EP1744020A1 - Method for starting a steam turbine plant - Google Patents
Method for starting a steam turbine plant Download PDFInfo
- Publication number
- EP1744020A1 EP1744020A1 EP05015350A EP05015350A EP1744020A1 EP 1744020 A1 EP1744020 A1 EP 1744020A1 EP 05015350 A EP05015350 A EP 05015350A EP 05015350 A EP05015350 A EP 05015350A EP 1744020 A1 EP1744020 A1 EP 1744020A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- temperature
- steam
- starting
- transient
- reference component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
- F01K13/02—Controlling, e.g. stopping or starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D19/00—Starting of machines or engines; Regulating, controlling, or safety means in connection therewith
- F01D19/02—Starting of machines or engines; Regulating, controlling, or safety means in connection therewith dependent on temperature of component parts, e.g. of turbine-casing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
- F01K7/165—Controlling means specially adapted therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/30—Application in turbines
- F05D2220/31—Application in turbines in steam turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/85—Starting
Definitions
- the invention relates to a method for starting a steam turbine plant which has at least one steam turbine and at least one steam generating plant for generating steam which drives the steam turbine, the steam turbine plant having at least one reference component which has an initial temperature of greater than 250 ° C. at a starting time. wherein the temperature of the steam and the reference component is continuously measured, wherein the reference component of the steam turbine plant is subjected to steam from the start time.
- the steam generated in a heat recovery steam generator is initially not supplied to the steam turbine part of a steam turbine plant, but bypasses bypass stations on the turbine and fed directly to a condenser, which condenses the steam to water.
- the condensate is then fed back as feed water to the steam generator or blown off a roof, if no diverter station is present.
- certain steam parameters in the steam lines of the water-steam cycle or in the leading to the turbine part of the steam turbine plant steam lines, such as certain vapor pressures and temperatures are met, the steam turbine is switched on. The maintenance of these steam parameters should keep possible stresses in thick-walled components at a low level and avoid impermissible relative elongations.
- the thick-walled components of the steam turbine still have high outlet temperatures after night shutdowns or even after weekend shutdowns.
- Thick-walled components are in this case z.
- control valves are currently kept closed in a steam turbine plant until the steam generator or boiler supplies steam at a correspondingly high temperature , These temperatures are in about 50 ° C above a starting temperature of individual thick-walled components.
- the disadvantage here is considered the long waiting time until the availability of the steam turbine plant.
- the object of the invention is to provide a method for starting a steam turbine plant of the type mentioned, which leads to a quick availability of the steam turbine plant.
- This object is achieved by a method for starting a steam turbine plant having at least one steam turbine and at least one steam generating plant for generating the steam turbine driving steam, wherein the steam turbine plant has at least one reference component, the starting temperature at an outlet temperature of greater than 250 ° C, wherein the temperature of the steam and the reference member is continuously measured, wherein the reference member of the steam turbine plant is applied from the start time with steam, wherein the starting temperature of the steam is lower than the temperature of the reference component and the temperature of the Steam is increased with a start transient and the start temperature and the start transient are chosen such that the temperature change per unit time of the reference component is below a predetermined limit, the temperature of the reference component is initially lower until a minimum reached wi rd and then gets higher.
- the temperature change per unit time of the reference component is in this case at values greater than or equal to 5K / min.
- the invention is based on the recognition that the thick-walled components of a steam turbine plant, in spite of the high compared to the temperature of the steam outlet temperatures can be acted upon with the steam whose temperature is below the starting temperature of individual reference components.
- the temperature of the steam must be increased with a sufficient transient, so that the average integral temperature of the thick-walled reference components undergoes only negligible cooling.
- a transient is a change, in particular temperature change per unit time (° K / min). Whereas a gradient is to be understood as a change, in particular a change in temperature per distance (° K / min). As a result, even relative expansion problems can be excluded.
- the invention is therefore based on the recognition that a very fast start time of the steam turbine plant possible is, although the requirement of a steam from the boiler or boiler of about 50 Kelvin is above the starting temperature of the reference components is omitted, and is acted upon by a vapor whose temperature is lower than the starting temperature of the reference components.
- the steam outlet temperature must be increased after applying the reference components with a sufficient and suitable starting gradient.
- Too low a start gradient would result in too little increase in the temperature of the steam and there is a risk that the thick-walled components will over-cool.
- the temperature of the reference component is measured at a surface of the, which faces the steam.
- a reference component initially cools on the surface, and the components lying further in the interior cool comparatively slowly. This leads to a temperature difference in the thickness of the reference components, which can lead to thermal stresses. Therefore, it is advantageous if the temperature of the component is measured directly on the surface facing the steam.
- the method is extended to the effect that a further temperature is measured at a point of the reference component, which faces away from the steam, wherein the starting temperature and the starting gradient are selected such that a temperature difference between the temperature the surface and the further temperature is below a predetermined temperature difference limit.
- the invention is based on the recognition that just a high temperature difference between the temperature of the surface of a reference component and the temperature at an adjacent location of the reference component is harmful.
- the further temperature is measured at a surface of the reference component opposite to the surface acted upon by the steam.
- the further temperature is measured substantially in the middle of the reference component. Since the thick-walled reference components of the steam turbine plant behave relatively sluggish with a temperature increase, which means that the temperature increase in the wall thickness direction is very slow, it is advantageous if the further temperature is measured substantially in the middle of the reference component. This allows very early monitoring of the temperature development of the thick-walled reference components.
- StartTransient is chosen such that its value is greater than or equal to 5K / min.
- the value can be constant or variable. This makes it possible to start a steam turbine plant with relatively simple procedural means.
- the temperature of the vapor is increased after reaching a transfer limit value with a guide gradient, wherein the value of the guide gradient is lower than the value of the start gradient.
- the invention is based on the idea that initially a cooler compared to the starting temperature of the reference component steam acts on the reference component. This leads to a cooling the steam facing surface of the reference component.
- the starting temperature of the steam must not be too low compared to the starting temperature of the reference component.
- the increase in the temperature of the steam must be done with a suitable transient. Too slow an increase in the temperature of the steam leads to damage to the reference components.
- the thick-walled reference component initially cools until the temperature of the reference component reaches a minimum. After reaching this minimum, the temperature of the reference component increases.
- the temperature of the steam is then increased with the start transient up to an acceptance limit value. After reaching the acceptance limit, the temperature of the vapor is further increased with a pilot transient, the value of the pilot transient being lower than the value of the start transient. Too rapid an increase in the temperature of the steam would cause the surface facing the steam to heat too quickly with respect to the surface of the reference component facing away from the vapor, thereby causing too great a temperature difference between the surface facing the steam and the surface Surface, which faces away from the steam, leads. This leads to undesirable damage to the reference component. By choosing a suitable guiding transient, which must be lower than the starting transient, a development of too great a temperature difference between the side facing the steam and the side facing away from the vapor is prevented.
- the change of the temperature of the steam is carried out by external water injection. This provides a comparatively simple way of influencing the transient of the temperature increase.
- the outlet temperatures of the reference components are between 300 ° to 450 ° C.
- the starting temperature of the steam is up to 150 ° C below the Output temperature.
- the value of the start transient is greater than or equal to 5 Kelvin per minute, in particular it is 13 Kelvin per minute.
- the value of the guiding transient is between 0 and 15 Kelvin per minute, in particular the value is 1 Kelvin per minute. The inventors have recognized that these values are suitable in today's steam turbine construction to carry out the method described above.
- the combined gas and steam turbine plant 1 shown schematically in FIG. 1 comprises a gas turbine plant 1a and a steam turbine plant 1b.
- the gas turbine plant 1a is equipped with a gas turbine 2, a compressor 4 and at least one combustion chamber 6 connected between the compressor 4 and the gas turbine 2.
- a gas turbine 2 By means of the compressor 4, fresh air L is sucked in, compressed and fed via the fresh air line 8 to one or more burners of the combustion chamber 6.
- the supplied air is mixed with supplied via a fuel line 10 liquid or gaseous fuel B and ignited the mixture.
- the resulting combustion exhaust gases form the working medium AM of the gas turbine plant 1a, which is the Gas turbine 2 is supplied, where it performs work under relaxation and coupled to the gas turbine 2 shaft 14 drives.
- the shaft 14 is coupled in addition to the gas turbine 2 with the air compressor 4 and a generator 12 to drive this.
