geringen Druck- und Temperaturdifferenzen die Kondensationsenergie des Arbeitsmittels, beispielsweise mit einer Wärmepumpe, wieder auf ein erhöhtes Temperaturniveau zu heben.The Roots blower further comprises a shaft which can be connected to the generator, whereby the mechanical can be converted into electrical energy. The use of a Roots blower as Niederdruckentspannungsvorrichtung opens, especially when using waste heat with a temperature of less than about 100 ° C, for driving such as pumps or generators the ability to support the process by injection of absorbents, and other because of the low pressure and temperature differences, the condensation energy of the working fluid, for example, with a heat pump to raise again to an elevated temperature level.
Bei einer weiteren Ausführung der Erfindung kann eine Trennanordnung vorgesehen sein, die die absorbierte erste Komponente vom Absorptionsmittel trennt. Die Trennanordnung kann beispielsweise als Membransystem ausgebildet sein, das der Absorptionsvorrichtung nachgeschaltet ist. Die desorbierte flüssige, erste Komponente wird zweckmäßigerweise zurück in den Verdampfer geleitet, in dem sie mit der zweiten flüssigen Komponente zusammen als azeotropes Arbeitsmittel verdampft. Das Absorptionsmittel kann zum Beispiel zur Entspannungsvorrichtung geführt werden, in der es in das sich entspannende Arbeitsmittel eingespritzt wird. In einer weiteren Alternative kann das Absorptionsmittel in einen Wäscher zurückgeführt werden, in dem die Absorption der ersten Komponente aus dem Arbeitsmittel erfolgt. Als Absorptionsmittel können Öle verwendet werden, aus denen sich die erste Komponente des Arbeitsmittels beispielsweise durch ein Membransystem vollständig wieder austreiben lässt.In a further embodiment of the invention, a separating arrangement may be provided which separates the absorbed first component from the absorbent. The separation arrangement may be formed, for example, as a membrane system, which is connected downstream of the absorption device. The desorbed liquid, first component is conveniently passed back into the evaporator where it evaporates together with the second liquid component as an azeotropic working fluid. For example, the absorbent may be directed to the expansion device where it is injected into the relaxing working fluid. In a further alternative, the absorbent may be recycled to a scrubber where absorption of the first component from the working fluid occurs. The absorption medium used may be oils from which the first component of the working medium can be driven out completely, for example by a membrane system.
Die Trennung der ersten absorbierten Komponente im Absorptionsmittel kann alternativ durch einen Verdampfungsvorgang der absorbierten Komponente durchgeführt werden.The separation of the first absorbed component in the absorbent may alternatively be carried out by an evaporation process of the absorbed component.
Vorzugsweise wird die nach der Absorptionsvorrichtung verbleibende zweite Komponente, die erfindungsgemäß trotz Entspannung Wärme aufgrund der Absorption der ersten Komponente aufgenommen hat, in einen Wärmetauscher im Verdampfer geleitet, in dem die zweite Komponente kondensiert. Das Kondensat wird mit einer Pumpe zurück in den Verdampfer gefördert. Vorzugsweise werden in dem Verdampfer die erste und die zweite Komponente als Arbeitsmittel verdampft. Als Absorptionsmittel können Flüssigkeiten verwendet werden, aus denen sich die erste Komponente des Arbeitsmittels beispielsweise durch das Membransystem oder Verdampfung vollständig wieder austreiben lässt.Preferably, the second component remaining after the absorption device, which according to the invention has absorbed heat despite relaxation due to the absorption of the first component, is passed into a heat exchanger in the evaporator, in which the second component condenses. The condensate is pumped back into the evaporator. Preferably, in the evaporator, the first and second components are evaporated as working fluid. As an absorbent, liquids can be used from which the first component of the working fluid can be driven out completely, for example, by the membrane system or evaporation.
