[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1749873A2 - Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit - Google Patents

Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit Download PDF

Info

Publication number
EP1749873A2
EP1749873A2 EP06013802A EP06013802A EP1749873A2 EP 1749873 A2 EP1749873 A2 EP 1749873A2 EP 06013802 A EP06013802 A EP 06013802A EP 06013802 A EP06013802 A EP 06013802A EP 1749873 A2 EP1749873 A2 EP 1749873A2
Authority
EP
European Patent Office
Prior art keywords
ppm
mineral oil
nitrogen
alkyl
oil distillates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06013802A
Other languages
English (en)
French (fr)
Other versions
EP1749873A3 (de
EP1749873B1 (de
Inventor
Matthias Krull
Werner Reimann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant Produkte Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Produkte Deutschland GmbH filed Critical Clariant Produkte Deutschland GmbH
Publication of EP1749873A2 publication Critical patent/EP1749873A2/de
Publication of EP1749873A3 publication Critical patent/EP1749873A3/de
Application granted granted Critical
Publication of EP1749873B1 publication Critical patent/EP1749873B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1981Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2366Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amine groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/20Function and purpose of a components of a fuel or the composition as a whole for improving conductivity

Definitions

  • the present invention relates to the use of alkylphenol-aldehyde resins and nitrogen-containing polymers to improve the conductivity of low-water mineral oil distillates, and the additive mineral oil distillates.
  • additives are added to such oils with low electrical conductivity, which increase the conductivity and facilitate the potential equalization between the oil and its environment. Particularly problematic is the increase in electrical conductivity at low temperatures, since the conductivity of organic liquids decreases with decreasing temperature and also the known additives show the same temperature dependence.
  • a conductivity greater than 50 pS / m is generally considered sufficient for the safe handling of mineral oil distillates. Methods for determining the conductivity are described, for example, in DIN 51412-T02-79 and ASTM 2624.
  • alkylphenol resins and their derivatives which can be prepared by condensation of alkyl-containing phenols with aldehydes under acidic or basic conditions.
  • alkylphenol resins are used as cold flow improvers, lubricity improvers, oxidation inhibitors, corrosion inhibitors, as well as asphalt dispersants and alkoxylated alkylphenol resins as demulsifiers in crude oils and middle distillates.
  • alkylphenol resins are used as stabilizers for jet fuel.
  • Resins of benzoic acid esters with aldehydes or ketones are also used as cold additives for fuel oils.
  • mineral oil additives are polymers which contain structural elements derived from nitrogen-containing monomers and for example can be added to fuel oils to improve various properties such as cold flowability, lubricity and also to improve electrical conductivity.
  • EP-A-1 088 045 discloses that alkylphenol resins can be used together with oil soluble polar nitrogen compounds to improve the cold properties of middle distillates and the lubricity of low sulfur fuel oils.
  • EP-A-1 502 938 discloses fuel oils of improved conductivity comprising mixtures of polymeric esters of acrylic acid, methacrylic acid and fumaric acid which may optionally contain nitrogen-containing comonomers with either a polysulfone and a polymeric reaction product of epichlorohydrin and an aliphatic primary monoamine or N-alkyl-alkylenediamine or alternatively with an oil-soluble copolymer of alkyl vinyl monomer and cationic vinyl monomer. According to paragraphs 17 to 19, these oils may additionally contain antioxidants such as BHT.
  • EP-A-1 274 819 discloses fuel oils with improved conductivity, the blends of an oil-soluble copolymer of alkyl vinyl monomer and cationic vinyl monomer, a polysulfone and optionally a polyamine or its sulfonic acid salt.
  • EP-A-0 964 052 discloses copolymers of ethylene with nitrogen-containing comonomers as lubricity improvers for low sulfur middle distillates.
  • conductivity improvers contain as active ingredient component metal ions and / or polysulfones.
  • the latter are copolymers of SO 2 and olefins.
  • ash-forming and sulfur-containing additives are in principle undesirable for use in low-sulfur fuels.
  • the effectiveness of oil-soluble nitrogen compounds known as further additive components as conductivity improvers alone is inadequate and, as well as the combinations of these polar oil-soluble nitrogen compounds with alkoxylated alkylphenol resins according to US 4,356,002 with decreasing aromatics and water content of the oils to be added increasingly unsatisfactory.
  • a subsequent addition of water leads in such oils but only to the dispersion of undissolved water in the oil, which does not contribute to improving the electrical conductivity but rather leads to increased corrosion problems and in the cold the risk of ice formation and consequent obstruction of delivery lines and filters ,
  • the object of the present invention was thus to find a superior over the prior art in its effectiveness additive for improving the electrical conductivity of mineral oil distillates with low water content, especially low-aromatic mineral oil distillates, which also ensures safe handling of these oils even at low temperatures.
  • the additive should burn ashless and in particular contain no metals. In addition, it should contain neither halides nor sulfur-containing compounds.
  • aromatic mineral oils can be significantly improved in their electrical conductivity by adding small amounts of phenolic resins (component I) and nitrogen-containing polymers (component II).
  • component I phenolic resins
  • component II nitrogen-containing polymers
  • the conductivity is significantly increased by the combination of these two additive components than would be expected from the effect of the individual substances.
  • the conductivity remains constant with decreasing temperature and in many cases even increases with decreasing temperature.
  • the oils thus additized show a greatly increased conductivity and are therefore much safer to handle, especially at low temperatures.
  • the invention thus relates to the use of compositions containing at least one alkylphenol-aldehyde resin, which is a structural element of the formula wherein R 5 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl, OR 6 or OC (O) -R 6 , R 6 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl and n is a number from 2 to 100, containing, based on the alkylphenol-aldehyde resin or the alkylphenol-aldehyde resins 0.1 to 10 parts by weight of at least one nitrogen-containing polymer, to improve the electrical conductivity of mineral oil distillates having a water content of less than 150 ppm.
  • alkylphenol-aldehyde resin which is a structural element of the formula wherein R 5 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl, OR 6 or OC (O) -R 6 , R 6 is C 1 -
  • Another object of the invention is the use of at least one alkylphenol-aldehyde resin (component I), which is a structural element of the formula in which R 5 is C 1 -C 200 -alkyl or C 2 -C 200 -alkenyl, OR 6 or OC (O) -R 6 , R 6 is C 1 -C 200 -alkyl or C 2 -C 200 - Alkenyl and n is a number from 2 to 100, for improving the electrical conductivity of low-aromatic mineral oil distillates having a water content of less than 150 ppm, containing 0.1 to 200 ppm of at least one nitrogen-containing polymer (component II) in an amount such that the mineral oil distillates have a conductivity of at least 50 pS / m.
  • component I alkylphenol-aldehyde resin
  • Another object of the invention is a method for improving the electrical conductivity of mineral oil distillates having a water content of less than 150 ppm, by the mineral oil distillates compositions containing at least one alkylphenol-aldehyde resin, which is a structural element of the formula wherein R 5 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl, OR 6 or OC (O) -R 6 , R 6 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl and n is from 2 to 100 and contains, based on the alkylphenol-aldehyde resin, 0.1 to 10 parts by weight of at least one nitrogen-containing polymer, such that the mineral oil distillates have a conductivity of at least 50 pS / m.
  • alkylphenol-aldehyde resin which is a structural element of the formula wherein R 5 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl, OR 6 or OC (O)
  • Another object of the invention is a method for improving the electrical conductivity of mineral oil distillates having a water content of less than 150 ppm, containing 0.1 to 200 ppm of at least one nitrogen-containing polymer, by adding to the mineral oil distillates 0.1 to 200 ppm of at least one alkylphenol-aldehyde resin which is a structural element of the formula in which R 5 is C 1 -C 200 -alkyl or C 2 -C 200 -alkenyl, OR 6 or OC (O) -R 6 , R 6 is C 1 -C 200 -alkyl or C 2 -C 200 - Alkenyl and n is a number from 2 to 100, added, so that the mineral oil distillates have a conductivity of at least 50 pS / m.
  • Another object of the invention are mineral oil distillates having a water content of less than 150 ppm and a conductivity of at least 50 pS / m, the 0.1 to 200 ppm of at least one alkylphenol-aldehyde resin, which is a structural element of the formula wherein R 5 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl, OR 6 or OC (O) -R 6 , R 6 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl and n is from 2 to 100, and contains from 0.1 to 200 ppm of at least one nitrogen-containing polymer.
  • Another object of the invention are additives for mineral oil distillates having a water content of less than 150 ppm, which contain at least one alkylphenol-aldehyde resin and at least one nitrogen-containing polymer in a mass ratio of 99: 1 to 1:99.
  • alkylphenol-aldehyde resins are understood as meaning all polymers which are accessible by condensation of an alkyl radical-carrying phenol with aldehydes or ketones.
  • the alkyl radical can be bonded directly to the aryl radical of the phenol via a C-C bond or via functional groups such as esters or ethers.
  • the mineral oil distillates of the invention contain from 0.2 to 100 ppm and especially from 0.25 to 25 ppm such as 0.3 to 10 ppm of at least one alkylphenol-aldehyde resin and 0.2 to 50 ppm and especially 0.25 to 25 ppm such as 0 , 3 to 20 ppm of at least one nitrogen-containing polymer.
  • the mineral oil distillates according to the invention particularly preferably contain a total of up to 100 ppm, preferably 0.2 to 70 ppm and especially 0.3 to 50 ppm of the combination of alkylphenol-aldehyde resin or alkylphenol-aldehyde resins and nitrogen-containing polymer or nitrogen-containing polymers.
  • 0.2 to 100 ppm and especially 0.25 to 25 ppm such as 0.3 to 10 ppm of at least one alkylphenol-aldehyde resin to improve the electrical conductivity of mineral oil distillates, 0.2 to 50 ppm and especially 0.25 to 25 ppm, such as 0.3 to 20 ppm of at least one nitrogen-containing polymer.
  • the mass ratio between constituent I and constituent II in the inventive additive for mineral oil distillates is preferably between 50: 1 and 1:50, particularly preferably between 10: 1 and 1:10, for example between 4: 1 and 1: 4.
  • the mineral oil distillates of the invention which have improved electrical conductivity have an electrical conductivity of preferably at least 60, in particular at least 75 pS / m.
  • Alkylphenol-aldehyde resins as constituent I are known in principle and, for example in the Rompp Chemie Lexikon, 9th edition, Thieme Verlag 1988-92, Volume 4, p 3351 et seq. described.
  • Particularly suitable according to the invention are those alkylphenol-aldehyde resins which are derived from alkylphenols having one or two alkyl radicals in the ortho and / or para position to the OH group.
  • Particularly preferred as starting materials are alkylphenols which carry at least two hydrogen atoms capable of condensation with aldehydes on the aromatic and in particular monoalkylated phenols.
  • the alkyl radical is in the para position to the phenolic OH group.
  • alkyl radicals may be identical or different in the alkylphenol-aldehyde resins which can be used in the process according to the invention, they may be saturated or unsaturated and have up to 200, preferably 1-20 , in particular 4-16, such as, for example, 6 to 12 carbon atoms; it is preferably n-, iso- and tert-butyl, n- and iso-pentyl, n- and iso-hexyl, n- and iso-octyl, n- and iso-nonyl-, n - and iso-decyl, n- and iso-dodecyl, tetradecyl, hexadecyl, octadecyl, tripropenyl, tetrapropenyl, poly (propenyl) - and poly (isobutenyl) radicals.
  • these radicals are saturated.
  • mixtures of alkylphenols having different alkyl radicals are used for the preparation of the alkylphenol resins.
  • resins based on butylphenol on the one hand and octyl-, nonyl- and / or dodecylphenol on the other hand in a molar ratio of 1:10 to 10: 1 have proven particularly useful.
  • Suitable alkylphenol resins may also contain or consist of structural units of other phenol analogs such as salicylic acid, hydroxybenzoic acid and derivatives thereof such as esters, amides and salts.
  • Suitable aldehydes for the alkylphenol-aldehyde resins are those having 1 to 12 carbon atoms and preferably those having 1 to 4 carbon atoms such as formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, 2-ethylhexanal, benzaldehyde, glyoxylic acid and their reactive equivalents such as paraformaldehyde and trioxane.
  • the molecular weight of the alkylphenol-aldehyde resins as determined by gel permeation chromatography in THF against poly (ethylene glycol) standards is preferably 400-20,000, in particular 800-10,000 g / mol and especially 2,000-5,000 g / mol.
  • the prerequisite here is that the alkylphenol-aldehyde resins, at least in application-relevant concentrations of 0.001 to 1 wt .-% are oil-soluble.
  • these are alkylphenol-formaldehyde resins, the oligo- or polymers having a repetitive structural unit of the formula wherein R 5 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl, OR 6 or OC (O) -R 6 , R 6 is C 1 -C 200 alkyl or C 2 -C 200 alkenyl and n is a number from 2 to 100.
  • R 6 is preferably C 1 -C 20 -alkyl or C 2 -C 20 -alkenyl and in particular C 4 -C 16 -alkyl or C 2 -C 20 -alkenyl, for example C 6 -C 12 -alkyl or alkenyl.
  • R 5 is C 1 -C 20 -alkyl or -alkenyl and in particular C 4 -C 16 -alkyl or -alkenyl, for example C 6 -C 12 -alkyl or -alkenyl.
  • n is a number from 2 to 50 and especially a number from 3 to 25, such as a number from 5 to 15.
  • alkylphenol-aldehyde resins having C 2 -C 40 -alkyl radicals of the alkylphenol, preferably having C 4 -C 20 -alkyl radicals such as, for example, C 6 -C 12 -alkyl radicals.
  • the alkyl radicals can be linear or branched, preferably they are linear.
  • Particularly suitable alkylphenol-aldehyde resins are derived from alkylphenols with linear alkyl radicals having 8 and 9 carbon atoms.
  • the average molecular weight determined by GPC is preferably between 700 and 20,000 g / mol, in particular between 1,000 and 10,000 g / mol, for example between 2,000 and 3,500 g / mol.
  • alkylphenol-aldehyde resins whose alkyl radicals carry 4 to 200 carbon atoms, preferably 10 to 180 carbon atoms, and oligomers or polymers of olefins having 2 to 6 carbon atoms, such as .alpha for example, derived from poly (isobutylene). They are thus preferably branched.
  • the degree of polymerization (n) here is preferably between 2 and 20, more preferably between 3 and 10 alkylphenol units.
  • alkylphenol-aldehyde resins are accessible by known methods, for example by condensation of the corresponding alkylphenols with formaldehyde, ie with 0.5 to 1.5 moles, preferably 0.8 to 1.2 moles of formaldehyde per mole of alkylphenol.
  • the condensation can be carried out solvent-free, but preferably it is carried out in the presence of an inert or only partially water-miscible inert organic solvent such as mineral oils, alcohols, ethers and the like. Particularly preferred are solvents which can form azeotropes with water.
  • solvents in particular aromatics such as toluene, xylene diethylbenzene and higher-boiling commercial solvent mixtures such as ® Shellsol AB, and solvent naphtha are used.
  • the condensation is preferably carried out between 70 and 200 ° C such as between 90 and 160 ° C. It is usually catalysed by 0.05 to 5 wt .-% bases or preferably by 0.05 to 5 wt .-% acids.
  • acidic catalysts in addition to carboxylic acids such as acetic acid and oxalic acid in particular strong mineral acids such as hydrochloric acid, phosphoric acid and sulfuric acid and sulfonic acids are common catalysts.
  • Particularly suitable catalysts are sulfonic acids which contain at least one sulfonic acid group and at least one saturated or unsaturated, linear, branched and / or cyclic hydrocarbon radical having 1 to 40 C atoms and preferably having 3 to 24 C atoms.
  • Particularly preferred are aromatic sulfonic acids, especially alkylaromatic mono-sulfonic acids having one or more C 1 -C 28 -alkyl radicals and in particular those having C 3 -C 22 -alkyl radicals.
  • Suitable examples are methanesulfonic acid, butanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, Xylenesulfonic acid, 2-mesitylenesulfonic acid, 4-ethylbenzenesulfonic acid, isopropylbenzenesulfonic acid, 4-butylbenzenesulfonic acid, 4-octylbenzenesulfonic acid; Dodecylbenzenesulfonic acid, didodecylbenzenesulfonic acid, naphthalenesulfonic acid. Mixtures of these sulfonic acids are suitable. Usually, these remain after completion of the reaction as such or in neutralized form in the product; Metal ions containing and thus ash-forming salts are usually separated.
  • suitable comb polymers are derived in particular from oil-soluble esters of ethylenically unsaturated carboxylic acids, oil-soluble vinyl esters and / or oil-soluble vinyl ethers, which carry a C 4 - to C 40 -alkyl radical.
  • Particularly suitable polymers are poly (acrylates), poly (methacrylates), poly (maleate) and poly (fumarates), which are esters of acrylic, methacrylic, maleic and / or fumaric acid with C 4 -C 40 alcohols and in particular with C 6 - to derive C 22 alcohols.
  • the alkyl radicals are preferably linear or branched, they are preferably saturated.
  • n-butyl acrylate 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate and the like.
  • Suitable comb polymers IIa is derived from olefins having 6 to 42 carbon atoms.
  • the olefins are linear.
  • the double bond is preferably terminal such as, for example, 1-decane, 1-dodecane, 1-tetradecane, 1-hexadecane.
  • mixtures of different olefins in the chain length range C 20 -C 24 , C 22 -C 28 and C 24 -C 30 are also preferred.
  • the comb polymers IIa) contain at least one nitrogen-containing comonomer whose nitrogen is preferably present in the form of an amino, amido, imido or ammonium group and is bonded to the polymer backbone via a hydrocarbon radical. They are preferably amino or ammonium groups which are bonded to the polymer backbone via a C 2 -C 12 -alkylene radical, which may optionally be interrupted by ester or amide groups. Ammonium groups preferably include salts of primary, secondary and tertiary amines with mineral acids, organic sulfonic acids and preferably with carboxylic acids. Also comonomers carrying quaternary ammonium groups are suitable.
  • Suitable comonomers are polymerizable unsaturated basic amines such as allylamine and diallylamine, amino-bearing olefins such as p- (2-diethylaminoethyl) styrene, nitrogen-containing heterocycles having exocyclic double bond such as vinylpyridine and vinylpyrrolidone, esters of ethylenically unsaturated carboxylic acids with amino alcohols such as N, N- (dimethylamino ) ethyl acrylate, N, N- (dimethylamino) ethyl methacrylate or N, N- (dimethylamino) propyl methacrylate, amides of diamines with ethylenically unsaturated carboxylic acids such as N, N- (dimethylamino) propylmethacrylamide, N- (aminopropyl) morpholine and their quaternized derivatives such as N , N, N
  • nitrile-bearing monomers such as acrylonitrile and methacrylonitrile.
  • the molar ratio between the esters of ethylenically unsaturated carboxylic acids, vinyl esters, vinyl ethers and / or olefins on the one hand and the nitrogen-containing comonomers on the other hand is preferably between 20: 1 and 1: 1, for example between 10: 1 and 3: 1.
  • these copolymers have a nitrogen content of 0.3 to 5 wt .-%, such as 0.5 to 3 wt .-%.
  • the comb polymers IIa can also be up to 20 mol% such as 1 to 10 mol% of other comonomers such as ⁇ -olefins having 4 to 40 carbon atoms, acrylamide, methacrylamide, C 1 -C 20 alkylacrylamide and / or C 1 - C 20 alkyl methacrylamide included.
  • other comonomers such as ⁇ -olefins having 4 to 40 carbon atoms, acrylamide, methacrylamide, C 1 -C 20 alkylacrylamide and / or C 1 - C 20 alkyl methacrylamide included.
  • the comb polymers preferably have molecular weights (Mn) of from 1,000 to 100,000 g / mol, preferably from 5,000 to 50,000 g / mol, by means of gel permeation chromatography in THF against poly (styrene) standards.
  • the comb polymers IIa) are preferably prepared by direct copolymerization of the comonomers. Alternatively, however, they can also be obtained by polymer-analogous reaction of copolymers of esters of ethylenically unsaturated carboxylic acids, vinyl esters, vinyl ethers and / or olefins which carry a C 1 - to C 40 -alkyl radical and ethylenically unsaturated carboxylic acids or reactive derivatives thereof such as anhydrides, acid halides or esters lower alcohols having 1 to 4 carbon atoms with hydroxyamines or polyamines.
  • Suitable hydroxyamines are, for example, N, N-dimethylaminoethanol and N-coconut fatty alkylaminoethanol.
  • Suitable polyamines are, for example, N, N-dimethylaminopropylamine N-coconut fatty alkylpropylenediamine and N-tallow fatty alkylpropylenediamine.
  • a further preparation variant is the grafting of the nitrogen-containing comonomers onto polymers of esters of ethylenically unsaturated carboxylic acids, vinyl esters, vinyl ethers and / or olefins which carry a C 1 - to C 40 -alkyl radical.
  • Quaternary ammonium group-bearing polymers can be prepared by copolymerization of the polymerizable quaternary ammonium compound or by polymer-analogous reaction of an amino group-bearing polymer with alkylating agents such as alkyl halides or sulfuric acid esters. Particularly preferred are halogen-free alkylating agents such as dimethyl sulfate.
  • nitrogen-containing polymers IIa are copolymers of N, N, N, - (trimethylammonium) ethyl methacrylate methosulfate and 2-ethylhexyl acrylate, copolymers of dodecyl methacrylate and dimethylaminopropylmethacrylamide and alternating copolymers of tetradecene and acrylonitrile.
  • Preferred copolymers IIb) contain, in addition to ethylene, from 0.1 to 15, in particular from 1 to 10, mol% of one or more of the nitrogen-containing comonomers. In addition, they may contain further, for example, one, two or three further ethylenically unsaturated comonomers. Suitable further comonomers are, for example Vinyl esters, acrylic acid, methacrylic acid, acrylic acid esters, methacrylic acid esters, vinyl ethers and olefins.
  • Particularly preferred vinyl esters are vinyl acetate, vinyl propionate, vinyl butyrate, vinyl octanoate, vinyl 2-ethylhexanoate, vinyl laurate and vinyl esters of neocarboxylic acids having 8, 9, 10, 11 or 12 C atoms.
  • Particularly preferred acrylic and methacrylic acid esters are derived from alcohols having 1 to 20 C atoms, in particular having 1 to 4 C atoms, such as methanol, ethanol and propanol.
  • Particularly preferred olefins are those having 3 to 10 C atoms, especially propene, butene, isobutylene, diisobutylene, 4-methylpentene, hexene and norbornene. If the copolymers IIb) contain a further comonomer, its molar fraction is preferably up to 15 mol%, in particular from 1 to 12 mol%, for example from 2 to 10 mol%.
  • the melt viscosity of these copolymers is preferably below 10,000 mPas, in particular between 10 and 1,000 mPas, for example between 20 and 500 mPas.
  • the copolymerization of the comonomers takes place by known processes (cf. Ullmanns Encyclopadie der Technischen Chemie, 4th Edition, Vol. 19, pages 169 to 178 ).
  • the polymerization in solution, in suspension, in the gas phase and the high-pressure mass polymerization are suitable.
  • Preference is given to the high-pressure mass polymerization which at pressures of 50 to 400 MPa, preferably 100 to 300 MPa and temperatures of 50 to 350 ° C, preferably 100 to 300 ° C, is performed.
  • the reaction of the comonomers is initiated by free radical initiators (free radical initiators).
  • This class of substances includes, for example, oxygen, hydroperoxides, peroxides and azo compounds such as cumene hydroperoxide, t-butyl hydroperoxide, dilauroyl peroxide, dibenzoyl peroxide, bis (2-ethylhexyl) peroxydicarbonate, t-butyl permalate, t-butyl perbenzoate, dicumyl peroxide, t-butylcumyl peroxide, di ( t-butyl) peroxide, 2,2'-azobis (2-methylpropanonitrile), 2,2'-azobis (2-methylbutyronitrile).
  • the initiators are used individually or as a mixture of two or more substances in amounts of 0.01 to 20 wt .-%, preferably 0.05 to 10 wt .-%, based on the comonomer mixture.
  • the desired melt viscosity and thus the molecular weight of the copolymers is adjusted for a given composition of the comonomer mixture by varying the reaction parameters pressure and temperature and optionally by adding moderators.
  • moderators have hydrogen, saturated or unsaturated hydrocarbons, e.g. Propane, propene, aldehydes, e.g. Propionaldehyde, n-butyraldehyde or isobutyraldehyde, ketones, e.g. Acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone or alcohols, e.g. Butanol, proven.
  • the moderators are used in amounts of up to 20% by weight, preferably 0.05 to 10% by weight, based on the comonomer mixture.