- the expanded working medium AM is discharged via an exhaust pipe 34 to a heat recovery steam generator 30 of the steam turbine plant 1b.
- the working medium discharged from the gas turbine 1a at a temperature of about 500 ° to 600 ° C. is used for generating and superheating steam.
- the steam turbine plant 1b comprises, in addition to the heat recovery steam generator 30, which can be designed in particular as a forced flow system, a steam turbine 20 with turbine stages 20a, 20b, 20c and a condenser 26.
- the heat recovery steam generator 30 and the condenser 26 together with condensate lines or feed water lines 35, 40 and with steam lines 48, 53, 64, 70, 80, 100, a steam system, which forms a steam circuit together with the steam turbine 20.
- Water from a feedwater tank 38 is fed by means of a feedwater pump 42 to a high-pressure preheater 44, also called an economizer, and from there to an evaporator 46 connected to the economizer 44 and designed for a continuous operation.
- the evaporator 46 is in turn connected on the output side via a steam line 48, in which a water separator 50 is connected to a superheater 52.
- a steam line 43 the superheater 52 is connected on the output side to the steam inlet 54 of the high-pressure stage 20 a of the steam turbine 20.
- the steam superheated by the superheater 52 drives the steam turbine before it is passed on via the steam outlet 56 of the high-pressure stage 20a to a reheater 58.
- the steam is forwarded via a further steam line 81 to the steam inlet 60 of the medium-pressure stage 20b of the steam turbine 20, where it drives the turbine.
- the steam outlet 62 of the medium-pressure stage 20b is connected via an overflow line 64 to the steam inlet 66 of the low-pressure stage 20c of the steam turbine 20. After flowing through the low-pressure stage 20c and the associated drives of the turbine, the cooled and expanded steam is output via the steam outlet 68 of the low-pressure stage 20c to the steam line 70, which leads it to the condenser 26.
- the condenser 26 converts the incoming steam into condensate and transfers the condensate via the condensate line 35 by means of a condensate pump 36 to the feedwater tank 38.
- this also includes a bypass line 100, the so-called high-pressure bypass, which branches off from the steam line 53 before it reaches the steam inlet 54 of the high-pressure stage 20a.
- the high-pressure bypass 100 bypasses the high-pressure stage 20a and leads into the feed line 80 to the reheater 58.
- Another bypass line, the so-called medium-pressure bypass 200 branches off the steam line 81 before it opens into the steam inlet 60 of the medium-pressure stage 20b.
- the medium-pressure bypass 200 bypasses both the intermediate pressure stage 20b and the low-pressure stage 20c and opens into the vapor line 70 leading to the condenser 26.
- a check valve 102, 202 are installed, with which they can be shut off.
- shut-off valves 104, 204 are installed in the steam line 53 and in the steam line 81, respectively between the branch point the bypass line 100 or 200 and the steam inlet 54 of the high-pressure stage 20a and the steam inlet 60 of the medium-pressure stage 20a.
- a shut-off valve is located in the steam line 53, between the branch point of the bypass line 100 and the steam inlet 54 of the high-pressure stage 20 a of the steam turbine 20.
- bypass line 100 and the shut-off valves 102, 104 serve to divert a portion of the steam to bypass the steam turbine 2 during the startup of the combined cycle power plant 1.
- the steam turbine installation 1b is in a cooled state and a hot or warm start is to be carried out.
- a hot start is typically referred to as a start after a night shutdown of about 8 hours, whereas a start after a weekend shutdown of about 48 hours is referred to as a warm start.
- the thick-walled components of the steam turbine 1b still have high outlet temperatures of 300 ° to about 500 ° C.
- the thick-walled components can also be referred to as reference components. Thick-walled components are in this case z.
- the reference component has a starting temperature greater than 250 ° C.
- the temperature of the vapor and the reference component is continuously measured.
- the steam turbine plant 1b is acted upon from a start time with steam.
- the starting temperature of the steam is lower than the temperature of the reference component.
- the temperature of the steam is then increased with a controllable start transient, wherein the starting temperature and the starting transient are selected such that the temperature change per Time unit of the reference component is below a predetermined limit, the temperature of the reference component is initially lower, until a minimum is reached and then higher.
- FIG. 2 shows the temperature profile of the steam 205 as a function of time. Likewise, the temperature profile is shown on a steam-facing surface 202 of a thick-walled component. Also shown in FIG. 2 is a mean integral temperature 204 of the thick-walled component.
- integral temperature 204 is meant, for example, the temperature that prevails substantially in the middle of the reference component.
- the temperature of the steam 205 is increased with a start transient, which is constant as shown in FIG.
- the constant StartTransient results in a linear progression of the temperature up to an acceptance limit value 201.
- the temperature of the steam 205 is increased with a guidance transient which is lower than the value of the start transient.
- the starting temperature of the thick-walled reference component has a value of greater than 250 ° C and is in this embodiment at about 500 ° C.
- the temperature of the thick-walled component becomes higher and increases comparatively strongly up to the point of time 206, when the temperature of the vapor reaches the acceptance limit value and is subsequently increased more moderately with the guidance transient.
- the temperature of the steam can be influenced by water injection.
- the mean integral temperature 204 of the reference component in principle follows the course as well as the designated 203 curve of the thick-walled component. First, the temperature drops until a minimum value 204 is reached. Then the temperature rises.
- FIG. 3 shows the availability or performance of such a gas and steam turbine plant according to the invention.
- the dotted curves show the course of a conventional, existing according to the prior art gas and steam turbine plant.
- the solid lines show the course of a gas and steam turbine plant, which was started by the method according to the invention.
- the time is plotted on the X axis and the availability or the output of the steam turbine plant in percent on the Y axis.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Control Of Turbines (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Starten einer Dampfturbinenanlage, die wenigstens eine Dampfturbine und wenigstens eine Dampferzeugungsanlage zum Erzeugen von die Dampfturbine antreibendem Dampf aufweist, wobei die Dampfturbinenanlage zumindest ein Bezugs-Bauteil aufweist, das zu einem Startzeitpunkt eine Ausgangtemperatur von größer 250°C aufweist, wobei die Temperatur des Dampfes und des Bezugs-Bauteils fortlaufend gemessen wird, wobei das Bezugs-Bauteil der Dampfturbinenanlage ab dem Startzeitpunkt mit Dampf beaufschlagt wird.The invention relates to a method for starting a steam turbine plant which has at least one steam turbine and at least one steam generating plant for generating steam which drives the steam turbine, the steam turbine plant having at least one reference component which has an initial temperature of greater than 250 ° C. at a starting time. wherein the temperature of the steam and the reference component is continuously measured, wherein the reference component of the steam turbine plant is subjected to steam from the start time.
Zum Starten einer Dampfturbinenanlage wird üblicherweise der in einem Abhitzedampferzeuger erzeugte Dampf zunächst nicht dem Dampfturbinenteil einer Dampfturbinenanlage zugeführt, sondern über Umleitstationen an der Turbine vorbeigeführt und direkt einem Kondensator zugeführt, welcher den Dampf zu Wasser kondensiert. Das Kondensat wird dann wieder als Speisewasser dem Dampferzeuger zugeführt oder über ein Dach abgeblasen, falls keine Umleitstation vorhanden ist. Erst dann, wenn bestimmte Dampfparameter in den Dampfleitungen des Wasser-Dampfkreislaufes bzw. in den zu dem Turbinenteil der Dampfturbinenanlage führenden Dampfleitungen, beispielsweise bestimmte Dampfdrücke und -temperaturen, eingehalten sind, wird die Dampfturbine zugeschaltet. Das Einhalten dieser Dampfparameter soll mögliche Spannungen in dickwandigen Bauteilen auf einem niedrigen Niveau halten und unzulässige Relativdehnungen vermeiden.For starting a steam turbine plant usually the steam generated in a heat recovery steam generator is initially not supplied to the steam turbine part of a steam turbine plant, but bypasses bypass stations on the turbine and fed directly to a condenser, which condenses the steam to water. The condensate is then fed back as feed water to the steam generator or blown off a roof, if no diverter station is present. Only when certain steam parameters in the steam lines of the water-steam cycle or in the leading to the turbine part of the steam turbine plant steam lines, such as certain vapor pressures and temperatures are met, the steam turbine is switched on. The maintenance of these steam parameters should keep possible stresses in thick-walled components at a low level and avoid impermissible relative elongations.