Vorzugsweise ist das Arbeitsmittel ein azeotropes Gemisch aus Wasser und Silikon. Das Wasser ist hierbei die erste, zu absorbierende Komponente und Silikon die zweite Komponente. Zweckmäßigerweise ist das Absorptionsmittel ein Silikat. Vorteilhafterweise ist das Absorptionsmittel eine alkalische molekulardisperse Silikatlösung, wobei das in der alkalischen Silikatlösung absorbierte Wasser beispielsweise durch Erhitzen desorbiert wird. Die thermische Desorption wird vorteilhafterweise in einem vom Verdampfer getrennten Austreiberaggregat realisiertPreferably, the working fluid is an azeotropic mixture of water and silicone. The water is here the first component to be absorbed and silicone the second component. Conveniently, the absorbent is a silicate. Advantageously the absorbent is an alkaline molecular disperse silicate solution, wherein the water absorbed in the alkaline silicate solution is desorbed, for example, by heating. The thermal desorption is advantageously realized in a separate from the evaporator Ausseraggregat
Die Aufgabe der Erfindung wird ebenfalls durch eine Anlage zur Umwandlung von Wärmeenergie in mechanische Energie mit den Merkmalen des Anspruches 19 gelöst. In den abhängigen Ansprüchen sind bevorzugte Weiterbildung ausgeführt.The object of the invention is also achieved by a system for converting thermal energy into mechanical energy with the features of claim 19. In the dependent claims preferred training are executed.
Erfindungsgemäß bezieht sich die Erfindung auf eine Anlage mit einem Verdampfer, in dem ein Arbeitsmittel, das durch ein Gemisch, vorzugsweise ein azeotropes Gemisch, gebildet ist, verdampfbar ist, mit einer Niederdruck-Entspannungsvorrichtung, mit einer Absorptionsvorrichtung, die in der Niederdruck-Entspannungsvorrichtung integriert ist und/oder der Niederdruck-Entspannungsvorrichtung nachgeschaltet ist, mit einer Kältemaschine, die mit dem Verdampfer verbunden ist, wobei Mittel zur Wärmerückführung vorgesehen sind, mit denen in der Absorptionsvorrichtung eine erste Komponente des Arbeitsmittels durch ein Absorptionsmittel absorbierbar ist und Wärmenergie auf die verbleibende, dampfförmige zweite Komponente übertragbar ist, die zum Verdampfer rückführbar ist. Die in der Kältemaschine bei der Kondensation des Kältemittels im Kondensator oder im Verflüssiger anfallende Wärmeenergie (Abwärme) wird für den Verdampfungsprozess im Verdampfer genutzt, in dem das Arbeitsmittel verdampft wird und in die Entspannungsvorrichtung geleitet wird. In der Entspannungsvorrichtung wird die Wärmeenergie in mechanische Energie umgewandelt. Die Entspannungsvorrichtung kann zum Beispiel mit einem Generator verbunden sein, so dass die mechanischer Energie in elektrische Energie umgewandelt wird. Wird das Arbeitsmittel als azeotropes oder ein nahezu azeotropes Gemisch gebildet, so zeichnet sich die erfindungsgemäße Anlage durch einen besonders guten Wirkungsgrad aus. Zum einen fällt ein großer Betrag an mechanischer Energie, insbesondere durch den Einsatz eines Wälzkolbengebläses an, die vorzugsweise nach der Umwandlung in elektrische Energie zur anteiligen Deckung der Antriebsenergie in den Kältemaschinenprozess zurückgeführt werden kann. Zum anderen enthält die verbleibende, zweite Komponente eine ausreichend großen Betrag an Wärmeenergie, die für den Verdampfungsprozess des flüssigen Arbeitsmittels genutzt werden kann.According to the invention, the invention relates to a plant with an evaporator, in which a working fluid, which is formed by a mixture, preferably an azeotropic mixture, is evaporable, with a low-pressure expansion device, with an absorption device which integrates in the low-pressure expansion device and / or the low-pressure expansion device is connected downstream, with a refrigerator, which is connected to the evaporator, wherein means are provided for heat recovery, with which in the absorption device, a first component of the working fluid is absorbable by an absorbent and heat energy to the remaining, vaporous second component is transferable, which is traceable to the evaporator. The heat energy (waste heat) arising in the chiller during the condensation of the refrigerant in the condenser or in the condenser is used for the evaporation process in the evaporator, in which the working medium is vaporized and conducted into the expansion device. In the expansion device, the heat energy is converted into mechanical energy. The expansion device may be connected to a generator, for example, so that the mechanical energy is converted into electrical energy. If the working fluid is formed as an azeotropic or an almost azeotropic mixture, then the system according to the invention is characterized by a particularly good efficiency. Firstly, a large amount of mechanical energy, in particular by the use of a Roots blower, which preferably after the conversion into electrical energy for proportionate coverage of the drive energy can be returned to the chiller process. On the other hand, the remaining, second component contains a sufficiently large amount of heat energy that can be used for the evaporation process of the liquid working fluid.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung ein Ausführungsbeispiel der Erfindung im Einzelnen beschrieben ist. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.Further advantages, features and details of the invention will become apparent from the following description in which, with reference to the drawing, an embodiment of the invention is described in detail. The features mentioned in the claims and in the description may each be essential to the invention individually or in any desired combination.