  • the high-pressure mass polymerization is carried out batchwise or continuously in known high-pressure reactors, for example autoclaves or tubular reactors, tube reactors have proven particularly useful. Solvents such as aliphatic hydrocarbons or hydrocarbon mixtures, benzene or toluene may be included in the reaction mixture, although the solvent-free procedure has proven particularly useful.
  • the comonomer streams can be composed differently ( EP-B-0 271 738 and EP-A-0 922 716 ).
  • Copolymers IIb) which are likewise suitable according to the invention can be prepared by reacting ethylene copolymers which contain acid groups with compounds carrying amino groups.
  • Ethylene copolymers and ethylene terpolymers suitable for this purpose are, for example, those which comprise acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid or maleic anhydride.
  • these acid group-containing copolymers are present via the acid groups with alkanolamines such as ethanolamine, propanolamine, diethanolamine, N-ethylethanolamine, N, N-dimethylethanolamine, diglycolamine, 2-amino-2-methylpropanolamine and / or polyamines such as ethylenediamine and dimethylaminopropylamine and / or N-alkylalkylenepolyamines such as N-coconut fatty alkylpropylenediamine or the like Implemented ammonium-carrying compounds or mixtures thereof. From 0.1 to 1.2 moles, preferably equimolar amounts, of amine per mole of acid are used.
  • Both nitrogen-containing ethylene copolymers prepared by direct polymerization and by polymer-analogous reaction can be converted into quaternary ammonium salts by reaction with alkylating agents such as alkyl halides or sulfuric acid esters. Particularly preferred are halogen-free alkylating agents such as dimethyl sulfate.
  • the polymeric polyamines suitable as component IIc) according to the invention are in particular polyamines having 4 or more, preferably 6 or more, for example 8 or more nitrogen atoms in the molecule.
  • the nitrogen atoms are part of the main chain.
  • the polymer backbone preferably carries alkyl side chains of 8 or more carbon atoms.
  • the polymeric polyamines are preferably condensation products of amines and epichlorohydrin or glycidol in a molar ratio of 1: 1 to 1: 1.5. Preference is given to polymers based on primary monoamines, in particular alkylamines, and on the basis of N-alkyl-alkylenediamines whose alkyl radicals have 8 to 24 and in particular 8 to 12 C atoms and whose alkylene radical has 2 to 6 C atoms, for example N-alkyl -1,3-propylenediamine.
  • the alkyl radicals are preferably linear.
  • the condensation products IIc) preferably have degrees of polymerization of 2 to 20.
  • the nitrogen-containing polymers IIa), IIb) as well as IIc), in which the nitrogen is present as a basic amino group, are preferably used as salts and in particular as sulfonic acid salts.
  • Preferred sulfonic acids for salt formation are oil-soluble sulfonic acids such as alkanesulfonic acids, arylsulfonic acids and alkylarylsulfonic acids such as dodecylbenzenesulfonic acid.
  • compositions according to the invention are preferably used as concentrates which contain from 10 to 90% by weight and preferably from 20 to 60% by weight of solvent.
  • Preferred solvents are higher-boiling aliphatic hydrocarbons, aromatic hydrocarbons, alcohols, esters, ethers and mixtures thereof.
  • the mixing ratio between the alkylphenol-aldehyde resins of the invention as component I and nitrogen compounds as component II may vary depending on the application.
  • Such concentrates preferably contain from 0.1 to 10 parts by weight, preferably from 0.2 to 6 parts by weight, of the polar, oil-soluble nitrogen compound per part by weight of alkylphenol-aldehyde resin.
  • the additives according to the invention can also be used in combination with polysulfones.
  • Suitable polysulfones are accessible by copolymerization of sulfur dioxide with 1-olefins having 6 to 20 carbon atoms such as 1-dodecene. They have molecular weights of from 10,000 to 1,500,000, preferably from 50,000 to 900,000 and more preferably from 100,000 to 500,000, measured by GPC against poly (styrene) standards.
  • the preparation of suitable polysulfones is for example US 3,917,466 known.
  • the additives according to the invention may also be added to mineral oil distillates for improving cold flowability in combination with other additives such as, for example, ethylene copolymers, paraffin dispersants, comb polymers, polyoxyalkylene compounds and / or olefin copolymers.
  • the additives according to the invention for mineral oil distillates contain in a preferred embodiment, in addition to the constituents I and II, one or more of the constituents III to VII.
  • ethylene copolymers are, in particular, those which, in addition to ethylene, contain 6 to 21 mol%, in particular 10 to 18 mol%, of comonomers.
  • the olefinically unsaturated compounds are preferably vinyl esters, acrylic esters, methacrylic esters, alkyl vinyl ethers and / or alkenes, where the mentioned compounds may be substituted with hydroxyl groups.
  • One or more comonomers may be included in the polymer.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • R 1 is a branched alkyl radical or a neoalkyl radical having 7 to 11 carbon atoms, in particular having 8, 9 or 10 carbon atoms.
  • Particularly preferred vinyl esters are derived from secondary and especially tertiary carboxylic acids whose branching is in the alpha position to the carbonyl group.
  • Suitable vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl hexanoate, vinyl heptanoate, vinyl octanoate, vinyl pivalate, vinyl 2-ethylhexanoate, vinyl laurate, vinyl stearate and versatic acid esters such as vinyl neononanoate, vinyl neodecanoate, vinyl neoundecanoate.
  • these ethylene copolymers contain vinyl acetate and at least one further vinyl ester of the formula 1 in which R 1 is C 4 to C 30 -alkyl, preferably C 4 to C 16 -alkyl, especially C 6 - to C 12 -alkyl ,
  • Suitable acrylic esters include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n- and isobutyl (meth) acrylate, hexyl, octyl, 2-ethylhexyl, decyl, dodecyl, tetradecyl , Hexadecyl, octadecyl (meth) acrylate and mixtures of these comonomers.
  • An example of such an acrylic ester is hydroxyethyl methacrylate.
  • the alkenes are preferably simple unsaturated hydrocarbons having 3 to 30 carbon atoms, especially 4 to 16 carbon atoms and especially 5 to 12 carbon atoms.
  • Suitable alkenes include propene, butene, isobutylene, pentene, hexene, 4-methylpentene, octene, diisobutylene and norbornene and its derivatives such as methylnorbornene and vinylnorbornene.
  • said alkyl groups may be substituted with one or more hydroxyl groups.
  • terpolymers which, apart from ethylene, have from 3.5 to 20 mol%, in particular from 8 to 15 mol% of vinyl acetate and from 0.1 to 12 mol%, in particular from 0.2 to 5 mol%, of at least one longer-chain and preferably branched one Vinyl esters such as vinyl 2-ethylhexanoate, vinyl neononanoate or vinyl neodecanoate, the total comonomer content being between 8 and 21 mol%, preferably between 12 and 18 mol%.
  • copolymers contain, in addition to ethylene and 8 to 18 mol% of vinyl esters, 0.5 to 10 mol% of olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • olefins such as propene, butene, isobutylene, hexene, 4-methylpentene, octene, diisobutylene and / or norbornene.
  • These ethylene copolymers and terpolymers preferably have melt viscosities at 140 ° C. of from 20 to 10,000 mPas, in particular from 30 to 5,000 mPas, especially from 50 to 2,000 mPas.
  • the means of 1 H-NMR spectroscopy, certain degrees of branching are preferably between 1 and 9 CH 3/100 CH 2 groups, especially between 2 and 6 CH 3/100 CH 2 groups, which do not stem from the comonomers.
  • the polymers underlying the mixtures differ in at least one characteristic.
  • they may contain different comonomers, have different comonomer contents, molecular weights and / or degrees of branching.
  • the mixing ratio between the additives according to the invention and ethylene copolymers as constituent III can vary within wide limits depending on the application, with the ethylene copolymers III often representing the greater proportion.
  • Such additive mixtures preferably contain from 2 to 70% by weight, preferably from 5 to 50% by weight, of the inventive additive combination of I and II and from 30 to 98% by weight, preferably from 50 to 95% by weight, of ethylene copolymers.
  • paraffin dispersants which are suitable as further component according to the invention are preferably reaction products of fatty amines with compounds which contain at least one acyl group.
  • the preferred amines are compounds of the formula NR 6 R 7 R 8 , in which R 6 , R 7 and R 8 may be identical or different, and at least one of these groups is C 8 -C 36 -alkyl, C 6 - C 36 -cycloalkyl, C 8 -C 36 -alkenyl, in particular C 12 -C 24 -alkyl, C 12 -C 24 -alkenyl or cyclohexyl, and the other groups are either hydrogen, C 1 -C 36 -alkyl, C 2 -C 36 alkenyl, cyclohexyl, or a group of the formulas - (AO) x -E or - (CH 2 ) n -NYZ, where A is an ethyl or propyl group, x is
  • the alkyl and alkenyl radicals can be linear or branched and contain up to two double bonds. They are preferably linear and substantially saturated, ie they have iodine numbers of less than 75 gl 2 / g, preferably less than 60 gl 2 / g and in particular between 1 and 10 gl 2 / g. Particularly preferred are secondary fatty amines in which two of the groups R 6 , R 7 and R 8 are C 8 -C 36 -alkyl, C 6 -C 36 -cycloalkyl, C 8 -C 36 -alkenyl, in particular C 12 -C 24 alkyl, C 12 -C 24 alkenyl or cyclohexyl.
  • Suitable fatty amines are, for example, octylamine, decylamine, dodecylamine, tetradecylamine, hexadecylamine, octadecylamine, eicosylamine, behenylamine, didecylamine, didodecylamine, ditetradecylamine, dihexadecylamine, dioctadecylamine, dieicosylamine, dibehenylamine as well as their mixtures.
  • the amines contain chain cuts based on natural raw materials such as coco fatty amine, tallow fatty amine, hydrogenated tallow fatty amine, dicocosfettamine, ditallow fatty amine and di (hydrogenated tallow fatty amine).
  • Particularly preferred amine derivatives are amine salts, imides and / or amides such as, for example, amide ammonium salts of secondary fatty amines, in particular dicocosfettamine, ditallow fatty amine and distearylamine.
  • Particularly preferred paraffin dispersants as constituent II comprise at least one acyl group converted to an ammonium salt. Specifically, they contain at least two, for example at least three or at least four and in the case of polymeric paraffin dispersants also five or more ammonium groups.
  • Suitable carbonyl compounds for the reaction with amines are both monomeric and polymeric compounds having one or more carboxyl groups. In the case of the monomeric carbonyl compounds, preference is given to those having 2, 3 or 4 carbonyl groups. They can also contain heteroatoms such as oxygen, sulfur and nitrogen.
  • carboxylic acids examples include maleic, fumaric, crotonic, itaconic, succinic, C 1 -C 40 -alkenylsuccinic, adipic, glutaric, sebacic, and malonic acids and benzoic, phthalic, trimellitic and pyromellitic acid, nitrilotriacetic acid , Ethylenediaminetetraacetic acid and their reactive derivatives such as esters, anhydrides and acid halides.
  • Copolymers of ethylenically unsaturated acids such as, for example, acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, have proven particularly suitable as polymeric carbonyl compounds, particular preference is given to copolymers of maleic anhydride.
  • Suitable comonomers are those which impart oil solubility to the copolymer. Oil-soluble means here that the copolymer dissolves without residue in the mineral oil distillate to be added after reaction with the fatty amine in practice-relevant metering rates.
  • Suitable comonomers are, for example, olefins, alkyl esters of acrylic acid and methacrylic acid, alkyl vinyl esters and alkyl vinyl ethers having 2 to 75, preferably 4 to 40 and in particular 8 to 20 carbon atoms in the alkyl radical.
  • the carbon number refers to the bonded to the double bond alkyl radical.
  • Particularly suitable comonomers are olefins with a terminal double bond.
  • the molecular weights of the polymeric carbonyl compounds are preferably between 400 and 20,000, more preferably between 500 and 10,000, for example between 1,000 and 5,000.
  • Paraffin dispersants which have been obtained by reaction of aliphatic or aromatic amines, preferably long-chain aliphatic amines, with aliphatic or aromatic mono-, di-, tri- or tetracarboxylic acids or their anhydrides have proven particularly suitable (cf. US 4 211 534 ).
  • amides and ammonium salts of aminoalkylene polycarboxylic acids such as nitrilotriacetic acid or ethylenediaminetetraacetic acid with secondary amines are suitable as paraffin dispersants (cf. EP 0 398 101 ).
  • paraffin dispersants are copolymers of maleic anhydride and ⁇ , ⁇ -unsaturated compounds, which can optionally be reacted with primary monoalkylamines and / or aliphatic alcohols (cf. EP-A-0 154 177 . EP 0 777 712 ), the reaction products of Alkenylspirobislactonen with amines (see. EP-A-0 413 279 B1) and after EP-A-0 606 055 A2 reaction products of terpolymers based on ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers of lower unsaturated alcohols.
  • the mixing ratio between the additives according to the invention and paraffin dispersants as constituent IV may vary depending on the application.
  • Such additive mixtures preferably contain from 10 to 90% by weight, preferably from 20 to 80% by weight, of the inventive additive combination of I and II and from 10 to 90% by weight, preferably from 20 to 80% by weight, of paraffin dispersant.
  • Suitable comb polymers are, for example, copolymers of ethylenically unsaturated dicarboxylic acids such as maleic or fumaric acid with other ethylenically unsaturated monomers such as olefins or vinyl esters such as vinyl acetate.
  • Particularly suitable olefins are ⁇ -olefins having 10 to 24 carbon atoms such as 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene and mixtures thereof.
  • olefins based on oligomerized C 2 -C 6 -olefins such as poly (isobutylene) with a high proportion of terminal double bonds are suitable as comonomers.
  • these copolymers are at least 50% esterified with alcohols having 10 to 22 carbon atoms.
  • Suitable alcohols include n-decen-1-ol, n-dodecan-1-ol, n-tetradecan-1-ol, n-hexadecan-1-ol, n-octadecan-1-ol, n-eicosan-1-ol and their mixtures.
  • comb polymers are poly (alkyl acrylates), poly (alkyl methacrylates) and poly (alkyl vinyl ethers) derived from alcohols having 12 to 20 carbon atoms and poly (vinyl esters) derived from fatty acids having 12 to 20 carbon atoms ,
  • Suitable polyoxyalkylene compounds are esters, ethers and ethers / esters of polyols which carry at least one alkyl radical having 12 to 30 carbon atoms.
  • the alkyl groups are derived from an acid, the remainder is derived from a polyhydric alcohol; If the alkyl radicals come from a fatty alcohol, the remainder of the compound derives from a polyacid.
  • Suitable polyols are polyethylene glycols, polypropylene glycols, polybutylene glycols and their copolymers having a molecular weight of about 100 to about 5000, preferably 200 to 2000.
  • alkoxylates of polyols such as glycerol, trimethylolpropane, pentaerythritol, neopentyl glycol, as well as the thereof Condensation accessible oligomers having 2 to 10 monomer units, such as Polyglycerol.
  • Preferred alkoxylates are those having from 1 to 100, in particular from 5 to 50, mol of ethylene oxide, propylene oxide and / or butylene oxide per mole of polyol. Esters are especially preferred.
  • Fatty acids containing 12 to 26 carbon atoms are preferred for reaction with the polyols to form the ester additives, more preferably C 18 to C 24 fatty acids, especially stearic and behenic acid.
  • the esters can also be prepared by esterification of polyoxyalkylated alcohols. Preference is given to completely esterified polyoxyalkylated polyols having molecular weights of from 150 to 2,000, preferably from 200 to 600. Particularly suitable are PEG-600 dibehenate and glycerol-ethylene glycol tribehenate.
  • Suitable olefin copolymers as further constituent of the additive according to the invention can be derived directly from monoethylenically unsaturated monomers or can be prepared indirectly by hydrogenation of polymers derived from polyunsaturated monomers such as isoprene or butadiene.
  • preferred copolymers contain structural units which are derived from ⁇ -olefins having 3 to 24 carbon atoms and have molecular weights of up to 120,000 g / mol.
  • Preferred ⁇ -olefins are propylene, butene, isobutene, n-hexene, isohexene, n-octene, isooctene, n-decene, isodecene.
  • the comonomer content of ⁇ -olefins having 3 to 24 C atoms is preferably between 15 and 50 mol%, more preferably between 20 and 35 mol% and especially between 30 and 45 mol%. These copolymers may also contain minor amounts, eg, up to 10 mol% of other comonomers such as non-terminal olefins or non-conjugated olefins.
  • Preferred are ethylene-propylene copolymers.
  • the olefin copolymers can be prepared by known methods, for example by Ziegler or metallocene catalysts.
  • olefin copolymers are block copolymers containing blocks of olefinically unsaturated aromatic monomers A and blocks of hydrogenated polyolefins B.
  • Particularly suitable are block copolymers of the structure (AB) n A and (AB) m , where n is a number between 1 and 10 and m is a number between 2 and 10.
  • the mixing ratio between the inventive additive combinations of I and II and the further constituents V, VI and VII is generally in each case between 1:10 and 10: 1, preferably between 1: 5 and 5: 1.
  • the additives can be used alone or together with other additives, e.g. with other pour point depressants or dewaxing aids, with antioxidants, cetane number improvers, dehazers, demulsifiers, detergents, dispersants, defoamers, dyes, corrosion inhibitors, lubricity additives, sludge inhibitors, odorants and / or cloud point depressants.
  • other pour point depressants or dewaxing aids with antioxidants, cetane number improvers, dehazers, demulsifiers, detergents, dispersants, defoamers, dyes, corrosion inhibitors, lubricity additives, sludge inhibitors, odorants and / or cloud point depressants.
  • the additives of the invention increase the conductivity of mineral oil distillates such as gasoline, kerosene, jet fuel, diesel and heating oil, in particular in oils with low aromatic content of less than 21 wt .-%, in particular less than 19 wt .-%, especially less than 18 Wt .-% such as less than 17 wt .-% are beneficial. Since they also improve the cold flow properties, especially of mineral oil distillates such as kerosene, jet fuel, diesel and heating oil, their use can be achieved a significant saving in the total additives of the oils, since no additional conductivity improvers must be used.
  • the additives of the invention can be set in areas or at times, in which due to the climatic conditions so far no cold additives were used by admixing paraffin-rich, cheaper mineral oil fractions such as cloud point and / or CFPP of the oils to be upgraded to higher, which the economy of the refinery improved.
  • the additives of the invention also contain no metals that could lead to ash during combustion and thus deposits in the combustion chamber or exhaust system and particle pollution of the environment.
  • the conductivity of the oils according to the invention does not drop when the temperature drops, and in many cases even a rise in conductivity not known from additives of the prior art has been observed with decreasing temperature, so that safe handling is ensured even at low ambient temperatures.
  • Another advantage of the additives of the invention is the preservation of the electrical conductivity even during prolonged, that is several weeks storage of the additized oils.
  • the additives according to the invention are particularly advantageous in mineral oil distillates which contain less than 350 ppm of sulfur, more preferably less than 100 ppm of sulfur, in particular less than 50 ppm of sulfur and in special cases less than 10 ppm of sulfur.
  • the water content of such oils is below 150 ppm, sometimes below 100 ppm, such as below 80 ppm.
  • the electrical conductivity of such oils is usually below 10 pS / m and often even below 5 pS / m.
  • Particularly preferred mineral oil distillates are middle distillates.
  • the middle distillate is in particular those mineral oils which are obtained by distillation of crude oil and boil in the range of 120 to 450 ° C, for example kerosene, jet fuel, diesel and fuel oil.
  • Their preferred sulfur, aromatics and water contents are as already stated above.
  • the compositions according to the invention are particularly advantageous in middle distillates which have 90% distillation points below 360 ° C., in particular 350 ° C. and in special cases below 340 ° C.
  • aromatic compounds is meant the sum of mono-, di- and polycyclic aromatic compounds as determinable by HPLC according to DIN EN 12916 (2001 edition).
  • the middle distillates may also contain minor amounts, such as up to 40% by volume, preferably 1 to 20 vol .-%, especially 2 to 15 such as 3 to 10 vol .-% of the oils of animal and / or vegetable origin described in more detail below, such as fatty acid methyl esters.
  • compositions according to the invention are likewise suitable for improving the electrostatic properties of fuels based on renewable raw materials (biofuels).
  • biofuels is meant oils obtained from animal and preferably vegetable material or both, and derivatives thereof, which can be used as fuel and especially as diesel or fuel oil.
  • These are, in particular, triglycerides of fatty acids having 10 to 24 carbon atoms and the fatty acid esters of lower alcohols, such as methanol or ethanol, which are obtainable by transesterification.
  • biofuels examples include rapeseed oil, coriander oil, soybean oil, cottonseed oil, sunflower oil, castor oil, olive oil, peanut oil, corn oil, almond oil, palm kernel oil, coconut oil, mustard seed oil, beef tallow, bone oil, fish oils and used edible oils.
  • Other examples include oils derived from wheat, jute, sesame, shea nut, arachis oil and linseed oil.
  • the fatty acid alkyl esters, also referred to as biodiesel can be derived from these oils by methods known in the art.
  • Rapeseed oil which is a mixture of glycerol esterified fatty acids, is preferred because it is available in large quantities and is readily available by squeezing rapeseed.
  • sunflower and soybeans and their mixtures with rapeseed oil are preferred.
  • esters of fatty acids are particularly suitable as biofuels.
  • Preferred esters have an iodine value of from 50 to 150 and especially from 90 to 125.
  • Mixtures with especially advantageous properties are those which contain mainly, ie at least 50 wt .-% of methyl esters of fatty acids having 16 to 22 carbon atoms and 1, 2 or 3 double bonds.
  • the preferred lower alkyl esters of fatty acids are the methyl esters of oleic, linoleic, linolenic and erucic acids.
  • the additives of the invention are also useful for improving the electrostatic properties of turbine fuels. These are fuels boiling in the temperature range of about 65 ° C to about 330 ° C and marketed, for example, under the designations JP-4, JP-5, JP-7, JP-8, Jet A and Jet A-1. JP-4 and JP-5 are disclosed in U.S. Pat. Military Specification MIL-T-5624-N and JP-8 in U.S. Pat. Military Specification MIL-T-83133-D specified; Jet A, Jet A-1 and Jet B are specified in the ASTM D1655.
  • the additives of the invention are suitable for improving the electrical conductivity of hydrocarbons, which are used as solvents z. B. in the textile cleaning or for the production of paints and varnishes.
  • Table 1 Characterization of the test oils: Oils from European refineries were used as test oils. The CFPP value is determined in accordance with EN 116 and the determination of the cloud point in accordance with ISO 3015. The determination of the aromatic hydrocarbon groups is carried out in accordance with DIN EN 12916 (November 2001 edition) Test oil 1 Test oil 2 Test Oil 3 (Cf.) distillation IBP [° C] 212 188 160 20% [° C] 244 249 229 90% [° C] 322 336 339 FBP [° C] 342 361 371 Cloud point [° C] -8.8 -12.5 4.6 Density @ 15 ° C [g / cm 3 ] .8302 .8264 .8410 Water content @ 20 ° C [Ppm] 25 35 185 sulfur content [Ppm] 4 6 173 elec.
  • Dosing rate additive A Dosing rate additive B Conductivity [pS / m] @ 25 ° C @ 10 ° C 32 (Cf.) 25 ppm A1 - - 1 0 33 (Cf.) 10 ppm A2 - - 2 0 34 (Cf.) 25 ppm A2 - - 4 2 35 25 ppm A4 - - 5 3 36 (See) 25 ppm A6 - - 2 1 37 (Cf.) - - 10 ppm B1 5 3 38 (Cf.) - - 20 ppm B1 12 10 39 (Cf.) - - 10 ppm B2 4 2 40 (Cf.) - - 20 ppm B2 8th 7 41 (Cf.) - - 20 ppm B3 14 12 42 (Cf.) - - 20 ppm B4 16 13 43 8 ppm A1 8 ppm B1 94 106 44 8 ppm A1 8 ppm
  • compositions according to the invention have a pronounced synergistic effect on the individual components. Moreover, they show that the compositions according to the invention increase the electrical conductivity, in particular of aromatics-poor fuel oils with a low water content, more than the known additives of the prior art.
  • the conductivity of the inventive mineral oil distillates increases with decreasing temperature.
  • the additives used also improve other properties of middle distillates, such as, for example, paraffin dispersion and lubricity, a comparable conductivity can be achieved with lower additive dosing with conventional additives.
  • Another advantage of the invention is that with the additives of the invention in addition to the improvement of the conductivity at the same time the cold properties are improved, which allows the manufacturer of the fuel oil to process a higher proportion of paraffin-rich, cold problematic distillation cuts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Gegenstand der Erfindung sind Mineralöldestillate mit einem Wassergehalt von weniger als 150 ppm und einer Leitfähigkeit von mindestens 50 pS/m, die 0,1 bis 200 ppm mindestens eines Alkylphenol-Aldehydharzes und 0,1 bis 200 ppm mindestens einer stickstoffhaltigen Polymers enthalten.