Wenn eine Dampfturbine über eine gewisse Zeit bei Betriebstemperaturen beansprucht wird, weisen die dickwandigen Bauteile der Dampfturbine nach Nachtstillständen oder auch nach Wochenendstillständen noch hohe Ausgangstemperaturen auf. Dickwandige Bauteile sind hierbei z. B. ein Ventilgehäuse oder ein Hochdruck-Teilturbinen-Gehäuse oder eine Hochdruck- bzw. Mitteldruckwelle. Nach Nachtstillständen, die etwa 8 Stunden dauern bzw. Wochenendstillständen, die etwa 48 Stunden dauern, liegen die Ausgangstemperaturen typischerweise zwischen 300° und 500°C.If a steam turbine is subjected to operating temperatures over a certain period of time, the thick-walled components of the steam turbine still have high outlet temperatures after night shutdowns or even after weekend shutdowns. Thick-walled components are in this case z. B. a valve housing or a high-pressure turbine housing part or a high pressure or medium pressure wave. After night shutdowns lasting about 8 hours or weekend shutdowns lasting about 48 hours, the exit temperatures are typically between 300 ° and 500 ° C.
Wenn die dickwandigen Bauteile einer Dampfturbinenanlage nach einem Heißstart bzw. einem Warmstart, d.h. nach einem Nachtstillstand bzw. einem Wochenendstillstand, mit dem ersten zur Verfügung stehenden Dampf, den der Dampferzeuger bzw. Kessel liefert, beaufschlagt wird, besteht die Gefahr, dass die dickwandigen Bauteile zu schnell abgekühlt werden, da in der Regel der erste Dampf eine vergleichsweise niedrige Temperatur gegenüber dem dickwandigen Bauteil aufweist.If the thick-walled components of a steam turbine plant after a hot start, i. After a night standstill or a weekend shutdown, with the first available steam supplied to the steam generator or boiler, is exposed, there is a risk that the thick-walled components are cooled too quickly, as a rule, the first steam a comparatively low Temperature has opposite the thick-walled component.
Aus den großen Temperaturunterschieden zwischen dem Dampf und den dickwandigen Bauteilen können sehr große thermische Spannungen entstehen, die zu einer Ermüdung des Materials und dadurch zu einer Verkürzung der Lebensdauer führt.The large temperature differences between the steam and the thick-walled components can cause very high thermal stresses, which leads to fatigue of the material and thereby to a shortening of the service life.
Zudem können zwischen der Welle und dem Gehäuse unzulässig hohe Relativdehnungen auftreten, die zu einer Spielüberdrückung führen können.In addition, between the shaft and the housing impermissibly high relative strains can occur, which can lead to a game suppression.
Um das Risiko von zu großen Temperaturunterschieden zwischen dem Dampf und den dickwandigen Bauteilen, die zu großen thermischen Spannungen führen, gering zu halten, werden derzeit in einer Dampfturbinenanlage die Stellventile so lange geschlossen gehalten, bis der Dampferzeuger bzw. Kessel Dampf mit entsprechend hoher Temperatur liefert. Diese Temperaturen liegen in etwa 50°C über einer Ausgangstemperatur einzelner dickwandiger Bauteile. Als Nachteil wird hier die lange Wartezeit bis zur Verfügbarkeit der Dampfturbinenanlage angesehen.In order to minimize the risk of excessive temperature differences between the steam and the thick-walled components, which lead to large thermal stresses, the control valves are currently kept closed in a steam turbine plant until the steam generator or boiler supplies steam at a correspondingly high temperature , These temperatures are in about 50 ° C above a starting temperature of individual thick-walled components. The disadvantage here is considered the long waiting time until the availability of the steam turbine plant.
Aufgabe der Erfindung ist es, ein Verfahren zum Starten einer Dampfturbinenanlage der eingangs genannten Art anzugeben, das zu einer schnellen Verfügbarkeit der Dampfturbinenanlage führt.The object of the invention is to provide a method for starting a steam turbine plant of the type mentioned, which leads to a quick availability of the steam turbine plant.
Gelöst wird diese Aufgabe durch ein Verfahren zum Starten einer Dampfturbinenanlage, die wenigstens eine Dampfturbine und wenigstens eine Dampferzeugungsanlage zum Erzeugen von die Dampfturbine antreibendem Dampf aufweist, wobei die Dampfturbinenanlage zumindest ein Bezugs-Bauteil aufweist, das zu einem Startzeitpunkt eine Ausgangstemperatur von größer als 250°C aufweist, wobei die Temperatur des Dampfes und des Bezugs-Bauteils fortlaufend gemessen wird, wobei das Bezugs-Bauteil der Dampfturbinenanlage ab dem Startzeitpunkt mit Dampf beaufschlagt wird, wobei die Starttemperatur des Dampfes niedriger ist als die Temperatur des Bezugs-Bauteils und die Temperatur des Dampfes mit einem Start-Transienten erhöht wird und die Starttemperatur und der Start-Transienten derart gewählt werden, dass die Temperaturänderung pro Zeiteinheit des Bezugs-Bauteils unter einem vorgegebenen Grenzwert liegt, wobei die Temperatur des Bezugs-Bauteils zunächst niedriger wird bis ein Minimum erreicht wird und anschließend höher wird. Die Temperaturänderung pro Zeiteinheit des Bezug-Bauteils liegt hierbei bei Werten größer oder gleich 5K/min.This object is achieved by a method for starting a steam turbine plant having at least one steam turbine and at least one steam generating plant for generating the steam turbine driving steam, wherein the steam turbine plant has at least one reference component, the starting temperature at an outlet temperature of greater than 250 ° C, wherein the temperature of the steam and the reference member is continuously measured, wherein the reference member of the steam turbine plant is applied from the start time with steam, wherein the starting temperature of the steam is lower than the temperature of the reference component and the temperature of the Steam is increased with a start transient and the start temperature and the start transient are chosen such that the temperature change per unit time of the reference component is below a predetermined limit, the temperature of the reference component is initially lower until a minimum reached wi rd and then gets higher. The temperature change per unit time of the reference component is in this case at values greater than or equal to 5K / min.
Die Erfindung geht von der Erkenntnis aus, dass die dickwandigen Bauteile einer Dampfturbinenanlage trotz der im Vergleich zur Temperatur des Dampfes hohen Ausgangstemperaturen mit dem Dampf beaufschlagt werden kann, dessen Temperatur unter der Ausgangstemperatur einzelner Bezugs-Bauteile liegt. Die Temperatur des Dampfes muss hierzu mit einem hinreichenden Transienten erhöht werden, so dass die mittlere integrale Temperatur der dickwandigen Bezugs-Bauteile nur eine vernachlässigbar geringe Abkühlung erfahren unter einem Transienten ist eine Änderung, insbesondere Temperaturänderung pro Zeiteinheit zu verstehen (°K/min). Wohingegen unter einem Gradienten eine Änderung, insbesondere Temperaturänderung pro Wegstrecke (°K/min) zu verstehen ist. Dadurch können auch Relativdehnungsprobleme ausgeschlossen werden. Die Erfindung geht somit von der Erkenntnis aus, dass eine sehr schnelle Startzeit der Dampfturbinenanlage möglich ist, wenn auch das Erfordernis eines Dampfes aus dem Dampferzeuger bzw. Kessels der etwa 50 Kelvin über der Ausgangstemperatur der Bezugs-Bauteile liegt, verzichtet wird und mit einem Dampf beaufschlagt wird, dessen Temperatur unter der Ausgangstemperatur der Bezugs-Bauteile liegt. Allerdings muss die Ausgangstemperatur des Dampfes nach Beaufschlagung der Bezugs-Bauteile mit einem hinreichenden und geeigneten Start-Gradienten gesteigert werden.The invention is based on the recognition that the thick-walled components of a steam turbine plant, in spite of the high compared to the temperature of the steam outlet temperatures can be acted upon with the steam whose temperature is below the starting temperature of individual reference components. For this purpose, the temperature of the steam must be increased with a sufficient transient, so that the average integral temperature of the thick-walled reference components undergoes only negligible cooling. A transient is a change, in particular temperature change per unit time (° K / min). Whereas a gradient is to be understood as a change, in particular a change in temperature per distance (° K / min). As a result, even relative expansion problems can be excluded. The invention is therefore based on the recognition that a very fast start time of the steam turbine plant possible is, although the requirement of a steam from the boiler or boiler of about 50 Kelvin is above the starting temperature of the reference components is omitted, and is acted upon by a vapor whose temperature is lower than the starting temperature of the reference components. However, the steam outlet temperature must be increased after applying the reference components with a sufficient and suitable starting gradient.