Das Arbeitsmittel, das in der vorliegenden Ausführungsform ein azeotropes Gemisch mit einer ersten und einer zweiten Komponente ist, wird durch die anfallende Wärmeenergie der Kältemaschine 8 verdampft und in der nachgeschalteten Niederdruck-Entspannungsvorrichtung 2 entspannt, wobei mechanische Energie "gewonnen" wird. Die Niederdruck-Entspannungsvorrichtung 2, die im folgenden Ausführungsbeispielen als Wälzkolbengebläse 2 ausgeführt ist, ist mit einem Generator 1 verbunden und treibt diesen an, so dass mechanische Energie in elektrische Energie umgewandelt wird. Diese elektrische Energie kann beispielsweise anteilig für den Betrieb des Verdichters 12 der Kältemaschine 8 genutzt werden.The working fluid, which in the present embodiment is an azeotropic mixture with a first and a second component, is vaporized by the heat energy of the chiller 8 and released in the downstream low-
Der Entspannung nachgeschaltet ist eine Absorptionsvorrichtung 3, in
Die absorbierte erste Komponente wird gemeinsam mit dem Absorptionsmittel durch eine Pumpe 10 in ein Membransystem 5 geleitet, das die erste Komponente vom Absorptionsmittel trennt. Die erste Komponente wird anschließend in den Verdampfer 6 gefördert, das Absorptionsmittel gelangt wieder in den Wäscher 3.The absorbed first component is passed together with the absorbent through a
Besonders vorteilhaft ist, dass neben einer Umwandlung der anfallenden Wärmeenergie aus der Kältemaschine 8 in mechanische Energie eine Energierückführung durch eine absorptive Trennung des dampfförmigen Arbeitsmittels im Wäscher 3 realisierbar ist, wobei die Absorptionsenergie die dampfförmig verbleibende, zweite Komponente so weit erhitzt, dass sie erneut zur Verdampfung des Arbeitsmittels genutzt werden kann.It is particularly advantageous that in addition to a conversion of the resulting heat energy from the chiller 8 into mechanical energy, an energy return by an absorptive Separation of the vaporous working fluid in the
- 11
- Generatorgenerator
- 22
- Entspannungsvorrichtung, WälzkolbengebläseExpansion device, Roots blower
- 33
- Absorptionsvorrichtung, WäscherAbsorbing device, scrubber
- 55
- Trennanordnung, MembransystemSeparation arrangement, membrane system
- 66
- VerdampferEvaporator
- 77
- Wärmetauscherheat exchangers
- 88th
- Kältemaschinerefrigeration machine
- 99
- Pumpepump
- 1010
- Pumpepump
- 1212
- Verdichtercompressor
- 1313
- Verdampfer (Kältemaschine)Evaporator (chiller)
- 1414
- Drosselventilthrottle valve
- 1515
- Wärmetauscher, Verflüssiger (Kältemaschine)Heat exchanger, condenser (chiller)
Claims (23)
- Method for converting thermal energy, which arises in a refrigerator (8) from the condensation of a refrigerant, into mechanical energy, in which a working medium is vaporized in a vaporizer (6) by the thermal energy, the working medium is relaxed in a relaxation device (2) and the thermal energy is at least partially converted into mechanical energy, characterized in that the relaxation occurs in a low-pressure relaxation device (2) and the energy contained in the relaxed vaporized working medium can be recirculated into the vaporizer (6), which is usable for vaporizing additional working medium.