Description

  • Die vorliegende Erfindung betrifft die Verwendung von Alkylphenol-Aldehydharzen und stickstoffhaltigen Polymeren zur Verbesserung der Leitfähigkeit wasserarmer Mineralöldestillate, sowie die additivierten Mineralöldestillate.
  • Der Gehalt von Mineralöldestillaten an schwefelhaltigen Verbindungen und aromatischen Kohlenwasserstoffen muss im Zuge der sich verschärfenden Umweltgesetzgebung immer weiter abgesenkt werden. Bei den zur Herstellung spezifikationsgerechter Mineralölqualitäten eingesetzten Raffinerieprozessen werden gleichzeitig aber auch andere polare sowie aromatische Verbindungen entfernt. Oftmals wird dabei auch das Aufnahmevermögen der Öle für Wasser vermindert. Als Nebeneffekt wird dadurch die elektrische Leitfähigkeit dieser Mineralöldestillate stark abgesenkt. Dadurch können elektrostatische Aufladungen, wie sie insbesondere unter hohen Fließgeschwindigkeiten, beispielsweise beim Umpumpen in Leitungen und Filtem in der Raffinerie, in der Distributionskette wie auch beim Verbraucher auftreten, nicht ausgeglichen werden. Derartige Potentialdifferenzen zwischen dem Öl und seiner Umgebung bergen aber das Risiko der Funkenentladung, die zur Selbstentzündung bzw. Explosion der leichtentzündlichen Flüssigkeiten führen kann. Daher werden solchen Ölen mit geringer elektrischer Leitfähigkeit Additive zugesetzt, die die Leitfähigkeit erhöhen und den Potentialausgleich zwischen dem Öl und seiner Umgebung erleichtern. Besonders problematisch ist dabei die Erhöhung der elektrischen Leitfähigkeit bei niedrigen Temperaturen, da die Leitfähigkeit organischer Flüssigkeiten mit sinkender Temperatur abnimmt und auch die bekannten Additive die gleiche Temperaturabhängigkeit zeigen. Eine Leitfähigkeit von mehr als 50 pS/m wird allgemein als ausreichend für eine sichere Handhabung von Mineralöldestillaten angesehen. Verfahren zur Bestimmung der Leitfähigkeit sind beispielsweise in DIN 51412-T02-79 und ASTM 2624 beschrieben.
  • Eine für vielfältige Zwecke in Mineralölen eingesetzte Verbindungsklasse sind Alkylphenolharze und deren Derivate, die durch Kondensation von Alkylresten tragenden Phenolen mit Aldehyden unter sauren bzw. basischen Bedingungen hergestellt werden können. Beispielsweise werden Alkylphenolharze als Kaltfließverbesserer, Schmierverbesserer, Oxidationsinhibitoren, Korrosionsinhibitoren sowie Asphaltendispergatoren und alkoxilierte Alkylphenolharze als Demulgatoren in Rohölen und Mitteldestillaten eingesetzt. Des weiteren werden Alkylphenolharze als Stabilisatoren für Jet-fuel eingesetzt. Des gleichen werden Harze aus Benzoesäureestern mit Aldehyden bzw. Ketonen als Kälteadditive für Brennstofföle eingesetzt.
  • Eine weitere Gruppe von Mineralöladditiven sind Polymere, die von Stickstoff enthaltenden Monomeren abgeleitete Strukturelemente enthalten und beispielsweise Brennstoffölen zur Verbesserung verschiedener Eigenschaften wie Kaltfließfähigkeit, Schmierfähigkeit und auch zur Verbesserung der elektrischen Leitfähigkeit zugesetzt werden können.
  • EP-A-1 088 045 offenbart, dass Alkylphenolharze zusammen mit öllöslichen polaren Stickstoffverbindungen zur Verbesserung der Kälteeigenschaften von Mitteldestillaten und der Schmierfähigkeit von schwefelarmen Brennstoffölen eingesetzt werden können.
  • EP-A-1 502 938 offenbart Brennstofföle mit verbesserter Leitfähigkeit, die Mischungen von polymeren Estern der Acrylsäure, Methacrylsäure und Fumarsäure, die gegebenenfalls Stickstoff enthaltende Comonomere enthalten können, mit entweder einem Polysulfon und einem polymeren Reaktionsprodukt aus Epichlorhydrin und einem aliphatischen primären Monoamin bzw. einem N-Alkyl-Alkylendiamin oder alternativ dazu mit einem öllöslichen Copolymer aus Alkylvinylmonomer und kationischem Vinylmonomer. Gemäß den Absätzen 17 bis 19 können diese Öle zusätzlich Antioxidantien wie beispielsweise BHT enthalten.
  • EP-A-1 274 819 offenbart Brennstofföle mit verbesserter Leitfähigkeit, die Mischungen aus einem öllöslichen Copolymer aus Alkylvinylmonomer und kationischem Vinylmonomer, einem Polysulfon und gegebenenfalls einem Polyamin bzw. dessen Sulfonsäuresalz enthalten.
  • EP-A-0 964 052 offenbart Copolymere des Ethylens mit stickstoffhaltigen Comonomeren als Schmierverbesserer für schwefelarme Mitteldestillate.
  • US-4 356 002 offenbart die Verwendung von oxalkylierten Alkylphenolharzen als Antistatika für Kohlenwasserstoffe. Mit Aminogruppen tragenden Copolymeren aus Maleinsäureanhydrid und α-Olefinen führen diese zu synergistisch verbesserten Leitfähigkeiten. Die Formulierung von Additivkonzentraten aus diesen beiden Substanzklassen bereitet insofern Schwierigkeiten, als sie kaum mischbar sind und somit mehrphasige Systeme bilden.
  • Die meisten der kommerziell eingesetzten Leitfähigkeitsverbesserer enthalten als Wirkstoffkomponente Metallionen und/oder Polysulfone. Bei letzteren handelt es sich um Copolymere aus SO2 und Olefinen. Asche bildende wie auch schwefelhaltige Additive sind für den Einsatz in schwefelarmen Brennstoffen jedoch prinzipiell unerwünscht. Die Wirksamkeit der als weitere Additivkomponente bekannten öllöslichen Stickstoffverbindungen als Leitfähigkeitsverbesserer ist alleine unzureichend und wird, wie auch die Kombinationen dieser polaren öllöslichen Stickstoffverbindungen mit oxalkylierten Alkylphenolharzen gemäß US-4 356 002 mit abnehmendem Aromaten- und Wassergehalt der zu additivierenden Öle immer unbefriedigender. Eine nachträgliche Zugabe von Wasser führt bei solchen Ölen aber nur zur Dispersion von ungelöstem Wasser im Öl, das nicht zur Verbesserung der elektrischen Leitfähigkeit beiträgt sondern vielmehr zu erhöhter Korrosionsproblematik führt und in der Kälte die Gefahr von Eisbildung und dadurch bedingte Verstopfungen von Förderleitungen und Filtern birgt.
  • Aufgabe vorliegender Erfindung war es somit, ein gegenüber dem Stand der Technik in seiner Wirksamkeit überlegenes Additiv zur Verbesserung der elektrischen Leitfähigkeit von Mineralöldestillaten mit niedrigem Wassergehalt, speziell von aromatenarmen Mineralöldestillaten, zu finden, das zudem eine sichere Handhabung dieser Öle auch bei niedrigen Temperaturen gewährleistet. Um bei der Verbrennung keine Rückstände zu hinterlassen sollte das Additiv aschefrei verbrennen und insbesondere keine Metalle enthalten. Darüber hinaus soll es weder Halogenide noch schwefelhaltige Verbindungen enthalten.
  • Überraschenderweise wurde nun gefunden, dass aromatenarme Mineralöle durch Zugabe geringer Mengen an Phenolharzen (Bestandteil I) und stickstoffhaltigen Polymeren (Bestandteil II) deutlich in ihrer elektrischen Leitfähigkeit verbessert werden können. Die Leitfähigkeit wird durch die Kombination dieser beiden Additivkomponenten deutlich stärker erhöht als es aus dem Effekt der einzelnen Substanzen zu erwarten wäre. Zudem bleibt die Leitfähigkeit bei sinkender Temperatur konstant und steigt in vielen Fällen mit sinkender Temperatur sogar an. Die so additivierten Öle zeigen eine stark erhöhte Leitfähigkeit und sind somit insbesondere bei niedrigen Temperaturen wesentlich sicherer zu handhaben.
  • Gegenstand der Erfindung ist somit die Verwendung von Zusammensetzungen, die mindestens ein Alkylphenol-Aldehydharz, das ein Strukturelement der Formel
    Figure imgb0001
    worin R5 für C1-C200-Alkyl oder C2-C200-Alkenyl, O-R6 oder O-C(O)-R6, R6 für C1-C200-Alkyl oder C2-C200-Alkenyl und n für eine Zahl von 2 bis 100 steht, enthält und bezogen auf das Alkylphenol-Aldehydharz bzw. die Alkylphenol-Aldehydharze 0,1 bis 10 Gewichtsteile mindestens eines stickstoffhaltigen Polymers enthalten, zur Verbesserung der elektrischen Leitfähigkeit von Mineralöldestillaten mit einem Wassergehalt von weniger als 150 ppm.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung von mindestens einem Alkylphenol-Aldehydharz (Bestandteil I), das ein Strukturelement der Formel
    Figure imgb0002
    enthält, worin R5 für C1-C200-Alkyl oder C2-C200-Alkenyl, O-R6 oder O-C(O)-R6, R6 für C1-C200-Alkyl oder C2-C200-Alkenyl und n für eine Zahl von 2 bis 100 steht, zur Verbesserung der elektrischen Leitfähigkeit aromatenarmer Mineralöldestillate mit einem Wassergehalt von weniger als 150 ppm, die 0,1 bis 200 ppm mindestens eines stickstoffhaltigen Polymers (Bestandteil II) enthalten, in einer Menge so dass die Mineralöldestillate eine Leitfähigkeit vom mindestens 50 pS/m aufweisen.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Verbesserung der elektrischen Leitfähigkeit von Mineralöldestillaten mit einem Wassergehalt von weniger als 150 ppm, indem man den Mineralöldestillaten Zusammensetzungen, die mindestens ein Alkylphenol-Aldehydharz, das ein Strukturelement der Formel
    Figure imgb0003
    worin R5 für C1-C200-Alkyl oder C2-C200-Alkenyl, O-R6 oder O-C(O)-R6, R6 für C1-C200-Alkyl oder C2-C200-Alkenyl und n für eine Zahl von 2 bis 100 steht, enthält und bezogen auf das Alkylphenol-Aldehydharz 0,1 bis 10 Gewichtsteile mindestens eines stickstoffhaltigen Polymers enthalten, zusetzt, so dass die Mineralöldestillate eine Leitfähigkeit vom mindestens 50 pS/m aufweisen.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Verbesserung der elektrischen Leitfähigkeit von Mineralöldestillaten mit einem Wassergehalt von weniger als 150 ppm, die 0,1 bis 200 ppm mindestens eines stickstoffhaltigen Polymers enthalten, indem man den Mineralöldestillaten 0,1 bis 200 ppm mindestens eines Alkylphenol-Aldehydharzes, das ein Strukturelement der Formel
    Figure imgb0004
    enthält, worin R5 für C1-C200-Alkyl oder C2-C200-Alkenyl, O-R6 oder O-C(O)-R6, R6 für C1-C200-Alkyl oder C2-C200-Alkenyl und n für eine Zahl von 2 bis 100 steht, zusetzt, so dass die Mineralöldestillate eine Leitfähigkeit von mindestens 50 pS/m aufweisen.
  • Ein weiterer Gegenstand der Erfindung sind Mineralöldestillate mit einem Wassergehalt von weniger als 150 ppm und einer Leitfähigkeit von mindestens 50 pS/m, die 0,1 bis 200 ppm mindestens eines Alkylphenol-Aldehydharzes, das ein Strukturelement der Formel
    Figure imgb0005
    worin R5 für C1-C200-Alkyl oder C2-C200-Alkenyl, O-R6 oder O-C(O)-R6, R6 für C1-C200-Alkyl oder C2-C200-Alkenyl und n für eine Zahl von 2 bis 100 steht, enthält und 0,1 bis 200 ppm mindestens eines stickstoffhaltigen Polymers enthalten.
  • Ein weiterer Gegenstand der Erfindung sind Additive für Mineralöldestillate mit einem Wassergehalt von weniger als 150 ppm, die mindestens ein Alkylphenol-Aldehydharz und mindestens ein stickstoffhaltiges Polymer im Massenverhältnis 99:1 bis 1:99 enthalten.
  • Im Rahmen der vorliegenden Erfindung werden unter Alkylphenol-Aldehydharzen alle Polymere verstanden, die durch Kondensation eines Alkylreste tragenden Phenols mit Aldehyden bzw. Ketonen zugänglich sind. Der Alkylrest kann dabei direkt über eine C-C-Bindung an den Arylrest des Phenols gebunden sein oder auch über funktionelle Gruppen wie Ester oder Ether.
  • Bevorzugt werden 0,2 bis 100 ppm und speziell 0,25 bis 25 ppm wie beispielsweise 0,3 bis 10 ppm mindestens eines Alkylphenol-Aldehydharzes und 0,2 bis 50 ppm und speziell 0,25 bis 25 ppm wie beispielsweise 0,3 bis 20 ppm mindestens eines stickstoffhaltigen Polymers zur Verbesserung der elektrischen Leitfähigkeit verwendet. Besonders bevorzugt werden insgesamt bis zu 100 ppm, bevorzugt 0,2 bis 70 ppm und speziell 0,3 bis 50 ppm der Kombination aus Alkylphenol-Aldehydharz bzw. Alkylphenol-Aldehydharzen und stickstoffhaltigem Polymer bzw. stickstoffhaltigen Polymeren verwendet.
  • Bevorzugt enthalten die erfindungsgemäßen Mineralöldestillate 0,2 bis 100 ppm und speziell 0,25 bis 25 ppm wie beispielsweise 0,3 bis 10 ppm mindestens eines Alkylphenol-Aldehydharzes und 0,2 bis 50 ppm und speziell 0,25 bis 25 ppm wie beispielsweise 0,3 bis 20 ppm mindestens eines stickstoffhaltigen Polymers. Besonders bevorzugt enthalten die erfindungsgemäßen Mineralöldestillate insgesamt bis zu 100 ppm, bevorzugt 0,2 bis 70 ppm und speziell 0,3 bis 50 ppm der Kombination aus Alkylphenol-Aldehydharz bzw. Alkylphenol-Aldehydharzen und stickstoffhaltigem Polymer bzw. stickstoffhaltigen Polymeren.
  • Bevorzugt werden 0,2 bis 100 ppm und speziell 0,25 bis 25 ppm wie beispielsweise 0,3 bis 10 ppm mindestens eines Alkylphenol-Aldehydharzes zur Verbesserung der elektrischen Leitfähigkeit von Mineralöldestillaten verwendet, die 0,2 bis 50 ppm und speziell 0,25 bis 25 ppm wie beispielsweise 0,3 bis 20 ppm mindestens eines stickstoffhaltigen Polymers enthalten.
  • Das Massenverhältnis zwischen Bestandteil I und Bestandteil II im erfindungsgemäßem Additiv für Mineralöldestillate liegt bevorzugt zwischen 50:1 und 1:50, besonders bevorzugt zwischen 10:1 und 1:10 wie beispielsweise zwischen 4:1 und 1:4.
  • Die in ihrer elektrischen Leitfähigkeit verbesserten erfindungsgemäßen Mineralöldestillate besitzen eine elektrische Leitfähigkeit von bevorzugt mindestens 60, insbesondere mindestens 75 pS/m.
  • Alkylphenol-Aldehyd-Harze als Bestandteil I sind prinzipiell bekannt und beispielsweise im Römpp Chemie Lexikon, 9. Auflage, Thieme Verlag 1988-92, Band 4, S. 3351 ff. beschrieben. Erfindungsgemäß geeignet sind insbesondere solche Alkylphenol-Aldehydharze, die sich von Alkylphenolen mit ein oder zwei Alkylresten in ortho- und/oder para-Position zur OH-Gruppe ableiten. Besonders bevorzugt als Ausgangsmaterialien sind Alkylphenole, die am Aromaten mindestens zwei zur Kondensation mit Aldehyden befähigte Wasserstoffatome tragen und insbesondere monoalkylierte Phenole. Besonders bevorzugt befindet sich der Alkylrest in der paraStellung zur phenolischen OH-Gruppe. Die Alkylreste (darunter werden für den Bestandteil I generell Kohlenwasserstoffreste gemäß nachstehender Definition verstanden) können bei den im erfindungsgemäßen Verfahren einsetzbaren Alkylphenol-Aldehyd-Harzen gleich oder verschieden sein, sie können gesättigt oder ungesättigt sein und besitzen -bis zu 200, vorzugsweise 1 - 20, insbesondere 4 - 16 wie beispielsweise 6 - 12 Kohlenstoffatome; bevorzugt handelt es sich um n-, iso- und tert.-Butyl-, n- und iso-Pentyl-, n- und iso-Hexyl-, n- und iso-Octyl-, n- und iso-Nonyl-, n- und iso-Decyl-, n- und iso-Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl-, Tripropenyl-, Tetrapropenyl-, Poly(propenyl)- und Poly(isobutenyl)reste. Bevorzugt sind diese Reste gesättigt. In einer bevorzugten Ausführungsform werden zur Herstellung der Alkylphenolharze Mischungen von Alkylphenolen mit unterschiedlichen Alkylresten eingesetzt. So haben sich beispielsweise Harze auf Basis von Butylphenol einerseits und Octyl-, Nonyl- und/oder Dodecylphenol andererseits im molaren Verhältnis von 1:10 bis 10:1 besonders bewährt.
  • Geeignete Alkylphenolharze können auch Struktureinheiten weiterer Phenolanaloga wie Salicylsäure, Hydroxybenzoesäure sowie deren Derivate wie Ester, Amide und Salze enthalten oder aus ihnen bestehen.
  • Geeignete Aldehyde für die Alkylphenol-Aldehydharze sind solche mit 1 bis 12 Kohlenstoffatomen und vorzugsweise solche mit 1 bis 4 Kohlenstoffatomen wie beispielsweise Formaldehyd, Acetaldehyd, Propionaldehyd, Butyraldehyd, 2-Ethylhexanal, Benzaldehyd, Glyoxalsäure sowie deren reaktive Equivalente wie Paraformaldehyd und Trioxan. Besonders bevorzugt ist Formaldehyd in Form von Paraformaldehyd und insbesondere Formalin.
  • Das mittels Gelpermeationschromatographie in THF gegen Poly(ethylenglykol)-Standards bestimmte Molekulargewicht der Alkylphenol-Aldehyd-Harze beträgt bevorzugt 400 - 20.000, insbesondere 800 - 10.000 g/mol und speziell 2.000 - 5.000 g/mol. Voraussetzung ist hierbei, dass die Alkylphenol-Aldehydharze zumindest in anwendungsrelevanten Konzentrationen von 0,001 bis 1 Gew.-% öllöslich sind.
  • In einer bevorzugten Ausführungsform der Erfindung handelt es sich dabei um Alkylphenol-Formaldehydharze, die Oligo- oder Polymere mit einer repetitiven Struktureinheit der Formel
    Figure imgb0006
    worin R5 für C1-C200-Alkyl oder C2-C200-Alkenyl, O-R6 oder O-C(O)-R6, R6 für C1-C200-Alkyl oder C2-C200-Alkenyl und n für eine Zahl von 2 bis 100 steht, enthalten. R6 steht bevorzugt für C1-C20-Alkyl oder C2-C20-Alkenyl und insbesondere für C4-C16-Alkyl oder C2-C20-Alkenyl wie beispielsweise für C6-C12-Alkyl oder ―Alkenyl. Besonders bevorzugt steht R5 für C1-C20-Alkyl oder ―Alkenyl und insbesondere für C4-C16-Alkyl oder ―Alkenyl wie beispielsweise für C6-C12-Alkyl oder ―Alkenyl. Bevorzugt steht n für eine Zahl von 2 bis 50 und speziell für eine Zahl von 3 bis 25 wie beispielsweise eine Zahl von 5 bis 15.
  • Für den Einsatz in Mitteldestillaten wie Diesel und Heizöl besonders bevorzugt sind Alkylphenol-Aldehydharze mit C2-C40-Alkylresten des Alkylphenols, bevorzugt mit C4-C20-Alkylresten wie beispielsweise C6-C12-Alkylresten. Die Alkylreste können linear oder verzweigt sein, bevorzugt sind sie linear. Besonders geeignete Alkylphenol-Aldehydharze leiten sich von Alkylphenolen mit linearen Alkylresten mit 8 und 9 C-Atomen ab. Das mittels GPC bestimmte mittlere Molekulargewicht liegt bevorzugt zwischen 700 und 20.000 g/mol, insbesondere zwischen 1.000 und 10.000 g/mol wie beispielsweise zwischen 2.000 und 3.500 g/mol.
  • Für den Einsatz in Benzin und Jet-Fuel besonders bevorzugt sind Alkylphenol-Aldehydharze, deren Alkylreste 4 bis 200 C-Atome, bevorzugt 10 bis 180 C-Atome tragen und sich von Oligomeren oder Polymeren von Olefinen mit 2 bis 6-C-Atomen wie beispielsweise von Poly(isobutylen) ableiten. Sie sind somit bevorzugt verzweigt. Der Polymerisationsgrad (n) liegt hier bevorzugt zwischen 2 und 20, besonders bevorzugt zwischen 3 und 10 Alkylphenoleinheiten.