Ein zu niedriger Start-Gradient würde zu einer zu geringen Erhöhung der Temperatur des Dampfes führen und dadurch besteht die Gefahr, dass sich die dickwandigen Bauteile zu sehr abkühlen.Too low a start gradient would result in too little increase in the temperature of the steam and there is a risk that the thick-walled components will over-cool.
In einer vorteilhaften Ausgestaltung wird die Temperatur des Bezugs-Bauteils an einer Oberfläche dessen gemessen, die dem Dampf zugewandt ist. Naturgemäß kühlt ein Bezugs-Bauteil zunächst an der Oberfläche ab, und die weiter innen liegenden Bauteile kühlen vergleichsweise langsam ab. Dies führt zu einem Temperaturunterschied in der Dicke der Bezugs-Bauteile, die zu thermischen Spannungen führen können. Daher ist es von Vorteil, wenn die Temperatur des Bauteils direkt an der Oberfläche gemessen wird, die dem Dampf zugewandt ist.In an advantageous embodiment, the temperature of the reference component is measured at a surface of the, which faces the steam. Naturally, a reference component initially cools on the surface, and the components lying further in the interior cool comparatively slowly. This leads to a temperature difference in the thickness of the reference components, which can lead to thermal stresses. Therefore, it is advantageous if the temperature of the component is measured directly on the surface facing the steam.
In einer weiteren vorteilhaften Ausgestaltung wird das Verfahren dahingehend erweitert, dass eine weitere Temperatur an einer Stelle des Bezugs-Bauteils gemessen wird, die dem Dampf abgewandt ist, wobei die Ausgangstemperatur und der Start-Gradient derart gewählt werden, dass ein Temperaturunterschied zwischen der Temperatur an der Oberfläche und der weiteren Temperatur unter einem vorgegebenen Temperaturunterschiedsgrenzwert liegt.In a further advantageous embodiment, the method is extended to the effect that a further temperature is measured at a point of the reference component, which faces away from the steam, wherein the starting temperature and the starting gradient are selected such that a temperature difference between the temperature the surface and the further temperature is below a predetermined temperature difference limit.
Die Erfindung geht von der Erkenntnis aus, dass gerade ein hoher Temperaturunterschied zwischen der Temperatur der Oberfläche eines Bezugs-Bauteils und der Temperatur an einer benachbarten Stelle des Bezugs-Bauteils schädlich ist. Mit der Messung von zwei Temperaturen an einem Bezugs-Bauteil, wobei die eine Temperatur an der Oberfläche gemessen wird, die dem Dampf zugewandt ist und die andere Temperatur an einer Stelle gemessen wird, die dem Dampf abgewandt ist, besteht sofort die Möglichkeit, den aufkommenden Temperaturunterschied zu erfassen, um geeignete Maßnahmen zu treffen, d.h. ggf. den Start- Transienten des Dampfes anzupassen.The invention is based on the recognition that just a high temperature difference between the temperature of the surface of a reference component and the temperature at an adjacent location of the reference component is harmful. With the measurement of two temperatures on a reference component, wherein the one temperature is measured at the surface, which faces the steam and the other temperature is measured at a location which faces away from the steam, there is immediately the possibility to detect the emerging temperature difference, to take appropriate measures, ie, if necessary to adjust the start transients of the steam.
Idealerweise wird die weitere Temperatur an einer Oberfläche des Bezugs-Bauteils gemessen, die der vom Dampf beaufschlagten Oberfläche gegenüberliegt.Ideally, the further temperature is measured at a surface of the reference component opposite to the surface acted upon by the steam.
In einer weiteren vorteilhaften Weitergestaltung wird die weitere Temperatur im Wesentlichen in der Mitte des Bezugs-Bauteils gemessen. Da die dickwandigen Bezugs-Bauteile der Dampfturbinenanlage bei einer Temperaturerhöhung sich relativ träge verhalten, was bedeutet, dass die Temperaturerhöhung in der Wanddickenrichtung sehr langsam erfolgt, ist es von Vorteil, wenn die weitere Temperatur im wesentlichen in der Mitte des Bezugs-Bauteils gemessen wird. Dadurch ist eine sehr frühe Überwachung der Temperaturentwicklung der dickwandigen Bezugs-Bauteile möglich.In a further advantageous embodiment, the further temperature is measured substantially in the middle of the reference component. Since the thick-walled reference components of the steam turbine plant behave relatively sluggish with a temperature increase, which means that the temperature increase in the wall thickness direction is very slow, it is advantageous if the further temperature is measured substantially in the middle of the reference component. This allows very early monitoring of the temperature development of the thick-walled reference components.
In einer weiteren vorteilhaften Ausgestaltung wird der StartTransient derart gewählt, dass dessen Wert bei größer oder gleich 5K/min liegt. Der Wert kann konstant oder variabel sein. Dadurch ist es möglich, mit relativ einfachen verfahrenstechnischen Mitteln eine Dampfturbinenanlage zu starten.In a further advantageous embodiment of the StartTransient is chosen such that its value is greater than or equal to 5K / min. The value can be constant or variable. This makes it possible to start a steam turbine plant with relatively simple procedural means.
In einer weiteren vorteilhaften Weiterbildung der Erfindung wird die Temperatur des Dampfes nach Erreichen eines Übernahmegrenzwertes mit einem Führungs-Gradienten erhöht, wobei der Wert des Führungs-Gradienten niedriger ist als der Wert des Start-Gradienten. Die Erfindung geht hierbei von dem Gedanken aus, dass zunächst ein im Vergleich zur Ausgangstemperatur des Bezugs-Bauteils kühlerer Dampf das Bezugs-Bauteil beaufschlagt. Dies führt zu einer Abkühlung der dem Dampf zugewandten Oberfläche des Bezugs-Bauteils. Die Starttemperatur des Dampfes darf hierbei nicht zu niedrig gegenüber der Starttemperatur des Bezugs-Bauteils sein. Auch muss die Erhöhung der Temperatur des Dampfes mit einem geeigneten Transienten erfolgen. Eine zu langsame Erhöhung der Temperatur des Dampfes führt zu einer Schädigung der Bezugs-Bauteile. Das dickwandige Bezugs-Bauteil kühlt sich zunächst ab, bis die Temperatur des Bezugs-Bauteils ein Minimum erreicht. Nach Erreichen dieses Minimums erhöht sich die Temperatur des Bezugs-Bauteils. Die Temperatur des Dampfes wird anschließend mit dem Start- Transienten bis zu einem Übernahmegrenzwert erhöht. Nach Erreichen des Übernahmegrenzwertes wird die Temperatur des Dampfes mit einem Führungs- Transienten weiter erhöht, wobei der Wert des Führungs- Transienten niedriger ist als der Wert des Start-Transienten. Eine zu schnelle Erhöhung der Temperatur des Dampfes würde dazu führen, dass sich die dem Dampf zugewandten Oberfläche gegenüber der dem Dampf abgewandten Oberfläche des Bezugs-Bauteils zu schnell erwärmt und dadurch zu einem zu großen Temperaturunterschied zwischen der Oberfläche, die dem Dampf zugewandt ist und der Oberfläche, die dem Dampf abgewandt ist, führt. Dies führt zu unterwünschten Schädigungen des Bezugs-Bauteils. Durch die Wahl eines geeigneten Führungs- Transienten, der niedriger sein muss als der Start- Transienten, ist eine Entwicklung eines zu großen Temperaturunterschiedes zwischen der dem Dampf zugewandten Seite und der dem Dampf abgewandten Seite verhindert.In a further advantageous development of the invention, the temperature of the vapor is increased after reaching a transfer limit value with a guide gradient, wherein the value of the guide gradient is lower than the value of the start gradient. The invention is based on the idea that initially a cooler compared to the starting temperature of the reference component steam acts on the reference component. This leads to a cooling the steam facing surface of the reference component. The starting temperature of the steam must not be too low compared to the starting temperature of the reference component. Also, the increase in the temperature of the steam must be done with a suitable transient. Too slow an increase in the temperature of the steam leads to damage to the reference components. The thick-walled reference component initially cools until the temperature of the reference component reaches a minimum. After reaching this minimum, the temperature of the reference component increases. The temperature of the steam is then increased with the start transient up to an acceptance limit value. After reaching the acceptance limit, the temperature of the vapor is further increased with a pilot transient, the value of the pilot transient being lower than the value of the start transient. Too rapid an increase in the temperature of the steam would cause the surface facing the steam to heat too quickly with respect to the surface of the reference component facing away from the vapor, thereby causing too great a temperature difference between the surface facing the steam and the surface Surface, which faces away from the steam, leads. This leads to undesirable damage to the reference component. By choosing a suitable guiding transient, which must be lower than the starting transient, a development of too great a temperature difference between the side facing the steam and the side facing away from the vapor is prevented.