- Method according to Claim 1, characterized in that a first component of the working medium, which is formed by a mixture, is absorbed in and/or after the low-pressure relaxation device (2) by means of an absorption agent, wherein heat is transferred to the remaining, vaporized second component, which can be recirculated.
- Method according to Claim 1 or 2, characterized in that the mixture forms an azeotropic mixture having a boiling point minimum in the case of a specific mixing ratio.
- Method according to Claim 2 or 3, characterized in that the working medium is provided as an azeotropic mixture or as a nearly azeotropic mixture.
- Method according to any one of the preceding claims, characterized in that, due to the heat transfer during the absorption, the vaporized remaining second component is heated to a temperature above the boiling temperature of the mixture, wherein the second component is condensed in a heat exchanger (7), whereby the vaporization of the working medium occurs.
- Method according to any one of the preceding claims, characterized in that the working medium has a low volume-specific vaporization enthalpy.
- Method according to any one of the preceding claims, characterized in that the working medium is a solvent mixture, which has organic and/or inorganic solvent components.
- Method according to any one of the preceding claims, characterized in that at least one component is a protic solvent.
- Method according to any one of the preceding claims, characterized in that the absorption agent is a solvent which can be immobilized reversibly, and which is the first component of the working medium in the non-immobilized phase.
- Method according to any one of the preceding claims, characterized in that the low-pressure relaxation device (2) is a positive displacement lobe blower (2).
- Method according to any one of the preceding claims, characterized in that an absorption device (3), in which the first component is absorbed, is connected downstream from the low-pressure relaxation device (2).
- Method according to Claim 11, characterized in that the absorption device (3) is implemented as a washer (3).
- Method according to any one of the preceding claims, characterized in that a separating assembly (5) separates the absorbed first component from the absorption agent.
- Method according to Claim 13, characterized in that the separating assembly (5) is implemented as a membrane system (5).
- Method according to any one of the preceding claims, characterized in that a pump (9) conveys the condensed second component into the vaporizer (6).
- Method according to any one of the preceding claims, characterized in that a pump (10) conveys the absorption agent into the separating assembly (5) and subsequently back to the washer (3).
- Method according to any one of the preceding claims, characterized in that the working medium is an azeotropic mixture made of perchloroethylene and water or of silicone and water.
- Method according to any one of the preceding claims, characterized in that the absorption agent is a silicate solution.
- Plant for converting thermal energy into mechanical energy, characterized in that it comprises the following components:(a) a vaporizer (6), in which a working medium, which is formed by a mixture, can be vaporized,(b) a low-pressure relaxation device (2),(c) an absorption device (3), which is integrated in the low-pressure relaxation device (2) and/or is connected downstream from the low-pressure relaxation device (2),(d) a refrigerator (8), which is connected to the vaporizer (6),(e) means for heat recirculation, using which a first component of the working medium is absorbable by an absorption agent in the absorption device (3) and thermal energy is transferable to the remaining, vaporized second component, which can be recirculated to the vaporizer (6).
- Plant according to Claim 19, characterized in that the low-pressure relaxation device (2) is a positive displacement lobe blower (2).
- Plant according to Claim 19 or 20, characterized in that a separating assembly (5) separates the absorbed first component from the absorption agent.
- Plant according to any one of Claims 19 to 21, characterized in that the low-pressure relaxation device (2) is connected to a generator (1).
- Plant according to any one of Claims 19 to 22, characterized in that the refrigerator (8) comprises a vaporizer (13), a compressor (12), a heat exchanger (15), and a throttle unit (14), wherein the vaporizer (6) comprises the heat exchanger (15).