  • Diese Alkylphenol-Aldehydharze sind nach bekannten Verfahren zugänglich, z.B. durch Kondensation der entsprechenden Alkylphenole mit Formaldehyd, d.h. mit 0,5 bis 1,5 Mol, bevorzugt 0,8 bis 1,2 Mol Formaldehyd pro Mol Alkylphenol. Die Kondensation kann lösemittelfrei erfolgen, bevorzugt erfolgt sie jedoch in Gegenwart eines nicht oder nur teilweise wassermischbaren inerten organischen Lösemittels wie Mineralöle, Alkohole, Ether und ähnliches. Besonders bevorzugt sind Lösemittel, die mit Wasser Azeotrope bilden können. Als derartige Lösemittel werden insbesondere Aromaten wie Toluol, Xylol Diethylbenzol und höher siedende kommerzielle Lösemittelgemische wie ®Shellsol AB, und Solvent Naphtha eingesetzt. Die Kondensation erfolgt bevorzugt zwischen 70 und 200 °C wie beispielsweise zwischen 90 und 160 °C. Sie wird üblicherweise durch 0,05 bis 5 Gew.-% Basen oder vorzugsweise durch 0,05 bis 5 Gew.-% Säuren katalysiert. Als saure Katalysatoren sind neben Carbonsäuren wie Essigsäure und Oxalsäure insbesondere starke Mineralsäuren wie Salzsäure, Phosphorsäure und Schwefelsäure sowie Sulfonsäuren gebräuchliche Katalysatoren. Besonders geeignete Katalysatoren sind Sulfonsäuren, die mindestens eine Sulfonsäuregruppe und mindestens einen gesättigten oder ungesättigten, linearen, verzweigten und/oder cyclischen Kohlenwasserstoffrest mit 1 bis 40 C-Atomen und bevorzugt mit 3 bis 24 C-Atomen enthalten. Besonders bevorzugt sind aromatische Sulfonsäuren, speziell alkylaromatische Mono-Sulfonsäuren mit einem oder mehreren C1-C28-Alkylresten und insbesondere solche mit C3-C22-Alkylresten. Geeignete Beispiele sind Methansulfonsäure, Butansulfonsäure, Benzolsulfonsäure, p-Toluolsulfonsäure, Xylolsulfonsäure, 2-Mesitylensulfonsäure, 4-Ethylbenzolsulfonsäure, lsopropylbenzolsulfonsäure, 4-Butylbenzolsulfonsäure, 4-Octylbenzolsulfonsäure; Dodecylbenzolsulfonsäure, Didodecylbenzolsulfonsäure, Naphthalinsulfonsäure. Auch Mischungen dieser Sulfonsäuren sind geeignet. Üblicherweise verbleiben diese nach Beendigung der Reaktion als solche oder in neutralisierter Form im Produkt; Metallionen enthaltende und damit Asche bildende Salze werden üblicherweise abgetrennt.
  • Besonders geeignete stickstoffhaltige Polymere sind
    • a) Kammpolymere, enthaltend Einheiten abgeleitet von Monomeren mit einem C4- bis C40-Alkylrest und mindestens einem stickstoffhaltigen Comonomer,
    • b) Copolymere des Ethylens mit ethylenisch ungesättigten stickstoffhaltigen Comonomeren, und
    • c) polymere Polyamine, hergestellt durch Kondensation eines aliphatischen primären Monoamins oder eines N-Alkyl-alkylendiamins mit Epichlorhydrin oder Glycidol.
  • Als Bestandteil IIa) geeignete Kammpolymere leiten sich insbesondere von öllöslichen Estern ethylenisch ungesättigter Carbonsäuren, öllöslichen Vinylestern und/oder öllöslichen Vinylethern ab, die einen C4- bis C40-Alkylrest tragen. Besonders geeignete Polymere sind Poly(acrylate), Poly(methacrylate), Poly(maleinate) und Poly(fumarate), die sich von Estern der Acryl-, Methacryl-, Malein- und/oder Fumarsäure mit C4-C40-Alkoholen und insbesondere mit C6- bis C22-Alkoholen ableiten. Bevorzugt sind die Alkylreste linear oder verzweigt, bevorzugt sind sie gesättigt. Beispielsweise seien genannt n-Butylacrylat, 2-Ethylhexylacrylat, Laurylacrylat, Stearylacrylat, n-Butylmethacrylat, 2-Ethylhexylmethacrylat, Laurylmethacrylat, Stearylmethacrylat und ähnliche.
  • Eine weitere Gruppe geeigneter Kammpolymere IIa) leitet sich von Olefinen mit 6 bis 42 C-Atomen ab. Bevorzugt sind die Olefine linear. Bevorzugt ist die Doppelbindung endständig wie beispielsweise bei 1-Decan, 1-Dodecan, 1-Tetradecan, 1-Hexadecan. Ebenfalls bevorzugt sind Mischungen verschiedener Olefine im Kettenlängenbereich C20-C24, C22-C28 und C24-C30.
  • Die Kammpolymere IIa) enthalten mindestens ein stickstoffhaltiges Comonomer, dessen Stickstoff bevorzugt in Form einer Amino-, Amido-, lmido- oder Ammoniumgruppe vorliegt und über einen Kohlenwasserstoffrest an das Polymerrückgrat gebunden ist. Bevorzugt handelt es sich um Amino- oder Ammoniumgruppen, die über einen C2- bis C12-Alkylenrest, der gegebenenfalls durch Ester- oder Amidgruppierungen unterbrochen sein kann, an das Polymerrückgrat gebunden sind. Ammoniumgruppen umfassen bevorzugt Salze primärer, sekundärer und tertiärer Amine mit Mineralsäuren, organischen Sulfonsäuren und bevorzugt mit Carbonsäuren. Auch quartäre Ammoniumgruppen tragende Comonomere sind geeignet.
  • Beispiele für geeignete Comonomere sind polymerisierbare ungesättigte basische Amine wie Allylamin und Diallylamin, Aminogruppen tragende Olefine wie p-(2-Diethylaminoethyl)styrol, stickstoffhaltige Heterozyklen mit exozyklischer Doppelbindung wie Vinylpyridin und Vinylpyrrolidon, Ester ethylenisch ungesättigter Carbonsäuren mit Aminoalkoholen wie N,N-(Dimethylamino)ethylacrylat, N,N-(Dimethylamino)ethylmethacrylat oder N,N-(Dimethylamino)propylmethacrylat, Amide von Diaminen mit ethylenisch ungesättigten Carbonsäuren wie N,N-(Dimethylamino)propylmethacrylamid, N-(Aminopropyl)morpholin sowie deren quaternisierte Derivate wie N,N,N-(Trimethylammonium)ethylmethacrylatmethosulfat, N,N,N-(Trimethylammonium)propylmethacrylatmethosulfat und Imide ethylenisch ungesättigter Dicarbonsäuren mit Polyaminen, die 2 bis 5 Stickstoffatomen enthalten, von denen bevorzugt nur eines in Form einer primären Aminogruppe vorliegt wie N,N-Dimethylaminopropylamin. Besonders bevorzugt sind Polymere aus C8-C14-Alkylmethacrylat und N,N-(Dimethylamino)propylmethacrylamid bzw. N,N-(Dimethylamino)propylmethacrylat sowie Copolymere aus C8-C14-Alkylacrylat und N,N,N-(Trimethylammonium)propylmethacrylamidmethosulfat. Ebenfalls geeignet sind Nitrilgruppen tragende Monomere wie Acrylnitril und Methacrylnitril.
  • Das molare Verhältnis zwischen den Estern ethylenisch ungesättigter Carbonsäuren, Vinylestern, Vinylethern und/oder Olefinen einerseits und den stickstoffhaltigen Comonomeren andererseits liegt bevorzugt zwischen 20:1 und 1:1, wie beispielsweise zwischen 10:1 und 3:1. Bevorzugt haben diese Copolymere einen Stickstoffgehalt von 0,3 bis 5 Gew.-%, wie beispielsweise 0,5 bis 3 Gew.-%.
  • Die Kammpolymere IIa können auch bis zu 20 mol-% wie beispielsweise 1 bis 10 mol-% weiterer Comonomere wie α-Olefine mit 4 bis 40 C-Atomen, Acrylamid, Methacrylamid, C1-C20-Akylacrylamid und/oder C1-C20-Akylmethacrylamid enthalten.
  • Die Kammpolymere haben bevorzugt mittels Gelpermeationschromatographie in THF gegen Poly(styrol)-Standards bestimmte Molekulargewichte (Mn) von 1.000 bis 100.000 g/mol, bevorzugt 5.000 bis 50.000 g/mol.
  • Die Kammpolymere IIa) werden bevorzugt durch direkte Copolymerisation der Comonomere hergestellt. Alternativ können sie jedoch auch durch polymeranaloge Umsetzung von Copolymeren aus Estern ethylenisch ungesättigter Carbonsäuren, Vinylestern, Vinylethern und/oder Olefinen, die einen C1- bis C40-Alkylrest tragen und ethylenisch ungesättigten Carbonsäuren oder deren reaktiven Derivaten wie Anhydriden, Säurehalogeniden oder Estern mit niederen Alkoholen mit 1 bis 4 C-Atomen mit Hydroxyaminen oder Polyaminen hergestellt werden. Geeignete Hydroxyamine sind beispielsweise N,N-Dimethylaminoethanol und N-Cocosfettalkylaminoethanol. Geeignete Polyamine sind beispielsweise N,N-Dimethylaminopropylamin N-Cocosfettalkylpropylendiamin und N-Talgfettalkylpropylendiamin. Eine weitere Herstellungsvariante ist die Pfropfung der stickstoffhaltigen Comonomere auf Polymere von Estern ethylenisch ungesättigter Carbonsäuren, Vinylestern, Vinylethern und/oder Olefinen, die einen C1- bis C40-Alkylrest tragen.
  • Quartäre Ammoniumgruppen tragende Polymere können durch Copolymerisation der polymerisierbaren quartären Ammoniumverbindung oder durch polymeranaloge Umsetzung eines Aminogruppen tragenden Polymers mit Alkylierungsmitteln wie Alkylhalogeniden oder Schwefelsäureestern hergestellt werden. Besonders bevorzugt sind halogenfreie Alkylierungsmittel wie beispielsweise Dimethylsulfat.
  • Beispiele für besonders bevorzugte stickstoffhaltige Polymere IIa) sind Copolymere aus N,N,N,-(Trimethylammonium)ethylmethacrylatmethosulfat und 2-Ethylhexylacrylat, Copolymere aus Dodecylmethacrylat und Dimethylaminopropylmethacrylamid sowie alternierende Copolymere aus Tetradecen und Acrylnitril.
  • Bei den ethylenisch ungesättigten stickstoffhaltigen Comonomeren, die neben Ethylen Bestandteil der erfindungsgemäßen Polymere IIb) sind, handelt es sich bevorzugt um die auch für die Herstellung der Kammpolymere IIa) geeigneten Monomere, die einen über einen Kohlenwasserstoffrest an das Polymerrückgrat gebundenen Stickstoff in Form einer Amino-, Amido-, Imido- oder Ammoniumgruppe enthalten. Beispielsweise seien genannt:
    • i) Alkylaminoacrylate bzw. -methacrylate wie z.B. Aminoethylacrylat, Aminopropylacrylat, Amino-n-butylacrylat, N-Methylaminoethylacrylat, N,N-Dimethylaminoethylacrylat, N,N-(Dimethylamino)propylacrylat, N,N-(Diethylamino)propylacrylat, N,N,N-(Trimethylammonium)ethylacrylatmethosulfat sowie die entsprechenden Methacrylate,
    • ii) Alkylacrylamide und -methacrylamide wie Ethylacrylamid, Butylacrylamid, N-Octylacrylamid, N-Propyl.N-methoxyacrylamid, N-Acryloylphthalimid, N-Acryloylsuccinimid, N-Methylolacrylamid sowie die entsprechenden Methacrylamide,
    • iii) Vinylamide wie z.B. N-Vinyl-N-methylacetamid, N-Vinylsuccinimid,
    • iv) Aminoalklyvinylether wie z. B. Aminopropylvinylether, Diethylaminoethylvinylether, Dimethylaminopropylvinylether,
    • v) ethylenisch ungesättigte Amine wie Allylamin, Diallylamin, N-Allyl-N-methylamin, und N-Allyl-N-ethylamin
    • vi) eine Vinylgruppe tragende Heterozyklen wie z.B. N-Vinylpyrrolidon, Methylvinylimidazol, 2-Vinylpyridin, 4-Vinylpyridin, 2-Methyl-5-vinylpyridin, Vinylcarbazol, Vinylimidazol, N-Vinyl-2-piperidon, N-Vinylcaprolactam.
  • Bevorzugte Copolymere IIb) enthalten neben Ethylen 0,1 bis 15, insbesondere 1 bis 10 mol-% eines oder mehrere der stickstoffhaltigen Comonomere. Daneben können sie noch weitere, beispielsweise ein, zwei oder drei weitere ethylenisch ungesättigte Comonomere enthalten. Geeignete weitere Comonomere sind zum Beispiel Vinylester, Acrylsäure, Methacrylsäure, Acrylsäureester, Methacrylsäureester, Vinylether und Olefine. Besonderes bevorzugte Vinylester sind Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinyloctanoat, Vinyl-2-ethylhexanoat, Vinyllaurat und Vinylester von Neocarbonsäuren mit 8, 9, 10, 11 oder 12 C-Atomen. Besonders bevorzugte Acryl- und Methacrylsäureester leiten sich von Alkoholen mit 1 bis 20 C-Atomen, insbesondere mit 1 bis 4 C-Atomen wie Methanol, Ethanol und Propanol ab. Besonders bevorzugte Olefine sind solche mit 3 bis 10 C-Atomen, speziell Propen, Buten, Isobutylen, Diisobutylen, 4-Methylpenten, Hexen und Norbornen. Enthalten die Copolymeren IIb) ein weiteres Comonomer, so beträgt dessen molarer Anteil vorzugsweise bis zu 15 mol-%, insbesondere 1 bis 12 mol-% wie beispielsweise 2 bis 10 mol-%.
  • Die bei 140°C gemessene Schmelzviskosität dieser Copolymere liegt vorzugsweise unterhalb 10.000 mPas, insbesondere zwischen 10 und 1.000 mPas wie beispielsweise zwischen 20 und 500 mPas.
  • Die Copolymerisation der Comonomeren erfolgt nach bekannten Verfahren (vgl. hierzu z.B. Ullmanns Encyclopädie der Technischen Chemie, 4. Auflage, Bd. 19, Seiten 169 bis 178). Geeignet sind die Polymerisation in Lösung, in Suspension, in der Gasphase und die Hochdruckmassepolymerisation. Vorzugsweise wendet man die Hochdruckmassepolymerisation an, die bei Drücken von 50 bis 400 MPa, vorzugsweise 100 bis 300 MPa und Temperaturen von 50 bis 350°C, vorzugsweise 100 bis 300°C, durchgeführt wird. Die Reaktion der Comonomeren wird durch Radikale bildende Initiatoren (Radikalkettenstarter) eingeleitet. Zu dieser Substanz klasse gehören beispielsweise Sauerstoff, Hydroperoxide, Peroxide und Azoverbindungen wie Cumolhydroperoxid, t-Butylhydroperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis(2-ethylhexyl)-peroxidicarbonat, t-Butylpermaleinat, t-Butylperbenzoat, Dicumylperoxid, t-Butylcumylperoxid, Di-(t-butyl)peroxid, 2,2'-Azo-bis(2-methylpropanonitril), 2,2'-Azo-bis(2-methylbutyronitril). Die Initiatoren werden einzeln oder als Gemisch aus zwei oder mehr Substanzen in Mengen von 0,01 bis 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Comonomerengemisch, eingesetzt.
  • Die gewünschte Schmelzviskosität und damit das Molekulargewicht der Copolymerisate wird bei gegebener Zusammensetzung des Comonomerengemisches durch Variation der Reaktionsparameter Druck und Temperatur und gegebenenfalls durch Zusatz von Moderatoren eingestellt. Als Moderatoren haben sich Wasserstoff, gesättigte oder ungesättigte Kohlenwasserstoffe, z.B. Propan, Propen, Aldehyde, z.B. Propionaldehyd, n-Butyraldehyd oder Isobutyraldehyd, Ketone, z.B. Aceton, Methytethylketon, Methylisobutylketon, Cyclohexanon oder Alkohole, z.B. Butanol, bewährt. In Abhängigkeit von der angestrebten Viskosität werden die Moderatoren in Mengen bis zu 20 Gew.-%, vorzugsweise 0,05 bis 10 Gew.-%, bezogen auf das Comonomerengemisch, angewandt.
  • Die Hochdruckmassepolymerisation wird in bekannten Hochdruckreaktoren, z.B. Autoklaven oder Rohrreaktoren diskontinuierlich oder kontinuierlich durchgeführt, besonders bewährt haben sich Rohrreaktoren. Lösungsmittel wie aliphatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, Benzol oder Toluol, können im Reaktionsgemisch enthalten sein, wenngleich sich die lösungsmittelfreie Arbeitsweise besonders bewährt hat. Nach einer bevorzugten Ausführungsform der Polymerisation wird das Gemisch aus den Comonomeren, dem Initiator und, sofern eingesetzt, dem Moderator, einem Rohrreaktor über den Reaktoreingang sowie über einen oder mehrere Seitenäste zugeführt. Hierbei können die Comonomerenströme unterschiedlich zusammengesetzt sein ( EP-B-0 271 738 und EP-A-0 922 716 ).
  • Erfindungsgemäß gleichfalls geeignete Copolymere IIb) können durch Umsetzung von Ethylencopolymeren, die Säuregruppen enthalten mit Aminogruppen tragenden Verbindungen hergestellt werden. Dazu geeignete Ethylencopolymere und Ethylenterpolymere sind beispielsweise solche, die Acrylsäure, Methacrylsäure, Itaconsäure, Fumarsäure, Maleinsäure oder Maleinsäureanhydrid enthalten. Zur Herstellung eines erfindungsgemäßen Copolymers IIb) werden diese säuregruppenhaltigen Copolymere über die Säuregruppen mit Alkanolaminen wie Ethanolamin, Propanolamin, Diethanolamin, N-Ethylethanolamin, N,N-Dimethylethanolamin, Diglykolamin, 2-Amino-2-methylpropanolamin und/oder Polyaminen wie Ethylendiamin und Dimethylaminopropylamin und/oder N-Alkylalkylenpolyaminen wie N-Cocosfettalkylpropylendiamin oder entsprechenden Ammoniumgruppen tragenden Verbindungen oder deren Mischungen umgesetzt. Es werden 0,1 bis 1,2 mol, vorzugsweise equimolare Mengen, Amin pro mol Säure verwendet.
  • Sowohl durch direkte Polymerisation wie auch durch polymeranaloge Umsetzung hergestellte stickstoffhaltige Ethylencopolymere können durch Umsetzung mit Alkylierungsmitteln wie Alkylhalogeniden oder Schwefelsäureestern in quartäre Ammoniumsalze überführt werden. Besonders bevorzugte sind dabei halogenfreie Alkylierungsmittel wie beispielsweise Dimethylsulfat.
  • Bei den als Bestandteil IIc) erfindungsgemäß geeigneten polymeren Polyaminen handelt es sich insbesondere um Polyamine mit 4 oder mehr, bevorzugt 6 oder mehr wie beispielsweise 8 oder mehr Stickstoffatomen im Molekül. Die Stickstoffatome sind dabei Bestandteil der Hauptkette. Die Polymerhauptkette trägt bevorzugt Alkylseitenketten mit 8 und mehr C-Atomen.
  • Bevorzugt handelt es sich bei den polymeren Polyaminen um Kondensationsprodukte aus Aminen und Epichlorhydrin bzw. Glycidol im molaren Verhältnis von 1:1 bis 1:1,5. Bevorzugt sind Polymere auf Basis von primären Monoaminen, insbesondere Alkylaminen, sowie auf Basis von N-Alkyl-alkylendiaminen, deren Alkylreste 8 bis 24 und insbesondere 8 bis 12 C-Atome und deren Alkylenrest 2 bis 6 C-Atome besitzt wie beispielsweise N-Alkyl-1,3-propylendiamin. Bevorzugt sind die Alkylreste linear. Die Kondensationsprodukte IIc) haben bevorzugt Polymerisationsgrade von 2 bis 20.
  • Die stickstoffhaltigen Polymere IIa), IIb) wie auch IIc), in denen der Stickstoff als basische Aminogruppe vorliegt, werden bevorzugt als Salze und insbesondere als Sulfonsäuresalze eingesetzt. Bevorzugte Sulfonsäuren zur Salzbildung sind öllösliche Sulfonsäuen wie Alkansulfonsäuren, Arylsulfonsäuren und Alkylarylsulfonsäuren wie beispielsweise Dodecylbenzolsulfonsäure.
  • Die erfindungsgemäßen Zusammensetzungen werden zwecks einfacherer Handhabung bevorzugt als Konzentrate eingesetzt, die 10 bis 90 Gew.-% und bevorzugt 20 bis 60 Gew.-% an Lösemittel enthalten. Bevorzugte Lösemittel sind höhersiedende aliphatische Kohlenwasserstoffe, aromatische Kohlenwasserstoffe, Alkohole, Ester, Ether und deren Gemische. In den Konzentraten kann das Mischungsverhältnis zwischen den erfindungsgemäßen Alkylphenol-Aldehydharzen als Bestandteil I und Stickstoffverbindungen als Bestandteil II je nach Anwendungsfall variieren. Bevorzugt enthalten derartige Konzentrate 0,1 bis 10 Gewichtsteile bevorzugt 0,2 bis 6 Gewichtsteile der polaren, öllöslichen Stickstoffverbindung pro Gewichtsteil Alkylphenol-Aldehydharz.
  • Zur weiteren Erhöhung der elektrischen Leitfähigkeit von Mineralölen können die erfindungsgemäßen Additive auch in Kombination mit Polysulfonen eingesetzt werden. Geeignete Polysulfone sind durch Copolymerisation von Schwefeldioxid mit 1-Olefinen mit 6 bis 20 C-Atomen wie beispielsweise 1- Dodecen zugänglich. Sie haben mittels GPC gegen Poly(styrol)-Standards gemessene Molekulargewichte von 10.000 bis 1.500.000, bevorzugt von 50.000 bis 900.000 und insbesondere von 100.000 bis 500.000. Die Herstellung geeigneter Polysulfone ist beispielsweise aus US 3,917,466 bekannt.
  • Die erfindungsgemäßen Additive können Mineralöldestillaten zur Verbesserung der Kaltfließfähigkeit auch in Kombination mit weiteren Additiven wie beispielsweise Ethylen-Copolymeren, Paraffindispergatoren, Kammpolymeren, Polyoxyalkylenverbindungen und/oder Olefincopolymeren zugesetzt werden.
  • Die erfindungsgemäßen Additive für Mineralöldestillate enthalten in einer bevorzugten Ausführungsform neben den Bestandteilen I und II noch ein oder mehrere der Bestandteile III bis VII.
  • So enthalten sie bevorzugt Copolymere aus Ethylen und olefinisch ungesättigten Verbindungen als Bestandteil III. Als Ethylen-Copolymere eignen sich insbesondere solche, die neben Ethylen 6 bis 21 mol-%, insbesondere 10 bis 18 mol-% Comonomere enthalten.
  • Bei den olefinisch ungesättigten Verbindungen handelt es sich vorzugsweise um Vinylester, Acrylester, Methacrylester, Alkylvinylether und/oder Alkene, wobei die genannten Verbindungen mit Hydroxylgruppen substituiert sein können. Es können ein oder mehrere Comonomere im Polymer enthalten sein. Bei den Vinylestern handelt es sich vorzugsweise um solche der Formel 1

