[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1774605A1 - Photoactive nanocomposite and method for the production thereof - Google Patents

Photoactive nanocomposite and method for the production thereof

Info

Publication number
EP1774605A1
EP1774605A1 EP05792198A EP05792198A EP1774605A1 EP 1774605 A1 EP1774605 A1 EP 1774605A1 EP 05792198 A EP05792198 A EP 05792198A EP 05792198 A EP05792198 A EP 05792198A EP 1774605 A1 EP1774605 A1 EP 1774605A1
Authority
EP
European Patent Office
Prior art keywords
nanocomposite
photoactive
nanowires
derivatives
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05792198A
Other languages
German (de)
French (fr)
Inventor
Muriel Firon
Bernard Drevillon
Anna Fonctcuberta I Morral
Serge Palacin
Pere Roca I Cabarrocas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Ecole Polytechnique
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique CEA
Ecole Polytechnique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique CEA, Ecole Polytechnique filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1774605A1 publication Critical patent/EP1774605A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • H10K30/352Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles the inorganic nanostructures being nanotubes or nanowires, e.g. CdTe nanotubes in P3HT polymer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a photoactive nanocomposite that can be used in a solar cell implementing the photovoltaic effect, in a light emitter or in a photodetector.
  • This type of photoactive component traditionally comprises a pair of donor-acceptor semiconductor elements. It is known that to observe a transfer of charges between donor and acceptor, it is necessary that the respective energy levels of one and the other are compatible.
  • Photovoltaic devices based on amorphous or microcrystalline silicon in a thin layer are known. These devices have interesting yields of 6 to 10%. However, they are unstable (aging). Materials of the interpenetrating network-conjugated polymer and fullerene type or its derivatives are also known. The efficiency of these systems is notably limited by the transport of charges in organic materials. Indeed, in most organic conductors, the mobility of the charges is low (less than 10 "4 Cm 2 Vs " 1 ), because of the presence of charge traps such as oxygen. In addition, they are not very stable in the air.
  • One way to overcome this limitation of charge transport is to combine, for example, an electron-donor conjugated polymer with an inorganic semiconductor, as an electron acceptor.
  • the present invention relates to a new type of interpenetrating network including an organic compound and silicon nanowires.
  • the organic compound may be an electron donor or acceptor and acceptor or electron donor silicon nanowires.
  • a photoactive nanocomposite comprising at least one pair of donor-acceptor semiconductor elements.
  • One of the elements is formed of doped nanowires of structure sp3.
  • the other of the elements is an organic compound.
  • said nanowires have the following characteristics:
  • the element with structure sp3 is doped n
  • the element with structure sp3 is doped p
  • the organic compound is a conjugated polymer
  • the organic compound is a small molecule
  • the sp3 structure element is silicon
  • the element with sp3 structure is germanium
  • the nanowires have a diameter of less than 100 nm, preferably less than 10 nm,
  • the nanowires have been functionalized by a surface treatment
  • the organic compound element is a conjugated polymer forming part of the assembly formed by: polyaniline, polypyrrole, polyacetylene, polyparaphenylene, polyparaphenylenevinylene and its derivatives, poly-para-phenylene sulfide, polyisothionaphthene, polyheptadyne poly (3,4-ethylenedioxythiophene) (PEDOT) and its family, polysquaraines, polyfluorene, polythiophene and its derivatives, polyfluorenone and its derivatives, polythienylenevinylene and its derivatives, the organic compound element is a small molecule forming part of the group formed by phthalocyanine and its derivatives, porphyrin and its derivatives, chlorophyll and its derivatives, perylene and its derivatives, pentacene, tetracene and all polyene derivatives substituted or not, merocyanine and its derivatives, naphthalocyanine and its derivatives
  • the invention also relates to the method of manufacturing this photoactive nanocomposite component. Generally,
  • nanowires are formed on a growth substrate
  • the organic element is associated with the nanowires so as to form an active layer
  • this active layer is placed between two electrodes.
  • Different implementations of this process, each having specific advantages are proposed:
  • the growth of the nanowires is obtained in two different ways:
  • a gold layer with a thickness of the order of 1 nm is deposited on a growth substrate covered with a transparent conductive oxide layer or on an oxide layer; the substrate covered with this layer is annealed to form the gold layer, the nanowires are deposited and the gold is dissolved chemically. Either the nanowires are taken or the nanowires are left in place on the transparent substrate covered with ITO.
  • the nanowires are functionalized.
  • the formation of the nanowires is obtained by chemical vapor deposition (CVD) of nanowires of element with structure sp3. - This chemical vapor deposition process can be assisted by low frequency plasma, radio frequency or microwave (PECVD: Plasma Enhanced Chemical Vapor Deposition).
  • the conductive device substrate is either a silicon substrate or a glass substrate on which a conductive transparent oxide layer has been deposited.
  • the nanowires are taken,.
  • the sampled nanowires are functionalized and are solubilized in the organic element which is a conjugated polymer,
  • the active layer obtained is deposited on a device substrate covered with a transparent layer forming a first electrode