In einer weiteren vorteilhaften Weiterbildung erfolgt die Änderung der Temperatur des Dampfes durch externe Wassereinspritzung. Dadurch ist eine vergleichsweise einfache Möglichkeit gegeben, den Transienten der Temperaturerhöhung zu beeinflussen.In a further advantageous development, the change of the temperature of the steam is carried out by external water injection. This provides a comparatively simple way of influencing the transient of the temperature increase.
Vorteilhafterweise liegen die Ausgangstemperaturen der Bezugs-Bauteile zwischen 300° bis 450°C. Vorteilhafterweise liegt die Starttemperatur des Dampfes bis zu 150°C unter der Ausgangstemperatur. In einer vorteilhaften Weiterbildung liegt der Wert des Start- Transienten größer oder gleich 5 Kelvin pro Minute, insbesondere liegt er bei 13 Kelvin pro Minute. Nach einer weiteren vorteilhaften Weiterbildung liegt der Wert des Führungs- Transienten zwischen 0 und 15 Kelvin pro Minute, insbesondere liegt der Wert bei 1 Kelvin pro Minute. Die Erfinder haben erkannt, dass diese Werte im heutigen Dampfturbinenbau geeignet sind, um das weiter oben beschriebene Verfahren auszuführen.Advantageously, the outlet temperatures of the reference components are between 300 ° to 450 ° C. Advantageously, the starting temperature of the steam is up to 150 ° C below the Output temperature. In an advantageous development, the value of the start transient is greater than or equal to 5 Kelvin per minute, in particular it is 13 Kelvin per minute. According to a further advantageous development, the value of the guiding transient is between 0 and 15 Kelvin per minute, in particular the value is 1 Kelvin per minute. The inventors have recognized that these values are suitable in today's steam turbine construction to carry out the method described above.
Anhand der Beschreibung und der Figuren werden Ausführungsbeispiele der Erfindung beschrieben. Dabei haben mit denselben Bezugszeichen versehene Komponenten die gleiche Funktionsweise.With reference to the description and the figures, embodiments of the invention will be described. In this case, provided with the same reference numerals components have the same operation.
Es zeigen
Figur 1- eine schematische Darstellung einer Gas- und Dampfturbinenanlage,
Figur 2- eine grafische Darstellung der Temperaturerhöhungen,
Figur 3- eine zeitliche Entwicklung der Verfügbarkeitsrate der Dampfturbine.
- FIG. 1
- a schematic representation of a gas and steam turbine plant,
- FIG. 2
- a graphic representation of the temperature increases,
- FIG. 3
- a temporal evolution of the availability rate of the steam turbine.
Die in Figur 1 schematisch dargestellte kombinierte Gas- und Dampfturbinenanlage 1 umfasst eine Gasturbinenanlage 1a sowie eine Dampfturbinenanlage 1b. Die Gasturbinenanlage 1a ist mit einer Gasturbine 2, einem Verdichter 4 sowie wenigstens einer zwischen dem Verdichter 4 und der Gasturbine 2 geschalteten Brennkammer 6 ausgestattet. Mittels des Verdichters 4 wird Frischluft L angesaugt, verdichtet und über die Frischluftleitung 8 einem oder mehreren Brennern der Brennkammer 6 zugeführt. Die zugeführte Luft wird mit über eine Brennstoffleitung 10 zugeführtem flüssigen oder gasförmigen Brennstoff B gemischt und das Gemisch entzündet. Die dabei entstehenden Verbrennungsabgase bilden das Arbeitsmedium AM der Gasturbinenanlage 1a, welches der Gasturbine 2 zugeführt wird, wo es unter Entspannung Arbeit leistet und eine mit der Gasturbine 2 gekoppelte Welle 14 antreibt. Die Welle 14 ist außer mit der Gasturbine 2 auch mit dem Luftverdichter 4 sowie einem Generator 12 gekoppelt, um diesen anzutreiben. Das entspannte Arbeitsmedium AM wird über eine Abgasleitung 34 an einen Abhitzedampferzeuger 30 der Dampfturbinenanlage 1b abgeführt. Im Abhitzedampferzeuger 30 wird das von der Gasturbine 1a mit einer Temperatur von ca. 500° bis 600°C ausgegebene Arbeitsmedium zum Erzeugen und Überhitzen von Dampf verwendet.The combined gas and
Die Dampfturbinenanlage 1b umfasst neben dem Abhitzedampferzeuger 30, der insbesondere als Zwangsdurchlaufsystem ausgebildet sein kann, eine Dampfturbine 20 mit Turbinenstufen 20a, 20b, 20c und einen Kondensator 26. Der Abhitzedampferzeuger 30 und der Kondensator 26 bilden zusammen mit Kondensatleitungen bzw. Speisewasserleitungen 35, 40 sowie mit Dampfleitungen 48, 53, 64, 70, 80, 100 ein Dampfsystem, welches zusammen mit der Dampfturbine 20 einen Wasserdampfkreislauf bildet.The
Wasser aus einem Speisewasserbehälter 38 wird mittels einer Speisewasserpumpe 42 einem Hochdruck-Vorwärmer 44, auch Economizer genannte, zugeführt und von dort an einen ausgangsseitig mit dem Economizer 44 verbundenen, für einen Durchlaufbetrieb ausgelegten Verdampfer 46 weitergeleitet. Der Verdampfer 46 ist seinerseits ausgangsseitig über eine Dampfleitung 48, in die ein Wasserabscheider 50 geschaltet ist, an einen Überhitzer 52 angeschlossen. Über eine Dampfleitung 43 ist der Überhitzer 52 ausgangsseitig mit dem Dampfeingang 54 der Hochdruckstufe 20a der Dampfturbine 20 verbunden.Water from a
In der Hochdruckstufe 20a der Dampfturbine 20 treibt der vom Überhitzer 52 überhitzte Dampf die Dampfturbine an, bevor er über den Dampfausgang 56 der Hochdruckstufe 20a an einen Zwischenüberhitzer 58 weitergegeben wird.In the high-
Nach der Überhitzung im Zwischenüberhitzer 58 wird der Dampf über eine weitere Dampfleitung 81 an den Dampfeingang 60 der Mitteldruckstufe 20b der Dampfturbine 20 weitergeleitet, wo er die Turbine antreibt.After overheating in the
Der Dampfausgang 62 der Mitteldruckstufe 20b ist über eine Überströmleitung 64 mit dem Dampfeinlass 66 der Niederdruckstufe 20c der Dampfturbine 20 verbunden. Nach dem Durchströmen der Niederdruckstufe 20c und den damit verbundenen Antrieben der Turbine wird der abgekühlte und entspannte Dampf über den Dampfausgang 68 der Niederdruckstufe 20c an die Dampfleitung 70 ausgegeben, die ihn zum Kondensator 26 führt.The
Der Kondensator 26 wandelt den eingehenden Dampf in Kondensat um und gibt das Kondensat über die Kondensatleitung 35 mittels einer Kondensatpumpe 36 an den Speisewasserbehälter 38 weiter.The
Neben den bereits genannten Elementen des Wasser-Dampf-Kreislaufs umfasst dieser außerdem eine Bypassleitung 100, die so genannte Hochdruckumleitung, die von der Dampfleitung 53 abzweigt, bevor diese den Dampfeinlass 54 der Hochdruckstufe 20a erreicht. Die Hochdruckumleitung 100 umgeht die Hochdruckstufe 20a und mündet in die Zuleitung 80 zum Zwischenüberhitzer 58. Eine weitere Bypassleitung, die so genannte Mitteldruckumleitung 200, zweigt von der Dampfleitung 81, bevor diese in den Dampfeinlass 60 der Mitteldruckstufe 20b mündet. Die Mitteldruckumleitung 200 umgeht sowohl die Mittedruckstufe 20b als auch die Niederdruckstufe 20c und mündet in die zum Kondensator 26 führende Dampfleitung 70.In addition to the already mentioned elements of the water-steam cycle, this also includes a
In die Hochdruckumleitung 100 und die Mitteldruckumleitung 200 sind ein Absperrventil 102, 202 eingebaut, mit welchen sie sich absperren lassen. Ebenso befinden sich Absperrventile 104, 204 in der Dampfleitung 53 bzw. in der Dampfleitung 81, und zwar jeweils zwischen dem Abzweigpunkt der Bypassleitung 100 bzw. 200 und dem Dampfeinlass 54 der Hochdruckstufe 20a bzw. dem Dampfeinlass 60 der Mitteldruckstufe 20a.In the high-
Ein Absperrventil befindet sich in der Dampfleitung 53, und zwar zwischen dem Abzweigpunkt der Bypassleitung 100 und dem Dampfeinlass 54 der Hochdruckstufe 20a der Dampfturbine 20.A shut-off valve is located in the
Die Bypassleitung 100 und die Absperrventile 102, 104 dienen dazu, während des Anfahrens der Gas- und Dampfturbinenanlage 1 einen Teil des Dampfes zur Umgehung der Dampfturbine 2 umzuleiten.The