             CH2=CH-OCOR1     (1)

    worin R1 C1 bis C30-Alkyl, vorzugsweise C4 bis C16-Alkyl, speziell C6- bis C12-Alkyl bedeutet. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein.
  • In einer weiteren bevorzugten Ausführungsform steht R1 für einen verzweigten Alkylrest oder einen Neoalkylrest mit 7 bis 11 Kohlenstoffatomen, insbesondere mit 8, 9 oder 10 Kohlenstoffatomen. Besonders bevorzugte Vinylester leiten sich von sekundären und insbesondere tertiären Carbonsäuren ab, deren Verzweigung sich in alpha-Position zur Carbonylgruppe befindet. Geeignete Vinylester umfassen Vinylacetat, Vinylpropionat, Vinylbutyrat, Vinylisobutyrat, Vinylhexanoat, Vinylheptanoat, Vinyloctanoat, Pivalinsäurevinylester, 2-Ethylhexansäurevinylester, Vinyllaurat, Vinylstearat sowie Versaticsäureester wie Neononansäurevinylester, Neodecansäurevinylester, Neoundecansäurevinylester.
  • In einer weiteren bevorzugten Ausführungsform enthalten diese Ethylen-Copolymere Vinylacetat und mindestens einen weiteren Vinylester der Formel 1 worin R1 für C4 bis C30-Alkyl, vorzugsweise C4 bis C16-Alkyl, speziell C6- bis C12-Alkyl steht.
  • Bei den Acrylestern handelt es sich vorzugsweise um solche der Formel 2

             CH2=CR2-COOR3     (2)

    worin R2 Wasserstoff oder Methyl und R3 C1- bis C30-Alkyl, vorzugsweise C4- bis C16-Alkyl, speziell C6- bis C12-Alkyl bedeutet. Geeignete Acrylester umfassen z.B. Methyl(meth)acrylat, Ethyl(meth)acrylat, Propyl(meth)acrylat, n- und isoButyl(meth)acrylat, Hexyl-, Octyl-, 2-Ethylhexyl-, Decyl-, Dodecyl-, Tetradecyl-, Hexadecyl-, Octadecyl(meth)acrylat sowie Mischungen dieser Comonomere. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein. Ein Beispiel für einen solchen Acrylester ist Hydroxyethylmethacrylat.
    Bei den Alkylvinylethern handelt es sich vorzugsweise um Verbindungen der Formel 3