  • said mixture is deposited by coating (centrifugal or laminar).
  • the nanowires forming a mat on the ITO layer which constitutes a first electrode are impregnated with polymer after functionalization to form the active layer, or the nanowires formed on the ITO layer forming a first electrode are covered with a layer of small molecules obtained by evaporation under vacuum.
  • the growth substrate becomes the device substrate.
  • Figure 1 schematically shows a photovoltaic cell.
  • Figure 2 shows the band diagram of each of the elements implemented in a photovoltaic device with an ITO electrode.
  • Figure 3 shows a band diagram of each element implemented in a photovoltaic device with a gold electrode.
  • Figure 4 is a schematic representation of the realization of nanowires according to the invention.
  • Figure 5 is a schematic representation of a first embodiment of the method of the invention.
  • FIG 6 is a schematic representation of a second embodiment of the method of the invention.
  • the photoactive nanocomposite 3 of the invention comprises a pair of donor-acceptor semiconductor elements. One of these elements is formed of nanowires 7 with sp3 structure, the other of these elements being a conjugated polymer 8.
  • FIG. 1 shows a cell comprising a glass substrate 1, a tin-doped indium oxide (ITO) electrode 2, a photoactive nanocomposite 3 and a second electrode 4.
  • the nanowire nanowires 3 of the nanocomposite 3 are electron acceptors (n Si) and the polymer element 8 is an electron donor (polyhexylthiophene (P3HT) regio-regulator).
  • the data shown in FIG. 2 is implemented, the active layer 3 is placed between an indium oxide indium oxide 2 doped with tin (ITO) and an aluminum electrode 9 .
  • ITO indium oxide indium oxide 2 doped with tin
  • the active layer 3 is placed between a tin-doped indium oxide (ITO) electrode 2 and a gold electrode 10, FIG. 3 represents the band diagram of these materials. .
  • ITO indium oxide
  • Figures 2 and 3 respectively represent in each of these cases, the Fermi levels of the materials forming the nanowires 7, the organic compound 8 and the materials constituting the electrodes 9 and 10.
  • the materials used must be optimized. We can act on the following parameters:
  • the Fermi level of nanowires 7 is adapted by determining the dopant concentration of silicon. It is necessary that the silicon nanowires 7 are p-doped electron acceptors (since the P3HT is an electron donor, type n).
  • the diameter of the nanowire it is known that the energy of the forbidden band varies according to the diameter of the nanowires 7. For diameters greater than about 3 nanometers, the properties of the nanowires 7 are those of the bulk material. As the diameter decreases, the gap energy increases. It is greater than 3 electron volts / eV for a diameter less than 1 nm.
  • the nanowires 7 are produced.
  • a very thin gold layer 6, of the order of one is deposited first. 1 nm thick either on a tin-doped indium oxide (ITO) coated glass growth substrate, or on a silicon growth substrate.
  • the substrate 5 coated with gold is then annealed at a temperature of the order of 400 to 600 ° C., which makes it possible to obtain a layer 6, an aggregator of gold.
  • Nucleation and growth of the silicon nanowires 7 are then produced by a chemical vapor deposition process. This mechanism takes place at temperatures above the gold-silicon eutectic (375 ° C.). Indeed, under these conditions, during the deposition, the silicon atoms that reach the surface of the Growth substrate diffuses through the gold and precipitates at the gold / substrate interface.
  • the diameter of the nanowires 7 is determined by the size of the gold aggregates. It is thus possible to grow the nanowires 7 perpendicular to the surface of the growth substrate 5 and preferably following the same crystalline orientation when the substrate itself is composed of crystalline silicon. It is also possible to obtain nanowires 7 by filling a previously gilded nanoporous alumina membrane; the membrane is then chemically dissolved.
  • nanowires 7 After the formation of nanowires 7 the gold is dissolved.
  • the silicon nanowires 7 are taken out and then dissolved in the polymer 8. The solubilization is improved by counting the two elements of the mixture by functionalization of the surface of the nanowires 7. what is stated above.
  • the mass proportion of the nanowires 7 in the polymer 8 is optimized.
  • the photo-induced absorption and luminescence quenching of interpenetrating network mixtures at different rates make it possible to characterize the charge transfers produced in the material.
  • the polymer 8 is advantageously regioregular P3HT.
  • the nanowires 7 are held in place on the growth substrate 5 which becomes the device substrate and after dissolution of the gold and functionalization, these nanowires 7 are impregnated with polymers 8.
  • the ITO layer or the silicon device substrate constitutes an electrode 2, the second electrode 9, 10 is then deposited on the upper face of the component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The invention relates to a photoactive nanocomposite (3) comprising at least one pair of donor-acceptor semiconductor elements, wherein an element consists of a nanowires (7) doped with an sp3 structure and another element in embodied in the form of an organic compound (8). Said elements are carried by the substrate (1) of a device. A production method is also disclosed and consists, in a first embodiment, in picking, fonctionalising and solubilizing the grown nanowires in the organic element (8) and in depositing the mixture by coating on the device substrate. In the second embodiment, the nanowires (7) are formed on a growth substrate (5) which is embodied in the form of the device substrate. The organic element (8) is associated with the nanowires (7) in such a way that an active layer (3) is formed. The inventive photoactive nanocomposite makes it possible to produce a photovoltaic cell.