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003160364 DE10360364A1 (en) | 2003-12-22 | 2003-12-22 | Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium |
DE2003160380 DE10360380A1 (en) | 2003-12-22 | 2003-12-22 | Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium |
DE2003160379 DE10360379A1 (en) | 2003-12-22 | 2003-12-22 | Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium |
DE2003161223 DE10361223A1 (en) | 2003-12-24 | 2003-12-24 | Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium |
DE2003161203 DE10361203A1 (en) | 2003-12-24 | 2003-12-24 | Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium |
PCT/EP2004/053649 WO2005066465A1 (en) | 2003-12-22 | 2004-12-22 | Method and installation for converting heat energy from refrigerating machines |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1706598A1 EP1706598A1 (en) | 2006-10-04 |
EP1706598B1 true EP1706598B1 (en) | 2013-10-16 |
Family
ID=34714591
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04804983.7A Active EP1706598B1 (en) | 2003-12-22 | 2004-12-22 | Method and installation for converting heat energy from refrigerating machines |
EP04816348A Active EP1702140B1 (en) | 2003-12-22 | 2004-12-22 | Method for converting heat energy into mechanical energy with a low-pressure expansion device |
EP04804985A Withdrawn EP1706681A1 (en) | 2003-12-22 | 2004-12-22 | Method and system for increasing the temperature of a vaporous working medium |
EP04804988.6A Active EP1706599B1 (en) | 2003-12-22 | 2004-12-22 | Method and system for converting heat energy into mechanical energy |
EP04804984A Withdrawn EP1702139A1 (en) | 2003-12-22 | 2004-12-22 | Device and method for converting heat energy into mechanical energy |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04816348A Active EP1702140B1 (en) | 2003-12-22 | 2004-12-22 | Method for converting heat energy into mechanical energy with a low-pressure expansion device |
EP04804985A Withdrawn EP1706681A1 (en) | 2003-12-22 | 2004-12-22 | Method and system for increasing the temperature of a vaporous working medium |
EP04804988.6A Active EP1706599B1 (en) | 2003-12-22 | 2004-12-22 | Method and system for converting heat energy into mechanical energy |
EP04804984A Withdrawn EP1702139A1 (en) | 2003-12-22 | 2004-12-22 | Device and method for converting heat energy into mechanical energy |
Country Status (6)
Country | Link |
---|---|
US (2) | US7726128B2 (en) |
EP (5) | EP1706598B1 (en) |
AT (1) | ATE371101T1 (en) |
DE (1) | DE502004004776C5 (en) |
ES (2) | ES2624638T3 (en) |
WO (5) | WO2005061858A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006021928A1 (en) * | 2005-06-02 | 2007-11-15 | Lutz Giechau | Device for generating mechanical energy |
DE102006022792B3 (en) | 2006-05-16 | 2007-10-11 | Erwin Dr. Oser | Converting solar heat to mechanical energy with beam compressor involves operating compressor so end temperature is above working medium evaporation temperature, pumping condensate into compensation container, back to collector, evaporator |
DE102007041457B4 (en) * | 2007-08-31 | 2009-09-10 | Siemens Ag | Method and device for converting the heat energy of a low-temperature heat source into mechanical energy |
DE102008013737A1 (en) | 2008-03-06 | 2009-09-10 | Heinz Manfred Bauer | Method for converting thermal energy into mechanical energy and electrical energy, involves obtaining energy from heat supply source at temperature of eighty degree Celsius, where energy is supplied to medium over heat exchanger |
DE102008024116A1 (en) * | 2008-05-17 | 2009-11-19 | Hamm & Dr. Oser GbR (vertretungsberechtiger Gesellschafter: Dr. Erwin Oser, 50670 Köln) | Conversion of the pressure energy of gases and vapors at low output pressures into mechanical energy |
DE102008036917A1 (en) | 2008-08-05 | 2010-02-11 | Heinz Manfred Bauer | Method for transformation of thermal energy into mechanical energy and then into electric energy, involves extracting energy from heat supplier by heat exchanger and guiding medium that changes physical condition from liquid to gas |
EP2406485B1 (en) * | 2009-03-12 | 2017-09-06 | Joseph B. Seale | Heat engine with regenerator and timed gas exchange |
US20130174552A1 (en) * | 2012-01-06 | 2013-07-11 | United Technologies Corporation | Non-azeotropic working fluid mixtures for rankine cycle systems |
US9587521B2 (en) * | 2012-02-29 | 2017-03-07 | Eaton Corporation | Volumetric energy recovery device and systems |
DE102012016991A1 (en) | 2012-08-25 | 2014-02-27 | Erwin Oser | Method for converting energy from pressurized gaseous medium into mechanical or electric energy, involves releasing pressurized medium in unit, which has defining outer walls, two connection flanges and two rotors |
DE102013112024A1 (en) * | 2013-10-31 | 2015-04-30 | ENVA Systems GmbH | Positive displacement blower with a sealing system |
US10648745B2 (en) | 2016-09-21 | 2020-05-12 | Thermal Corp. | Azeotropic working fluids and thermal management systems utilizing the same |
DE102019135820A1 (en) | 2019-12-27 | 2021-07-01 | Corinna Ebel | Process for steam generation, steam generator and use of a Roots blower |
CN112412560A (en) * | 2020-10-28 | 2021-02-26 | 北京工业大学 | Kalina circulation system based on single screw expander |
DE202021100874U1 (en) | 2021-02-23 | 2022-05-30 | Marlina Hamm | Roots blower for expansion of a vaporous medium at high pressure and good tightness |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1546326A (en) * | 1966-12-02 | 1968-11-15 | Advanced energy generator, particularly for creating energy using refrigerant | |
DE1601003A1 (en) * | 1966-12-02 | 1970-07-16 | Gohee Mamiya | Power generation system |
GB1301214A (en) * | 1970-05-26 | 1972-12-29 | Wallace Louis Minto | Prime mover system |
US3972195A (en) * | 1973-12-14 | 1976-08-03 | Biphase Engines, Inc. | Two-phase engine |
US4009575A (en) * | 1975-05-12 | 1977-03-01 | said Thomas L. Hartman, Jr. | Multi-use absorption/regeneration power cycle |
FR2374539A1 (en) * | 1976-12-15 | 1978-07-13 | Air Ind | WATER VAPOR COMPRESSION PROCESS, AND THERMAL CIRCUITS FOR ITS IMPLEMENTATION |
US4295335A (en) * | 1978-01-09 | 1981-10-20 | Brinkerhoff Verdon C | Regenative absorption engine apparatus and method |
DE2803118B2 (en) * | 1978-01-25 | 1980-07-31 | Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden | Method for heating with an absorption heat pump system and device for carrying out the method |
US4195485A (en) * | 1978-03-23 | 1980-04-01 | Brinkerhoff Verdon C | Distillation/absorption engine |
US4307572A (en) * | 1978-05-15 | 1981-12-29 | New Energy Dimension Corporation | Externally cooled absorption engine |
US4429661A (en) * | 1981-11-27 | 1984-02-07 | Mcclure Michael C | Heat recovery apparatus and method |
US4534175A (en) * | 1982-03-11 | 1985-08-13 | Gason Energy Engineering Ltd. | Method and apparatus for the absorption of a gas in a liquid and their use in energy conversion cycles |
DE3219680A1 (en) * | 1982-05-21 | 1983-11-24 | Siemens AG, 1000 Berlin und 8000 München | HEAT PUMP SYSTEM |
WO1985002881A1 (en) * | 1983-12-22 | 1985-07-04 | Lipovetz Ivan | System for converting heat energy, particularly for utilizing heat energy of the environment |
DE3417833A1 (en) * | 1984-05-14 | 1985-11-14 | VEB Wärmeanlagenbau "DSF" im VE Kombinat Verbundnetze Energie, DDR 1020 Berlin | Arrangement for a resorption heat-pump installation for generating heating heat from industrial and environmental heat |
DE3619547A1 (en) | 1984-12-13 | 1987-12-17 | Peter Koch | Process and device for generating a force from a temperature difference between two media |
JPS61171811A (en) * | 1985-01-28 | 1986-08-02 | Sanyo Electric Co Ltd | Absorption heatpump for taking out power |
US4622820A (en) * | 1985-09-27 | 1986-11-18 | Sundquist Charles T | Absorption power generator |
JPH0696978B2 (en) * | 1985-12-03 | 1994-11-30 | トヨタ自動車株式会社 | Internal combustion engine with supercharger |
US4848088A (en) * | 1987-12-03 | 1989-07-18 | Lazarevich Milan P M | Heat recycling process |
US5027602A (en) * | 1989-08-18 | 1991-07-02 | Atomic Energy Of Canada, Ltd. | Heat engine, refrigeration and heat pump cycles approximating the Carnot cycle and apparatus therefor |
US5791157A (en) * | 1996-01-16 | 1998-08-11 | Ebara Corporation | Heat pump device and desiccant assisted air conditioning system |
DE19712325A1 (en) * | 1997-03-24 | 1998-10-15 | Wilhelm Holzapfel | Low level thermal energy conversion system |
KR20010002901A (en) * | 1999-06-18 | 2001-01-15 | 김창선 | Reusing method of substance thermal expansion energy |
GB0007917D0 (en) * | 2000-03-31 | 2000-05-17 | Npower | An engine |
HU0100463D0 (en) * | 2001-01-29 | 2001-03-28 | Szopko Mihaly | Method and device for absorption heat pumping |
US6672064B2 (en) * | 2002-03-14 | 2004-01-06 | The Sun Trust, L.L.C. | Rankine cycle generation of electricity |
DE10214183C1 (en) * | 2002-03-28 | 2003-05-08 | Siemens Ag | Drive mechanism, for refrigeration, has absorption refrigeration machine connected to steam turbine, operated by steam extracted from turbine, preferably from low pressure part of turbine |
US7019412B2 (en) * | 2002-04-16 | 2006-03-28 | Research Sciences, L.L.C. | Power generation methods and systems |
DE10221145A1 (en) * | 2002-05-11 | 2003-11-20 | Juergen Uehlin | Thermal power engine for electricity generation and operating process, has internal heat sink based on the state of aggregation of a fluid |
US7028476B2 (en) * | 2004-05-22 | 2006-04-18 | Proe Power Systems, Llc | Afterburning, recuperated, positive displacement engine |
-
2004
- 2004-12-22 WO PCT/EP2004/053654 patent/WO2005061858A1/en active IP Right Grant
- 2004-12-22 EP EP04804983.7A patent/EP1706598B1/en active Active
- 2004-12-22 WO PCT/EP2004/053655 patent/WO2005066466A1/en active Application Filing
- 2004-12-22 EP EP04816348A patent/EP1702140B1/en active Active
- 2004-12-22 DE DE502004004776.9T patent/DE502004004776C5/en active Active
- 2004-12-22 AT AT04816348T patent/ATE371101T1/en active
- 2004-12-22 EP EP04804985A patent/EP1706681A1/en not_active Withdrawn
- 2004-12-22 WO PCT/EP2004/053649 patent/WO2005066465A1/en active Application Filing
- 2004-12-22 ES ES04804988.6T patent/ES2624638T3/en active Active
- 2004-12-22 ES ES04816348T patent/ES2293384T3/en active Active
- 2004-12-22 US US10/583,936 patent/US7726128B2/en not_active Expired - Fee Related
- 2004-12-22 WO PCT/EP2004/053651 patent/WO2005061973A1/en active Application Filing
- 2004-12-22 WO PCT/EP2004/053650 patent/WO2005061857A1/en active Application Filing
- 2004-12-22 EP EP04804988.6A patent/EP1706599B1/en active Active
- 2004-12-22 US US10/583,925 patent/US8132413B2/en not_active Expired - Fee Related
- 2004-12-22 EP EP04804984A patent/EP1702139A1/en not_active Withdrawn
Also Published As
Publication number | Publication date |
---|---|
EP1702139A1 (en) | 2006-09-20 |
EP1706599B1 (en) | 2017-02-15 |
DE502004004776C5 (en) | 2020-01-16 |
US7726128B2 (en) | 2010-06-01 |
EP1706599A1 (en) | 2006-10-04 |
WO2005061857A1 (en) | 2005-07-07 |
WO2005066466A1 (en) | 2005-07-21 |
WO2005061973A1 (en) | 2005-07-07 |
ES2293384T3 (en) | 2008-03-16 |
ES2624638T3 (en) | 2017-07-17 |
WO2005061858A1 (en) | 2005-07-07 |
US20080134680A1 (en) | 2008-06-12 |
EP1706681A1 (en) | 2006-10-04 |
ATE371101T1 (en) | 2007-09-15 |
WO2005066465A1 (en) | 2005-07-21 |
EP1706598A1 (en) | 2006-10-04 |
US8132413B2 (en) | 2012-03-13 |
DE502004004776D1 (en) | 2007-10-04 |
EP1702140B1 (en) | 2007-08-22 |
US20080289336A1 (en) | 2008-11-27 |
EP1702140A1 (en) | 2006-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1706598B1 (en) | Method and installation for converting heat energy from refrigerating machines | |
EP2021634B1 (en) | Device and associated method for the conversion of heat energy into mechanical, electrical and/or thermal energy | |
WO2009027302A2 (en) | Method and device for converting thermal energy into mechanical energy | |
DE102008005978A1 (en) | Low-temperature power plant and method for operating a thermodynamic cycle | |
CH675749A5 (en) | ||
WO2014154405A1 (en) | Heat engine and method for operating a heat engine | |
WO2005078243A1 (en) | Method and installation for converting thermal energy from fluids into mechanical energy | |
AT510809A1 (en) | DEVICE FOR WASTE USE | |
WO2007042215A1 (en) | Method and device for generating mechanical or electrical energy from heat | |
WO2008055720A2 (en) | Working medium for steam circuit process | |
WO2008031613A2 (en) | Current generation in the base load region with geothermal energy | |
DE102023122824B4 (en) | Method and arrangement for using cold potentials to generate electrical energy by means of an ORC cycle | |
WO2024223360A1 (en) | Method and assembly for using cooling potentials for generating electric energy using an orc circuit process | |
DE202004021185U1 (en) | Method for converting thermal energy into mechanical energy uses low-pressure expansion device to expand vaporous working medium whereby energy is returned to evaporator used to evaporate another working medium | |
DE102004014652A1 (en) | Process for recovering the stream from low temperature heat regenerative energy or an industrial thermal process comprises using an energetic circulation method with low pressure vapor release | |
DE102012024016B4 (en) | A method of operating a thermodynamic cycle with a step of removing thermal energy | |
DE102022127011A1 (en) | Heat pump device for energy-efficient generation of process heat, drying device for drying a material to be dried and method for operating a heat pump device | |
WO1991012474A1 (en) | Process and installation for converting waste heat into useful energy | |
DE102004030367A1 (en) | Method for production of current through condensation on cooled heat exchange surfaces entails using heat energy released during cooling of air and condensation of water vapour to drive cyclic process for production of current | |
DE102014101648B3 (en) | Absorption refrigerating machine and method for generating cold | |
DE2830896A1 (en) | IC engine using fuel-oxygen-water vapour mixt. - has evaporator extracting heat from cooling water and condenser system | |
DE4003446A1 (en) | Producing cold and power from heat-pump - operated with binary fluids to utilise low-grade available heat | |
DE102004037727A1 (en) | A method for the recovery of heat in a refrigeration circuit has the condenser heat exchanger generated water vapour expanded, washed and separated before return | |
DE4243569A1 (en) | Efficient steam-raising process for thermally operated power station - has additional water circulation for reclamation of latent heat of condensation to assist steam generation and eliminate cooling towers | |
DE102008024116A1 (en) | Conversion of the pressure energy of gases and vapors at low output pressures into mechanical energy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060704 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ECOENERGY PATENT GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ECOENERGY PATENT GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20130517 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 636621 Country of ref document: AT Kind code of ref document: T Effective date: 20131115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004014397 Country of ref document: DE Effective date: 20131212 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20131016 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140216 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 |
|
BERE | Be: lapsed |
Owner name: ECOENERGY PATENT G.M.B.H. Effective date: 20131231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140217 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004014397 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131222 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 |
|
26N | No opposition filed |
Effective date: 20140717 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140116 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004014397 Country of ref document: DE Effective date: 20140717 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20141231 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20150121 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20141230 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20131016 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20041222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140117 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 636621 Country of ref document: AT Kind code of ref document: T Effective date: 20151222 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151222 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502004014397 Country of ref document: DE Representative=s name: MICHALSKI HUETTERMANN & PARTNER PATENTANWAELTE, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004014397 Country of ref document: DE Owner name: AAA EFFICIENCY AG, CH Free format text: FORMER OWNER: ECOENERGY PATENT GMBH, 64293 DARMSTADT, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20201230 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004014397 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220701 |