             CH2=CH-OR4     (3)

    worin R4 C1- bis C30-Alkyl, vorzugsweise C4- bis C16-Alkyl, speziell C6- bis C12-Alkyl bedeutet. Beispielsweise seien genannt Methylvinylether, Ethylvinylether, isoButylvinylether. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein.
  • Bei den Alkenen handelt es sich vorzugsweise um einfache ungesättigte Kohlenwasserstoffe mit 3 bis 30 Kohlenstoffatomen, insbesondere 4 bis 16 Kohlenstoffatomen und speziell 5 bis 12 Kohlenstoffatomen. Geeignete Alkene umfassen Propen, Buten, Isobutylen, Penten, Hexen, 4-Methylpenten, Octen, Diisobutylen sowie Norbornen und seine Derivate wie Methylnorbornen und Vinylnorbornen. In einer weiteren Ausführungsform können die genannten Alkylgruppen mit einer oder mehreren Hydroxylgruppen substituiert sein.
  • Besonders bevorzugt sind Terpolymerisate, die außer Ethylen 3,5 bis 20 mol-%, insbesondere 8 bis 15 mol-% Vinylacetat und 0,1 bis 12 mol-%, insbesondere 0,2 bis 5 mol-% mindestens eines längerkettigen und bevorzugt verzweigten Vinylesters wie beispielsweise 2-Ethylhexansäurevinylester, Neononansäurevinylester oder Neodecansäurevinylester enthalten, wobei der gesamte Comonomergehalt zwischen 8 und 21 mol-%, bevorzugt zwischen 12 und 18 mol-% liegt. Weitere besonders bevorzugte Copolymere enthalten neben Ethylen und 8 bis 18 mol-% Vinylestern noch 0,5 bis 10 mol-% Olefine wie Propen, Buten, Isobutylen, Hexen, 4-Methylpenten, Octen, Diisobutylen und/oder Norbornen.
  • Vorzugsweise haben diese Ethylen-Co- und Terpolymere Schmelzviskositäten bei 140°C von 20 bis 10.000 mPas, insbesondere von 30 bis 5.000 mPas, speziell von 50 bis 2.000 mPas. Die Mittels 1H-NMR-Spektroskopie bestimmten Verzweigungsgrade liegen bevorzugt zwischen 1 und 9 CH3/100 CH2-Gruppen, insbesondere zwischen 2 und 6 CH3/100 CH2-Gruppen, die nicht aus den Comonomeren stammen.
  • Bevorzugt werden Mischungen aus zwei oder mehr der oben genannten Ethylen-Copolymere eingesetzt. Besonders bevorzugt unterscheiden sich die den Mischungen zu Grunde liegenden Polymere in mindestens einem Charakteristikum. Beispielsweise können sie unterschiedliche Comonomere enthalten, unterschiedliche Comonomergehalte, Molekulargewichte und/oder Verzweigungsgrade aufweisen.
  • Das Mischungsverhältnis zwischen den erfindungsgemäßen Additiven und Ethylencopolymeren als Bestandteil III kann je nach Anwendungsfall in weiten Grenzen variieren, wobei die Ethylencopolymere III oftmals den größeren Anteil darstellen. Bevorzugt enthalten derartige Additivmischungen 2 bis 70 Gew.-%, bevorzugt 5 bis 50 Gew.-% der erfindungsgemäßen Additivkombination aus I und II sowie 30 bis 98 Gew.-%, bevorzugt 50 bis 95 Gew.-% Ethylencopolymere.
  • Bei den als weitere Komponente erfindungsgemäß geeigneten Paraffindispergatoren (Bestandteil IV) handelt es sich vorzugsweise um Umsetzungsprodukte von Fettaminen mit Verbindungen, die mindestens eine Acylgruppe enthalten. Bei den bevorzugten Aminen handelt es sich um Verbindungen der Formel NR6R7R8, worin R6, R7 und R8 gleich oder verschieden sein können, und wenigstens eine dieser Gruppen für C8-C36-Alkyl, C6-C36-Cycloalkyl, C8-C36-Alkenyl, insbesondere C12-C24-Alkyl, C12-C24-Alkenyl oder Cyclohexyl steht, und die übrigen Gruppen entweder Wasserstoff, C1-C36-Alkyl, C2-C36-Alkenyl, Cyclohexyl, oder eine Gruppe der Formeln ―(A-O)x-E oder -(CH2)n-NYZ bedeuten, worin A für eine Ethyl- oder Propylgruppe steht, x eine Zahl von 1 bis 50, E = H, C1-C30-Alkyl, C5-C12-Cycloalkyl oder C6-C30-Aryl, und n = 2, 3 oder 4 bedeuten, und Y und Z unabhängig voneinander H, C1-C30-Alkyl oder -(A-O)x bedeuten. Die Alkyl- und Alkenylreste können linear oder verzweigt sein und bis zu zwei Doppelbindungen enthalten. Bevorzugt sind sie linear und weitgehend gesättigt, das heißt sie haben Jodzahlen von weniger als 75 gl2/g, bevorzugt weniger als 60 gl2/g und insbesondere zwischen 1 und 10 gl2/g. Besonders bevorzugt sind sekundäre Fettamine, in denen zwei der Gruppen R6, R7 und R8 für C8-C36-Alkyl, C6-C36-Cycloalkyl, C8-C36-Alkenyl, insbesondere für C12-C24-Alkyl, C12-C24-Alkenyl oder Cyclohexyl stehen. Geeignete Fettamine sind beispielsweise Octylamin, Decylamin, Dodecylamin, Tetradecylamin, Hexadecylamin, Octadecylamin, Eicosylamin, Behenylamin, Didecylamin, Didodecylamin, Ditetradecylamin, Dihexadecylamin, Dioctadecylamin, Dieicosylamin, Dibehenylamin sowie deren Mischungen. Speziell enthalten die Amine Kettenschnitte auf Basis natürlicher Rohstoffe wie z.B. Cocosfettamin, Talgfettamin, hydriertes Talgfettamin, Dicocosfettamin, Ditalgfettamin und Di(hydriertes Talgfettamin). Besonders bevorzugte Aminderivate sind Aminsalze, Imide und/oder Amide wie beispielsweise Amid-Ammoniumsalze sekundärer Fettamine, insbesondere von Dicocosfettamin, Ditalgfettamin und Distearylamin. Besonders bevorzugte Paraffindispergatoren als Bestandteil II enthalten mindestens eine zu einem Ammoniumsalz umgesetzte Acylgruppe. Speziell enthalten sie mindestens zwei wie beispielsweise mindestens drei oder mindestens vier und bei polymeren Paraffindispergatoren auch fünf und mehr Ammoniumgruppen.
  • Unter Acylgruppe wird hier eine funktionelle Gruppe folgender Formel verstanden:

             > C = O

  • Für die Umsetzung mit Aminen geeignete Carbonylverbindungen sind sowohl monomere wie auch polymere Verbindungen mit einer oder mehreren Carboxylgruppen. Bei den monomeren Carbonylverbindungen werden solche mit 2, 3 oder 4 Carbonylgruppen bevorzugt. Sie können auch Heteroatome wie Sauerstoff, Schwefel und Stickstoff enthalten. Geeignete Carbonsäuren sind beispielsweise Malein-, Fumar-, Croton-, Itacon-, Bernsteinsäure, C1-C40-Alkenylbernsteinsäure, Adipin-, Glutar-, Sebacin-, und Malonsäure sowie Benzoe-, Phthal-, Trimellit- und Pyromellitsäure, Nitrilotriessigsäure, Ethylendiamintetraessigsäure und deren reaktive Derivate wie beispielsweise Ester, Anhydride und Säurehalogenide. Als polymere Carbonylverbindungen haben sich insbesondere Copolymere ethylenisch ungesättigter Säuren wie beispielsweise Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure erwiesen, besonders bevorzugt sind Copolymere des Maleinsäureanhydrids. Als Comonomere sind solche geeignet, die dem Copolymer Öllöslichkeit verleihen. Unter öllöslich wird hier verstanden, dass sich das Copolymer nach Umsetzung mit dem Fettamin in praxisrelevanten Dosierraten rückstandsfrei im zu additivierenden Mineralöldestillat löst. Geeignete Comonomere sind beispielsweise Olefine, Alkylester der Acrylsäure und Methacrylsäure, Alkylvinylester sowie Alkylvinylether mit 2 bis 75, bevorzugt 4 bis 40 und insbesondere 8 bis 20 Kohlenstoffatomen im Alkylrest. Bei Olefinen bezieht sich die Kohlenstoffzahl auf den an die Doppelbindung gebundenen Alkylrest. Besonders geeignete Comonomere sind Olefine mit endständiger Doppelbindung. Die Molekulargewichte der polymeren Carbonylverbindungen liegen bevorzugt zwischen 400 und 20.000, besonders bevorzugt zwischen 500 und 10.000 wie beispielsweise zwischen 1.000 und 5.000.
  • Besonders bewährt haben sich Paraffindispergatoren, die durch Reaktion aliphatischer oder aromatischer Amine, vorzugsweise langkettiger aliphatischer Amine, mit aliphatischen oder aromatischen Mono-, Di-, Tri- oder Tetracarbonsäuren oder deren Anhydriden erhalten werden (vgl. US 4 211 534 ). Des gleichen sind Amide und Ammoniumsalze von Aminoalkylenpolycarbonsäuren wie Nitrilotriessigsäure oder Ethylendiamintetraessigsäure mit sekundären Aminen als Paraffindispergatoren geeignet (vgl. EP 0 398 101 ). Andere Paraffindispergatoren sind Copolymere des Maleinsäureanhydrids und α,β-ungesättigter Verbindungen, die gegebenenfalls mit primären Monoalkylaminen und/oder aliphatischen Alkoholen umgesetzt werden können (vgl. EP-A-0 154 177 , EP 0 777 712 ), die Umsetzungsprodukte von Alkenylspirobislactonen mit Aminen (vgl. EP-A-0 413 279 B1) und nach EP-A-0 606 055 A2 Umsetzungsprodukte von Terpolymeren auf Basis α,β-ungesättigter Dicarbonsäureanhydride, α,β-ungesättigter Verbindungen und Polyoxyalkylenethern niederer ungesättigter Alkohole.
  • Das Mischungsverhältnis zwischen den erfindungsgemäßen Additiven und Paraffindispergatoren als Bestandteil IV kann je nach Anwendungsfall variieren. Bevorzugt enthalten derartige Additivmischungen 10 bis 90 Gew.-%, bevorzugt 20 bis 80 Gew.-% der erfindungsgemäßen Additivkombination aus I und II sowie 10 bis 90 Gew.-%, bevorzugt 20 bis 80 Gew.-% Paraffindispergator.
  • Geeignete Kammpolymere (Bestandteil V) können beispielsweise durch die Formel
    Figure imgb0007
    beschrieben werden. Darin bedeuten
  • A
    R', COOR', OCOR', R"-COOR', OR';
    D
    H, CH3, A oder R";
    E
    H, A;
    G
    H, R", R"-COOR', einen Arylrest oder einen heterocyclischen Rest;
    M
    H, COOR", OCOR", OR", COOH;
    N
    H, R", COOR", OCOR, einen Arylrest;
    R'
    eine Kohlenwasserstoffkette mit 8 bis 50 Kohlenstoffatomen;
    R"
    eine Kohlenwasserstoffkette mit 1 bis 10 Kohlenstoffatomen;
    m
    eine Zahl zwischen 0,4 und 1,0; und
    n
    eine Zahl zwischen 0 und 0,6.
  • Geeignete Kammpolymere sind beispielsweise Copolymere ethylenisch ungesättigter Dicarbonsäuren wie Malein- oder Fumarsäure mit anderen ethylenisch ungesättigten Monomeren wie Olefinen oder Vinylestern wie beispielsweise Vinylacetat. Besonders geeignete Olefine sind dabei α-Olefine mit 10 bis 24 C-Atomen wie beispielsweise 1-Decen, 1-Dodecen, 1-Tetradecen, 1-Hexadecen, 1-Octadecen und deren Mischungen. Auch längerkettige Olefine auf Basis oligomerisierter C2-C6-Olefine wie beispielsweise Poly(isobutylen) mit hohem Anteil endständiger Doppelbindungen sind als Comonomere geeignet. Üblicherweise werden diese Copolymere zu mindestens 50 % mit Alkoholen mit 10 bis 22 C-Atomen verestert. Geeignete Alkohole umfassen n-Decen-1-ol, n-Dodecan-1-ol, n-Tetradecan-1-ol, n-Hexadecan-1-ol, n-Octadecan-1-ol, n-Eicosan-1-ol und deren Mischungen. Besonders bevorzugt sind Mischungen aus n-Tetradecan-1-ol und n-Hexadecan-1-ol. Als Kammpolymere ebenfalls geeignet sind Poly(alkylacrylate), Poly(alkylmethacrylate) und Poly(alkylvinylether), die sich von Alkoholen mit 12 bis 20 C-Atomen ableiten sowie Poly(vinylester), die sich von Fettsäuren mit 12 bis 20 C-Atomen ableiten.
  • Als weitere Komponente geeignete Polyoxyalkylenverbindungen (Bestandteil VI) sind beispielsweise Ester, Ether und Ether/Ester von Polyolen, die mindestens einen Alkylrest mit 12 bis 30 C-Atomen tragen. Wenn die Alkylgruppen von einer Säure stammen, stammt der Rest von einem mehrwertigen Alkohol; kommen die Alkylreste von einem Fettalkohol, so stammt der Rest der Verbindung von einer Polysäure.
  • Geeignete Polyole sind Polyethylenglykole, Polypropylenglykole, Polybutylenglykole und deren Mischpolymerisate mit einem Molekulargewicht von ca. 100 bis ca. 5000, vorzugsweise 200 bis 2000. Weiterhin geeignet sind Alkoxylate von Polyolen, wie beispielsweise von Glycerin, Trimethylolpropan, Pentaerythrit, Neopentylglykol, sowie die daraus durch Kondensation zugänglichen Oligomere mit 2 bis 10 Monomereinheiten, wie z.B. Polyglycerin. Bevorzugte Alkoxylate sind solche mit 1 bis 100, insbesondere 5 bis 50 mol Ethylenoxid, Propylenoxid und/oder Butylenoxid pro mol Polyol. Ester sind besonders bevorzugt.
  • Fettsäuren mit 12 bis 26 C-Atomen sind zur Umsetzung mit den Polyolen zur Bildung der Esteradditive bevorzugt, wobei besonders bevorzugt C18- bis C24-Fettsäuren verwendet werden, speziell Stearin- und Behensäure. Die Ester können auch durch Veresterung von polyoxyalkylierten Alkoholen hergestellt werden. Bevorzugt sind vollständig veresterte polyoxyalkylierte Poylole mit Molekulargewichten von 150 bis 2000, bevorzugt 200 bis 600. Besonders geeignet sind PEG-600-Dibehenat und Glycerin-Ethylenglykol-Tribehenat.
  • Geeignete Olefincopolymere (Bestandteil VII) als weiterer Bestandteil des erfindungsgemäßen Additivs können sich direkt von monoethylenisch ungesättigten Monomeren ableiten oder indirekt durch Hydrierung von Polymeren, die sich von mehrfach ungesättigten Monomeren wie Isopren oder Butadien ableiten, hergestellt werden. Bevorzugte Copolymere enthalten neben Ethylen Struktureinheiten, die sich von α-Olefinen mit 3 bis 24 C-Atomen ableiten und Molekulargewichte von bis zu 120.000 g/mol aufweisen. Bevorzugte α-Olefine sind Propylen, Buten, Isobuten, n-Hexen, Isohexen, n-Octen, Isoocten, n-Decen, Isodecen. Der Comonomergehalt an α-Olefinen mit 3 bis 24 C-Atomen liegt bevorzugt zwischen 15 und 50 mol-%, besonders bevorzugt zwischen 20 und 35 mol-% und speziell zwischen 30 und 45 mol-%. Diese Copolymeren können auch geringe Mengen, z.B. bis zu 10 mol-% weiterer Comonomere wie z.B. nicht endständige Olefine oder nicht konjugierte Olefine enthalten. Bevorzugt sind Ethylen-Propylen-Copolymere. Die Olefincopolymere können nach bekannten Methoden hergestellt werden, z.B. mittels Ziegler- oder Metallocen-Katalysatoren.
  • Weitere geeignete Olefincopolymere sind Blockcopolymere, die Blöcke aus olefinisch ungesättigten, aromatischen Monomeren A und Blöcke aus hydrierten Polyolefinen B enthalten. Besonders geeignet sind Blockcopolymere der Struktur (AB)nA und (AB)m, wobei n eine Zahl zwischen 1 und 10 und m eine Zahl zwischen 2 und 10 ist.
  • Das Mischungsverhältnis zwischen den erfindungsgemäßen Additivkombinationen aus I und II sowie den weiteren Bestandteilen V, VI und VII ist im allgemeinen jeweils zwischen 1:10 und 10:1, bevorzugt zwischen 1: 5 und 5:1.
  • Die Additive können allein oder auch zusammen mit anderen Additiven verwendet werden, z.B. mit anderen Stockpunkterniedrigern oder Entwachsungshilfsmitteln, mit Antioxidantien, Cetanzahlverbesserern, Dehazern, Demulgatoren, Detergenzien, Dispergatoren, Entschäumern, Farbstoffen, Korrosionsinhibitoren, Lubricity-Additiven, Schlamminhibitoren, Odorantien und/oder Zusätzen zur Erniedrigung des Cloud-Points.
  • Die erfindungsgemäßen Additive erhöhen die Leitfähigkeit von Mineralöldestillaten wie Benzin, Kerosin, Jet-Fuel, Diesel und Heizöl wobei sie insbesondere in Ölen mit niedrigem Aromatengehalt von weniger als 21 Gew.-%, insbesondere weniger als 19 Gew.-%, speziell weniger als 18 Gew.-% wie beispielsweise weniger als 17 Gew.-% von Vorteil sind. Da sie gleichzeitig die Kaltfließeigenschaften insbesondere von Mineralöldestillaten wie Kerosin, Jet-Fuel, Diesel und Heizöl verbessern, kann durch ihren Einsatz eine deutliche Einsparung bei der Gesamtadditivierung der Öle erreicht werden, da keine zusätzlichen Leitfähigkeitsverbesserer eingesetzt werden müssen. Darüber hinaus können in Gebieten bzw. zu Zeiten, in denen auf Grund der klimatischen Bedingungen bisher keine Kälteadditive eingesetzt wurden, durch Beimischung paraffinreicher, preiswerterer Mineralölfraktionen z.B. Cloud Point und/oder CFPP der zu additivierenden Öle auf höher eingestellt werden, was die Wirtschaftlichkeit der Raffinerie verbessert. Die erfindungsgemäßen Additive enthalten zudem keine Metalle, die bei der Verbrennung zu Asche und damit Ablagerungen im Brennraum bzw. Abgassystem und Partikelbelastungen der Umwelt führen könnten.
  • Dabei fällt die Leitfähigkeit der erfindungsgemäß additivierten Öle bei sinkender Temperatur nicht ab und in vielen Fällen wurde sogar ein von Additiven des Standes der Technik nicht bekannter Anstieg der Leitfähigkeit mit sinkender Temperatur beobachtet, so dass auch bei niedrigen Umgebungstemperaturen eine sichere Handhabung gewährleistet ist. Ein weiterer Vorteil der erfindungsgemäßen Additive ist der Erhalt der elektrischen Leitfähigkeit auch während längerer, das heißt mehrwöchiger Lagerung der additivierten Öle. Darüber hinaus gibt es im Bereich der erfindungsgemäß geeigneten Mischungsverhältnisse keine Unverträglichkeiten zwischen den Bestandteilen I und II, so dass sie im Gegensatz zu den Additiven der US 4 356 002 problemlos als Konzentrate formuliert werden können.
  • Besonders geeignet sind sie für die Verbesserung der elektrostatischen Eigenschaften von Mineralöldestillaten wie Jet-Fuel, Benzin, Kerosin, Diesel und Heizöl, die zwecks Absenkung des Schwefelgehalts einer hydrierenden Raffination unterzogen wurden und die daher nur geringe Anteile an polyaromatischen und polaren Verbindungen enthalten. Besonders vorteilhaft sind die erfindungsgemäßen Additive in Mineralöldestillaten, die weniger als 350 ppm Schwefel, besonders bevorzugt weniger als 100 ppm Schwefel insbesondere weniger als 50 ppm Schwefel und in speziellen Fällen weniger als 10 ppm Schwefel enthalten. Der Wassergehalt solcher Öle liegt unter 150 ppm, teilweise unter 100 ppm wie beispielsweise unter 80 ppm. Die elektrische Leitfähigkeit derartiger Öle liegt üblicherweise unterhalb 10 pS/m und oftmals sogar unterhalb 5 pS/m.
  • Besonders bevorzugte Mineralöldestillate sind Mitteldestillate. Als Mitteldestillat bezeichnet man insbesondere solche Mineralöle, die durch Destillation von Rohöl gewonnen werden und im Bereich von 120 bis 450°C sieden, beispielsweise Kerosin, Jet-Fuel, Diesel und Heizöl. Ihre bevorzugten Schwefel-, Aromaten- und Wassergehalte sind wie bereits oben angegeben. Besonders vorteilhaft sind die erfindungsgemäßen Zusammensetzungen in solchen Mitteldestillaten, die 90 %-Destillationspunkte unter 360°C, insbesondere 350°C und in Spezialfällen unter 340°C aufweisen. Unter aromatischen Verbindungen wird die Summe aus mono-, di- und polyzyklischen aromatischen Verbindungen verstanden, wie sie mittels HPLC gemäß DIN EN 12916 (Ausgabe 2001) bestimmbar ist. Die Mitteldestillate können auch untergeordnete Mengen wie beispielsweise bis zu 40 Vol.-%, bevorzugt 1 bis 20 Vol.-%, speziell 2 bis 15 wie beispielsweise 3 bis 10 Vol.-% der weiter unten näher beschriebenen Öle tierischen und/oder pflanzlichen Ursprungs wie beispielsweise Fettsäuremethylester enthalten.
  • Die erfindungsgemäßen Zusammensetzungen sind ebenfalls zur Verbesserung der elektrostatischen Eigenschaften von Kraftstoffen auf Basis nachwachsender Rohstoffe (Biokraftstoffe) geeignet. Unter Biokraftstoffen werden Öle verstanden, die aus tierischem und bevorzugt aus pflanzlichem Material oder beidem erhalten werden sowie Derivate derselben, welche als Kraftstoff und insbesondere als Diesel oder Heizöl verwendet werden können. Dabei handelt es sich insbesondere um Triglyceride von Fettsäuren mit 10 bis 24 C-Atomen sowie die aus ihnen durch Umesterung zugänglichen Fettsäureester niederer Alkohole wie Methanol oder Ethanol.
  • Beispiele für geeignete Biokraftstoffe sind Rapsöl, Korianderöl, Sojaöl, Baumwollsamenöl, Sonnenblumenöl, Ricinusöl, Olivenöl, Erdnussöl, Maisöl, Mandelöl, Palmkernöl, Kokosnussöl, Senfsamenöl, Rindertalg, Knochenöl, Fischöle und gebrauchte Speiseöle. Weitere Beispiele schließen Öle ein, die sich von Weizen, Jute, Sesam, Scheabaumnuß, Arachisöl und Leinöl ableiten. Die auch als Biodiesel bezeichneten Fettsäurealkylester können aus diesen Ölen nach im Stand der Technik bekannten Verfahren abgeleitet werden. Rapsöl, das eine Mischung von mit Glycerin veresterten Fettsäuren ist, ist bevorzugt, da es in großen Mengen erhältlich ist und in einfacher Weise durch Auspressen von Rapssamen erhältlich ist. Des weiteren sind die ebenfalls weit verbreiteten Öle von Sonnenblumen und Soja sowie deren Mischungen mit Rapsöl bevorzugt.
  • Besonders geeignet als Biokraftstoffe sind niedrige Alkylester von Fettsäuren. Hier kommen beispielsweise handelsübliche Mischungen der Ethyl-, Propyl-, Butyl- und insbesondere Methylester von Fettsäuren mit 14 bis 22 Kohlenstoffatomen, beispielsweise von Laurinsäure, Myristinsäure, Palmitinsäure, Palmitolsäure, Stearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Ricinolsäure, Elaeostearinsäure, Linolsäure, Linolensäure, Eicosansäure, Gadoleinsäure, Docosansäure oder Erucasäure in Betracht. Bevorzugte Ester haben eine lodzahl von 50 bis 150 und insbesondere von 90 bis 125. Mischungen mit besonders vorteilhaften Eigenschaften sind solche, die hauptsächlich, d. h. zu mindestens 50 Gew.-% Methylester von Fettsäuren mit 16 bis 22 Kohlenstoffatomen und 1, 2 oder 3 Doppelbindungen enthalten. Die bevorzugten niedrigeren Alkylester von Fettsäuren sind die Methylester von Ölsäure, Linolsäure, Linolensäure und Erucasäure.
  • Die erfindungsgemäßen Additive sind gleichfalls zur Verbesserung der elektrostatischen Eigenschaften von Turbinenkraftstoffen geeignet. Dies sind Treibstoffe, die im Temperaturbereich von etwa 65°C bis etwa 330°C sieden und beispielsweise unter den Bezeichnungen JP-4, JP-5, JP-7, JP-8, Jet A und Jet A-1 vermarktet werden. JP-4 und JP-5 sind in der U.S. Military Specification MIL-T-5624-N und JP-8 in der U.S. Military Specification MIL-T-83133-D spezifiziert; Jet A, Jet A-1 und Jet B sind in der ASTM D1655 spezifiziert.
  • Gleichfalls sind die erfindungsgemäßen Additive zur Verbesserung der elektrischen Leitfähigkeit von Kohlenwasserstoffen geeignet, die als Lösemittel z. B. in der Textilreinigung oder zur Herstellung von Farben und Lacken verwendet werden.
  • Beispiele
  • Tabelle 1: Charakterisierung der Testöle: Als Testöle wurden Öle aus europäischen Raffinerien herangezogen. Die Bestimmung des CFPP-Werts erfolgt gemäß EN 116 und die Bestimmung des Cloud Points gemäß ISO 3015. Die Bestimmung der aromatischen Kohlenwasserstoffgruppen erfolgt gemäß DIN EN 12916 (Ausgabe November 2001)
    Testöl 1 Testöl 2 Testöl 3 (Vgl.)
    Destillation
    IBP [°C] 212 188 160
    20% [°C] 244 249 229
    90% [°C] 322 336 339
    FBP [°C] 342 361 371
    Cloud Point [°C] -8,8 -12,5 4,6
    Dichte @15°C [g/cm3] 0,8302 0,8264 0,8410
    Wassergehalt @20°C [ppm] 25 35 185
    Schwefelgehalt [ppm] 4 6 173
    elektr. Leitfähigkeit @25°C [pS/m] 0 1 9
    Aromatengehalt [Gew.-%] 14,8 16,9 29,9
    davon mono [Gew.-%] 14,5 14,4 24,1
    di [Gew.-%] 0,3 2,4 5,3
    poly [Gew.-%] <0,1 0,1 0,5
  • Folgende Additive wurden eingesetzt:
    • (A) Charakterisierung der eingesetzten Alkylphenolharze
      • A1 Sauer katalysiertes Nonylphenol-Formaldehydharz (Mw 1.300 g/mol)
      • A2 Sauer katalysiertes Nonylphenol-Formaldehydharz (Mw 2.200 g/mol)
      • A3 Sauer katalysiertes Dodecylphenol-Formaldehydharz (Mw 2.600 g/mol)
      • A4 Alkalisch katalysiertes Dodecylphenol-Formaldehydharz (Mw 2.450 g/mol)
      • A5 Unter saurer Katalyse hergestelltes Alkylphenol-Formaldehydharz aus equimolaren Anteilen Nonylphenol und Butylphenol (Mw 2.900 g/mol)
      • A6 Mit 5 mol Ethylenoxid pro phenolischer OH-Gruppe alkoxiliertes Nonylphenolharz gemäß A2 (Vergleich).
      Die Bestimmung der Molekulargewichte erfolgte mittels Gelpermeationschromatographie in THF gegen Poly(ethylenglykol)-Standards. Die Harze A1) bis A4) wurden als 50 %ige Einstellungen in Solvent Naphtha, einem kommerziellen Gemisch hochsiedender aromatischer Kohlenwasserstoffe eingesetzt.
    • (B) Charakterisierung der eingesetzten Stickstoffverbindungen B
      • B1 Copolymer aus N,N,N-(Trimethylammonium)ethylmethacrylat und 2-Ethylhexylacrylat im molaren Verhältnis 1:4 gemäß EP 0909305 , 20 %ig in höhersiedendem aromatischem Lösemittel.
      • B2 Terpolymer aus Ethylen, 17 Gew.-% Vinylacetat und 8 Gew.-% 1-Vinyl-2-pyrrolidon mit einer Schmelzviskosität von 170 mPas bei 140°C, 50 %ig in höhersiedendem aromatischem Lösemittel.
      • B3 Mit Dimethylsulfat quaternisiertes Terpolymer aus Ethylen, 14 Gew.-% Vinylpropionat und 10 Gew.-% Dimethylaminoethylmethacrylat mit einer Schmelzviskosität von 220 mPas bei 140°C, 50 %ig in höhersiedendem aromatischem Lösemittel.
      • B4 Copolymer aus N-Talgfettalkyl-1,3-propylendiamin und Epichlorhydrin, 30 %ig in aromatischem Lösemittel.
    Verbesserung der elektrischen Leitfähigkeit von Mitteldestillaten
  • Für Leitfähigkeitsmessungen wurden die Additive mit der jeweils angegebenen Konzentration in 250 ml des Testöls 1 unter Schütteln gelöst. Mit einem automatischen Conductivity Meter Maihak SLA 900 wurde darin die elektrische Leitfähigkeit gemäß DIN 51412-T02-79 bestimmt. Die Einheit für die elektrische Leitfähigkeit ist Picosiemens/m (pS/m). Für Jet-Fuel wird allgemein eine Leitfähigkeit von mindestens 50 pS/m spezifiziert. Die angegebenen Dosierraten beziehen sich auf die eingesetzten Wirkstoffmengen. Tabelle 2: Elektrische Leitfähigkeit von Testöl 1
    Bsp. Nr. Dosierrate Additiv A Dosierrate Additiv B Leitfähigkeit [pS/m]
    @ 22°C @ 10°C
    1 (Vgl.) 25 ppm A1 - - 3 2
    2 (Vgl.) 50 ppm A1 - - 3 2
    3 (Vgl.) 10 ppm A2 - - 1 1
    4 (Vgl.) 25 ppm A2 - - 3 1
    5 (Vgl.) 50 ppm A2 - - 4 2
    6 (Vgl.) 50 ppm A3 - - 4 3
    7 (Vgl.) 50 ppm A5 - - 3 2
    8 (Vgl.) 25 ppm A6 - - 3 1
    9 (Vgl.) - - 10 ppm B1 9 7
    10 (Vgl.) - - 25 ppm B1 25 21
    11 (Vgl.) - - 10 ppm B2 5 3
    12 (Vgl.) - - 25 ppm B2 9 6
    13 (Vgl.) - - 10 ppm B3 7 6
    14 (Vgl.) - - 25 ppm B3 19 16
    15 (Vgl.) - - 10 ppm B4 8 4
    16 (Vgl.) - - 25 ppm B4 22 18
    17 (Vgl.) - - 50 ppm B4 47 40
    18 4 ppm A1 8 ppm B1 77 92
    19 10 ppm A1 10 ppm B1 117 136
    20 5 ppm A2 10 ppm B4 98 115
    21 16 ppm A2 8 ppm B4 242 267
    22 8 ppm A2 16 ppm B4 270 312
    23 25 ppm A2 15 ppm B4 649 678
    24 4 ppm A2 8 ppm B2 84 98
    25 4 ppm A2 8 ppm B3 102 124
    26 8 ppm A2 16 ppm B3 215 234
    27 5 ppm A3 10 ppm B3 95 103
    28 10 ppm A3 10 ppm B3 165 185
    29 5 ppm A5 15 ppm B3 193 236
    30 (Vgl.) 10 ppm A6 10 ppm B3 44 38
    31 (Vgl.) 8 ppm A6 16 ppm B4 36 25
    Tabelle 3: Elektrische Leitfähigkeit in Testöl 2
    Bsp. Nr. Dosierrate Additiv A Dosierrate Additiv B Leitfähigkeit [pS/m]
    @ 25°C @ 10°C
    32 (Vgl.) 25 ppm A1 - - 1 0
    33 (Vgl.) 10 ppm A2 - - 2 0
    34 (Vgl.) 25 ppm A2 - - 4 2
    35 25 ppm A4 - - 5 3
    36 (Vgl.) 25 ppm A6 - - 2 1
    37 (Vgl.) - - 10 ppm B1 5 3
    38 (Vgl.) - - 20 ppm B1 12 10
    39 (Vgl.) - - 10 ppm B2 4 2
    40 (Vgl.) - - 20 ppm B2 8 7
    41 (Vgl.) - - 20 ppm B3 14 12
    42 (Vgl.) - - 20 ppm B4 16 13
    43 8 ppm A1 8 ppm B1 94 106
    44 8 ppm A1 8 ppm B2 114 128
    45 4 ppm A2 8 ppm B2 122 136
    46 8 ppm A2 4 ppm B3 118 128
    47 4 ppm A4 12 ppm B3 187 205
    48 3 ppm A4 7 ppm B4 167 178
    49 10 ppm A4 3 ppm B4 102 110
    50 (Vgl.) 10 ppm A6 10 ppm B2 56 47
    51 (Vgl.) 5 A6 10 ppm B3 48 43
    Tabelle 4: Elektrische Leitfähigkeit in Testöl 3 (Vergleich)
    Bsp. Nr. Dosierrate Additiv A Dosierrate Additiv B Leitfähigkeit [pS/m]
    @ 25°C @ 10°C
    52 10 ppm A2 - - 19 12
    53 10 ppm A6 - - 25 18
    54 - - 5 ppm B1 60 35
    55 - - 5 ppm B4 53 37
    56 10 ppm A2 5 ppm B1 152 123
    57 10 ppm A2 5 ppm B4 176 140
    58 10 ppm A6 5 ppm B1 197 139
    59 10 ppm A6 5 ppm B4 223 160
  • Die Beispiele zeigen, dass die erfindungsgemäßen Zusammensetzungen einen ausgeprägten synergistischen Effekt gegenüber den Einzelkomponenten aufweisen. Darüber hinaus zeigen sie, dass die erfindungsgemäßen Zusammensetzungen die elektrische Leitfähigkeit insbesondere aromatenarmer Brennstofföle mit niedrigem Wassergehalt stärker erhöhen als die bekannten Additive des Standes der Technik. Die Leitfähigkeit der erfindungsgemäß additivierten Mineralöldestillate steigt mit fallender Temperatur an. Da die eingesetzten Additive zudem auch weitere Eigenschaften von Mitteldestillaten wie beispielsweise Paraffindispergierung und Schmierfähigkeit verbessern, kann eine vergleichbare Leitfähigkeit bei niedrigerer Additivdosierung an konventionellen Additiven erreicht werden. Ein weiterer Vorteil der Erfindung ist es, dass mit den erfindungsgemäßen Additiven neben der Verbesserung der Leitfähigkeit gleichzeitig die Kälteeigenschaften verbessert werden, was es dem Hersteller des Brennstofföls erlaubt, einen höheren Anteil an paraffinreichen, kälteproblematischen Destillationsschnitten zu verarbeiten.

Claims (20)

  1. Mineralöldestillate mit einem Wassergehalt von weniger als 150 ppm und einer Leitfähigkeit von mindestens 50 pS/m, die 0,1 bis 200 ppm mindestens eines Alkylphenol-Aldehydharzes und 0,1 bis 200 ppm mindestens eines stickstoffhaltigen Polymers enthalten.
  2. Mineralöldestillate nach Anspruch 1, worin der zur Kondensation des Alkylphenol-Aldehydharzes verwendete Aldehyd 1 bis 12 Kohlenstoffatome umfasst.
  3. Mineralöldestillate nach Anspruch 1 und/oder 2, worin die Alkylgruppe des Alkylphenol-Aldehydharzes 1 bis 200 Kohlenstoffatome umfasst.
  4. Mineralöldestillate nach einem oder mehreren der Ansprüche 1 bis 3, worin das Molekulargewicht der Alkylphenol-Aldehydharze 400 bis 20.000 g/mol beträgt.
  5. Mineralöldestillate nach einem oder mehreren der Ansprüche 1 bis 4, worin das Alkylphenol-Aldehydharz eine repetitive Struktureinheit der Formel
    Figure imgb0008
    umfasst, worin R5 für C1-C200-Alkyl oder C2-C200-Alkenyl, O-R6 oder O-C(O)-R6, R6 für C1-C200-Alkyl oder C2-C200-Alkenyl, und n für eine Zahl von 2 bis 100 steht.
  6. Mineralöldestillate nach einem oder mehreren der Ansprüche 1 bis 5, worin die stickstoffhaltigen Polymeren ausgewählt sind aus
    a) Kammpolymeren, enthaltend Einheiten abgeleitet von Monomeren mit einem C4- bis C40-Alkylrest und mindestens einem stickstoffhaltigen Comonomer,
    b) Copolymeren des Ethylens mit ethylenisch ungesättigten stickstoffhaltigen Comonomeren, und
    c) polymere Polyamine, hergestellt durch Kondensation eines aliphatischen primären Monoamins oder eines N-Alkyl-alkylendiamins mit Epichlorhydrin oder Glycidol.
  7. Mineralöldestillate nach Anspruch 6, worin die stickstoffhaltigen Polymere sich von öllöslichen Estern ethylenisch ungesättigter Carbonsäuren, öllöslichen Vinylestern und/oder öllöslichen Vinylethern ableiten, die einen C1- bis C40-Alkylrest tragen.
  8. Mineralöldestillate nach Anspruch 6, worin die stickstoffhaltigen Polymere neben Ethylen 0,1 bis 15 mol-% stickstoffhaltiger Comonomere ausgewählt aus
    i) Alkylaminoacrylaten bzw. -methacrylaten ,
    ii) Alkylacrylamiden und -methacrylamiden ,
    iii) Vinylamiden,
    iv) Aminoalklyvinylethern,
    v) ethylenisch ungesättigten Aminen und/oder
    vi) eine Vinylgruppe tragenden Heterozyklen enthalten.
  9. Mineralöldestillate nach Anspruch 6, worin die stickstoffhaltigen Polymere Kondensationsprodukte aus primären Alkylaminen oder N-Alkyl-alkylendiaminen, deren Alkylreste 8 bis 24 und deren Alkylenrest 2 bis 6 C-Atome besitzt, und Epichlorhydrin bzw. Glycidol im molaren Verhältnis von 1:1 bis 1:1,5 mit Kondensationsgraden von 2 bis 20 sind.
  10. Mineralöldestillate nach einem oder mehreren der Ansprüche 1 bis 9, worin zusätzlich Copolymere aus Ethylen und 6 bis 21 mol-% Vinylester, Acrylester, Methacrylester, Alkylvinylether und/oder Alkene enthalten sind.
  11. Mineralöldestillate nach einem oder mehreren der Ansprüche 1 bis 10, worin zusätzlich Kammpolymere der Formel
    Figure imgb0009
    enthalten sind, worin
    A R', COOR', OCOR', R"-COOR', OR';
    D H, CH3, A oder R";
    E H, A;
    G H, R", R"-COOR', einen Arylrest oder einen heterocyclischen Rest;
    M H, COOR", OCOR", OR", COOH;
    N H, R", COOR", OCOR", einen Arylrest;
    R' eine Kohlenwasserstoffkette mit 8 bis 50 Kohlenstoffatomen;
    R" eine Kohlenwasserstoffkette mit 1 bis 10 Kohlenstoffatomen;
    m eine Zahl zwischen 0,4 und 1,0; und
    n eine Zahl zwischen 0 und 0,6
    bedeuten.
  12. Mineralöldestillate nach einem oder mehreren der Ansprüche 1 bis 11, worin zusätzlich Polyoxyalkylenverbindungen enthalten sind, die Ester, Ether und Ether/Ester sind, welche mindestens einen Alkylrest mit 12 bis 30 C-Atomen tragen.
  13. Mineralöldestillate nach einem oder mehreren der Ansprüche 1 bis 12, worin zusätzlich Copolymere enthalten sind, die neben Struktureinheiten von Ethylen Struktureinheiten, die sich von α-Olefinen mit 3 bis 24 C-Atomen ableiten, enthalten, und die Molekulargewichte von bis zu 120.000 g/mol aufweisen.
  14. Mineralöldestillate nach einem oder mehreren der Ansprüche 1 bis 13, worin zusätzlich Polysulfone enthalten sind, die sich von Olefinen mit 6 bis 20 C-Atomen ableiten.
  15. Mineralöldestillate nach einem oder mehreren der Ansprüche 1 bis 14, worin zusätzlich Paraffindispergatoren enthalten sind, welche Umsetzungsprodukte von Fettaminen mit Verbindungen, die mindestens eine Acylgruppe enthalten, sind, wobei die Fettamine Verbindungen der Formel NR6R7R8 sind, worin R6, R7 und R8 gleich oder verschieden sein können, und wenigstens eine dieser Gruppen für C8-C36-Alkyl, C6-C36-Cycloalkyl, C8-C36-Alkenyl, insbesondere C12-C24-Alkyl, C12-C24-Alkenyl oder Cyclohexyl steht, und die übrigen Gruppen entweder Wasserstoff, C1-C36-Alkyl, C2-C36-Alkenyl, Cyclohexyl, oder eine Gruppe der Formeln -(A-O)x-E oder -(CH2)n-NYZ bedeuten, worin A für eine Ethyl- oder Propylgruppe steht, x eine Zahl von 1 bis 50, E = H, C1-C30-Alkyl, C5-C12-Cycloalkyl oder C6-C30-Aryl, und n = 2, 3 oder 4 bedeuten, und Y und Z unabhängig voneinander H, C1-C30-Alkyl oder -(A-0)x bedeuten.
  16. Verwendung von Zusammensetzungen, die mindestens ein Alkylphenol-Aldehydharz und bezogen auf das Alkylphenol-Aldehydharz 0,1 bis 10 Gewichtsteile mindestens eines stickstoffhaltigen Polymers enthalten, zur Verbesserung der Leitfähigkeit vom Mineralöldestillaten mit einem Wassergehalt von weniger als 150 ppm, so dass die Mineralöldestillate eine Leitfähigkeit vom mindestens 50 pS/m aufweisen.
  17. Verwendung von mindestens einem Alkylphenol-Aldehydharz zur Verbesserung der elektrischen Leitfähigkeit von Mineralöldestillaten mit einem Wassergehalt von weniger als 150 ppm, die 0,1 bis 200 ppm mindestens eines stickstoffhaltigen Polymers enthalten, in einer Menge, so dass die Mineralöldestillate eine Leitfähigkeit vom mindestens 50 pS/m aufweisen.
  18. Verfahren zur Verbesserung der elektrischen Leitfähigkeit von Mineralöldestillaten mit einem Wassergehalt von weniger als 150 ppm, indem man den Mineralöldestillaten Zusammensetzungen, die mindestens ein Alkylphenol-Aldehydharz, und, bezogen auf das Alkylphenol-Aldehydharz, 0,1 bis 10 Gewichtsteile mindestens eines stickstoffhaltigen Polymers enthalten, zusetzt, so dass die Mineralöldestillate eine Leitfähigkeit vom mindestens 50 pS/m aufweisen.
  19. Verfahren zur Verbesserung der elektrischen Leitfähigkeit von Mineralöldestillaten mit einem Wassergehalt von weniger als 150 ppm, die 0,1 bis 200 ppm mindestens eines stickstoffhaltigen Polymers enthalten, indem man den Mineralöldestillaten 0,1 bis 200 ppm mindestens eines Alkylphenol-Aldehydharzes zusetzt, so dass die Mineralöldestillate eine Leitfähigkeit von mindestens 50 pS/m aufweisen.
  20. Additive für Mineralöldestillate mit einem Wassergehalt von weniger als 150 ppm, die mindestens ein Alkylphenol-Aldehydharz und mindestens ein stickstoffhaltiges Polymer, ausgewählt aus
    a) Kammpolymeren, enthaltend Einheiten abgeleitet von Estern ethylenisch ungesättigter Carbonsäuren, Vinylestern und/oder Vinylethern und mindestens einem stickstoffhaltigen Comonomer,
    b) Copolymeren des Ethylens mit ethylenisch ungesättigten stickstoffhaltigen Comonomeren, und
    c) polymere Polyamine, hergestellt durch Kondensation eines aliphatischen primären Monoamins oder eines N-Alkyl-alkylendiamins mit Epichlorhydrin oder Glycidol,
    im Massenverhältnis 9:1 bis 1:9 enthalten.
EP06013802.1A 2005-07-28 2006-07-04 Additive und deren verwendung zur verbesserung der elektrischen leitfähigkeit und kältefliessfähigkeit von mineralöldestillaten Active EP1749873B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005035277A DE102005035277B4 (de) 2005-07-28 2005-07-28 Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit

Publications (3)

Publication Number Publication Date
EP1749873A2 true EP1749873A2 (de) 2007-02-07
EP1749873A3 EP1749873A3 (de) 2009-09-16
EP1749873B1 EP1749873B1 (de) 2018-04-04

Family

ID=37250266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06013802.1A Active EP1749873B1 (de) 2005-07-28 2006-07-04 Additive und deren verwendung zur verbesserung der elektrischen leitfähigkeit und kältefliessfähigkeit von mineralöldestillaten

Country Status (8)

Country Link
US (1) US7713315B2 (de)
EP (1) EP1749873B1 (de)
JP (1) JP5199554B2 (de)
KR (1) KR101469522B1 (de)
CN (1) CN1904006B (de)
CA (1) CA2554168C (de)
DE (1) DE102005035277B4 (de)
RU (1) RU2419652C2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985686A1 (de) * 2007-04-19 2008-10-29 Afton Chemical Corporation Verbesserung der Leitfähigkeit von Mitteldestillatbrennstoffen durch eine Kombination aus einem Detergens und einem Fließverbesserer

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5068010B2 (ja) * 2004-09-17 2012-11-07 インフィニューム インターナショナル リミテッド 燃料油の導電特性向上用添加剤組成物
DE102008032254B4 (de) * 2008-07-09 2010-10-21 Man Nutzfahrzeuge Ag Rußarme Dieselkraftstoffe, enthaltend einen Kraftstoffzusatz, deren Verwendung sowie die Verwendung des Kraftstoffzusatzes zur Herstellung von rußarmen Dieselkraftstoffen
DE102009060371A1 (de) * 2009-12-24 2011-06-30 Clariant International Ltd. Multifunktionelle Additive mit verbesserter Fließfähigkeit
DE102009060389A1 (de) * 2009-12-24 2011-06-30 Clariant International Ltd. Kälteadditive mit verbesserter Fließfähigkeit
WO2011161149A1 (de) * 2010-06-25 2011-12-29 Basf Se Quaternisiertes copolymerisat
US9340725B2 (en) 2011-08-19 2016-05-17 Baker Hughes Incorporated Use of a BTEX-free solvent to prepare stimulation and oilfield production additives
JP6434800B2 (ja) * 2014-12-17 2018-12-05 シェルルブリカンツジャパン株式会社 αオレフィンの吸着阻害潤滑剤組成物及び吸着阻害方法並びに吸着阻害剤
EP3093333B1 (de) * 2015-05-14 2018-03-14 Infineum International Limited Verbesserungen an additivzusammensetzungen und an brennstoffölen
EP3093332B1 (de) * 2015-05-14 2018-03-14 Infineum International Limited Verbesserungen an additivzusammensetzungen und an brennstoffölen
JP6714503B2 (ja) * 2016-12-28 2020-06-24 シェルルブリカンツジャパン株式会社 電子制御機器を配した油圧作動機用潤滑油組成物
US11345846B2 (en) 2019-07-03 2022-05-31 Si Group, Inc. Alkylphenol copolymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356002A (en) * 1978-12-11 1982-10-26 Petrolite Corporation Anti-static compositions
US4537601A (en) * 1982-05-17 1985-08-27 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
EP0857776A1 (de) * 1997-01-07 1998-08-12 Clariant GmbH Verbesserung der Fliessfähigkeit von Mineralölen und Mineralöldestillaten unter Verwendung von Alkylphenol-Aldehydharzen
WO2003042336A2 (de) * 2001-11-14 2003-05-22 Clariant Gmbh Additive für schwefelarme mineralöldestillate, umfassend einen ester eines alkoxylierten polyols
EP1500691A2 (de) * 2003-07-21 2005-01-26 Clariant GmbH Brennstofföladditive und additivierte Brennstofföle mit verbesserten Kälteeigenschaften
EP1640438A1 (de) * 2004-09-17 2006-03-29 Infineum International Limited Verbesserungen in Brennölen.

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917466A (en) * 1974-10-29 1975-11-04 Du Pont Compositions of olefin-sulfur dioxide copolymers and polyamines as antistatic additives for hydrocarbon fuels
US4211534A (en) 1978-05-25 1980-07-08 Exxon Research & Engineering Co. Combination of ethylene polymer, polymer having alkyl side chains, and nitrogen containing compound to improve cold flow properties of distillate fuel oils
DE3266117D1 (en) 1981-03-31 1985-10-17 Exxon Research Engineering Co Two-component flow improver additive for middle distillate fuel oils
US4613342A (en) * 1982-08-09 1986-09-23 The Lubrizol Corporation Hydrocarbyl substituted carboxylic acylating agent derivative containing combinations, and fuels containing same
DE3405843A1 (de) 1984-02-17 1985-08-29 Bayer Ag, 5090 Leverkusen Copolymere auf basis von maleinsaeureanhydrid und (alpha), (beta)-ungesaettigten verbindungen, ein verfahren zu ihrer herstellung und ihre verwendung als paraffininhibitoren
US5039437A (en) 1987-10-08 1991-08-13 Exxon Chemical Patents, Inc. Alkyl phenol-formaldehyde condensates as lubricating oil additives
DE3901930A1 (de) 1989-01-24 1990-07-26 Hoechst Ag Verfahren zur herstellung von novolaken und deren verwendung
US4985160A (en) * 1989-02-08 1991-01-15 E. I. Du Pont De Nemours And Company Branched polymers as fuel oil additives
DE3916366A1 (de) 1989-05-19 1990-11-22 Basf Ag Neue umsetzungsprodukte von aminoalkylenpolycarbonsaeuren mit sekundaeren aminen und erdoelmitteldestillatzusammensetzungen, die diese enthalten
DE3926992A1 (de) 1989-08-16 1991-02-21 Hoechst Ag Verwendung von umsetzungsprodukten von alkenylspirobislactonen und aminen als paraffindispergatoren
JPH05331469A (ja) * 1992-05-29 1993-12-14 Tonen Corp ガソリン添加剤及び該ガソリン添加剤を含むガソリン組成物
DK0606055T3 (da) 1993-01-06 1998-04-14 Clariant Gmbh Terpolymerer på basis af alfa,beta-umættede dicarboxylsyreanhydrider, alfa-beta-umættede forbindelser og polyoxyalkylenethere af lavere umættede alkoholer
DE4430294A1 (de) 1994-08-26 1996-02-29 Basf Ag Polymermischungen und ihre Verwendung als Zusatz für Erdölmitteldestillate
US5707946A (en) 1996-04-08 1998-01-13 The Lubrizol Corporation Pour point depressants and their use
US5851429A (en) 1996-04-08 1998-12-22 The Lubrizol Corporation Dispersions of waxy pour point depressants
GB9810994D0 (en) * 1998-05-22 1998-07-22 Exxon Chemical Patents Inc Additives and oil compositions
DE10000649C2 (de) * 2000-01-11 2001-11-29 Clariant Gmbh Mehrfunktionelles Additiv für Brennstofföle
US6391070B2 (en) 2000-04-20 2002-05-21 Baker Hughes Incorporated Anti-static additive compositions for hydrocarbon fuels
US20030136046A1 (en) * 2001-11-21 2003-07-24 Graham Jackson Fuel additive
DE50307929D1 (de) * 2002-07-09 2007-09-27 Clariant Produkte Deutschland Oxidationsstabilisierte Schmieradditive für hochentschwefelte Brennstofföle
DE10245737C5 (de) * 2002-10-01 2011-12-08 Clariant Produkte (Deutschland) Gmbh Verfahren zur Herstellung von Additivmischungen für Mineralöle und Mineralöldestillate
DE602004030391D1 (de) 2003-05-29 2011-01-20 Infineum Int Ltd Eine Brennstoffölzusammensetzung
DE602004027686D1 (de) * 2003-07-03 2010-07-29 Infineum Int Ltd Kraftstoffzusammensetzung
JP5068010B2 (ja) * 2004-09-17 2012-11-07 インフィニューム インターナショナル リミテッド 燃料油の導電特性向上用添加剤組成物
JP4783209B2 (ja) * 2005-05-31 2011-09-28 三洋化成工業株式会社 燃料油用流動性向上剤および燃料油組成物
DE102005035275B4 (de) 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit
DE102005035276B4 (de) 2005-07-28 2007-10-11 Clariant Produkte (Deutschland) Gmbh Mineralöle mit verbesserter Leitfähigkeit und Kältefließfähigkeit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356002A (en) * 1978-12-11 1982-10-26 Petrolite Corporation Anti-static compositions
US4537601A (en) * 1982-05-17 1985-08-27 Petrolite Corporation Antistats containing acrylonitrile copolymers and polyamines
EP0857776A1 (de) * 1997-01-07 1998-08-12 Clariant GmbH Verbesserung der Fliessfähigkeit von Mineralölen und Mineralöldestillaten unter Verwendung von Alkylphenol-Aldehydharzen
WO2003042336A2 (de) * 2001-11-14 2003-05-22 Clariant Gmbh Additive für schwefelarme mineralöldestillate, umfassend einen ester eines alkoxylierten polyols
EP1500691A2 (de) * 2003-07-21 2005-01-26 Clariant GmbH Brennstofföladditive und additivierte Brennstofföle mit verbesserten Kälteeigenschaften
EP1640438A1 (de) * 2004-09-17 2006-03-29 Infineum International Limited Verbesserungen in Brennölen.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEVRON CORPORATION: "Aviation Fuels Technical Review", INTERNET CITATION, 1 January 2006 (2006-01-01), pages 96PP, XP007909354, Retrieved from the Internet <URL:http://www.chevronglobalaviation.com/docs/aviation_tech_review.pdf> [retrieved on 20090730] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1985686A1 (de) * 2007-04-19 2008-10-29 Afton Chemical Corporation Verbesserung der Leitfähigkeit von Mitteldestillatbrennstoffen durch eine Kombination aus einem Detergens und einem Fließverbesserer

Also Published As

Publication number Publication date
KR20070015086A (ko) 2007-02-01
US7713315B2 (en) 2010-05-11
RU2419652C2 (ru) 2011-05-27
RU2006127366A (ru) 2008-02-10
CA2554168A1 (en) 2007-01-28
CA2554168C (en) 2014-01-14
JP5199554B2 (ja) 2013-05-15
DE102005035277B4 (de) 2007-10-11
CN1904006B (zh) 2013-03-27
US20070022654A1 (en) 2007-02-01
EP1749873A3 (de) 2009-09-16
EP1749873B1 (de) 2018-04-04
CN1904006A (zh) 2007-01-31
JP2007031715A (ja) 2007-02-08
DE102005035277A1 (de) 2007-02-08
KR101469522B1 (ko) 2014-12-05

Similar Documents

Publication Publication Date Title
EP1749873B1 (de) Additive und deren verwendung zur verbesserung der elektrischen leitfähigkeit und kältefliessfähigkeit von mineralöldestillaten
EP1801187B2 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefliessfähigkeit
EP1749874B1 (de) Verwendung von alkylphenol-aldehydharzen zur herstellung von mineralölen mit verbesserter leitfähigkeit und kältefliessfähikeit
EP2162513B1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
EP1808449B1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymere auf Basis von Ethylen-Vinylester-Copolymeren
EP1808450A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymere auf Basis von Ethylen-Vinylester-Copolymeren
EP2162512B1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
EP1752513B1 (de) Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit
EP2162515B1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
WO2008155090A1 (de) Detergenzadditive enthaltende mineralöle mit verbesserter kältefliessfähigkeit
EP1674554A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Pfropfcopolymer auf Basis von Ethylen-Vinylacetat-Copolymeren
EP1621600B1 (de) Mineralöle mit verbesserter Leitfähigkeit und Kältefliessfähigkeit
EP4127106B1 (de) Zusammensetzungen und verfahren zur dispergierung von paraffinen in schwefelarmen brennstoffölen
EP1717296A1 (de) Additive für schwefelarme Mineralöldestillate, umfassend Aromaten, welche eine Hydroxygruppe, eine Methoxygruppe und eine Säurefunktion tragen
DE102005061465B4 (de) Detergenzadditive enthaltende Mineralöle mit verbesserter Kältefließfähigkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 1/14 20060101AFI20061110BHEP

Ipc: C10L 10/10 20060101ALI20090807BHEP

Ipc: C10L 1/2387 20060101ALI20090807BHEP

Ipc: C10L 1/2383 20060101ALI20090807BHEP

Ipc: C10L 1/236 20060101ALI20090807BHEP

Ipc: C10L 1/198 20060101ALI20090807BHEP

Ipc: C10L 1/238 20060101ALI20090807BHEP

17P Request for examination filed

Effective date: 20100316

17Q First examination report despatched

Effective date: 20100413

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C10L 1/238 20060101ALI20171023BHEP

Ipc: C10L 1/2387 20060101ALI20171023BHEP

Ipc: C10L 1/198 20060101ALI20171023BHEP

Ipc: C10L 1/236 20060101ALI20171023BHEP

Ipc: C10L 10/14 20060101ALI20171023BHEP

Ipc: C10L 1/14 20060101AFI20171023BHEP

Ipc: C10L 10/10 20060101ALI20171023BHEP

Ipc: C10L 1/2383 20060101ALI20171023BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171207

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RBV Designated contracting states (corrected)

Designated state(s): CH CY CZ DE DK EE FR GB HU LI LV NL RO SK

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RBV Designated contracting states (corrected)

Designated state(s): CH CY CZ DE DK EE FR GB HU LI LV NL RO SK

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB HU NL RO

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB HU NL RO

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015857

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015857

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20200727

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200724

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20210801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210801

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240628

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240725

Year of fee payment: 19