Description

Nanocomposite photoactif et son procédé de fabrication Photoactive nanocomposite and its manufacturing process
La présente invention concerne un nanocomposite photoactif susceptible d'être utilisé dans une cellule solaire mettant en œuvre l'effet photovoltaïque, dans un émetteur de lumière ou encore dans un photodétecteur.The present invention relates to a photoactive nanocomposite that can be used in a solar cell implementing the photovoltaic effect, in a light emitter or in a photodetector.
Ce type de composant photoactif comporte traditionnellement un couple d'éléments semi-conducteurs donneur-accepteur. On sait que pour observer un transfert de charges entre donneur et accepteur, il faut que les niveaux d'énergie respectifs de l'un et l'autre soient compatibles.This type of photoactive component traditionally comprises a pair of donor-acceptor semiconductor elements. It is known that to observe a transfer of charges between donor and acceptor, it is necessary that the respective energy levels of one and the other are compatible.
On connaît les dispositifs photovoltaïques à base de silicium amorphe ou microcristallin en couche mince. Ces dispositifs présentent des rendements intéressants de 6 à 10%. Cependant, ils sont peu stables (vieillissement). On connaît aussi des matériaux de type réseaux interpénétrés -polymère conjugué et fullerène ou ses dérivés. L'efficacité de ces systèmes est notamment limitée par le transport de charges dans les matériaux organiques. En effet, dans la plupart des conducteurs organiques, la mobilité des charges est faible (inférieure à 10"4Cm2Vs"1), à cause de la présence de pièges de charges comme l'oxygène. De plus, ils sont peu stables à l'air. Un moyen de remédier à cette limitation du transport de charges, est de combiner, par exemple, un polymère conjugué donneur d'électrons avec un semi-conducteur inorganique, comme accepteur d'électrons. La présente invention concerne un nouveau type de réseau interpénétré incluant un composé organique et des nanofils de silicium. Le composé organique peut être donneur ou accepteur d'électron et les nanofils de silicium accepteur ou donneur d'électrons. L'élaboration de cellules solaires avec un tel matériau n'a pas été envisagée à ce jour.Photovoltaic devices based on amorphous or microcrystalline silicon in a thin layer are known. These devices have interesting yields of 6 to 10%. However, they are unstable (aging). Materials of the interpenetrating network-conjugated polymer and fullerene type or its derivatives are also known. The efficiency of these systems is notably limited by the transport of charges in organic materials. Indeed, in most organic conductors, the mobility of the charges is low (less than 10 "4 Cm 2 Vs " 1 ), because of the presence of charge traps such as oxygen. In addition, they are not very stable in the air. One way to overcome this limitation of charge transport is to combine, for example, an electron-donor conjugated polymer with an inorganic semiconductor, as an electron acceptor. The present invention relates to a new type of interpenetrating network including an organic compound and silicon nanowires. The organic compound may be an electron donor or acceptor and acceptor or electron donor silicon nanowires. The development of solar cells with such a material has not been considered to date.
Actuellement, les cellules solaires tout organique, qui utilisent un matériau actif en réseaux interpénétrés, constitué d'un mélange polymère conjugué du type polyphénylènevinylène (donneur), dérivé du fullerène (accepteur), montrent des rendements de conversion photovoltaïque supérieurs à 3%, avec des durées de vie d'une centaine d'heures sous éclairement en atmosphère contrôlée.Currently, all organic solar cells, which use an active material in interpenetrating networks, constituted of a polyphenylenevinylene (donor) conjugated polymer mixture, derived from fullerene (acceptor), show photovoltaic conversion efficiencies greater than 3%, with lifetimes of a hundred hours under illumination in a controlled atmosphere.
Selon l'invention, il est proposé de réaliser un nanocomposite photoactif comportant au moins un couple d'éléments semiconducteurs donneur-accepteur.According to the invention, it is proposed to produce a photoactive nanocomposite comprising at least one pair of donor-acceptor semiconductor elements.
L'un des éléments est formé de nanofils dopés de structure sp3.One of the elements is formed of doped nanowires of structure sp3.
L'autre des éléments est un composé organique.The other of the elements is an organic compound.
Ces éléments sont supportés par un substrat de dispositif.These elements are supported by a device substrate.
Dans différents modes de réalisation préférés présentant chacun des avantages spécifiques, lesdits nanofils ont les caractéristiques suivantes :In various preferred embodiments each having specific advantages, said nanowires have the following characteristics:
- l'élément à structure sp3 est dopé n,the element with structure sp3 is doped n,
- l'élément à structure sp3 est dopé p,the element with structure sp3 is doped p,
- le composé organique est un polymère conjugué,the organic compound is a conjugated polymer,
- le composé organique est une petite molécule, - l'élément à structure sp3 est du silicium,the organic compound is a small molecule, the sp3 structure element is silicon,
- l'élément à structure sp3 est du germanium,the element with sp3 structure is germanium,
- les nanofils ont un diamètre inférieur à 100 nm, de préférence inférieur à 10 nm,the nanowires have a diameter of less than 100 nm, preferably less than 10 nm,
- les nanofils ont été fonctionnalisés par un traitement de surface,the nanowires have been functionalized by a surface treatment,
- l'élément composé organique est un polymère conjugué faisant partie de l'ensemble formé par : la polyaniline, le polypyrrole, le polyacétylène, le polyparaphénylène, le polyparaphénylène-vinylène et ses dérivés, le poly- paraphénylène sulfide, le polyisothionaphtène, le polyheptadyne, le poly(3,4-éthylènedioxythiophène) (PEDOT) et sa famille, les polysquaraines, le polyfluorène, le polythiophène et ses dérivés, la polyfluorénone et ses dérivés, le polythiénylènevinylène et ses dérivés, - l'élément composé organique est une petite molécule faisant partie de l'ensemble formé par : la phtalocyanine et ses dérivés, la porphyrine et ses dérivés, la chlorophylle et ses dérivés, le pérylène et ses dérivés, le pentacène, le tétracène et l'ensemble des dérivés polyènes susbtitués ou non, la mérocyanine et ses dérivés, la naphtalocyanine et ses dérivés, la quinacridone et ses dérivés.the organic compound element is a conjugated polymer forming part of the assembly formed by: polyaniline, polypyrrole, polyacetylene, polyparaphenylene, polyparaphenylenevinylene and its derivatives, poly-para-phenylene sulfide, polyisothionaphthene, polyheptadyne poly (3,4-ethylenedioxythiophene) (PEDOT) and its family, polysquaraines, polyfluorene, polythiophene and its derivatives, polyfluorenone and its derivatives, polythienylenevinylene and its derivatives, the organic compound element is a small molecule forming part of the group formed by phthalocyanine and its derivatives, porphyrin and its derivatives, chlorophyll and its derivatives, perylene and its derivatives, pentacene, tetracene and all polyene derivatives substituted or not, merocyanine and its derivatives, naphthalocyanine and its derivatives, quinacridone and its derivatives.
L'invention concerne aussi le procédé de fabrication de ce composant nanocomposite photoactif. De manière générale,The invention also relates to the method of manufacturing this photoactive nanocomposite component. Generally,
- des nanofils sont formés sur un substrat de croissance,nanowires are formed on a growth substrate,
- l'élément organique est associé aux nanofils de façon à former une couche active,the organic element is associated with the nanowires so as to form an active layer,
- cette couche active est placée entre deux électrodes. Différentes mises en œuvre de ce procédé, présentant chacune des avantages spécifiques sont proposées :this active layer is placed between two electrodes. Different implementations of this process, each having specific advantages are proposed:
- la croissance des nanofils est obtenue de deux façons différentes :the growth of the nanowires is obtained in two different ways:
1 ) soit par remplissage d'une membrane nanoporeuse recouverte d'or et posée sur un substrat de croissance de silicium ; la membrane et l'or sont dissous chimiquement après dépôt des nanofils. Les nanofils sont prélevés.1) either by filling a nanoporous membrane covered with gold and placed on a silicon growth substrate; the membrane and the gold are dissolved chemically after deposition of the nanowires. The nanowires are taken.
2) soit une couche d'or d'une épaisseur de l'ordre de 1 nm est déposée sur un substrat de croissance recouvert d'une couche d'oxyde conducteur transparent ou sur une couche d'oxyde ; le substrat recouvert de cette couche est recuit pour former la couche agrégataire d'or, les nanofils sont déposés puis l'or est dissous chimiquement. Soit les nanofils sont prélevés, soit les nanofils sont laissés en place sur le substrat transparent recouvert d'ITO.2) either a gold layer with a thickness of the order of 1 nm is deposited on a growth substrate covered with a transparent conductive oxide layer or on an oxide layer; the substrate covered with this layer is annealed to form the gold layer, the nanowires are deposited and the gold is dissolved chemically. Either the nanowires are taken or the nanowires are left in place on the transparent substrate covered with ITO.
Dans les deux cas précités, les nanofils sont fonctionnalisés.In the two aforementioned cases, the nanowires are functionalized.
- la formation des nanofils est obtenue par dépôt chimique en phase vapeur (CVD : Chemical Vapor Déposition) de nanofils d'élément à structure sp3. - ce procédé de dépôt chimique en phase vapeur peut être assisté par plasma basse fréquence, radio-fréquence ou micro-onde (PECVD : Plasma Enhanced Chemical Vapour Déposition). Le substrat de dispositif conducteur est soit un substrat de silicium, soit un substrat de verre sur lequel une couche d'oxyde transparent conducteur a été déposée.the formation of the nanowires is obtained by chemical vapor deposition (CVD) of nanowires of element with structure sp3. - This chemical vapor deposition process can be assisted by low frequency plasma, radio frequency or microwave (PECVD: Plasma Enhanced Chemical Vapor Deposition). The conductive device substrate is either a silicon substrate or a glass substrate on which a conductive transparent oxide layer has been deposited.
Différentes mises en œuvre du dispositif sont proposées :Different implementations of the device are proposed:
- 1 ) après leur croissance, les nanofils sont prélevés, . les nanofils prélevés sont fonctionnalisés et sont solubilisés dans l'élément organique qui est un polymère conjugué,- 1) after their growth, the nanowires are taken,. the sampled nanowires are functionalized and are solubilized in the organic element which is a conjugated polymer,
. la couche active obtenue est déposée sur un substrat de dispositif recouvert d'une couche transparente formant une première électrode,. the active layer obtained is deposited on a device substrate covered with a transparent layer forming a first electrode,
. ledit mélange est déposé par enduction (centrifuge ou laminaire).. said mixture is deposited by coating (centrifugal or laminar).
- 2) les nanofils formant un tapis sur la couche d'ITO qui constitue une première électrode sont imprégnés de polymère après fonctionnalisation pour former la couche active, ou les nanofils formés sur la couche d'ITO formant une première électrode sont recouverts d'une couche de petites molécules obtenue par évaporation sous vide. Le substrat de croissance devient le substrat de dispositif.- 2) the nanowires forming a mat on the ITO layer which constitutes a first electrode are impregnated with polymer after functionalization to form the active layer, or the nanowires formed on the ITO layer forming a first electrode are covered with a layer of small molecules obtained by evaporation under vacuum. The growth substrate becomes the device substrate.
L'invention sera décrite plus précisément par référence aux dessins, dans lesquels:The invention will be described more specifically with reference to the drawings, in which:
La Figure 1 représente schématiquement une cellule photovoltaïque.Figure 1 schematically shows a photovoltaic cell.
La Figure 2 représente le diagramme de bandes de chacun des éléments mis en œuvre dans un dispositif photovoltaïque avec une électrode en ITO. La Figure 3 représente un diagramme de bandes de chaque élément mis en œuvre dans un dispositif photovoltaïque avec une électrode d'or.Figure 2 shows the band diagram of each of the elements implemented in a photovoltaic device with an ITO electrode. Figure 3 shows a band diagram of each element implemented in a photovoltaic device with a gold electrode.
La Figure 4 est une représentation schématique de la réalisation des nanofils selon l'invention.Figure 4 is a schematic representation of the realization of nanowires according to the invention.
La Figure 5 est une représentation schématique d'un premier mode de réalisation du procédé de l'invention.Figure 5 is a schematic representation of a first embodiment of the method of the invention.
La Figure 6 est une représentation schématique d'un second mode de réalisation du procédé de l'invention. Le nanocomposite 3 photoactif de l'invention comporte un couple d'éléments semiconducteurs donneur-accepteur. L'un de ces éléments est formé de nanofils 7 à structure sp3, l'autre de ces éléments étant un polymère 8 conjugué.Figure 6 is a schematic representation of a second embodiment of the method of the invention. The photoactive nanocomposite 3 of the invention comprises a pair of donor-acceptor semiconductor elements. One of these elements is formed of nanowires 7 with sp3 structure, the other of these elements being a conjugated polymer 8.
On décrira plus particulièrement un tel nanocomposite 3 photoactif utilisé pour la réalisation d'une cellule photovoltaïque.More particularly, such a photoactive nanocomposite 3 used for the production of a photovoltaic cell will be described.
Sur la figure 1 est représentée une telle cellule comportant un substrat en verre 1 , une électrode 2 d'oxyde d'indium dopé à l'étain (ITO), un nanocomposite 3 photoactif et une deuxième électrode 4. Les nanofils 7 du nanocomposite 3 sont des accepteurs d'électrons (n Si) et l'élément polymère 8 est un donneur d'électrons (Polyhexylthiophène (P3HT) régiorégulier).FIG. 1 shows a cell comprising a glass substrate 1, a tin-doped indium oxide (ITO) electrode 2, a photoactive nanocomposite 3 and a second electrode 4. The nanowire nanowires 3 of the nanocomposite 3 are electron acceptors (n Si) and the polymer element 8 is an electron donor (polyhexylthiophene (P3HT) regio-regulator).
Dans un premier mode de réalisation, on met en œuvre les données représentées sur la Figure 2, la couche active 3 est placée entre une électrode 2 d'oxyde d'indium dopé à l'étain (ITO) et une électrode 9 d'aluminium.In a first embodiment, the data shown in FIG. 2 is implemented, the active layer 3 is placed between an indium oxide indium oxide 2 doped with tin (ITO) and an aluminum electrode 9 .