Zu Beginn des Verfahrens liegt die Dampfturbinenanlage 1b in einem abgekühlten Zustand vor und es soll ein Heiß- bzw. Warmstart durchgeführt werden. Unter einem Heißstart wird typischerweise ein Start nach einem Nachtstillstand von etwa 8 Stunden bezeichnet, wohingegen ein Start nach einem Wochenendstillstand von etwa 48 Stunden als Warmstart bezeichnet wird. Die dickwandigen Bauteile der Dampfturbine 1b weisen dabei noch hohe Ausgangstemperaturen von 300° bis ca. 500°C auf. Die dickwandigen Bauteile können auch als Bezugs-Bauteile bezeichnet werden. Dickwandige Bauteile sind hierbei z. B. Ventil- und Hochdruck-Gehäuse, Hochdruck- und Mitteldruck-Wellen. Es sind aber auch andere dickwandige Bauteile denkbar.At the beginning of the process, the
Zumindest hat zu einem Startzeitpunkt das Bezugs-Bauteil eine Ausgangstemperatur von größer als 250°C. In einem Verfahrensschritt wird die Temperatur des Dampfes und des Bezugs-Bauteils fortlaufend gemessen. Die Dampfturbinenanlage 1b wird ab einem Startzeitpunkt mit Dampf beaufschlagt.At least at a starting time, the reference component has a starting temperature greater than 250 ° C. In one process step, the temperature of the vapor and the reference component is continuously measured. The
Die Starttemperatur des Dampfes ist dabei niedriger als die Temperatur des Bezugs-Bauteils. Die Temperatur des Dampfes wird anschließend mit einem regelbaren Start- Transienten erhöht, wobei die Starttemperatur und der Starttransient derart gewählt werden, dass die Temperaturänderung pro Zeiteinheit des Bezugs-Bauteils unter einem vorgegebenen Grenzwert liegt, wobei die Temperatur des Bezugs-Bauteils zunächst niedriger wird, bis ein Minimum erreicht ist und anschließend höher wird.The starting temperature of the steam is lower than the temperature of the reference component. The temperature of the steam is then increased with a controllable start transient, wherein the starting temperature and the starting transient are selected such that the temperature change per Time unit of the reference component is below a predetermined limit, the temperature of the reference component is initially lower, until a minimum is reached and then higher.
In der Figur 2 ist der Temperaturverlauf des Dampfes 205 in Abhängigkeit der Zeit dargestellt. Ebenso ist der Temperaturverlauf an einer dem Dampf zugewandten Oberfläche 202 eines dickwandigen Bauteils dargestellt. Ebenso dargestellt wird in Figur 2 eine mittlere integrale Temperatur 204 des dickwandigen Bauteils.FIG. 2 shows the temperature profile of the
Unter der mittleren integralen Temperatur 204 ist zum Beispiel die Temperatur gemeint, die im Wesentlichen in der Mitte des Bezugs-Bauteils herrscht.By the mean
Nach dem Startzeitpunkt 200 wird die Temperatur des Dampfes 205 mit einem Start- Transienten, der wie in der in Figur 2 dargestellt, konstant ist, erhöht. Der konstante StartTransient führt zu einem linearen Verlauf der Temperatur bis zu einem Übernahmegrenzwert 201. Ab dem Übernahmegrenzwert 201 erfolgt die Erhöhung der Temperatur des Dampfes 205 mit einem Führungs- Transienten, der niedriger ist als der Wert des Start- Transienten. Die Ausgangstemperatur des dickwandigen Bezugs-Bauteiles weist einen Wert von größer 250°C auf und liegt in diesem Ausführungsbeispiel bei ca. 500°C. Durch die Beaufschlagung des dickwandigen Bauteils mit Dampf, dessen Temperatur niedriger ist als die Temperatur des dickwandigen Bauteiles, wird die Temperatur der Oberfläche des dickwandigen Bauteils zunächst niedriger, bis ein Minimalwert 202 erreicht wird. Nach diesem Minimum 202 wird die Temperatur des dickwandigen Bauteils höher und steigt vergleichsweise stark an bis zu dem Zeitpunkt 206, bei dem die Temperatur des Dampfes den Übernahmegrenzwert erreicht und anschließend mit dem Führungs- Transienten moderater erhöht wird. Die Temperatur des Dampfes kann hierzu durch Wassereinspritzung beeinflusst werden.After the
Die mittlere integrale Temperatur 204 des Bezugs-Bauteiles folgt prinzipiell ebenso dem Verlauf wie die mit 203 bezeichnete Kurve des dickwandigen Bauteils. Zunächst sinkt die Temperatur bis ein Minimalwert 204 erreicht wird. Anschließend steigt die Temperatur an.The mean
In der Figur 3 ist die Verfügbarkeit bzw. Leistung solch einer erfindungsgemäßen Gas- und Dampfturbinenanlage zu sehen. Die gepunktet dargestellten Kurven zeigen den Verlauf einer herkömmlichen, gemäß dem Stand der Technik vorhandenen Gas- und Dampfturbinenanlage. Die durchgezogenen Linien zeigen den Verlauf einer Gas- und Dampfturbinenanlage, die mit dem erfindungsgemäßen Verfahren gestartet wurde. Auf der X-Achse ist die Zeit aufgetragen und auf der Y-Achse die Verfügbarkeit bzw. die Leistung der Dampfturbinenanlage in Prozent. Die Kurven 300 und 301 zeigen den Verlauf für eine Gasturbinenanlage (CT = Combustion Turbine) und die Kurven 400 und 401 zeigen den Verlauf für eine Dampfturbinenanlage (ST = Steam Turbine). Zu erkennen ist, dass bei einer herkömmlichen Gas- und Dampfturbinenanlage eine Verfügbarkeit von 30% relativ früh, aber eine 100%ige Verfügbarkeit erst nach einer Zeit t1, die in dem ausgewählten Beispiel bei ca. 50 Minuten liegt, erreicht wird. Bei der erfindungsgemäßen Anlage liegt eine Verfügbarkeit von ca. 30% ebenfalls relativ früh vor, nämlich zu einem Zeitpunkt t2, der bei ca. 10 Minuten liegt. Eine 100%ige Verfügbarkeit liegt hier allerdings schon nach einem Zeitpunkt t3 vor, der bei dem ausgewählten Beispiel bei ca. 30 Minuten liegt.FIG. 3 shows the availability or performance of such a gas and steam turbine plant according to the invention. The dotted curves show the course of a conventional, existing according to the prior art gas and steam turbine plant. The solid lines show the course of a gas and steam turbine plant, which was started by the method according to the invention. The time is plotted on the X axis and the availability or the output of the steam turbine plant in percent on the Y axis. The
Claims (12)
wobei die Dampfturbinenanlage (1b) zumindest ein Bezugs-Bauteil aufweist, das zu einem Startzeitpunkt eine Ausgangstemperatur von größer als 250°C aufweist,
wobei die Temperatur des Dampfes und des Bezugs-Bauteils fortlaufend gemessen wird,
wobei das Bezugs-Bauteil der Dampfturbinenanlage (1b) ab dem Startzeitpunkt mit Dampf beaufschlagt wird,
dadurch gekennzeichnet, dass
die Starttemperatur des Dampfes niedriger ist als die Temperatur des Bezugs-Bauteils und
die Temperatur des Dampfes mit einem Start- Transienten erhöht wird und
die Starttemperatur und der Start- Transient derart gewählt werden, dass die Temperaturänderung pro Zeiteinheit des Bezugs-Bauteils unter einem vorgegebenen Grenzwert liegt,
wobei die Temperatur des Bezugs-Bauteils zunächst niedriger wird bis ein Minimum erreicht wird und anschließend höher wird.A method of starting a steam turbine plant (1b) comprising at least one steam turbine (20a, 20b, 20c) and at least one steam generating plant (30b, 30, 44, 46, 52, 50) for generating the steam turbine (20a, 20b, 20c) Has steam,
wherein the steam turbine plant (1b) has at least one reference component which has a starting temperature of greater than 250 ° C at a starting time,
wherein the temperature of the vapor and the reference component is continuously measured,
wherein the reference component of the steam turbine plant (1b) is subjected to steam from the start time,
characterized in that
the starting temperature of the steam is lower than the temperature of the reference component and
the temperature of the steam is increased with a start transient and
the start temperature and the start transient are selected such that the temperature change per unit time of the reference component is below a predetermined limit,
wherein the temperature of the reference component is initially lower until a minimum is reached and then becomes higher.
