[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1794433B8 - Verfahren und vorrichtung zum steuern einer brennkraftmaschine - Google Patents

Verfahren und vorrichtung zum steuern einer brennkraftmaschine

Info

Publication number
EP1794433B8
EP1794433B8 EP05777800A EP05777800A EP1794433B8 EP 1794433 B8 EP1794433 B8 EP 1794433B8 EP 05777800 A EP05777800 A EP 05777800A EP 05777800 A EP05777800 A EP 05777800A EP 1794433 B8 EP1794433 B8 EP 1794433B8
Authority
EP
European Patent Office
Prior art keywords
fuel
pressure pump
low
pressure
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05777800A
Other languages
English (en)
French (fr)
Other versions
EP1794433B1 (de
EP1794433A1 (de
Inventor
Erwin Achleitner
Martin Cwielong
Gerhard Eser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
VDO Automotive AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VDO Automotive AG filed Critical VDO Automotive AG
Publication of EP1794433A1 publication Critical patent/EP1794433A1/de
Application granted granted Critical
Publication of EP1794433B1 publication Critical patent/EP1794433B1/de
Publication of EP1794433B8 publication Critical patent/EP1794433B8/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/31Control of the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves

Definitions

  • the invention relates to a method and an associated front ⁇ direction for controlling an internal combustion engine with a fuel supply.
  • the fuel supply device comprises a low pressure circuit with a low pressure pump and a high pressure pump, which is coupled on the input side with the low pressure circuit and the fuel in a KraftstoffSpei cher ⁇ promotes.
  • Such a fuel supply device is known from DE 101 62 989 C1. Furthermore, a circuit arrangement for Re ⁇ rules a controllable fuel pump for an injection system of an internal combustion engine disclosed in which a controller is seen pre ⁇ which compares a target value of fuel pressure with egg ⁇ nem actual value of the fuel pressure and depending on the difference value, a control value for the conveying capacity the fuel pump determined. It is a further Vor Kunststoffein ⁇ standardized and an adder provided. The adding it ⁇ averages a control signal from the control value and a Vorsteu ⁇ Erwert for controlling the delivery rate of the fuel pump. The pilot control unit determines the pilot control value as a function of a desired delivery volume.
  • the invention has for its object to provide a method and associated apparatus, and which can make a to-ver understandes controlling an internal combustion engine simply provides ⁇ .
  • the object is solved by the features of the independent claims.
  • Advantageous developments of the invention are characterized in the subclaims.
  • the invention is characterized by a method and an associated device for controlling an internal combustion engine with a fuel supply device.
  • the fuel supply device comprises a low-pressure circuit with a low-pressure pump and a high-pressure pump, which is coupled on the input side with the low-pressure circuit and conveys fuel into a fuel reservoir.
  • a fuel delivery flow of the low-pressure pump is corrected as a function of a current and a previous predetermined desired value of the fuel pressure in the fuel storage.
  • This has the advantage may be that the fuel delivery flow of the Nie ⁇ derdruckpumpe controlled so that a fuel ⁇ is quantitatively considered, which passed through an increase of the pre ⁇ target value of the fuel pressure by the high pressure pump further from the low pressure circuit in the fuel ⁇ memory is promoted or by a reduction of the predetermined target value of the fuel pressure from the high ⁇ pressure pump is less promoted from the low pressure circuit in the fuel ⁇ material storage or is discharged from the Kraftstoffspei- rather in the low pressure circuit. A uner wished ⁇ increase or decrease in the fuel pressure in the low pressure circuit can be avoided.
  • the Cor ⁇ rection can be carried out to delay the fuel delivery flow of the low-pressure pump near ⁇ .
  • the components in the low-pressure circuit for example the low-pressure pump or an Pressure relief valve, can be easily relieved and protected from damage. As a result, the fuel supply device can be particularly reliable.
  • the current and the previous predetermined target value of the fuel pressure in the fuel accumulator are vorzugswei ⁇ se function of operating variables, or the operating mode of the internal combustion engine is determined, for example depending on egg ⁇ ner speed or a fuel mass to or dependent on a homogeneous or stratified operation.
  • the foregoing predetermined target value of the fuel pressure is a time determined before the current predefined setpoint value of the fuel pressure setpoint value of the fuel pressure, for example, vorangegange in the last ⁇ NEN stationary phase of the target value of the fuel pressure he ⁇ was averages.
  • the fuel pressure in the fuel reservoir is preferably regulated by a control device as a function of the current setpoint value of the fuel pressure.
  • the correction of the fuel delivery flow of the low pressure pump is activated depending on the current and the previous predetermined setpoint of the fuel pressure in the fuel ⁇ memory.
  • This has the advantage that the fuel delivery flow of the low-pressure pump is only corrected if necessary.
  • the correction of the fuel delivery flow of the low-pressure pump is started when the predetermined target value of the fuel pressure is changed by a large amount, that is, for example, the amount of the difference between the current and the previous predetermined Setpoint of the fuel pressure in about 100 bar or the ratio between the current and the previous predetermined setpoint of the fuel pressure is about 50 percent.
  • a first correction value is determined when the correction of the fuel delivery flow of the low-pressure pump is activated.
  • the first correction value is determined as a function of a current and a preceding variable which is representative of a fuel delivery flow of the high-pressure pump which is set as a function of the current preset nominal value of the fuel pressure in the fuel reservoir .
  • the fuel delivery flow of the low pressure pump is corrected depending on the first correction value.
  • the knowledge is used that the fuel delivery ⁇ flow of the high-pressure pump is controlled or regulated depending on the respective current setpoint value of the fuel pressure in the fuel storage and the current and the previous size then ent ⁇ holds information about how the fuel flow the high-pressure pump changes after a change in the predetermined setpoint of the fuel pressure. This information can be used very easily in order to adapt the fuel delivery flow of the low-pressure pump accordingly.
  • the variable that is representative of a fuel delivery flow of the high-pressure pump is, for example, a control signal for setting the fuel delivery flow of the high-pressure pump, but it may also be a measured value of a measured variable detected by a sensor or an estimated variable.
  • the first correction value is assigned a neutral value after From ⁇ running a predetermined period of time immediately an ⁇ joins the last activation of correcting the fuel delivery flow of the low pressure pump.
  • a current second correction value is determined, which is equal to the first correction value, while the correction of the fuel delivery flow of the low-pressure pump is activated.
  • the current second correction value is further determined from ⁇ dependent on a difference from a previous second correction value and a reset value when the correction of the fuel delivery flow of the low pressure pump is not activated, until the current second correction value a neutral
  • the fuel delivery flow of the low pressure pump is corrected depending on the second correction value. This has the advantage that a possibly provided control or regulation is relieved of the fuel pressure in the low pressure circuit by avoiding sudden large ⁇ nde ⁇ conclusions of the fuel delivery flow of the low-pressure pump, after ⁇ which has been disabled, the correction of the fuel delivery flow of the low pressure ⁇ pump.
  • a third correction value is determined when the correction of the fuel delivery flow of the low-pressure pump is activated.
  • the third correction value is determined depending on the current and the previous predetermined setpoint of the fuel pressure in the fuel storage.
  • the fuel delivery flow of the low-pressure pump is corrected as a function of the third correction value. Correcting the fuel flow of the low pressure pump is so easy. Such a correction can be made even if no member Stell ⁇ pump for altering the fuel delivery flow of the high pressure ⁇ at steady speed is present.
  • Correction value is determined from a map. This has the advantage that the determination of the third correction value is very simple and that the required computing effort is low.
  • FIG. 2 shows the block diagram of a control device for regulating the fuel pressure in a fuel feed
  • FIG. 5 shows a flowchart for a second embodiment of the program for determining the fuel delivery flow of the low-pressure pump. Elements of the same construction or function are provided with the same reference numbers across the figures.
  • An internal combustion engine (FIG. 1) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract 4.
  • the engine block 2 comprises a plurality of cylinders which have pistons and connecting rods via which they are coupled to a crankshaft 21.
  • the cylinder head 3 includes a valve gear with a gas ⁇ inlet valve, a gas outlet and valve actuators.
  • the cylinder head 3 further includes an injection valve 34 and a spark plug.
  • a fuel supply device 5 comprises a fuel tank 50, which is connected to a low-pressure pump 51 via a first fuel line.
  • the low pressure pump 51 is operatively connected to an inlet 53 of a high pressure pump 54.
  • a pressure relief valve 52 is provided, which is connected on the output side via a further force ⁇ fuel line to the fuel tank 50.
  • the low-pressure pump 51, the pressure relief valve 52, the first fuel line, the further fuel line and the inlet 53 form a low-pressure circuit.
  • the low-pressure pump 51 is preferably designed so that it always supplies a sufficiently high fuel quantity during operation of the internal combustion engine, which ensures that a predetermined low pressure is not exceeded.
  • the inlet 53 is guided to the high-pressure pump 54, wel ⁇ che the output side, the fuel toward a fuel Memory 55 promotes.
  • the high-pressure pump 54 is generally driven by the camshaft and thus conveys at kon ⁇ constant speed of the crankshaft 21 a constant fuel volume in the fuel storage 55th
  • the injection valves 34 are operatively connected to the fuel reservoir 55.
  • the fuel is thus the Einspritzventi ⁇ len 34 supplied via the fuel storage 55th
  • a volume flow control valve 56 is provided, by means of which the volume flow can was ⁇ set that is the high-pressure pump 54 is supplied.
  • a desired value FUP_SP the fuel pressure in the fuel storage ⁇ 55 can be adjusted.
  • the volume flow control valve 56 is an actuator that controls a fuel flow of the high-pressure pump 54.
  • the volume flow control valve 56 controls the fuel delivery flow of the high-pressure pump 54 as a function of an actuating signal PWM_HP of the high-pressure pump 54, which is, for example, a pulse-width-modulated electrical current and the fuel delivery flow of the high-pressure pump 54 is dependent on its pulse width.
  • the control signal PWM_HP of the high-pressure pump 54 is thus a variable that is representative of the fuel delivery flow of the high-pressure pump 54.
  • a high-pressure pump 54 may be provided, the fuel flow is dependent on a drive angle.
  • the drive angle corresponds to a crankshaft angle at which the high-pressure pump 54 starts at each crankshaft revolution, fuel in the fuel Memory 55 to promote.
  • the delivery of the fuel ends in each case when the crankshaft angle reaches a predetermined crankshaft angle.
  • the Anbericht ⁇ angle is a size that is representative of the fuel flow of the high-pressure pump 54 and the control signal PWM_HP the high-pressure pump 54, for example, the drive angle.
  • the variable which is representative of the fuel delivery flow of the high-pressure pump 54 can also be an estimated variable which is determined as a function of ascertained, detected or predetermined operating variables of the internal combustion engine.
  • a sensor may be provided, the measured variable of which is the fuel delivery flow of the high-pressure pump 54.
  • the measured value the ⁇ ser measured variable is then representative of the Kraftstoffför- derstrom the high pressure pump 54th
  • the fuel supply device 5 can alternatively or additionally be provided with an electromechanical pressure regulator 57, which is arranged on the output side of the fuel reservoir 55 and is provided with a return line into the low pressure circuit.
  • an electromechanical pressure regulator 57 By a corresponding control of the electromechanical pressure regulator 57, a target value FUP_SP a ⁇ can be provided in the fuel pressure in the fuel accumulator 55th If the fuel pressure in the fuel accumulator 55 is greater than the preset by corresponding control of the electromechanical pressure regulator 57 force ⁇ fuel pressure, the electromechanical pressure regulator 57 opens, and fuel is discharged from the fuel accumulator 55 in the low pressure circuit.
  • the volume flow control valve 56 may also be integrated pump 54 in the high-pressure ⁇ .
  • the electromechanical pressure regulation and the volume flow control valve 56 may be assigned a common ⁇ samer actuator.
  • a fuel delivery flow of the low-pressure pump 51 is dependent on a control signal PWM_LP of the low-pressure pump 51, which, like the control signal PWM_HP of the high-pressure pump 54, can be a pulse-width-modulated flow and the fuel flow of the low-pressure pump 51 is dependent on its pulse width.
  • the internal combustion engine is assigned a control device 6, which in turn are associated with sensors that detect ver ⁇ different parameters and each determine the measured value of the measured variable.
  • the control device 6 determines dependent on at least one of the measured variables manipulated variables, which are then converted into corresponding control signals for controlling actuators by means of corresponding actuators.
  • the sensors are, for example, a pedal position sensor which detects the position of an accelerator pedal, a crankshaft angle sensor which detects the crankshaft angle and which is then assigned a rotational speed, an air mass meter, a first fuel pressure sensor 58 which has an actual value FUP_AV of the fuel pressure in the fuel accumulator 55 detects, and a second fuel pressure sensor 59, the ei ⁇ NEN actual value of the fuel pressure in the low pressure circuit he ⁇ sums.
  • a pedal position sensor which detects the position of an accelerator pedal
  • a crankshaft angle sensor which detects the crankshaft angle and which is then assigned a rotational speed
  • an air mass meter e.g., a first fuel pressure sensor 58 which has an actual value FUP_AV of the fuel pressure in the fuel accumulator 55 detects
  • a second fuel pressure sensor 59 the ei ⁇ NEN actual value of the fuel pressure in the low pressure circuit he ⁇ sums.
  • the actuators are, for example, as gas inlet or gas outlet valves, injectors 34, spark plug, throttle flap, low-pressure pump 51, flow control valve 56 or as electromechanical pressure regulator 57 is formed.