Dans un deuxième mode de réalisation, la couche active 3 est placée entre une électrode 2 d'oxyde d'indium dopé à l'étain (ITO) et une électrode d'or 10, la figure 3 représentent le diagramme de bandes de ces matériaux.In a second embodiment, the active layer 3 is placed between a tin-doped indium oxide (ITO) electrode 2 and a gold electrode 10, FIG. 3 represents the band diagram of these materials. .
Les Figures 2 et 3 représentent respectivement dans chacun de ces cas, les niveaux de Fermi des matériaux formant les nanofils 7, le composé organique 8 et des matériaux constituant les électrodes 9 et 10. Pour optimiser le rendement de la cellule, les matériaux utilisés doivent être optimisés. On peut agir sur les paramètres suivants:Figures 2 and 3 respectively represent in each of these cases, the Fermi levels of the materials forming the nanowires 7, the organic compound 8 and the materials constituting the electrodes 9 and 10. To optimize the efficiency of the cell, the materials used must be optimized. We can act on the following parameters:
1 ° - Dopage des nanofils: connaissant les niveaux HOMO (High Occupied Molecular Orbital) et LUMO (Low Unoccupied Molecular Orbital) du P3HT régiorégulier, le niveau de Fermi des nanofils 7 est adapté en déterminant la concentration en dopants du silicium. Il faut que les nanofils 7 de silicium soient accepteurs d'électrons dopés p (puisque le P3HT est donneur d'électrons, de type n).1 ° - Doping of nanowires: knowing the HOMO (High Occupied Molecular Orbital) and LUMO (Low Unoccupied Molecular Orbital) levels of regioregular P3HT, the Fermi level of nanowires 7 is adapted by determining the dopant concentration of silicon. It is necessary that the silicon nanowires 7 are p-doped electron acceptors (since the P3HT is an electron donor, type n).
2° - Le diamètre du nanofil: il est connu que l'énergie de la bande interdite varie en fonction du diamètre des nanofils 7. Pour des diamètres supérieurs à 3 nanomètres environ, les propriétés des nanofils 7 sont celles du matériau massif. Lorsque le diamètre diminue, l'énergie du gap augmente. Il est supérieur à 3 électron-volt/eV pour un diamètre inférieur à 1 nm.2 ° - The diameter of the nanowire: it is known that the energy of the forbidden band varies according to the diameter of the nanowires 7. For diameters greater than about 3 nanometers, the properties of the nanowires 7 are those of the bulk material. As the diameter decreases, the gap energy increases. It is greater than 3 electron volts / eV for a diameter less than 1 nm.
3° - Solubilisation et imprégnation des nanofils: pour assurer un bon contact entre les nanofils 7 et le polymère 8, il est préférable de fonctionnaliser la surface des nanofils 7, ce qui est obtenu par traitement de surface. Ce traitement de surface peut être de l'électrogreffage, du greffage chimique ou thermique ou photochimique.3 ° - solubilization and impregnation of the nanowires: to ensure good contact between the nanowires 7 and the polymer 8, it is preferable to functionalize the surface of the nanowires 7, which is obtained by surface treatment. This surface treatment can be electrografting, chemical or thermal grafting or photochemical.
Dans tous les modes de réalisation, on produit les nanofils 7. A cet effet, tel que schématisé sur la Figure 4, on procède d'abord au dépôt d'une très fine couche d'or 6, de l'ordre d'une épaisseur de 1 nm soit sur un substrat de croissance de verre recouvert d'oxyde d'indium dopé à l'étain (ITO), soit sur un substrat de croissance de silicium. Le substrat 5 recouvert d'or est ensuite recuit à une température de l'ordre de 400 à 6000C, ce qui permet d'obtenir une couche 6, agrégataire d'or.In all embodiments, the nanowires 7 are produced. For this purpose, as shown diagrammatically in FIG. 4, a very thin gold layer 6, of the order of one, is deposited first. 1 nm thick either on a tin-doped indium oxide (ITO) coated glass growth substrate, or on a silicon growth substrate. The substrate 5 coated with gold is then annealed at a temperature of the order of 400 to 600 ° C., which makes it possible to obtain a layer 6, an aggregator of gold.
La nucléation et la croissance des nanofils 7 de silicium sont alors produites par un procédé de dépôt chimique en phase vapeur. Ce mécanisme a lieu à des températures supérieures à l'eutectique or-silicium (3750C). En effet, dans ces conditions, lors du dépôt les atomes de silicium qui arrivent à la surface du substrat 5 de croissance diffusent à travers l'or et précipitent à l'interface or/substrat. Le diamètre des nanofils 7 est déterminé par la taille des agrégats d'or. Il est ainsi possible de faire croître les nanofils 7 perpendiculairement à la surface du substrat 5 de croissance et de préférence en suivant la même orientation cristalline lorsque le substrat est lui-même composé de silicium cristallin. Il est également possible d'obtenir des nanofils 7 par remplissage d'une membrane d'alumine nanoporeuse préalablement dorée ; la membrane est ensuite dissoute chimiquement.Nucleation and growth of the silicon nanowires 7 are then produced by a chemical vapor deposition process. This mechanism takes place at temperatures above the gold-silicon eutectic (375 ° C.). Indeed, under these conditions, during the deposition, the silicon atoms that reach the surface of the Growth substrate diffuses through the gold and precipitates at the gold / substrate interface. The diameter of the nanowires 7 is determined by the size of the gold aggregates. It is thus possible to grow the nanowires 7 perpendicular to the surface of the growth substrate 5 and preferably following the same crystalline orientation when the substrate itself is composed of crystalline silicon. It is also possible to obtain nanowires 7 by filling a previously gilded nanoporous alumina membrane; the membrane is then chemically dissolved.
Après la formation des nanofils 7 l'or est dissous. Dans un premier mode de réalisation schématisé sur la Figure 5, les nanofils 7 de silicium sont prélevés, puis mis en solution dans le polymère 8. La solubilisation est améliorée en comptabilisant les deux éléments du mélange par une fonctionnalisation de la surface des nanofils 7, ce qui est indiqué plus haut.After the formation of nanowires 7 the gold is dissolved. In a first embodiment shown diagrammatically in FIG. 5, the silicon nanowires 7 are taken out and then dissolved in the polymer 8. The solubilization is improved by counting the two elements of the mixture by functionalization of the surface of the nanowires 7. what is stated above.
La proportion en masse des nanofils 7 dans le polymère 8 est optimisée. L'absorption photo-induite et l'extinction de luminescence de mélanges en réseaux interpénétrés à différents taux permettent de caractériser les transferts de charge produits dans le matériau.The mass proportion of the nanowires 7 in the polymer 8 is optimized. The photo-induced absorption and luminescence quenching of interpenetrating network mixtures at different rates make it possible to characterize the charge transfers produced in the material.
Le polymère 8 est avantageusement du P3HT régiorégulier. Dans un deuxième mode de réalisation schématisé sur la Figure 6, les nanofils 7 sont maintenus en place sur le substrat 5 de croissance qui devient le substrat de dispositif et après dissolution de l'or et fonctionnalisation, ces nanofils 7 sont imprégnés de polymères 8. La couche d'ITO ou le substrat de dispositif silicium constitue une électrode 2, la deuxième électrode 9, 10 est ensuite déposée sur la face supérieure du composant. The polymer 8 is advantageously regioregular P3HT. In a second embodiment shown schematically in FIG. 6, the nanowires 7 are held in place on the growth substrate 5 which becomes the device substrate and after dissolution of the gold and functionalization, these nanowires 7 are impregnated with polymers 8. The ITO layer or the silicon device substrate constitutes an electrode 2, the second electrode 9, 10 is then deposited on the upper face of the component.

Claims

REVENDICATIONS
1 . Nanocomposite (3) photoactif comportant au moins un couple d'éléments semiconducteurs donneur-accepteur, - l'un des éléments étant formé de nanofils dopés (7) de structure sp3,1. A photoactive nanocomposite (3) comprising at least one pair of donor-acceptor semiconductor elements, one of the elements being formed of doped nanowires (7) of sp3 structure,
- l'autre des éléments étant un composé organique (8),the other of the elements being an organic compound (8),
- lesdits éléments étant supportés par un substrat (1 ) de dispositif. said elements being supported by a device substrate (1).
2. Nanocomposite (3) photoactif selon la revendication 1 , caractérisé en ce que l'élément à structure sp3 est dopé n.2. Nanocomposite (3) photoactive according to claim 1, characterized in that the sp3 structure element is doped n.
3. Nanocomposite (3) photoactif selon la revendication 1 ou 2, caractérisé en ce que l'élément à structure sp3 est dopé p.3. Nanocomposite (3) photoactive according to claim 1 or 2, characterized in that the element sp3 structure is p-doped.
4. Nanocomposite (3) photoactif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le composé organique (8) est un polymère conjugué.4. Nanocomposite (3) photoactive according to any one of claims 1 to 3, characterized in that the organic compound (8) is a conjugated polymer.
5. Nanocomposite (3) photoactif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le composé organique (8) est une petite molécule. 5. Nanocomposite (3) photoactive according to any one of claims 1 to 3, characterized in that the organic compound (8) is a small molecule.
6. Nanocomposite (3) photoactif selon l'une des revendications 1 à 5, caractérisé en ce que l'élément à structure sp3 est du silicium.6. Nanocomposite (3) photoactive according to one of claims 1 to 5, characterized in that the sp3 structure element is silicon.
7. Nanocomposite (3) photoactif selon l'une des revendications 1 à 5, caractérisé en ce que l'élément à structure sp3 est du germanium.7. Nanocomposite (3) photoactive according to one of claims 1 to 5, characterized in that the sp3 structure element is germanium.
8. Nanocomposite (3) photoactif selon l'une des revendications 1 à 7, caractérisé en ce que les nanofils (7) ont un diamètre inférieur à 100 nm, de préférence inférieur à 10 nm.8. Nanocomposite (3) photoactive according to one of claims 1 to 7, characterized in that the nanowires (7) have a diameter less than 100 nm, preferably less than 10 nm.
9. Nanocomposite (3) photoactif selon l'une des revendications 1 à 8, caractérisé en ce que les nanofils (7) ont été fonctionnalisés par un traitement de surface.9. Nanocomposite (3) photoactive according to one of claims 1 to 8, characterized in that the nanowires (7) have been functionalized by a surface treatment.
10. Nanocomposite (3) photoactif selon l'une des revendications 1 à 9, caractérisé en ce que l'élément composé organique (8) est un polymère conjugué faisant partie de l'ensemble formé par : la polyaniline, le polypyrrole, le polyacétylène, le polyparaphénylène, le polyparaphénylène- vinylène et ses dérivés, le poly-paraphénylène sulfide, le polyisothionaphtène, le polyheptadyne, le poly(3,4- éthylènedioxythiophène) (PEDOT) et sa famille, les polysquaraines, le polyfluorène, le polythiophène et ses dérivés, la polyfluorénone et ses dérivés, le polythiénylènevinylène et ses dérivés.10. Nanocomposite (3) photoactive according to one of claims 1 to 9, characterized in that the organic compound element (8) is a conjugated polymer forming part of the assembly formed by: polyaniline, polypyrrole, the polyacetylene, polyparaphenylene, polyparaphenylenevinylene and its derivatives, poly-para-phenylene sulfide, polyisothionaphthene, polyheptadyne, poly (3,4-ethylenedioxythiophene) (PEDOT) and its family, polysquaraines, polyfluorene, polythiophene and its derivatives, polyfluorenone and its derivatives, polythienylenevinylene and its derivatives.
1 1 . Nanocomposite (3) photoactif selon l'une des revendications 1 à 9, caractérisé en ce que l'élément composé organique (8) est une petite molécule faisant partie de l'ensemble formé par : la phtalocyanine et ses dérivés, la porphyrine et ses dérivés, la chlorophylle et ses dérivés, le pérylène et ses dérivés, le pentacène, le tétracène et l'ensemble des dérivés polyènes susbtitués ou non, la mérocyanine et ses dérivés, la naphtalocyanine et ses dérivés, la quinacridone et ses dérivés.1 1. Photoactive nanocomposite (3) according to one of Claims 1 to 9, characterized in that the organic compound element (8) is a small molecule forming part of the group formed by: phthalocyanine and its derivatives, porphyrin and its derivatives, chlorophyll and its derivatives, perylene and its derivatives, pentacene, tetracene and all of the polyene derivatives substituted or unsubstituted, merocyanine and its derivatives, naphthalocyanine and its derivatives, quinacridone and its derivatives.
12. Procédé de fabrication d'un nanocomposite (3) photoactif selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce que: - des nanofils (7) sont formés sur un substrat de croissance (5),12. Process for producing a photoactive nanocomposite (3) according to any one of claims 1 to 1 1, characterized in that: nanowires (7) are formed on a growth substrate (5),
- l'élément organique (8) est associé aux nanofils (7) de façon à former une couche active (3),the organic element (8) is associated with the nanowires (7) so as to form an active layer (3),
- cette couche active (3) est placée entre deux électrodes (2,9).this active layer (3) is placed between two electrodes (2, 9).
13. Procédé de fabrication d'un nanocomposite (3) photoactif selon la revendication 12, caractérisé en ce que la formation des nanofils (7) est obtenue par remplissage d'une membrane nanoporeuse, posée sur un substrat (5) de croissance de silicium et recouverte d'or.13. A process for producing a nanocomposite (3) photoactive according to claim 12, characterized in that the formation of nanowires (7) is obtained by filling a nanoporous membrane, placed on a substrate (5) of silicon growth and covered with gold.
14. Procédé de fabrication d'un nanocomposite (3) photoactif selon la revendication 12, caractérisé en ce que la formation des nanofils (7) est obtenue sur une couche (6) agrégataire d'or : une couche (6) d'or d'une épaisseur de l'ordre de 1 nm étant déposée sur un substrat (5) de croissance recouvert d'une couche d'oxyde conducteur transparent ou d'une couche d'oxyde, - le substrat (5) de croissance recouvert est recuit pour former une couche (6) agrégataire d'or,14. A process for producing a nanocomposite (3) photoactive according to claim 12, characterized in that the formation of the nanowires (7) is obtained on a layer (6) gold aggregator: a layer (6) of gold having a thickness of the order of 1 nm being deposited on a growth substrate (5) covered with a transparent conductive oxide layer or with an oxide layer; covered growth substrate (5) is annealed to form an aggregate layer (6) of gold,
- après croissance des nanofils (7), l'or est dissous chimiquement, les nanofils (7) sont fonctionnalisés. after growth of the nanowires (7), the gold is dissolved chemically, the nanowires (7) are functionalized.
15. Procédé de fabrication d'un nanocomposite (3) photoactif selon la revendication 12, caractérisé en ce que la formation des nanofils (7) est obtenue par dépôt chimique en phase vapeur.15. The method of manufacturing a nanocomposite (3) photoactive according to claim 12, characterized in that the formation of nanowires (7) is obtained by chemical vapor deposition.
16. Procédé de fabrication d'un nanocomposite (3) photoactif selon la revendication 12, caractérisé en ce que la formation des nanofils (7) est obtenue par dépôt chimique en phase vapeur assisté par plasma.16. A process for producing a photoactive nanocomposite (3) according to claim 12, characterized in that the formation of the nanowires (7) is obtained by plasma-assisted chemical vapor deposition.
17. Procédé de fabrication d'un nanocomposite (3) photoactif selon la revendication 12, caractérisé en ce que la formation des nanofils (7) est obtenue par dépôt plasma micro onde ou radio fréquence.17. A method of manufacturing a nanocomposite (3) photoactive according to claim 12, characterized in that the formation of the nanowires (7) is obtained by microwave plasma deposition or radio frequency.
18. Procédé de fabrication d'un nanocomposite (3) photoactif selon l'une quelconque des revendications 12 à 17, caractérisé en ce que le substrat de croissance (5) conducteur est en silicium.18. A process for producing a nanocomposite (3) photoactive according to any one of claims 12 to 17, characterized in that the growth substrate (5) conductor is silicon.
19. Procédé de fabrication d'un nanocomposite (3) photoactif selon l'une quelconque des revendications 12 à 17, caractérisé en ce que le substrat de croissance (5) est un substrat de verre sur lequel une couche d'oxyde transparent conducteur a été déposée.A process for manufacturing a photoactive nanocomposite (3) according to any one of claims 12 to 17, characterized in that the growth substrate (5) is a glass substrate on which a transparent conductive oxide layer has been filed.
20. Procédé de fabrication d'un nanocomposite (3) photoactif selon l'une quelconque des revendications 12 à 19, caractérisé en ce que:20. A method of manufacturing a photoactive nanocomposite (3) according to any one of claims 12 to 19, characterized in that:
- après leur croissance, les nanofils (7) sont prélevés, - les nanofils (7) prélevés sont solubilisés après fonctionnalisation dans l'élément organique (8) qui est un polymère,after their growth, the nanowires (7) are taken, the nanowires (7) taken are solubilized after functionalization in the organic element (8) which is a polymer,
- la couche active (3) obtenue est déposée sur un substrat (1 ) de dispositif recouvert d'une couche formant une première électrode (2).the active layer (3) obtained is deposited on a device substrate (1) covered with a layer forming a first electrode (2).
21 . Procédé de fabrication d'un nanocomposite (3) photoactif selon l'une quelconque des revendications 12 à 19, caractérisé en ce que le substrat (5) de croissance est le substrat de dispositif.21. A method of manufacturing a photoactive nanocomposite (3) according to any one of claims 12 to 19, characterized in that the growth substrate (5) is the device substrate.
22. Procédé de fabrication d'un nanocomposite (3) photoactif selon la revendication 20, caractérisé en ce que ledit mélange est déposé par enduction (centrifuge ou laminaire).22. A method of manufacturing a nanocomposite (3) photoactive according to claim 20, characterized in that said mixture is deposited by coating (centrifugal or laminar).
23. Procédé de fabrication d'un nanocomposite (3) photoactif selon l'une quelconque des revendications 12 à 19, caractérisé en ce que les nanofils (7) formés sur la couche d'ITO formant une première électrode (2) sont imprégnés de polymère (8) conjugué après fonctionnalisation pour former la couche active (3). 23. Process for manufacturing a nanocomposite (3) photoactive according to any one of claims 12 to 19, characterized in that the nanowires (7) formed on the ITO layer forming a first electrode (2) are impregnated with polymer (8) conjugated after functionalization to form the active layer (3).
24. Procédé de fabrication d'un nanocomposite (3) photoactif selon l'une quelconque des revendications 12 à 19, caractérisé en ce que les nanofils (7) formés sur la couche d'ITO formant une première électrode (2) sont recouverts d'une couche de petites molécules obtenues par évaporation sous vide. 24. A process for producing a nanocomposite (3) photoactive according to any one of claims 12 to 19, characterized in that the nanowires (7) formed on the ITO layer forming a first electrode (2) are covered with a layer of small molecules obtained by evaporation under vacuum.
EP05792198A 2004-07-21 2005-07-21 Photoactive nanocomposite and method for the production thereof Withdrawn EP1774605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0451607A FR2873492B1 (en) 2004-07-21 2004-07-21 PHOTOACTIVE NANOCOMPOSITE AND METHOD OF MANUFACTURING THE SAME
PCT/FR2005/050605 WO2006018575A1 (en) 2004-07-21 2005-07-21 Photoactive nanocomposite and method for the production thereof

Publications (1)

Publication Number Publication Date
EP1774605A1 true EP1774605A1 (en) 2007-04-18

Family

ID=34946399

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05792198A Withdrawn EP1774605A1 (en) 2004-07-21 2005-07-21 Photoactive nanocomposite and method for the production thereof

Country Status (5)

Country Link
US (1) US7713779B2 (en)
EP (1) EP1774605A1 (en)
JP (1) JP2008507146A (en)
FR (1) FR2873492B1 (en)
WO (1) WO2006018575A1 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029186B2 (en) * 2004-11-05 2011-10-04 International Business Machines Corporation Method for thermal characterization under non-uniform heat load
JP4783958B2 (en) * 2006-03-20 2011-09-28 パナソニック電工株式会社 Organic thin film solar cell
ES2369583T3 (en) 2006-05-01 2011-12-02 Wake Forest University FIBROUS PHOTOVOLTAIC DEVICES AND APPLICATIONS OF THE SAME.
DE602006007499D1 (en) 2006-05-01 2009-08-06 Univ Wake Forest ORGANIC OPTOELECTRONIC COMPONENTS AND APPLICATIONS THEREFOR
US7741647B2 (en) 2006-05-22 2010-06-22 Hewlett-Packard Development Company Utilizing nanowire for different applications
US20080149178A1 (en) * 2006-06-27 2008-06-26 Marisol Reyes-Reyes Composite organic materials and applications thereof
EP2050151B1 (en) 2006-08-07 2011-10-12 Wake Forest University Method of producing composite organic materials
DE102006041534A1 (en) * 2006-09-05 2008-03-13 Siemens Ag Transparent electrode, particularly indium tin oxide electrode, for organic electronic component, has lamella extended into active layer from organic material so that it produces area in switched condition in active layer
FR2921759B1 (en) * 2007-09-27 2010-01-01 Commissariat Energie Atomique HYBRID MATRICES FOR THIN FILM TRANSISTORS
RU2462793C2 (en) * 2007-12-28 2012-09-27 Юниверсите Де Ля Медитерране Экс-Марсель Ii Hybrid nanocomposite materials
US20110056543A1 (en) * 2007-12-28 2011-03-10 Universite De La Mediterranee Aix-Marseille Ii Hybrid nanocomposite
US8384007B2 (en) * 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8546742B2 (en) * 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US8890271B2 (en) 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US20110115041A1 (en) * 2009-11-19 2011-05-19 Zena Technologies, Inc. Nanowire core-shell light pipes
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US20100304061A1 (en) * 2009-05-26 2010-12-02 Zena Technologies, Inc. Fabrication of high aspect ratio features in a glass layer by etching
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US8889455B2 (en) * 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
JP4368934B1 (en) 2009-02-09 2009-11-18 アイランド ジャイアント デベロップメント エルエルピー Liquid storage system, liquid storage container, and liquid derivation control method
KR101230401B1 (en) * 2011-03-02 2013-02-07 한국화학연구원 Inorganic semiconductor Sensitized Photovoltaic Device
US9416456B1 (en) 2011-05-20 2016-08-16 University Of South Florida Nano-hybrid structured regioregular polyhexylthiophene (RRPHTh) blend films for production of photoelectrochemical energy
KR101316375B1 (en) * 2011-08-19 2013-10-08 포항공과대학교 산학협력단 Solar cell and Method of fabricating the same
US8933238B2 (en) 2013-03-11 2015-01-13 Saudi Basic Industries Corporation Aryloxy-phthalocyanines of group III metals
CN105051049A (en) 2013-03-11 2015-11-11 沙特基础工业公司 Aryloxy-phthalocyanines of group IV metals for use in solar cells
CN103681962B (en) * 2013-11-21 2016-02-17 中国科学院上海技术物理研究所 Based on the photodetector preparation method vertically arranging semiconductor nanowires
US20150160072A1 (en) * 2013-12-06 2015-06-11 Rensselaer Polytechnic Institute Oriented backscattering wide dynamic-range optical radiation sensor
CN104733616A (en) * 2013-12-24 2015-06-24 香港城市大学 Solar battery and manufacturing method thereof
KR101687491B1 (en) * 2015-07-16 2016-12-16 한국과학기술원 Ultrafast formation and transfer of organic and inorganic thin-films utilizing spontaneous spreading effect
CN107994119B (en) * 2017-11-28 2020-11-03 义乌市牛尔科技有限公司 Organic-inorganic hybrid solar cell and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106960A (en) * 1996-09-25 1998-04-24 Sony Corp Manufacture of quantum thin line
US6245988B1 (en) * 1997-05-07 2001-06-12 Ecole Polytechnique Federale De Lausanne Metal complex photosensitizer and photovoltaic cell
EP1342075B1 (en) * 2000-12-11 2008-09-10 President And Fellows Of Harvard College Device contaning nanosensors for detecting an analyte and its method of manufacture
CA2442985C (en) * 2001-03-30 2016-05-31 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
AU2002330851A1 (en) * 2001-06-06 2002-12-23 Reytech Corporation Functionalized fullerenes, their method of manufacture and uses thereof
US20020186921A1 (en) * 2001-06-06 2002-12-12 Schumacher Lynn C. Multiwavelength optical fiber devices
US7777303B2 (en) * 2002-03-19 2010-08-17 The Regents Of The University Of California Semiconductor-nanocrystal/conjugated polymer thin films
MY144626A (en) * 2002-03-19 2011-10-14 Univ California Semiconductor-nanocrystal/conjugated polymer thin films
CN100584921C (en) * 2002-09-05 2010-01-27 奈米系统股份有限公司 Organic species that facilitate charge transfer to or from nanostructures
WO2004023527A2 (en) * 2002-09-05 2004-03-18 Nanosys, Inc. Nanostructure and nanocomposite based compositions and photovoltaic devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006018575A1 *

Also Published As

Publication number Publication date
WO2006018575A1 (en) 2006-02-23
JP2008507146A (en) 2008-03-06
FR2873492A1 (en) 2006-01-27
FR2873492B1 (en) 2006-11-24
US20070290197A1 (en) 2007-12-20
US7713779B2 (en) 2010-05-11

Similar Documents

Publication Publication Date Title
EP1774605A1 (en) Photoactive nanocomposite and method for the production thereof
Yang et al. Effects of thin film processing on pentacene/C60 bilayer solar cell performance
WO2007048909A1 (en) Polymeric nanofibril network for photovoltaic cells
AU2004221377A1 (en) Photoactive component comprising organic layers
EP3477721B1 (en) Electronic or hybrid device and fabrication method
Jin et al. Aqueous-Processed Insulating Polymer/Nanocrystal Hybrid Solar Cells
EP2561560B1 (en) Bulk heterojunction organic photovoltaic cell comprising an electrically active layer having a vertical segregation
JP2007533165A5 (en)
CN110400880B (en) Application of organic free radical and derivative thereof in photovoltaic device
CN111192964B (en) Perovskite quantum dot solar cell and preparation method thereof
Jin et al. Aqueous-processed polymer/nanocrystal hybrid solar cells with efficiency of 5.64%: The impact of device structure, polymer content, and film thickness
US7772487B1 (en) Photovoltaic cell with enhanced energy transfer
LU93246B1 (en) Photovoltaic yarn and a production method
KR20150042121A (en) Solar cell and method of manufacturing the same
KR102254332B1 (en) Method for preparing Perovskite Solar Cell with surfaced-modified hole transportation layer
EP3650576A1 (en) Method for forming a transparent electrode
Jeon et al. Effects of acid-treated silicon nanowires on hybrid solar cells performance
Mitul et al. Efficient csf interlayer for high and low bandgap polymer solar cell
US11778891B2 (en) Crosslinked nanoparticle thin film, preparation method thereof, and thin film optoelectronic device having the same
Radziwon et al. Crystallites of α‐Sexithiophene in Bilayer Small Molecule Organic Solar Cells Double Efficiency
Poespawati et al. Stability of Perovskite Solar Cell with Optimized CuSCN as Hole Transport Layer
JP5463551B2 (en) Organic thin film manufacturing method, organic thin film using the manufacturing method, and organic photoelectric conversion element using the thin film
CN115275016A (en) High-detection-rate all-polymer-multiplication organic photodetector structure and preparation method thereof
BENSON-SMITH et al. Organic donor–acceptor heterojunction solar cells
Jeon Nanostructured hybrid solar cells based on PECVD grown SiNWs and organic semiconducting polymers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROCA I CABARROCAS, PERE

Inventor name: PALACIN, SERGE

Inventor name: FONCTCUBERTA I MORRAL, ANNA

Inventor name: DREVILLON, BERNARD

Inventor name: FIRON, MURIEL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Owner name: ECOLE POLYTECHNIQUE

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140201