bei dem die Temperatur des Bezugs-Bauteils an dessen Oberfläche gemessen wird, die dem Dampf zugewandt ist.Method according to claim 1,
in which the temperature of the reference component is measured on its surface facing the steam.
bei dem eine weitere Temperatur an einer Stelle des Bezugs-Bauteil gemessen wird, die dem Dampf abgewandt ist,
wobei die Starttemperatur und der Start- Transient derart gewählt werden, dass ein Temperatur-Unterschied zwischen der Temperatur an der Oberfläche und der weiteren Temperatur unter einem vorgegebenen Temperaturunterschiedsgrenzwert liegt.Method according to claim 2,
in which a further temperature is measured at a location of the reference member facing away from the vapor,
wherein the start temperature and the start transient are selected such that a temperature difference between the temperature at the surface and the further temperature is below a predetermined temperature difference limit.
bei dem die weitere Temperatur an einer Oberfläche des Bezugs-Bauteils gemessen wird, die der vom Dampf beaufschlagten Oberfläche gegenüber liegt.Method according to claim 3,
in which the further temperature is measured on a surface of the reference component, which is opposite to the surface acted upon by the steam.
bei dem die weitere Temperatur im Wesentlichen in der Mitte der Dicke des Bezugs-Bauteils gemessen wird.Method according to claim 3,
in which the further temperature is measured substantially in the middle of the thickness of the reference component.
bei dem der Start- Transient konstant ist.Method according to one of the preceding claims,
where the start transient is constant.
bei dem die Temperatur des Dampfes nach Erreichen eines Übernahmegrenzwertes (201) mit einem Führungs- Transienten erhöht wird,
wobei der Wert des Führungs- Transienten niedriger ist als der Wert des Start- Transienten.Method according to one of the preceding claims,
in which the temperature of the steam is increased after reaching an acceptance limit value (201) with a guidance transient,
wherein the value of the leading transient is lower than the value of the start transient.
bei dem die Änderung der Temperatur des Dampfes durch externe Wassereinspritzung erfolgt.Method according to one of the preceding claims,
wherein the change in the temperature of the steam is effected by external water injection.
bei dem die Ausgangstemperaturen der Bauteile zwischen 300°C bis 400°C liegen.Method according to one of the preceding claims,
in which the starting temperatures of the components are between 300 ° C to 400 ° C.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05015350A EP1744020A1 (en) | 2005-07-14 | 2005-07-14 | Method for starting a steam turbine plant |
CN2006800256223A CN101305163B (en) | 2005-07-14 | 2006-06-13 | Method for starting a steam turbine installation |
ES06763662.1T ES2607357T3 (en) | 2005-07-14 | 2006-06-13 | Method for commissioning a steam turbine installation |
PL06763662T PL1957759T3 (en) | 2005-07-14 | 2006-06-13 | Method for starting a steam turbine plant |
BRPI0613011-9A BRPI0613011A2 (en) | 2005-07-14 | 2006-06-13 | Method for starting a steam turbine installation |
JP2008520822A JP4762310B2 (en) | 2005-07-14 | 2006-06-13 | How to start steam turbine equipment |
RU2008105549/06A RU2370653C1 (en) | 2005-07-14 | 2006-06-13 | Method to start steam turbine plant |
PCT/EP2006/063135 WO2007006617A2 (en) | 2005-07-14 | 2006-06-13 | Method for starting a steam turbine installation |
CA2615001A CA2615001C (en) | 2005-07-14 | 2006-06-13 | Method for starting a steam turbine installation |
EP06763662.1A EP1957759B1 (en) | 2005-07-14 | 2006-06-13 | Method for starting a steam turbine plant |
US11/988,605 US7805941B2 (en) | 2005-07-14 | 2006-06-13 | Method for starting a steam turbine installation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05015350A EP1744020A1 (en) | 2005-07-14 | 2005-07-14 | Method for starting a steam turbine plant |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1744020A1 true EP1744020A1 (en) | 2007-01-17 |
Family
ID=35311816
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05015350A Withdrawn EP1744020A1 (en) | 2005-07-14 | 2005-07-14 | Method for starting a steam turbine plant |
EP06763662.1A Active EP1957759B1 (en) | 2005-07-14 | 2006-06-13 | Method for starting a steam turbine plant |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06763662.1A Active EP1957759B1 (en) | 2005-07-14 | 2006-06-13 | Method for starting a steam turbine plant |
Country Status (10)
Country | Link |
---|---|
US (1) | US7805941B2 (en) |
EP (2) | EP1744020A1 (en) |
JP (1) | JP4762310B2 (en) |
CN (1) | CN101305163B (en) |
BR (1) | BRPI0613011A2 (en) |
CA (1) | CA2615001C (en) |
ES (1) | ES2607357T3 (en) |
PL (1) | PL1957759T3 (en) |
RU (1) | RU2370653C1 (en) |
WO (1) | WO2007006617A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20110498A1 (en) * | 2011-03-28 | 2012-09-29 | Stamicarbon | METHOD FOR THE START-UP OF A COMBINED CYCLE THERMAL PLANT FOR THE PRODUCTION OF ELECTRICAL ENERGY FROM A PLANT CONDITION STOPS TO A SYSTEM CONDITION IN RUNNING. |
DE102014211976A1 (en) * | 2014-06-23 | 2015-12-24 | Siemens Aktiengesellschaft | Method for starting up a steam turbine system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2013202965B2 (en) | 2013-03-15 | 2016-07-21 | Takeda Pharmaceutical Company Limited | Improved method for producing factor h from a plasma precipitation fraction |
AU2013203048A1 (en) | 2013-03-15 | 2014-10-02 | Baxalta GmbH | Isolation of factor h from fraction i paste |
JP6092723B2 (en) * | 2013-06-25 | 2017-03-08 | 三菱日立パワーシステムズ株式会社 | Start-up control device for steam turbine plant |
US20180282415A1 (en) | 2015-09-30 | 2018-10-04 | Merck Patent Gmbh | Combination of a PD-1 Axis Binding Antagonist and an ALK Inhibitor for Treating ALK-Negative Cancer |
US20190175731A1 (en) | 2016-05-20 | 2019-06-13 | Biohaven Pharmaceutical Holding Company Ltd. | Use of glutamate modulating agents with immunotherapies to treat cancer |
US10577962B2 (en) | 2016-09-07 | 2020-03-03 | General Electric Company | Turbomachine temperature control system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3532079A (en) * | 1967-09-11 | 1970-10-06 | Svenska Maskinverken Ab | Method for starting steam power plants |
US4208882A (en) * | 1977-12-15 | 1980-06-24 | General Electric Company | Start-up attemperator |
US4226086A (en) * | 1979-05-21 | 1980-10-07 | Westinghouse Electric Corp. | Automatic restart control for a power plant boiler |
JPS5847105A (en) * | 1981-09-11 | 1983-03-18 | Toshiba Corp | Starting equipment for combined plant |
US4589255A (en) * | 1984-10-25 | 1986-05-20 | Westinghouse Electric Corp. | Adaptive temperature control system for the supply of steam to a steam turbine |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3358450A (en) * | 1965-12-21 | 1967-12-19 | Combustion Eng | Method and apparatus for steam turbine startup |
US3524592A (en) * | 1968-02-27 | 1970-08-18 | Kaelle Regulatorer Ab | Device for introducing cooling water into a conduit for superheated steam |