  • the internal combustion engine also has other cylinders, which are then assigned corresponding actuators.
  • FIG. 2 shows a block diagram of a control device which can be used to regulate the fuel pressure in the fuel accumulator 55 in a first operating mode of the fuel supply device 5.
  • the fuel pressure in the fuel accumulator 55 is set as a function of the amount of fuel that is conveyed from the low-pressure circuit into the fuel accumulator 55 by the high-pressure pump 54.
  • the amount of fuel may be a fuel mass or a fuel volume.
  • the delivered fuel quantity is dependent on the fuel delivery flow of the high-pressure pump 54, which is set by the control signal PWM_HP of the high-pressure pump 54.
  • the fuel pressure in the Kraft ⁇ hydrogen storage 55 If more fuel is pumped into the fuel storage 55 as a ⁇ is injected into the combustion chambers of the internal combustion engine, the fuel pressure in the Kraft ⁇ hydrogen storage 55. If less fuel in the Kraftstoff ⁇ memory is promoted 55 is than injected into the combustion chambers of the internal combustion engine , then the fuel pressure in the fuel reservoir 55 decreases accordingly.
  • the volume flow control valve 56 is preferably closed. By the volume flow control valve 56 flows if ⁇ only one leakage flow.
  • the second operating mode can also be used if no volume flow control valve 56 is provided in the fuel supply device and the high-pressure pump 54 promotes a Annae ⁇ hernd same amount of fuel from the low pressure circuit in the fuel reservoir 55 with each revolution of the crankshaft 21st If the electromechanical pressure regulator 57 is closed and less fuel is injected into the combustion chambers of the internal combustion engine than is conveyed into the fuel accumulator 55, the fuel pressure in the fuel accumulator 55 increases until the electromechanical pressure regulator 57 opens and discharges fuel into the inlet 53. Thus, the fuel pressure in the fuel accumulator 55 to the target value of the fuel is FUP_SP ⁇ pressure limited.
  • a control difference FUP_DIF is determined from a difference between the setpoint value FUP_SP of the fuel pressure and the actual value FUP_AV of the fuel pressure.
  • the control difference FUP_DIF is fed to a controller in block B1.
  • This controller is preferably designed as a PI controller.
  • a controller value MFF_FB_CTRL is determined.
  • a pre-control value MFF_PRE is determined in a block B2.
  • the pre-control value MFF_PRE, the controller value MFF_FB_CTRL and a fuel mass MFF_INJ to be injected are added up to a fuel mass MFF_REQ to be conveyed, preferably the fuel mass to be delivered per cylinder segment.
  • the actuating signal PWM_HP of the high-pressure pump 54 is determined as a function of the fuel mass MFF_REQ to be delivered, a segment time duration T_SEG_AV and correction quantities COR.
  • the fuel mass MFF_REQ to be conveyed is divided by the segment time duration T_SEG_AV and multiplied by a correction factor which comprises the correction quantities COR, in particular the fuel density in the force StoffSpeicher 55, is determined.
  • the segment time T_SEG_AV is equal to the period of time required for one rotation of the crankshaft 21, divided by half to ⁇ number of cylinders of the internal combustion engine, there is injected only at every second rotation of the crankshaft 21 in the same cylinder.
  • the correction quantities COR include play, the fuel density in the fuel reservoir 55 and / or a fuel temperature at ⁇ .
  • a block B4 represents the force ⁇ shown in Figure 1 material-supplying means 5.
  • the control signal PWM_HP Hoch ⁇ the pressure pump 54 is the input variable of the block B4.
  • the off ⁇ output variable of the block B4 is the actual value of the motor FUP_AV ⁇ fuel pressure which is detected for example by means of the fuel pressure sensor 58th
  • a corresponding control device can also be provided for the second operating mode of the fuel supply device 5, in which a control signal for the electromechanical pressure regulator 57 is generated for regulating the fuel pressure in the fuel accumulator 55.
  • the fuel pressure in the fuel accumulator 55 can be reduced to a predetermined fuel pressure by reducing the fuel delivery flow of the high-pressure pump 54 as compared to the fuel delivery flow that prevails immediately before the pressure reduction begins, until enough fuel from the fuel accumulator is injected by injection operations 55 is witheu ⁇ in the combustion chambers of the internal combustion engine.
  • the low-pressure circuit is possibly taken from less fuel than is conveyed by the low-pressure pump 51 into the inlet 53.
  • power may ⁇ material via the electro-mechanical pressure regulator 57 from the fuel storage 55 are deactivated in the circular Niederbuch ⁇ into the inlet 53rd In this case, fuel is added in addition to that supplied by the low-pressure pump 51
  • Fuel introduced into the low pressure circuit may increase beyond the intended fuel pressure. This additionally stresses the components of the low-pressure circuit and can reduce their reliability and durability.
  • FIGS. 3 and 4 show a flowchart for a first embodiment of a program for determining the fuel ⁇ delivery flow of the low-pressure pump 51.
  • the program is stored in the control device 6 and is executed during operation of the internal combustion engine.
  • the program begins with a step S1 (FIG. 3) in which necessary preparations are made, in particular when the program is first executed. For example, logical variables are assigned a preset value or counters are reset.
  • a step S2 the control signal PWM_HP the high ⁇ pressure pump 54 and the setpoint FUP_SP of the fuel pressure to a current time t_n determined.
  • the control signal PWM_HP of the high-pressure pump 54 is determined, for example, as shown in FIG.
  • a step S3 it is checked whether a logical variable LV_LP_COR is assigned a predetermined truth value, eg one.
  • LV_LP_COR represents the activation state of the correction of the fuel delivery flow of the low-pressure pump 51.
  • a target ⁇ is worth difference FUP_SP_DIF the fuel pressure from the target ⁇ value FUP_SP the fuel pressure at the current instant t_n and Setpoint value FUP_SP of the fuel pressure is determined at a previous time t_n-1.
  • the setpoint difference FUP_SP_DIF is the fuel pressure nega tive ⁇ .
  • FUP_SP_DIF of fuel pressure checked. If the setpoint ⁇ difference FUP_SP_DIF of the fuel pressure is less than or equal to a threshold FUP_SP_DIF_THR the setpoint difference FUP_SP_DIF of KraftStoff grouts, then the correction of the fuel flow of the low-pressure ⁇ pump is activated in a step S6 by the logical variable LV_LP_COR is assigned to the associated truth value, eg with One.
  • the threshold value FUP_SP_DIF_THR of the setpoint difference FUP_SP_DIF of the fuel pressure is preferably negative.
  • the control signal is the high PWM_HP ⁇ pressure pump 54 at the previous instant t_n-l as a reference value of the control signal PWM_HP_REF PWM_HP the high pressure pump 54 stored.
  • a tough ⁇ ler CTR is reset, for example, to zero.
  • a first correction value PWM_LP_COR1 is determined from the reference value PWM_HP_REF of the control signal PWM_HP of the high-pressure pump 54 and the control signal PWM_HP of the high-pressure pump 54 at the current time t_n.
  • the value of the first correction value PWM_LP_COR1 is assigned to a second correction value PWM_LP_COR2 at the current time t_n.
  • the counter CTR is in one
  • the counter CTR is checked. If the counter CTR is smaller than a predefined threshold value CTR_THR of the counter CTR, then the program flow is continued in a step S13.
  • the control signal is the low PWM_LP ⁇ pressure pump 51 as a difference from a control signal request PWM_LP_REQ for the low-pressure pump 51 and the second corrosion rekturwert PWM_LP_COR2 at the current instant t_n ermit ⁇ telt.
  • the control signal request PWM_LP_REQ for the low-pressure pump 51 is determined, for example, as a function of a desired value of the fuel pressure in the low-pressure circuit, a fuel temperature and a desired value of the fuel delivery flow of the low-pressure pump 51, as disclosed in DE 101 62 989 C1, which are hereby incorporated by reference is involved.
  • the control signal PWM_HP of the high-pressure pump 54 is stored at the current time t_n as a control signal PWM_HP of the high-pressure pump 54 at the preceding time t_n-1. Accordingly, the target value FUP_SP of the fuel pressure becomes the target value at the current time t_n FUP_SP of the fuel pressure at the previous time t_n-l stored and the second correction value PWM_LP_COR2 at the current time t_n is stored as a second correction value PWM_LP_COR2 at the previous time t_n-l.
  • a step S15 the program flow is completed and continued after a waiting time T_W (FIG. 3) in the step S1.
  • the waiting time T_W can for example be equal to the segment time T_SEG_AV and specifies the Zeit ⁇ interval in which the program is executed.
  • the time ⁇ interval t_n between the current time and the previous time t_n-l, is preferably equal to the waiting time T_W.
  • the preceding time t_n-l may also be associated with a time at which an operating variable of the internal combustion engine was last statio ⁇ nary.
  • the target value FUP_SP the fuel pressure at the previous instant t_n-l preferably equal to the final steady-state desired value
  • FUP_SP is the fuel pressure in the fuel reservoir 55 and the target value FUP_SP t_n of the motor ⁇ fuel pressure at the current time, the new sta ⁇ tionary target value to which the fuel pressure in the fuel storage 55 is to be adjusted or regulated.
  • step S3 If the condition is satisfied in the step S3, the corrective ⁇ ie structure of the fuel delivery flow of the low-pressure pump 51 is activated, the program run is continued in the step S9.
  • the activation state of the correction of the fuel delivery stream of the low-pressure pump 51 is reset by see variable LV_LP_COR is occupied in a step Sl6 with the zugehö ⁇ rigen truth value, for example, zero.
  • the ⁇ running program is then continued in the step S13.
  • step S5 If the condition in step S5 is not met, ie the setpoint difference FUP_SP_DIF of the fuel pressure is greater than the threshold value FUP_SP_DIF_THR of the setpoint difference FUP_SP_DIF of the fuel pressure, then the program flow is continued in a step S17.
  • the first correction value PWM_LP_CORl is backed up with a neutral value ⁇ be, for example, zero.
  • a step S18 it is checked whether the amount of the two ⁇ th correction value PWM_LP_COR2 t_n at the current instant is greater than the magnitude of a reset value LIM. If this condition is fulfilled, a difference from the second correction value PWM_LP_COR2 to the previous time t_n-1 and the reset value LIM is assigned to the second correction value PWM_LP_COR2 at the current time t_n in a step S19. The program flow is then continued in step S13. If the condition is not satisfied in the step S18, in a step S20 the second Cor ⁇ eg zero rekturwert PWM_LP_COR2 at the current instant t_n a neutral value assigned. The program flow is then continued in step S13.
  • the correction of the fuel delivery flow of the low pressure pump 51 may also be activated when the fuel pressure set point FUP_SP is increased.
  • the setpoint difference FUP_SP_DIF of the fuel pressure determined in step S4 is positive.
  • the step S5 is then replaced by a step S21, in which it is checked whether the setpoint ⁇ difference FUP_SP_DIF the fuel pressure greater than or equal when the threshold value FUP_SP_DIF_THR is the target value difference FUP_SP_DIF of the fuel pressure.
  • the threshold FUP_SP_DIF_THR is preferably positive. If the condition is satisfied in the step S21, then the program flow is continued in the step S6, otherwise the program flow is continued in the step S17.
  • the threshold CTR_THR of the counter CTR is preferably selected so that the correction of the fuel delivery flow of the low pressure pump 51 voltage only for a time period in the size North ⁇ of a few hundred milliseconds fourth akti ⁇ example, for example, for three hundred milliseconds, the logi ⁇ ie specific variable LV_LP_COR is already reset after a few hundred milliseconds in the step S16 after being set in the step S6.
  • the counter CTR counts during this time period, the number of program sequences, until the loading ⁇ dingung satisfied in the step S12.
  • the reset value LIM is selected such that the magnitude of the second correction value
  • PWM_LP_COR2 at the current time t_n with each Zeit ⁇ step so for example, respectively after the expiration of the waiting time ⁇ T_W, in the direction of a neutral value, for example zero, reduced.
  • the neutral value is preferably achieved after a few hundred milliseconds, for example after dreihun ⁇ changed milliseconds.
  • FIG. 5 shows a flow diagram for a second Ausu ⁇ approximate shape of the program for determining the Kraftstoff maybe- flow of the low pressure pump 51.
  • the steps Sl, S3 to S6, S8, Sil, S12, S15, S16 and S21 are in accordance with the first exporting ⁇ approximate shape of the Program executed.
  • the step S2 is he ⁇ sets by a step S22, in which the setpoint FUP_SP of Fuel pressure is determined at the current time t_n.
  • the program sequence is continued in step S3.
  • the step S7 is replaced by a step S23 in which the target value difference FUP_SP_DIF of the fuel pressure is stored as a reference value FUP_SP_DIF_REF of the target value difference FUP_SP_DIF of the fuel pressure.
  • the program sequence is then continued in step S8.
  • step S24 the correction of the fuel delivery flow of the low-pressure pump 51 is activated, in a step S24 replacing the step S9, a third correction value PWM_LP_COR3 depending on the stored reference value FUP_SP_DIF_REF Setpoint difference FUP_SP_DIF of the fuel pressure and determined by the counter CTR.
  • This can be done at ⁇ play by means of a map stored in the geeigne ⁇ te values, which are preferably in advance by experiments on an engine test bed, by simulations or by Fahr ⁇ experiments were determined. Alternatively, it is also possible, for example, to use functions based on physical models.
  • the program flow is continued after step S24 in step S11.
  • step S5 If the condition in step S5 is not met, that is, if the setpoint difference FUP_SP_DIF of the fuel pressure is greater than the threshold value FUP_SP_DIF_THR of the setpoint ⁇ difference FUP_SP_DIF of the fuel pressure, then in a step S25, which replaces the steps S17 to S20, the third correction value PWM_LP_COR3 is assigned a neutral value, eg zero. The program flow is then continued in a step S26. Likewise, the program flow after step Sl6 is continued in step S26.
  • the control signal ⁇ PWM_LP is the low-pressure pump 51 is determined as the difference of the corrective signal request PWM_LP_REQ for the low-pressure pump 51 and the third correction value PWM_LP_COR3.
  • the setpoint FUP_SP then the fuel ⁇ pressure at the current time t_n as setpoint FUP_SP the fuel pressure at the previous instant t_n-l ge ⁇ stores and the program flow at step S15 completed and after the waiting period T_W in step Sl, in a step S27 continues.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Eine Brennkraftmaschine hat eine Kraftstoffzuführeinrichtung. Die Kraftstoffzuführeinrichtung umfasst einen Niederdruckkreis mit einer Niederdruckpumpe und eine Hochdruckpumpe, die eingangsseitig gekoppelt ist mit dem Niederdruckkreis und die Kraftstoff in einen Kraftstoffspeicher fördert. Ein Kraftstoffförderstrom der Niederdruckpumpe wird korrigiert abhängig von einem aktuellen und einem vorangegangenen vorgegebenen Sollwert (FUP SP) des Kraftstoffdrucks in dem Kraftstoffspeicher.

Description

Beschreibung
Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschi¬ ne
Die Erfindung betrifft ein Verfahren und eine zugehörige Vor¬ richtung zum Steuern einer Brennkraftmaschine mit einer Kraftstoffzuführeinrichtung. Die Kraftstoffzuführeinrichtung umfasst einen Niederdruckkreis mit einer Niederdruckpumpe und eine Hochdruckpumpe, die eingangsseitig gekoppelt ist mit dem Niederdruckkreis und die Kraftstoff in einen KraftstoffSpei¬ cher fördert.
Eine solche Kraftstoffzuführeinrichtung ist aus der DE 101 62 989 Cl bekannt. Ferner ist eine Schaltungsanordnung zum Re¬ geln einer regelbaren Kraftstoffpumpe für ein Einspritzsystem einer Brennkraftmaschine offenbart, in der ein Regler vorge¬ sehen ist, der einen Sollwert eines Kraftstoffdrucks mit ei¬ nem Istwert des Kraftstoffdrucks vergleicht und abhängig von dem Differenzwert einen Regelwert für die Förderleistung der Kraftstoffpumpe ermittelt. Es ist ferner eine Vorsteuerein¬ heit und eine Addiereinheit vorgesehen. Die Addiereinheit er¬ mittelt ein Steuersignal aus dem Regelwert und einem Vorsteu¬ erwert zur Regelung der Förderleistung der Kraftstoffpumpe. Die Vorsteuereinheit ermittelt den Vorsteuerwert abhängig von einem Sollfördervolumen.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine zugehörige Vorrichtung zu schaffen, das bzw. die ein zu- verlässiges Steuern einer Brennkraftmaschine einfach gewähr¬ leisten kann. Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Die Erfindung zeichnet sich aus durch ein Verfahren und eine zugehörige Vorrichtung zum Steuern einer Brennkraftmaschine mit einer Kraftstoffzuführeinrichtung. Die Kraftstoffzuführ- einrichtung umfasst einen Niederdruckkreis mit einer Nieder¬ druckpumpe und eine Hochdruckpumpe, die eingangsseitig gekop- pelt ist mit dem Niederdruckkreis und die Kraftstoff in einen KraftstoffSpeicher fördert. Ein Kraftstoffförderstrom der Niederdruckpumpe wird korrigiert abhängig von einem aktuellen und einem vorangegangenen vorgegebenen Sollwert des Kraft¬ stoffdrucks in dem KraftstoffSpeicher.
Dies hat den Vorteil, dass der Kraftstoffförderstrom der Nie¬ derdruckpumpe so gesteuert werden kann, dass eine Kraftstoff¬ menge berücksichtigt ist, die durch eine Erhöhung des vorge¬ gebenen Sollwertes des Kraftstoffdrucks durch die Hochdruck- pumpe zusätzlich aus dem Niederdruckkreis in den Kraftstoff¬ speicher gefördert wird oder die durch eine Verringerung des vorgegebenen Sollwerts des Kraftstoffdrucks von der Hoch¬ druckpumpe weniger aus dem Niederdruckkreis in den Kraft¬ stoffSpeicher gefördert wird oder die aus dem Kraftstoffspei- eher in den Niederdruckkreis abgelassen wird. Eine uner¬ wünschte Erhöhung oder Verringerung des Kraftstoffdrucks in dem Niederdruckkreis kann so vermieden werden.
Durch das Berücksichtigen des aktuellen und des vorangegange- nen vorgegebenen Sollwerts des Kraftstoffdrucks kann die Kor¬ rektur des Kraftstoffförderstroms der Niederdruckpumpe nahe¬ zu verzögerungsfrei erfolgen. Die Komponenten in dem Nieder¬ druckkreis, beispielsweise die Niederdruckpumpe oder ein Ü- berdruckventil, können so auf einfache Weise entlastet und vor Beschädigung geschützt werden. Dadurch kann die Kraft¬ stoffzuführeinrichtung besonders zuverlässig sein.
Der aktuelle und der vorangegangene vorgegebene Sollwert des Kraftstoffdrucks in dem KraftstoffSpeicher werden vorzugswei¬ se abhängig von Betriebsgrößen oder der Betriebsart der Brennkraftmaschine ermittelt, beispielsweise abhängig von ei¬ ner Drehzahl oder einer einzuspritzenden Kraftstoffmasse oder abhängig von einem homogenen oder geschichteten Betrieb.
Der vorangegangene vorgegebene Sollwert des Kraftstoffdrucks ist ein zeitlich vor dem aktuellen vorgegebenen Sollwert des Kraftstoffdrucks ermittelter vorgegebener Sollwert des Kraft- stoffdrucks, der beispielsweise in der letzten vorangegange¬ nen stationären Phase des Sollwerts des Kraftstoffdrucks er¬ mittelt wurde.
Der Kraftstoffdruck in dem KraftstoffSpeicher wird vorzugs- weise durch eine Regeleinrichtung abhängig von dem aktuellen vorgegebenen Sollwert des Kraftstoffdrucks geregelt.
In einer vorteilhaften Ausgestaltung der Erfindung wird das Korrigieren des Kraftstoffförderstroms der Niederdruckpumpe aktiviert abhängig von dem aktuellen und dem vorangegangenen vorgegebenen Sollwert des Kraftstoffdrucks in dem Kraftstoff¬ speicher. Dies hat den Vorteil, dass der Kraftstoffförder- strom der Niederdruckpumpe nur dann korrigiert wird, wenn dies erforderlich ist. Vorzugsweise wird das Korrigieren des Kraftstoffförderstroms der Niederdruckpumpe gestartet, wenn der vorgegebene Sollwert des Kraftstoffdrucks um einen großen Betrag verändert wird, also z.B. der Betrag der Differenz zwischen dem aktuellen und dem vorangegangenen vorgegebenen Sollwert des Kraftstoffdrucks in etwa 100 bar beträgt oder das Verhältnis zwischen dem aktuellen und dem vorangegangenen vorgegebenen Sollwert des Kraftstoffdrucks in etwa 50 Prozent beträgt.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird ein erster Korrekturwert ermittelt, wenn das Korrigieren des Kraftstoffförderstroms der Niederdruckpumpe aktiviert ist. Der erste Korrekturwert wird ermittelt abhängig von ei- ner aktuellen und einer vorangegangenen Größe, die repräsen¬ tativ ist für einen Kraftstoffförderstrom der Hochdruckpumpe, der eingestellt wird abhängig von dem jeweils aktuellen vor¬ gegebenen Sollwert des Kraftstoffdrucks in dem Kraftstoff¬ speicher. Der Kraftstoffförderstrom der Niederdruckpumpe wird korrigiert abhängig von dem ersten Korrekturwert.
Es wird die Erkenntnis genutzt, dass der Kraftstoffförder¬ strom der Hochdruckpumpe abhängig von dem jeweils aktuellen vorgegebenen Sollwert des Kraftstoffdrucks in dem Kraftstoff- Speicher gesteuert oder geregelt wird und die aktuelle und die vorangegangene Größe dann eine Information darüber ent¬ hält, wie sich der Kraftstoffförderstrom der Hochdruckpumpe nach einer Änderung des vorgegebenen Sollwerts des Kraft¬ stoffdrucks verändert. Diese Information kann sehr einfach genutzt werden, um den Kraftstoffförderstrom der Niederdruck¬ pumpe entsprechend anzupassen. Die Größe, die repräsentativ ist für einen Kraftstoffförderstrom der Hochdruckpumpe, ist beispielsweise ein Stellsignal zum Einstellen des Kraftstoff¬ förderstroms der Hochdruckpumpe, kann jedoch ebenso ein Mess- wert einer Messgröße, die von einem Sensor erfasst wird, oder eine Schätzgröße sein. In diesem Zusammenhang ist es vorteilhaft, wenn der erste Korrekturwert mit einem neutralen Wert belegt wird nach Ab¬ lauf einer vorgegebenen Zeitdauer, die sich unmittelbar an¬ schließt an das letzte Aktivieren des Korrigierens des Kraft- stoffförderstroms der Niederdruckpumpe. Dies hat den Vorteil, dass das Korrigieren des Kraftstoffförderstroms der Nieder¬ druckpumpe zeitlich begrenzt erfolgt und dass ansonsten nicht in eine gegebenenfalls vorgesehene Steuerung oder Regelung des Kraftstoffdrucks in dem Niederdruckkreis eingegriffen wird.
In diesem Zusammenhang ist es weiter vorteilhaft, wenn ein aktueller zweiter Korrekturwert ermittelt wird, der gleich dem ersten Korrekturwert ist, während die Korrektur des Kraftstoffförderstroms der Niederdruckpumpe aktiviert ist. Der aktuelle zweite Korrekturwert wird ferner ermittelt ab¬ hängig von einer Differenz aus einem vorangegangenen zweiten Korrekturwert und einem Rücksetzwert, wenn die Korrektur des Kraftstoffförderstroms der Niederdruckpumpe nicht aktiviert ist, bis der aktuelle zweite Korrekturwert einen neutralen
Wert hat. Der Kraftstoffförderstrom der Niederdruckpumpe wird korrigiert abhängig von dem zweiten Korrekturwert. Dies hat den Vorteil, dass eine gegebenenfalls vorgesehene Steuerung oder Regelung des Kraftstoffdrucks in dem Niederdruckkreis entlastet wird durch Vermeiden von sprunghaften großen Ände¬ rungen des Kraftstoffförderstroms der Niederdruckpumpe, nach¬ dem die Korrektur des Kraftstoffförderstroms der Niederdruck¬ pumpe deaktiviert wurde.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird ein dritter Korrekturwert ermittelt, wenn die Korrektur des Kraftstoffförderstroms der Niederdruckpumpe aktiviert ist. Der dritte Korrekturwert wird ermittelt abhängig von dem aktuellen und dem vorangegangenen vorgegebenen Sollwert des Kraftstoffdrucks in dem KraftstoffSpeicher. Der Kraftstoff¬ förderstrom der Niederdruckpumpe wird korrigiert abhängig von dem dritten Korrekturwert. Das Korrigieren des Kraftstoffför- derstroms der Niederdruckpumpe ist so besonders einfach. Eine solche Korrektur kann auch dann erfolgen, wenn kein Stell¬ glied zum Verändern des Kraftstoffförderstroms der Hochdruck¬ pumpe bei gleichbleibender Drehzahl vorhanden ist.
In diesem Zusammenhang ist es vorteilhaft, wenn der dritte
Korrekturwert aus einem Kennfeld ermittelt wird. Dies hat den Vorteil, dass die Ermittelung des dritten Korrekturwerts sehr einfach ist und dass der erforderliche Rechenaufwand gering ist.
Ausführungsbeispiele der Erfindung sind im Folgenden anhand der schematischen Zeichnungen erläutert.
Es zeigen:
Figur 1 eine Brennkraftmaschine mit einer Kraftstoffzuführ- einrichtung,
Figur 2 das Blockschaltbild einer Regeleinrichtung zur Rege¬ lung des Kraftstoffdrucks in einem Kraftstoffspei- eher,
Figur 3, 4 ein Ablaufdiagramm einer ersten Ausführungsform eines Programms zum Ermitteln des Kraftstoffförder- stroms der Niederdruckpumpe, und
Figur 5 ein Ablaufdiagramm zu einer zweiten Ausführungsform des Programms zum Ermitteln des Kraftstoffförder- stroms der Niederdruckpumpe. Elemente gleicher Konstruktion oder Funktion sind figuren¬ übergreifend mit den gleichen Bezugszeichen versehen.
Eine Brennkraftmaschine (Figur 1) umfasst einen Ansaugtrakt 1, einen Motorblock 2, einen Zylinderkopf 3 und einen Abgas¬ trakt 4. Der Motorblock 2 umfasst mehrere Zylinder, welche Kolben und Pleuelstangen haben, über die sie mit einer Kur¬ belwelle 21 gekoppelt sind.
Der Zylinderkopf 3 umfasst einen Ventiltrieb mit einem Gas¬ einlassventil, einem Gasauslassventil und Ventilantrieben. Der Zylinderkopf 3 umfasst ferner ein Einspritzventil 34 und eine Zündkerze.
Ferner ist eine Kraftstoffzuführeinrichtung 5 vorgesehen. Sie umfasst einen Kraftstofftank 50, der über eine erste Kraft¬ stoffleitung mit einer Niederdruckpumpe 51 verbunden ist. Ausgangsseitig ist die Niederdruckpumpe 51 mit einem Zulauf 53 einer Hochdruckpumpe 54 wirkverbunden. Ferner ist aus- gangsseitig der Niederdruckpumpe 51 ein Überdruckventil 52 vorgesehen, welches ausgangsseitig über eine weitere Kraft¬ stoffleitung mit dem Kraftstofftank 50 verbunden ist. Die Niederdruckpumpe 51, das Überdruckventil 52, die erste Kraftstoffleitung, die weitere Kraftstoffleitung und der Zu- lauf 53 bilden einen Niederdruckkreis.
Die Niederdruckpumpe 51 ist vorzugsweise so ausgelegt, dass sie während des Betriebs der Brennkraftmaschine immer eine ausreichend hohe Kraftstoffmenge liefert, die gewährleistet, dass ein vorgegebener Niederdruck nicht unterschritten wird.
Der Zulauf 53 ist hin zu der Hochdruckpumpe 54 geführt, wel¬ che ausgangsseitig den Kraftstoff hin zu einem Kraftstoff- Speicher 55 fördert. Die Hochdruckpumpe 54 wird in der Regel von der Nockenwelle angetrieben und fördert somit bei kon¬ stanter Drehzahl der Kurbelwelle 21 ein konstantes Kraft- stoffvolumen in den KraftstoffSpeicher 55.
Die Einspritzventile 34 sind mit dem KraftstoffSpeicher 55 wirkverbunden. Der Kraftstoff wird somit den Einspritzventi¬ len 34 über den KraftstoffSpeicher 55 zugeführt.
In dem Vorlauf der Hochdruckpumpe 54, das heißt stromaufwärts der Hochdruckpumpe 54, ist ein Volumenstromsteuerventil 56 vorgesehen, mittels dessen der Volumenstrom eingestellt wer¬ den kann, der der Hochdruckpumpe 54 zugeführt wird. Durch ei¬ ne entsprechende Ansteuerung des Volumenstromsteuerventils 56 kann ein Sollwert FUP_SP des Kraftstoffdrucks in dem Kraft¬ stoffSpeicher 55 eingestellt werden. Das Volumenstromsteuer¬ ventil 56 ist ein Stellantrieb, der einen Kraftstoffförder- strom der Hochdruckpumpe 54 steuert. Das Volumenstromsteuer¬ ventil 56 steuert den Kraftstoffförderstrom der Hochdruckpum- pe 54 abhängig von einem Stellsignal PWM_HP der Hochdruckpum¬ pe 54, das beispielsweise ein pulsweitenmodulierter elektri¬ scher Strom ist und der Kraftstoffförderstrom der Hochdruck¬ pumpe 54 abhängig ist von dessen Pulsweite. Das Stellsignal PWM_HP der Hochdruckpumpe 54 ist somit eine Größe, die reprä- sentativ ist für den Kraftstoffförderstrom der Hochdruckpumpe 54.
Alternativ zu dem Volumenstromsteuerventil 56 und der Hoch¬ druckpumpe 54 kann beispielsweise auch eine Hochdruckpumpe 54 vorgesehen sein, deren Kraftstoffförderstrom abhängig ist von einem Ansteuerwinkel. Der Ansteuerwinkel entspricht einem Kurbelwellenwinkel, bei dem die Hochdruckpumpe 54 bei jeder Kurbelwellenumdrehung beginnt, Kraftstoff in den Kraftstoff- Speicher 55 zu fördern. Die Förderung des Kraftstoffs endet jeweils, wenn der Kurbelwellenwinkel einen vorgegebenen Kur¬ belwellenwinkel erreicht. In diesem Fall ist der Ansteuerwin¬ kel eine Größe, die repräsentativ ist für den Kraftstoffför- derstrom der Hochdruckpumpe 54 und das Stellsignal PWM_HP der Hochdruckpumpe 54 ist beispielsweise der Ansteuerwinkel.
Die Größe, die repräsentativ ist für den Kraftstoffförder- strom der Hochdruckpumpe 54, kann auch eine Schätzgröße sein, die abhängig von ermittelten, erfassten oder vorgegebenen Be¬ triebsgrößen der Brennkraftmaschine ermittelt wird. Ebenso kann ein Sensor vorgesehen sein, dessen Messgröße der Kraft¬ stoffförderstrom der Hochdruckpumpe 54 ist. Der Messwert die¬ ser Messgröße ist dann repräsentativ für den Kraftstoffför- derstrom der Hochdruckpumpe 54.
Die Kraftstoffzuführeinrichtung 5 kann alternativ oder zu¬ sätzlich mit einem elektromechanischen Druckregulator 57 ver¬ sehen sein, der ausgangsseitig des KraftstoffSpeichers 55 an- geordnet ist und mit einer Rückführleitung in den Nieder¬ druckkreis versehen ist. Durch eine entsprechende Ansteuerung des elektromechanischen Druckregulators 57 kann ein Sollwert FUP_SP des Kraftstoffdrucks in dem KraftstoffSpeicher 55 ein¬ gestellt werden. Wird der Kraftstoffdruck in dem Kraftstoff- Speicher 55 größer als der durch entsprechende Ansteuerung des elektromechanischen Druckregulators 57 vorgegebene Kraft¬ stoffdruck, dann öffnet der elektromechanische Druckregulator 57 und Kraftstoff wird aus dem KraftstoffSpeicher 55 in den Niederdruckkreis abgelassen.
Das Volumenstromsteuerventil 56 kann auch in die Hochdruck¬ pumpe 54 integriert sein. Dem elektromechanischen Druckregu- und dem Volumenstromsteuerventil 56 kann ein gemein¬ samer Stellantrieb zugeordnet sein.
Ein Kraftstoffförderstrom der Niederdruckpumpe 51 ist abhän- gig von einem Stellsignal PWM_LP der Niederdruckpumpe 51, das ebenso wie das Stellsignal PWM_HP der Hochdruckpumpe 54 ein pulsweitenmodulierter Strom sein kann und der Kraftstoffför¬ derstrom der Niederdruckpumpe 51 abhängig ist von dessen Pulsweite.
Ferner ist der Brennkraftmaschine eine Steuereinrichtung 6 zugeordnet, der wiederum Sensoren zugeordnet sind, die ver¬ schiedene Messgrößen erfassen und jeweils den Messwert der Messgröße ermitteln. Die Steuereinrichtung 6 ermittelt abhän- gig von mindestens einer der Messgrößen Stellgrößen, die dann in entsprechende Stellsignale zum Steuern von Stellgliedern mittels entsprechender Stellantriebe umgesetzt werden.
Die Sensoren sind beispielsweise ein Pedalstellungsgeber, welcher die Stellung eines Fahrpedals erfasst, ein Kurbelwel- lenwinkelsensor, welcher den Kurbelwellenwinkel erfasst und welchem dann eine Drehzahl zugeordnet wird, ein Luftmassen¬ messer, ein erster Kraftstoffdrucksensor 58, der einen Ist¬ wert FUP_AV des Kraftstoffdrucks in dem KraftstoffSpeicher 55 erfasst, und einen zweiten Kraftstoffdrucksensor 59, der ei¬ nen Istwert des Kraftstoffdrucks in dem Niederdruckkreis er¬ fasst. Je nach Ausführungsform der Erfindung kann eine belie¬ bige Untermenge der Sensoren oder auch zusätzliche Sensoren vorhanden sein.
Die Stellglieder sind beispielsweise als Gaseinlass- oder Gasauslassventile, Einspritzventile 34, Zündkerze, Drossel- klappe, Niederdruckpumpe 51, Volumenstromsteuerventil 56 oder auch als elektromechanischer Druckregulator 57 ausgebildet.
Bevorzugt hat die Brennkraftmaschine auch weitere Zylinder, denen dann entsprechende Stellglieder zugeordnet sind.
In Figur 2 ist ein Blockschaltbild einer Regeleinrichtung dargestellt, die zum Regeln des Kraftstoffdrucks in dem KraftstoffSpeicher 55 bei einer ersten Betriebsart der Kraft- stoffzuführeinrichtung 5 genutzt werden kann. Der Kraftstoff¬ druck in dem KraftstoffSpeicher 55 wird abhängig von der Kraftstoffmenge eingestellt, die von der Hochdruckpumpe 54 aus dem Niederdruckkreis in den KraftstoffSpeicher 55 geför¬ dert wird. Die Kraftstoffmenge kann eine Kraftstoffmasse oder ein Kraftstoffvolumen sein. Die geförderte Kraftstoffmenge ist abhängig von dem Kraftstoffförderstrom der Hochdruckpumpe 54, der durch das Stellsignal PWM_HP der Hochdruckpumpe 54 eingestellt ist.
Wenn mehr Kraftstoff in den KraftstoffSpeicher 55 gefördert wird als in die Verbrennungsräume der Brennkraftmaschine ein¬ gespritzt wird, dann steigt der Kraftstoffdruck in dem Kraft¬ stoffSpeicher 55. Wenn weniger Kraftstoff in den Kraftstoff¬ speicher 55 gefördert wird als in die Verbrennungsräume der Brennkraftmaschine eingespritzt wird, dann sinkt entsprechend der Kraftstoffdruck in dem KraftstoffSpeicher 55.
In einer zweiten Betriebsart der Kraftstoffzuführeinrichtung 5 ist das Volumenstromsteuerventil 56 vorzugsweise geschlos- sen. Durch das Volumenstromsteuerventil 56 fließt gegebenen¬ falls nur ein Leckfluss. Die zweite Betriebsart kann ebenso genutzt werden, wenn in der Kraftstoffzuführeinrichtung kein Volumenstromsteuerventil 56 vorgesehen ist und die Hochdruck- pumpe 54 mit jeder Umdrehung der Kurbelwelle 21 eine annä¬ hernd gleiche Kraftstoffmenge aus dem Niederdruckkreis in den KraftstoffSpeicher 55 fördert. Ist der elektromechanische Druckregulator 57 geschlossen und wird weniger Kraftstoff in die Verbrennungsräume der Brennkraftmaschine eingespritzt als in den KraftstoffSpeicher 55 gefördert wird, dann steigt der Kraftstoffdruck in dem KraftstoffSpeicher 55, bis der elekt¬ romechanische Druckregulator 57 öffnet und Kraftstoff in den Zulauf 53 absteuert. Dadurch wird der Kraftstoffdruck in dem Kraftstoffspeicher 55 auf den Sollwert FUP_SP des Kraftstoff¬ drucks begrenzt.
Aus einer Differenz des Sollwerts FUP_SP des Kraftstoffdrucks und des Istwerts FUP_AV des Kraftstoffdrucks wird eine Regel- differenz FUP_DIF bestimmt. Die Regeldifferenz FUP_DIF wird einem Regler in Block Bl zugeführt. Dieser Regler ist vor¬ zugsweise als PI-Regler ausgeführt. In dem Block Bl wird ein Reglerwert MFF_FB_CTRL bestimmt. Abhängig von dem Sollwert FUP_SP des Kraftstoffdrucks und dem Istwert FUP_AV des Kraft- stoffdrucks wird in einem Block B2 ein Vorsteuerwert MFF_PRE ermittelt. Der Vorsteuerwert MFF_PRE, der Reglerwert MFF_FB_CTRL und eine einzuspritzende Kraftstoffmasse MFF_INJ werden aufsummiert zu einer zu fördernden Kraftstoffmasse MFF_REQ, bevorzugt der pro Zylindersegment zu fördernden Kraftstoffmasse.
In einem Block B3 wird abhängig von der zu fördernden Kraft¬ stoffmasse MFF_REQ, einer Segmentzeitdauer T_SEG_AV und Kor¬ rekturgrößen COR das Stellsignal PWM_HP der Hochdruckpumpe 54 bestimmt. Vorzugsweise wird die zu fördernde Kraftstoffmasse MFF_REQ durch die Segmentzeitdauer T_SEG_AV dividiert und mit einem Korrekturfaktor multipliziert, der aus den Korrektur¬ größen COR, insbesondere der Kraftstoffdichte in dem Kraft- StoffSpeicher 55, ermittelt wird. Die SegmentZeitdauer T_SEG_AV ist gleich der Zeitdauer, die für eine Umdrehung der Kurbelwelle 21 benötigt wird, dividiert durch die halbe An¬ zahl der Zylinder der Brennkraftmaschine, da nur bei jeder zweiten Umdrehung der Kurbelwelle 21 in den gleichen Zylinder eingespritzt wird. Die Korrekturgrößen COR umfassen bei¬ spielsweise die Kraftstoffdichte in dem KraftstoffSpeicher 55 und/oder eine Kraftstofftemperatur.
Ein Block B4 repräsentiert die in Figur 1 dargestellte Kraft¬ stoffzuführeinrichtung 5. Das Stellsignal PWM_HP der Hoch¬ druckpumpe 54 ist die Eingangsgröße des Blocks B4. Die Aus¬ gangsgröße des Blocks B4 ist der Istwert FUP_AV des Kraft¬ stoffdrucks, der beispielsweise mittels des Kraftstoffdruck- sensors 58 erfasst wird.
Eine entsprechende Regeleinrichtung kann auch für die zweite Betriebsart der Kraftstoffzuführeinrichtung 5 vorgesehen sein, bei der zum Regeln des Kraftstoffdrucks in dem Kraft- stoffSpeicher 55 ein Stellsignal für den elektromechanischen Druckregulator 57 erzeugt wird.
Wird der Kraftstoffdruck in dem KraftstoffSpeicher 55 verrin¬ gert, dann wird aufgrund der Kraftstoffkompressibilität Kraftstoffmasse frei, die bei dem zuvor vorherrschenden höhe¬ ren Kraftstoffdruck gegenüber dem nach der Druckverringerung vorherrschenden niedrigeren Kraftstoffdruck zusätzlich in dem Volumen des KraftstoffSpeichers 55 gespeichert war. Diese Kraftstoffmasse ist abhängig von der Druckdifferenz des Kraftstoffdrucks in dem KraftstoffSpeicher 55 vor und nach der Druckverringerung, von dem Volumen des KraftstoffSpei¬ chers 55, das mit Kraftstoff ausgefüllt ist, von der Kraft¬ stoffdichte und von der Kraftstoffkompressibilität. Der Kraftstoffdruck in dem KraftstoffSpeicher 55 kann auf ei¬ nen vorgegebenen Kraftstoffdruck verringert werden, indem der Kraftstoffförderstrom der Hochdruckpumpe 54 so lange gegen- über dem unmittelbar vor Beginn der Druckverringerung gelten¬ den Kraftstoffförderstrom verringert wird, bis durch Ein¬ spritzvorgänge genügend Kraftstoff aus dem KraftstoffSpeicher 55 in die Verbrennungsräume der Brennkraftmaschine abgesteu¬ ert ist. In diesem Fall wird dem Niederdruckkreis gegebenen- falls weniger Kraftstoff entnommen als von der Niederdruck¬ pumpe 51 in den Zulauf 53 gefördert wird. Ebenso kann Kraft¬ stoff über den elektromechanischen Druckregulator 57 aus dem KraftstoffSpeicher 55 in den Zulauf 53 in dem Niederdruck¬ kreis abgesteuert werden. In diesem Fall wird Kraftstoff zu- sätzlich zu dem von der Niederdruckpumpe 51 geförderten
Kraftstoff in den Niederdruckkreis eingebracht. Dadurch kann in beiden Fällen der Kraftstoffdruck in dem Niederdruckkreis über den vorgesehenen Kraftstoffdruck hinaus ansteigen. Dies belastet die Komponenten des Niederdruckkreises zusätzlich und kann deren Zuverlässigkeit und Haltbarkeit verringern.
Figuren 3 und 4 zeigen ein Ablaufdiagramm zu einer ersten Ausführungsform eines Programms zum Ermitteln des Kraftstoff¬ förderstroms der Niederdruckpumpe 51. Das Programm ist in der Steuereinrichtung 6 gespeichert und wird während des Betriebs der Brennkraftmaschine abgearbeitet. Das Programm beginnt mit einem Schritt Sl (Figur 3) , in dem erforderliche Vorbereitun¬ gen getroffen werden, insbesondere beim erstmaligen Ausführen des Programms. Beispielsweise werden logische Variablen mit einem vorgegebenen Wert belegt oder Zähler zurückgesetzt.
In einem Schritt S2 wird das Stellsignal PWM_HP der Hoch¬ druckpumpe 54 und der Sollwert FUP_SP des Kraftstoffdrucks zu einem aktuellen Zeitpunkt t_n ermittelt. Das Stellsignal PWM_HP der Hochdruckpumpe 54 wird beispielsweise wie in Figur 2 gezeigt ermittelt. In einem Schritt S3 wird überprüft, ob eine logische Variable LV_LP_COR mit einem vorgegebenen Wahr- heitswert, z.B. Eins, belegt ist. Die logische Variable
LV_LP_COR repräsentiert den Aktivierungszustand der Korrektur des Kraftstoffförderstroms der Niederdruckpumpe 51.
Ist die Bedingung in dem Schritt S3 nicht erfüllt, d.h. die Korrektur des Kraftstoffförderstroms der Niederdruckpumpe 51 ist nicht aktiviert, dann wird in einem Schritt S4 eine Soll¬ wertdifferenz FUP_SP_DIF des Kraftstoffdrucks aus dem Soll¬ wert FUP_SP des Kraftstoffdrucks zu dem aktuellen Zeitpunkt t_n und dem Sollwert FUP_SP des Kraftstoffdrucks zu einem vo- rangegangenen Zeitpunkt t_n-l ermittelt. In dem Fall, dass der Sollwert FUP_SP des Kraftstoffdrucks verringert wird, ist die Sollwertdifferenz FUP_SP_DIF des Kraftstoffdrucks nega¬ tiv.
In einem Schritt S5 wird die ermittelte Sollwertdifferenz
FUP_SP_DIF des Kraftstoffdrucks überprüft. Ist die Sollwert¬ differenz FUP_SP_DIF des Kraftstoffdrucks kleiner oder gleich einem Schwellenwert FUP_SP_DIF_THR der Sollwertdifferenz FUP_SP_DIF des KraftStoffdrucks, dann wird in einem Schritt S6 die Korrektur des Kraftstoffförderstroms der Niederdruck¬ pumpe aktiviert, indem die logische Variable LV_LP_COR mit dem zugehörigen Wahrheitswert belegt wird, z.B. mit Eins. Der Schwellenwert FUP_SP_DIF_THR der Sollwertdifferenz FUP_SP_DIF des Kraftstoffdrucks ist vorzugsweise negativ.
In einem Schritt S7 wird das Stellsignal PWM_HP der Hoch¬ druckpumpe 54 zu dem vorangegangenen Zeitpunkt t_n-l als ein Referenzwert PWM_HP_REF des Stellsignals PWM_HP der Hoch- druckpumpe 54 gespeichert. In einem Schritt S8 wird ein Zäh¬ ler CTR zurückgesetzt, beispielsweise auf Null.
In einem Schritt S9 wird ein erster Korrekturwert PWM_LP_CORl ermittelt aus dem Referenzwert PWM_HP_REF des Stellsignals PWM_HP der Hochdruckpumpe 54 und dem Stellsignal PWM_HP der Hochdruckpumpe 54 zu dem aktuellen Zeitpunkt t_n. In einem Schritt SlO wird einem zweiten Korrekturwert PWM_LP_COR2 zu dem aktuellen Zeitpunkt t_n der Wert des ersten Korrektur- werts PWM_LP_CORl zugewiesen. Der Zähler CTR wird in einem
Schritt Sil weitergezählt, beispielsweise um Eins erhöht. In einem Schritt S12 wird der Zähler CTR überprüft. Ist der Zäh¬ ler CTR kleiner als ein vorgegebener Schwellenwert CTR_THR des Zählers CTR, dann wird der Programmablauf in einem Schritt S13 fortgesetzt.
In einem Schritt S13 wird das Stellsignal PWM_LP der Nieder¬ druckpumpe 51 als Differenz aus einer Stellsignalanforderung PWM_LP_REQ für die Niederdruckpumpe 51 und dem zweiten Kor- rekturwert PWM_LP_COR2 zu dem aktuellen Zeitpunkt t_n ermit¬ telt. Die Stellsignalanforderung PWM_LP_REQ für die Nieder¬ druckpumpe 51 wird beispielsweise abhängig von einem Sollwert des Kraftstoffdrucks in dem Niederdruckkreis, einer Kraft- stofftemperatur und einem Sollwert des Kraftstoffförderstroms der Niederdruckpumpe 51 ermittelt, wie es in der DE 101 62 989 Cl offenbart ist, die hiermit diesbezüglich einbezogen ist.
In einem Schritt S14 wird das Stellsignal PWM_HP der Hoch- druckpumpe 54 zu dem aktuellen Zeitpunkt t_n als Stellsignal PWM_HP der Hochdruckpumpe 54 zu dem vorangegangenen Zeitpunkt t_n-l gespeichert. Entsprechend wird der Sollwert FUP_SP des Kraftstoffdrucks zu dem aktuellen Zeitpunkt t_n als Sollwert FUP_SP des Kraftstoffdrucks zu dem vorangegangenen Zeitpunkt t_n-l gespeichert und der zweite Korrekturwert PWM_LP_COR2 zu dem aktuellen Zeitpunkt t_n wird als zweiter Korrekturwert PWM_LP_COR2 zu dem vorangegangenen Zeitpunkt t_n-l gespei- chert.
In einem Schritt S15 wird der Programmablauf abgeschlossen und nach einer Wartezeitdauer T_W (Figur 3) in dem Schritt Sl fortgeführt. Die Wartezeitdauer T_W kann beispielsweise gleich der Segmentzeitdauer T_SEG_AV sein und gibt das Zeit¬ intervall vor, in dem das Programm ausgeführt wird. Das Zeit¬ intervall, das zwischen dem aktuellen Zeitpunkt t_n und dem vorangegangenen Zeitpunkt t_n-l liegt, ist vorzugsweise gleich der Wartezeitdauer T_W. Der vorangegangene Zeitpunkt t_n-l kann jedoch auch einem Zeitpunkt zugeordnet sein, zu dem eine Betriebsgröße der Brennkraftmaschine zuletzt statio¬ när war. So ist der Sollwert FUP_SP des Kraftstoffdrucks zu dem vorangegangenen Zeitpunkt t_n-l vorzugsweise gleich dem letzten stationären Sollwert FUP_SP des Kraftstoffdrucks in dem KraftstoffSpeicher 55 und der Sollwert FUP_SP des Kraft¬ stoffdrucks zu dem aktuellen Zeitpunkt t_n ist der neue sta¬ tionäre Zielwert, auf den der Kraftstoffdruck in dem Kraft¬ stoffSpeicher 55 eingestellt oder geregelt werden soll.
Ist die Bedingung in dem Schritt S3 erfüllt, d.h. die Korrek¬ tur des Kraftstoffförderstroms der Niederdruckpumpe 51 ist aktiviert, dann wird der Programmablauf in dem Schritt S9 fortgeführt.
Ist in dem Schritt S12 der Zähler CTR größer oder gleich dem vorgegebenen Schwellenwert CTR_THR des Zählers CTR, dann wird der Aktivierungszustand der Korrektur des Kraftstoffförder¬ stroms der Niederdruckpumpe 51 zurückgesetzt, indem die logi- sehe Variable LV_LP_COR in einem Schritt Sl6 mit dem zugehö¬ rigen Wahrheitswert belegt wird, z.B. mit Null. Der Programm¬ ablauf wird dann in dem Schritt S13 fortgeführt.
Ist der Bedingung in dem Schritt S5 nicht erfüllt, d.h. die Sollwertdifferenz FUP_SP_DIF des Kraftstoffdrucks ist größer als der Schwellenwert FUP_SP_DIF_THR der Sollwertdifferenz FUP_SP_DIF des KraftStoffdrucks, dann wird der Programmablauf in einem Schritt S17 fortgeführt. In dem Schritt S17 wird der erste Korrekturwert PWM_LP_CORl mit einem neutralen Wert be¬ legt, z.B. mit Null.
In einem Schritt S18 wird überprüft, ob der Betrag des zwei¬ ten Korrekturwerts PWM_LP_COR2 zu dem aktuellen Zeitpunkt t_n größer ist als der Betrag eines Rücksetzwerts LIM. Ist diese Bedingung erfüllt, so wird in einem Schritt S19 dem zweiten Korrekturwert PWM_LP_COR2 zu dem aktuellen Zeitpunkt t_n eine Differenz aus dem zweiten Korrekturwert PWM_LP_COR2 zu dem vorangegangenen Zeitpunkt t_n-l und dem Rücksetzwert LIM zu- gewiesen. Der Programmablauf wird dann in dem Schritt S13 fortgesetzt. Ist die Bedingung in dem Schritt S18 jedoch nicht erfüllt, so wird in einem Schritt S20 dem zweiten Kor¬ rekturwert PWM_LP_COR2 zu dem aktuellen Zeitpunkt t_n ein neutraler Wert zugewiesen, z.B. Null. Der Programmablauf wird dann in dem Schritt S13 fortgesetzt.
Die Korrektur des Kraftstoffförderstroms der Niederdruckpumpe 51 kann ebenso aktiviert werden, wenn der Sollwert FUP_SP des Kraftstoffdrucks erhöht wird. In diesem Fall ist die in dem Schritt S4 ermittelte Sollwertdifferenz FUP_SP_DIF des Kraft¬ stoffdrucks positiv. Der Schritt S5 wird dann durch einen Schritt S21 ersetzt, in dem überprüft wird, ob die Sollwert¬ differenz FUP_SP_DIF des Kraftstoffdrucks größer oder gleich als der Schwellenwert FUP_SP_DIF_THR der Sollwertdifferenz FUP_SP_DIF des Kraftstoffdrucks ist. Der Schwellenwert FUP_SP_DIF_THR ist vorzugsweise positiv. Ist die Bedingung in dem Schritt S21 erfüllt, dann wird der Programmablauf in dem Schritt S6 fortgeführt, andernfalls wird der Programmablauf in dem Schritt S17 fortgeführt.
Der Schwellenwert CTR_THR des Zählers CTR wird vorzugsweise so gewählt, dass die Korrektur des Kraftstoffförderstroms der Niederdruckpumpe 51 nur für eine Zeitdauer in der Größenord¬ nung von beispielsweise wenigen hundert Millisekunden akti¬ viert ist, z.B. für dreihundert Millisekunden, d.h. die logi¬ sche Variable LV_LP_COR wird bereits nach wenigen hundert Millisekunden in dem Schritt S16 zurückgesetzt, nachdem sie in dem Schritt S6 gesetzt wurde. Der Zähler CTR zählt während dieser Zeitdauer die Anzahl der Programmabläufe, bis die Be¬ dingung in dem Schritt S12 erfüllt ist.
In den Schritten S18 und S19 wird der Rücksetzwert LIM so ge- wählt, dass sich der Betrag des zweiten Korrekturwerts
PWM_LP_COR2 zu dem aktuellen Zeitpunkt t_n mit jedem Zeit¬ schritt, also beispielsweise jeweils nach Ablauf der Warte¬ zeitdauer T_W, in Richtung eines neutralen Werts, z.B. Null, verringert. Der neutrale Wert wird vorzugsweise nach wenigen hundert Millisekunden erreicht, beispielsweise nach dreihun¬ dert Millisekunden.
Figur 5 zeigt ein Ablaufdiagramm zu einer zweiten Ausfüh¬ rungsform des Programms zum Ermitteln des Kraftstoffförder- Stroms der Niederdruckpumpe 51. Die Schritte Sl, S3 bis S6, S8, Sil, S12, S15, S16 und S21 sind gemäß der ersten Ausfüh¬ rungsform des Programms ausgeführt. Der Schritt S2 ist er¬ setzt durch einen Schritt S22, in dem der Sollwert FUP_SP des Kraftstoffdrucks zu dem aktuellen Zeitpunkt t_n ermittelt wird. Der Programmablauf wird in dem Schritt S3 fortgeführt. Der Schritt S7 ist ersetzt durch einen Schritt S23, in dem die Sollwertdifferenz FUP_SP_DIF des Kraftstoffdrucks als ein Referenzwert FUP_SP_DIF_REF der Sollwertdifferenz FUP_SP_DIF des Kraftstoffdrucks gespeichert wird. Der Programmablauf wird anschließend in dem Schritt S8 fortgeführt.
Nach dem Schritt S8 oder, wenn die Bedingung in dem Schritt S3 erfüllt ist, d.h. die Korrektur des Kraftstoffförderstroms der Niederdruckpumpe 51 aktiviert ist, wird in einem Schritt S24, der den Schritt S9 ersetzt, ein dritter Korrekturwert PWM_LP_COR3 abhängig von dem gespeicherten Referenzwert FUP_SP_DIF_REF der Sollwertdifferenz FUP_SP_DIF des Kraft- stoffdrucks und von dem Zähler CTR ermittelt. Dies kann bei¬ spielsweise mittels eines Kennfelds erfolgen, in dem geeigne¬ te Werte gespeichert sind, die bevorzugt vorab durch Versuche an einem Motorprüfstand, durch Simulationen oder durch Fahr¬ versuche ermittelt wurden. Alternativ können auch beispiels- weise auf physikalischen Modellen basierende Funktionen ver¬ wendet werden. Der Programmablauf wird nach dem Schritt S24 in dem Schritt Sil fortgeführt.
Falls die Bedingung in dem Schritt S5 nicht erfüllt ist, also wenn die Sollwertdifferenz FUP_SP_DIF des Kraftstoffdrucks größer ist als der Schwellenwert FUP_SP_DIF_THR der Sollwert¬ differenz FUP_SP_DIF des Kraftstoffdrucks, dann wird in einem Schritt S25, der die Schritte S17 bis S20 ersetzt, der dritte Korrekturwert PWM_LP_COR3 mit einem neutralen Wert belegt, z.B. mit Null. Der Programmablauf wird dann in einem Schritt S26 fortgeführt. Ebenso wird der Programmablauf nach dem Schritt Sl6 in dem Schritt S26 fortgeführt. In dem Schritt S26 wird das Stell¬ signal PWM_LP der Niederdruckpumpe 51 als Differenz aus der Stellsignalanforderung PWM_LP_REQ für die Niederdruckpumpe 51 und dem dritten Korrekturwert PWM_LP_COR3 ermittelt. In einem Schritt S27 wird dann der Sollwert FUP_SP des Kraftstoff¬ drucks zu dem aktuellen Zeitpunkt t_n als Sollwert FUP_SP des Kraftstoffdrucks zu dem vorangegangenen Zeitpunkt t_n-l ge¬ speichert und der Programmablauf in dem Schritt S15 beendet und nach der Wartezeitdauer T_W in dem Schritt Sl fortge¬ führt.

Claims

Patentansprüche
1. Verfahren zum Steuern einer Brennkraftmaschine mit einer Kraftstoffzuführeinrichtung (5) , wobei die Kraftstoffzuführ- einrichtung (5) umfasst:
- einen Niederdruckkreis mit einer Niederdruckpumpe (51), und
- eine Hochdruckpumpe (54) , die eingangsseitig gekoppelt ist mit dem Niederdruckkreis und die Kraftstoff in einen Kraft¬ stoffSpeicher (55) fördert, bei dem
- ein Kraftstoffförderstrom der Niederdruckpumpe (51) korri¬ giert wird abhängig von einem aktuellen und einem vorangegan¬ genen vorgegebenen Sollwert (FUP_SP) des KraftStoffdrucks in dem KraftstoffSpeicher (55) .
2. Verfahren nach Anspruch 1, bei dem das Korrigieren des Kraftstoffförderstroms der Niederdruckpumpe (51) aktiviert wird abhängig von dem aktuellen und dem vorangegangenen vor¬ gegebenen Sollwert (FUP_SP) des KraftStoffdrucks in dem Kraftstoffspeicher (55) .
3. Verfahren nach Anspruch 2, bei dem ein erster Korrektur¬ wert (PWM_LP_CORl) ermittelt wird, wenn das Korrigieren des Kraftstoffförderstroms der Niederdruckpumpe (51) aktiviert ist, abhängig von einer aktuellen und einer vorangegangenen Größe, die repräsentativ ist für einen Kraftstoffförderstrom der Hochdruckpumpe (54), der eingestellt wird abhängig von dem jeweils aktuellen vorgegebenen Sollwert (FUP_SP) des Kraftstoffdrucks in dem KraftstoffSpeicher (55) , und bei dem der Kraftstoffförderstrom der Niederdruckpumpe (51) korri¬ giert wird abhängig von dem ersten Korrekturwert (PWM_LP_COR1) . 4. Verfahren nach Anspruch 3, bei dem der erste Korrekturwert (PWM_LP_CORl) mit einem neutralen Wert belegt wird nach Ab¬ lauf einer vorgegebenen Zeitdauer, die sich unmittelbar an¬ schließt an das Aktivieren des Korrigierens des Kraftstoff- förderstroms der Niederdruckpumpe (51) .
5. Verfahren nach Anspruch 3 oder 4, bei dem ein aktueller zweiter Korrekturwert (PWM_LP_COR2) ermittelt wird, der gleich dem ersten Korrekturwert (PWM_LP_CORl) ist, während die Korrektur des Kraftstoffförderstroms der Niederdruckpumpe (51) aktiviert ist, und der abhängig ist von einer Differenz aus dem vorangegangenen zweiten Korrekturwert (PWM_LP_COR2) und einem Rücksetzwert (LIM) , wenn die Korrektur des Kraft¬ stoffförderstroms der Niederdruckpumpe (51) nicht aktiviert ist, bis der aktuelle zweite Korrekturwert (PWM_LP_COR2) ei¬ nen neutralen Wert hat, und bei dem der Kraftstoffförderstrom der Niederdruckpumpe (51) korrigiert wird abhängig von dem zweiten Korrekturwert (PWM_LP_COR2) .
6. Verfahren nach Anspruch 2, bei dem ein dritter Korrektur¬ wert (PWM_LP_COR3) ermittelt wird, wenn die Korrektur des Kraftstoffförderstroms der Niederdruckpumpe (51) aktiviert ist, abhängig von dem aktuellen und dem vorangegangenen vor¬ gegebenen Sollwert (FUP_SP) des KraftStoffdrucks in dem KraftstoffSpeicher (55) und bei dem der Kraftstoffförderstrom der Niederdruckpumpe (51) korrigiert wird abhängig von dem dritten Korrekturwert (PWM_LP_COR3) .
7. Verfahren nach Anspruch 6, bei dem der dritte Korrektur- wert (PWM_LP_COR3) aus einem Kennfeld ermittelt wird. 8. Vorrichtung zum Steuern einer Brennkraftmaschine mit einer Kraftstoffzuführeinrichtung (5) , wobei die Kraftstoffzuführ- einrichtung (5) umfasst:
- einen Niederdruckkreis mit einer Niederdruckpumpe (51), und - eine Hochdruckpumpe (54) , die eingangsseitig gekoppelt ist mit dem Niederdruckkreis und die Kraftstoff in einen Kraft¬ stoffSpeicher (55) fördert, die ausgebildet ist zum Korrigieren eines Kraftstoffförder- stroms der Niederdruckpumpe (51) abhängig von einem aktuellen und einem vorangegangenen vorgegebenen Sollwert (FUP_SP) des Kraftstoffdrucks in dem KraftstoffSpeicher (55) .
EP05777800A 2004-09-21 2005-08-08 Verfahren und vorrichtung zum steuern einer brennkraftmaschine Active EP1794433B8 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004045738A DE102004045738B4 (de) 2004-09-21 2004-09-21 Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
PCT/EP2005/053901 WO2006032577A1 (de) 2004-09-21 2005-08-08 Verfahren und vorrichtung zum steuern einer brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP1794433A1 EP1794433A1 (de) 2007-06-13
EP1794433B1 EP1794433B1 (de) 2008-01-30
EP1794433B8 true EP1794433B8 (de) 2008-05-07

Family

ID=35045028

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05777800A Active EP1794433B8 (de) 2004-09-21 2005-08-08 Verfahren und vorrichtung zum steuern einer brennkraftmaschine

Country Status (6)

Country Link
US (1) US7503313B2 (de)
EP (1) EP1794433B8 (de)
JP (1) JP2008513679A (de)
KR (1) KR101154128B1 (de)
DE (2) DE102004045738B4 (de)
WO (1) WO2006032577A1 (de)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484980B2 (ja) 1998-06-23 2004-01-06 日本電気株式会社 無線受信機
DE102004028515B3 (de) * 2004-06-11 2005-11-24 Siemens Ag Verfahren und Vorrichtung zum Überwachen einer Kraftstoffzuführeinrichtung einer Brennkraftmaschine
DE102004049812B4 (de) * 2004-10-12 2017-09-14 Robert Bosch Gmbh Verfahren zum Betreiben einer Kraftstoffeinspritzanlage insbesondere eines Kraftfahrzeugs
DE102006033169B3 (de) * 2006-07-10 2007-12-20 Joma-Hydromechanic Gmbh Verfahren zum Verstellen einer volumenstromvariablen Verdrängerpumpe in einem Brennkraftmotor
DE102007050297A1 (de) * 2007-10-22 2009-04-23 Robert Bosch Gmbh Verfahren zur Steuerung eines Kraftstoffeinspritzsystems einer Brennkraftmaschine
US8061329B2 (en) 2007-11-02 2011-11-22 Ford Global Technologies, Llc Lift pump control for a two pump direct injection fuel system
EP2105606B1 (de) * 2008-03-04 2010-11-03 Magneti Marelli S.p.A. Common Rail Direkteinspritzanordnung mit einem Absperrventil zur Steuerung der Förderung einer Hochdruckkraftstoffpumpe
DE102008036120B4 (de) * 2008-08-01 2010-04-08 Continental Automotive Gmbh Verfahren zur Steuerung einer Hochdruck-Kraftstoffpumpe
DE102008036122B4 (de) * 2008-08-01 2014-07-10 Continental Automotive Gmbh Verfahren zur Adaption der Leistung einer Kraftstoffvorförderpumpe eines Kraftfahrzeugs
DE102008043217A1 (de) * 2008-10-28 2010-04-29 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
DE102008055747B4 (de) * 2008-11-04 2012-03-15 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Einspritzanlage für eine Brennkraftmaschine
IT1395038B1 (it) * 2009-08-12 2012-09-05 Magneti Marelli Spa Metodo di controllo di un impianto di iniezione diretta di tipo common-rail
DE102009043718B4 (de) * 2009-10-01 2015-08-20 Avl List Gmbh System und Verfahren zur Messung von Einspritzvorgängen in einer Verbrennungskraftmaschine
JP5054795B2 (ja) * 2010-03-23 2012-10-24 日立オートモティブシステムズ株式会社 内燃機関の燃料供給制御装置
DE102010031002B4 (de) * 2010-07-06 2023-05-11 Robert Bosch Gmbh Verfahren zum Regeln des Drucks in einem Kraftstoff-Hochdruckspeicher einer Brennkraftmaschine
WO2012056534A1 (ja) * 2010-10-27 2012-05-03 トヨタ自動車株式会社 内燃機関の燃料噴射制御システム
DE102010043374A1 (de) * 2010-11-04 2012-05-10 Robert Bosch Gmbh Kraftstoffeinspritzsystem einer Brennkraftmaschine, sowie Verfahren zur Steuerung des selbigen
DE102010064374B3 (de) 2010-12-30 2012-07-12 Continental Automotive Gmbh Kraftstoffeinspritzsystem einer Brennkraftmaschine sowie dazugehöriges Druckregelverfahren, Steuergerät und Kraftfahrzeug
FR2975436B1 (fr) * 2011-05-20 2015-08-07 Continental Automotive France Systeme d'injection directe de carburant adaptatif
CN103620205B (zh) * 2011-07-01 2016-01-06 丰田自动车株式会社 内燃机的燃料喷射控制系统
US8857412B2 (en) * 2011-07-06 2014-10-14 General Electric Company Methods and systems for common rail fuel system dynamic health assessment
SE537251C2 (sv) * 2013-05-23 2015-03-17 Scania Cv Ab Förfarande samt anordning för funktionskontroll av en högtrycksbränslepump
GB2516657A (en) * 2013-07-29 2015-02-04 Gm Global Tech Operations Inc A control apparatus for operating a fuel metering valve
US20150176551A1 (en) * 2013-12-20 2015-06-25 Michael R. Teets Integrated pwm fuel pump driver module
DE102016204410A1 (de) * 2016-03-17 2017-09-21 Robert Bosch Gmbh Verfahren zum Ermitteln eines Sollwertes für eine Stellgröße zur Ansteuerung einer Niederdruckpumpe
DE102016204408A1 (de) * 2016-03-17 2017-09-21 Robert Bosch Gmbh Verfahren zum Ermitteln eines Sollwertes für eine Stellgröße zur Ansteuerung einer Niederdruckpumpe
JP6784251B2 (ja) 2017-09-25 2020-11-11 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5505180A (en) * 1995-03-31 1996-04-09 Ford Motor Company Returnless fuel delivery mechanism with adaptive learning
DE19548278B4 (de) * 1995-12-22 2007-09-13 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19612412B4 (de) * 1996-03-28 2006-07-06 Siemens Ag Regelung für ein Druckfluid-Versorgungssystem, insbesondere für den Hochdruck in einem Kraftstoff-Einspritzsystem
DE19618707C2 (de) * 1996-05-09 1998-12-17 Siemens Ag Verfahren und Vorrichtung zur Regelung eines Kraftstoffvolumenstromes
US5819709A (en) * 1997-05-05 1998-10-13 Ford Global Technologies, Inc. Fuel pump control in an electronic returnless fuel delivery system
US5819196A (en) * 1997-06-05 1998-10-06 Ford Global Technologies, Inc. Method and system for adaptive fuel delivery feedforward control
DE19739653A1 (de) 1997-09-10 1999-03-11 Bosch Gmbh Robert Verfahren zum Erzeugen von unter Hochdruck stehendem Kraftstoff sowie System zur Kraftstoffhochdruckerzeugung
DE19752025B4 (de) * 1997-11-24 2006-11-09 Siemens Ag Verfahren und Vorrichtung zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
DE19757655C2 (de) * 1997-12-23 2002-09-26 Siemens Ag Verfahren und Vorrichtung zur Funktionsüberwachung eines Drucksensors
JP3287297B2 (ja) * 1998-02-10 2002-06-04 トヨタ自動車株式会社 燃料ポンプの制御装置
DE19834121A1 (de) * 1998-07-29 2000-02-03 Bosch Gmbh Robert Kraftstoffversorgungsanlage einer Brennkraftmaschine
DE19834120A1 (de) * 1998-07-29 2000-02-03 Bosch Gmbh Robert Kraftstoffversorgungsanlage einer Brennkraftmaschine
DE19853823A1 (de) 1998-11-21 2000-05-25 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19951410A1 (de) 1999-10-26 2001-05-10 Bosch Gmbh Robert Verfahren und Vorrichtung zur Variation eines von einer Niederdruckpumpe erzeugten und an einer Hochdruckpumpe anliegenden Vordrucks
DE10001882A1 (de) * 2000-01-19 2001-08-02 Bosch Gmbh Robert Verfahren zum Betrieb einer Vorförderpumpe eines Kraftstoffzumesssystems und Kraftstoffzumesssystem einer direkteinspritzenden Brennkraftmaschine
EP1147929B1 (de) 2000-04-17 2005-09-21 Robert Bosch GmbH Vorrichung und Methode zur Bestimmung von statischen und dynamischen Fahrzeugparametern
IT1320684B1 (it) * 2000-10-03 2003-12-10 Fiat Ricerche Dispositivo di controllo della portata di una pompa ad alta pressionein un impianto di iniezione a collettore comune del combustibile di un
DE10137869A1 (de) 2001-08-02 2003-02-20 Siemens Ag Einspritzanlage und Verfahren zu deren Betrieb
JP2003120457A (ja) * 2001-09-18 2003-04-23 Hyundai Motor Co Ltd 燃料噴射圧力制御システム及びその方法
DE10162988B4 (de) * 2001-12-20 2004-01-15 Siemens Ag Vorrichtung und Verfahren zur Regelung des Steuerventils einer Hochdruckpumpe
DE10162989C1 (de) * 2001-12-20 2003-10-09 Siemens Ag Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
DE10205187A1 (de) * 2002-02-08 2003-08-21 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
US6718948B2 (en) * 2002-04-01 2004-04-13 Visteon Global Technologies, Inc. Fuel delivery module for petrol direct injection applications including supply line pressure regulator and return line shut-off valve
DE10218021A1 (de) * 2002-04-23 2003-11-06 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10239429A1 (de) * 2002-08-28 2004-03-11 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
JP2004190628A (ja) * 2002-12-13 2004-07-08 Isuzu Motors Ltd コモンレール式燃料噴射制御装置
DE10300929B4 (de) 2003-01-13 2006-07-06 Siemens Ag Kraftstoffeinspritzsystem und Verfahren zur Bestimmung des Förderdrucks einer Kraftstoffpumpe
DE10323874A1 (de) * 2003-05-26 2004-12-30 Siemens Ag Verfahren zum Betreiben eines Verbrennungsmotors, Kraftstoffsystem und ein Volumenstromregelventil
US7207319B2 (en) * 2004-03-11 2007-04-24 Denso Corporation Fuel injection system having electric low-pressure pump
DE102004061474B4 (de) * 2004-12-21 2014-07-17 Mtu Friedrichshafen Gmbh Verfahren und Einrichtung zur Regelung des Raildrucks
JP4450211B2 (ja) * 2005-01-28 2010-04-14 株式会社デンソー 燃料供給装置

Also Published As

Publication number Publication date
US7503313B2 (en) 2009-03-17
DE502005002735D1 (de) 2008-03-20
EP1794433B1 (de) 2008-01-30
WO2006032577A1 (de) 2006-03-30
KR101154128B1 (ko) 2012-06-11
DE102004045738B4 (de) 2013-05-29
EP1794433A1 (de) 2007-06-13
KR20070057090A (ko) 2007-06-04
US20070295310A1 (en) 2007-12-27
DE102004045738A1 (de) 2006-04-06
JP2008513679A (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
EP1794433B8 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE10296833B4 (de) Verfahren zur Steuerung des Betriebs einer Kraftstoffeinspritzvorrichtung und Vorrichtung zur Kraftstoffeinspritzung
DE60125264T2 (de) Einrichtung zur Regelung des Kraftstoffdrucks einer Brennkraftmaschine
DE19618932C2 (de) Vorrichtung und Verfahren zur Regelung des Kraftstoffdruckes in einem Hochdruckspeicher
DE10162989C1 (de) Schaltungsanordnung zum Regeln einer regelbaren Kraftstoffpumpe, Verfahren zum Regeln einer Förderleistung und Verfahren zum Überprüfen der Funktionsfähigkeit einer regelbaren Kraftstoffpumpe
DE69905685T2 (de) Kraftstoffeinspritzvorrichtung der Akkumulatorgattung
DE102011051062B4 (de) Kraftstoffeinspritzsteuersystem für eine interne Verbrennungsmaschine
WO2006117287A1 (de) Verfahren zum steuern einer kraftstoffzuführeinrichtung einer brennkraftmaschine
DE19731994A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE60000509T2 (de) Verfahren und system zur druckregelung einer hochdruckkraftstoffpumpe für die kraftstoffversorgung eines verbrennungsmotors
DE19752025A1 (de) Verfahren und Vorrichtung zum Regeln des Kraftstoffdruckes in einem Kraftstoffspeicher
DE60106316T2 (de) EInrichtung und Verfahren zur Brennstoffdrucksteuerung einer Brennkraftmaschine
DE102004011439B4 (de) Steuerungssystem zur Treibstoffeinspritzung einer Verbrennungskraftmaschine
WO2010121891A1 (de) Diagnoseverfahren eines kraftstoffdrucksensors im common rail einer brennkraftmaschine
EP1733129B1 (de) Verfahren zum steuern einer kraftstoffzuführeinrichtung einer brennkraftmaschine
DE102006018164B3 (de) Verfahren und Vorrichtung zur Steuerung einer Einspritzanlage für eine Brennkraftmaschine
DE102005052989A1 (de) Kraftstoffeinspritzgerät mit einer Commonrail und Steuersystem für eine Vorrichtung
DE102005007352A1 (de) Leerlaufdrehzahlsteuerungs- bzw. Regelungssystem und -Verfahren
DE10160311C2 (de) Verfahren, Computerprogramm, Steuer- und Regelgerät zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
DE102013109419B4 (de) Pumpensteuervorrichtung und Pumpverfahren
DE10012024A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1616093B1 (de) Verfahren zum steuern eines kraftstoffdrucks in einer zuführungseinrichtung für kraftstoff einer brennkraftmaschine
DE69415140T2 (de) STEUERSYSTEM FüR EIN HOCHDRUCK-KRAFTSTOFFEINSPRITZSYSTEM FüR EINE BRENNKRAFTMASCHINE
EP1377736B1 (de) Verfahren zum betreiben einer brennkraftmaschine mit einem kraftstoffzumesssystem
EP1109999B1 (de) Verfahren zum schnellen aufbau des kraftstoffdruckes in einem kraftstoffspeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS VDO AUTOMOTIVE AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VDO AUTOMOTIVE AG

REF Corresponds to:

Ref document number: 502005002735

Country of ref document: DE

Date of ref document: 20080320

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080319

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080813

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090808

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080831

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502005002735

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005002735

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210831

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005002735

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005002735

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301