JPS5532916A (en) * | 1978-08-25 | 1980-03-07 | Hitachi Ltd | Method of making temperature of steam turbine metal of combined plant constant and its device |
US4320625A (en) * | 1980-04-30 | 1982-03-23 | General Electric Company | Method and apparatus for thermal stress controlled loading of steam turbines |
US4455836A (en) * | 1981-09-25 | 1984-06-26 | Westinghouse Electric Corp. | Turbine high pressure bypass temperature control system and method |
US5046318A (en) * | 1990-03-05 | 1991-09-10 | Westinghouse Electric Corp. | Turbine power plant automatic control system |
US5018356A (en) * | 1990-10-10 | 1991-05-28 | Westinghouse Electric Corp. | Temperature control of a steam turbine steam to minimize thermal stresses |
JPH06341301A (en) * | 1993-05-31 | 1994-12-13 | Mitsubishi Heavy Ind Ltd | Method for controlling thermal stress of steam turbine |
US5433079A (en) * | 1994-03-08 | 1995-07-18 | General Electric Company | Automated steam turbine startup method and apparatus therefor |
JPH09177505A (en) * | 1995-12-22 | 1997-07-08 | Toshiba Corp | A method and apparatus for controlling warming and cooling steam of steam turbine |
EP1285150B1 (en) * | 2000-05-31 | 2006-07-12 | Siemens Aktiengesellschaft | Method and device for operating a steam turbine comprising several no-load or light-load phases |
-
2005
- 2005-07-14 EP EP05015350A patent/EP1744020A1/en not_active Withdrawn
-
2006
- 2006-06-13 US US11/988,605 patent/US7805941B2/en active Active
- 2006-06-13 BR BRPI0613011-9A patent/BRPI0613011A2/en not_active Application Discontinuation
- 2006-06-13 RU RU2008105549/06A patent/RU2370653C1/en active
- 2006-06-13 ES ES06763662.1T patent/ES2607357T3/en active Active
- 2006-06-13 CA CA2615001A patent/CA2615001C/en not_active Expired - Fee Related
- 2006-06-13 WO PCT/EP2006/063135 patent/WO2007006617A2/en active Application Filing
- 2006-06-13 PL PL06763662T patent/PL1957759T3/en unknown
- 2006-06-13 CN CN2006800256223A patent/CN101305163B/en active Active
- 2006-06-13 JP JP2008520822A patent/JP4762310B2/en active Active
- 2006-06-13 EP EP06763662.1A patent/EP1957759B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3532079A (en) * | 1967-09-11 | 1970-10-06 | Svenska Maskinverken Ab | Method for starting steam power plants |
US4208882A (en) * | 1977-12-15 | 1980-06-24 | General Electric Company | Start-up attemperator |
US4226086A (en) * | 1979-05-21 | 1980-10-07 | Westinghouse Electric Corp. | Automatic restart control for a power plant boiler |
JPS5847105A (en) * | 1981-09-11 | 1983-03-18 | Toshiba Corp | Starting equipment for combined plant |
US4589255A (en) * | 1984-10-25 | 1986-05-20 | Westinghouse Electric Corp. | Adaptive temperature control system for the supply of steam to a steam turbine |
Non-Patent Citations (2)
Title |
---|
DOLEZAL R: "ANFAHREN EINES AUF 550 DEG C ERHITZTEN DURCHLAUF-ABHITZEKESSELS OHNE ABGASBYPASS IM HEIZKRAFTWERK DER UNIVERSITAT STUTTGART", VGB KRAFTWERKSTECHNIK, VGB KRAFTWERKSTECHNIK GMBH. ESSEN, DE, vol. 69, no. 12, 1 December 1989 (1989-12-01), pages 1163 - 1166, XP000085719, ISSN: 0372-5715 * |
PATENT ABSTRACTS OF JAPAN vol. 007, no. 128 (M - 220) 3 June 1983 (1983-06-03) * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20110498A1 (en) * | 2011-03-28 | 2012-09-29 | Stamicarbon | METHOD FOR THE START-UP OF A COMBINED CYCLE THERMAL PLANT FOR THE PRODUCTION OF ELECTRICAL ENERGY FROM A PLANT CONDITION STOPS TO A SYSTEM CONDITION IN RUNNING. |
WO2012131575A1 (en) * | 2011-03-28 | 2012-10-04 | Stamicarbon B.V. | A method to start up a combined cycle thermal plant for energy production from an off-state to an operational state |
US9523289B2 (en) | 2011-03-28 | 2016-12-20 | Stamicarbon B.V. | Method to start up a combined cycle thermal plant for energy production from an off-state to an operational state |
DE102014211976A1 (en) * | 2014-06-23 | 2015-12-24 | Siemens Aktiengesellschaft | Method for starting up a steam turbine system |
WO2015197238A1 (en) * | 2014-06-23 | 2015-12-30 | Siemens Aktiengesellschaft | Method for starting a steam turbine system |
CN106460566A (en) * | 2014-06-23 | 2017-02-22 | 西门子公司 | Method for starting steam turbine system |
CN106460566B (en) * | 2014-06-23 | 2018-09-18 | 西门子公司 | Method for starting steam turbine system |
US10385733B2 (en) | 2014-06-23 | 2019-08-20 | Siemens Aktiengesellschaft | Method for starting a steam turbine system |
Also Published As
Publication number | Publication date |
---|---|
WO2007006617A3 (en) | 2008-06-26 |
CN101305163A (en) | 2008-11-12 |
EP1957759B1 (en) | 2016-09-14 |
US20090126365A1 (en) | 2009-05-21 |
WO2007006617A2 (en) | 2007-01-18 |
BRPI0613011A2 (en) | 2010-12-14 |
JP2009501292A (en) | 2009-01-15 |
ES2607357T3 (en) | 2017-03-30 |
US7805941B2 (en) | 2010-10-05 |
CA2615001C (en) | 2012-05-08 |
CA2615001A1 (en) | 2007-01-18 |
JP4762310B2 (en) | 2011-08-31 |
CN101305163B (en) | 2012-11-14 |
EP1957759A2 (en) | 2008-08-20 |
PL1957759T3 (en) | 2017-04-28 |
RU2370653C1 (en) | 2009-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1957759B1 (en) | Method for starting a steam turbine plant | |
DE69832740T2 (en) | Gas turbine plant | |
DE102008037410B4 (en) | Combined cycle and method using supercritical steam | |
DE60126721T2 (en) | Combined circulation system with gas turbine | |
DE69313607T2 (en) | Method for starting a cold steam turbine in a combined cycle power plant | |
EP1440223B1 (en) | Gas turbine group | |
DE60029510T2 (en) | Steam cooling system for the balance piston of a steam turbine and associated method | |
EP2603672B1 (en) | Waste heat steam generator | |
DE102008029941B4 (en) | Steam power plant and method for controlling the power of a steam power plant | |
EP1866521B1 (en) | Process for starting a gas and steam turbine plant | |
DE3782314T2 (en) | LOCKING STEAM SYSTEM FOR A STEAM TURBINE. | |
CH623888A5 (en) | ||
DE102009026053A1 (en) | Overload valve for a steam turbine and associated method | |
EP0928365B1 (en) | Steam turbine, steam turbine plant and method of cooling a steam turbine | |
DE112019002484B4 (en) | STEAM TURBINE PLANT AND COOLING METHODS FOR IT | |
DE19544226B4 (en) | Combined plant with multi-pressure boiler | |
CH702677B1 (en) | Combined cycle power plant with Kombikraftwerksanfahrsystem. | |
DE4446862C2 (en) | Method for cooling the coolant of a gas turbine and device for carrying out the method | |
EP2067933B1 (en) | Safety design for a steam turbine | |
EP1048823A2 (en) | Sealing steam supply | |
EP2556218B1 (en) | Method for quickly connecting a steam generator | |
EP3810907B1 (en) | Exhaust gas recirculation in gas and steam turbines plants | |
DE69117451T2 (en) | Power plant with a fluidized bed boiler | |
DE60126556T2 (en) | Steam cooling device for a gas turbine | |
EP3011144B1 (en) | Method and device for controlling the spraying of water into the flue gas duct of a gas and steam turbine installation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
AKX | Designation fees paid | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20070718 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |