EP1637622A1 - Verfahren zum Aufbringen einer Schutzschicht - Google Patents
Verfahren zum Aufbringen einer Schutzschicht Download PDFInfo
- Publication number
- EP1637622A1 EP1637622A1 EP05018871A EP05018871A EP1637622A1 EP 1637622 A1 EP1637622 A1 EP 1637622A1 EP 05018871 A EP05018871 A EP 05018871A EP 05018871 A EP05018871 A EP 05018871A EP 1637622 A1 EP1637622 A1 EP 1637622A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- diffusion
- diffusion layer
- content
- adhesive layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/60—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
- C23C28/3215—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/36—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
Definitions
- the invention relates to a method for applying a protective layer to a base metal having the features of the preamble of claim 1.
- thermal barrier coatings serve to lower the material temperature of cooled components. This can extend their service life, reduce cooling air or operate the machine with higher inlet temperatures.
- Thermal barrier coating systems always consist of a metal with the base material (base metal) by diffusion bonded metallic adhesive layer and an overlying ceramic layer with poor thermal conductivity, which is the actual barrier to heat flow and protects the base metal against high temperature corrosion and high temperature erosion.
- thermal barrier coating zirconia As a ceramic material for the thermal barrier coating zirconia has prevailed, which is partially stabilized with about 7 wt .-% yttria (International abbreviation: "YPSZ" Yttria Partially Stabilized Zirconia).
- the thermal barrier coatings are divided into two main classes according to the respective application method. In the layers sprayed thermally (usually with atmospheric plasma, APS), a porosity of between about 10 and 25% by volume is set depending on the desired layer thickness and stress distribution. The bond to the rough sprayed adhesive layer is made by mechanical clamping.
- Thermal barrier coatings deposited by physical vapor deposition processes by electron beam have a columnar (columnar), strain-tolerant structure, while maintaining certain deposition conditions.
- the layer is chemically bonded by the formation of an Al / Zr mixed oxide on a pure aluminum oxide layer (T G hermally rown O xide, TGO) which is subsequently formed from the adhesive layer during the application and operation.
- T G hermally rown O xide
- Adhesive layers are subject to the following complex requirements, namely low static and cyclic oxidation rates, the formation of a pure aluminum oxide layer as TGO (for layers produced by the EB-PVD process), sufficient resistance to high-temperature corrosion, low brittleness, Ductile transition temperature, high creep resistance, good adhesion, minimal long-term interdiffusion with the base material and economical application of the adhesive layer in reproducible quality.
- the properties of the coating layers can be further improved by adding special refractory elements such as rhenium and tantalum or by alitating.
- MCrAlY layers contain the intermetallic ⁇ -phase NiCoAl as an aluminum source. However, this phase also has a brittle effect, so that the practically realizable Al content in the MCrAlY layer is less than 12% by weight.
- the invention has for its object to provide a method by which the oxidation resistance of simple MCrAlY layers as adhesive layers by increasing the Al content of the MCrAlY layer to improve without embrittlement occurs.
- the structure of the aluminized MCrAlY layer consists of the inner, largely unchanged y / ⁇ mixed phase, a diffusion zone in which the A1 content increases to about 20% and an outer layer with a ⁇ -NiAl phase, which forms a fraction of has about 30% Al.
- This outer layer represents the weak point of the layer system with regard to brittleness and crack sensitivity. It is removed according to the invention by the abrasive treatment down to the diffusion zone, whereby an Al content of 18 to less than 30% is set in the surface of the remaining layer. Removal of the outer layer may be accomplished by blasting with conventional media such as corundum, silicon carbide, reduced metal wires, and similar materials.
- the oxidation resistance of this adhesive layer is improved.
- the embrittlement on the surface of the aluminized layer caused by the alitization is avoided by the abrasive aftertreatment, or at least minimized.
- the method according to the invention is applicable to all blades and, if appropriate, other turbine components subjected to hot gas, which are coated with thermal barrier coatings, in particular with thermal barrier coatings produced by the EB-PVD method.
- the gas turbine blade 10 according to FIG. 2 is hollow and has cooling channels 11 in the interior.
- the thermal barrier coating 2 consists of zirconium oxide, which is teilstablinstrument with about 7 wt .-%.
- the adhesive layer 3 consists of a special alloy based on MCrAlY.
- M stands for Ni or Co.
- the adhesive layer is applied after the physical vapor deposition process using electron beam (EB-PVD method) or preferably by the low pressure plasma spray method (LPPS method).
- Coating is accomplished by alitination, that is, a treatment in which a reactive Al-containing gas, which is typically an Al halide (AlX 2 ), causes inward diffusion of Al at higher temperature, associated with outward diffusion of Ni ,
- a reactive Al-containing gas which is typically an Al halide (AlX 2 )
- the outer make coat 4,2 is removed by blasting with hard particles, such as corundum, silicon carbide, metal wires or other known grinding or polishing down to the inner diffusion zone 4,1 of the diffusion layer 4.
- hard particles such as corundum, silicon carbide, metal wires or other known grinding or polishing down to the inner diffusion zone 4,1 of the diffusion layer 4.
- the abrasive treatment is driven so far that the surface of the remaining diffusion layer 4 has an Al content of more than 18% and less than 30%.
- the blasted diffusion layer 4 is preferably subjected to fine flattening after the abrasive treatment.
- the thermal barrier coating 2 is applied by a physical vapor deposition process by means of electron beams.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Coating By Spraying Or Casting (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
- Die Erfindung betrifft ein Verfahren zum Aufbringen einer Schutzschicht auf ein Basismetall mit den Merkmalen des Oberbegriffes des Anspruches 1.
- Die Oberflächen im Heißgasbereich werden in modernen Gasturbinen fast vollständig mit Beschichtungen versehen. Die dabei eingesetzten Wärmedämmschichten dienen zur Absenkung der Materialtemperatur gekühlter Bauteile. Hierdurch kann deren Lebensdauer verlängert, Kühlluft reduziert oder die Maschine mit höheren Eintrittstemperaturen betrieben werden. Wärmedämmschichtsysteme bestehen immer aus einer mit dem Grundwerkstoff (Basismetall) durch Diffusion verbundenen metallischen Haftschicht und einer darüber liegenden Keramikschicht mit schlechter Wärmeleitfähigkeit, die die eigentliche Barriere gegen den Wärmestrom darstellt und das Basismetall gegen Hochtemperaturkorrosion und Hochtemperaturerosion schützt.
- Als Keramikwerkstoff für die Wärmedämmschicht hat sich Zirkoniumoxid durchgesetzt, das mit etwa 7 Gew.-% Yttriumoxid teilstabilisiert ist (Internationale Kurzbezeichnung: "YPSZ" von Yttria Partially Stabilised Zirconia). Die Wärmedämmschichten werden nach dem jeweiligen Aufbringungsverfahren in zwei wesentliche Klassen eingeteilt. Bei den thermisch (meist mit atmosphärischem Plasma, APS) gespritzten Schichten wird abhängig von der gewünschten Schichtdicke und Spannungsverteilung eine Porosität zwischen etwa 10 und 25 Vol.-% eingestellt. Die Bindung zur rau gespritzten Haftschicht erfolgt durch mechanische Verklammerung.
- Wärmedämmschichten, die durch physikalische Dampfabscheideprozesse mittels Elektronenstrahl (EB-PVD-Verfahren) aufgedampft sind, weisen bei Einhaltung bestimmter Abscheidebedingungen eine säulenförmige (kolumnare), dehnungstolerante Struktur auf. Bei diesem Verfahren ist die Schicht chemisch durch Bildung eines Al/Zr-Mischoxides auf einer reinen Aluminiumoxidschicht(Thermally Grown Oxide, TGO) gebunden, die von der Haftschicht während der Aufbringung und anschließend im Betrieb gebildet wird. Dieses Verfahren stellt besondere Anforderungen an das Oxidwachstum auf der Haftschicht. Als Haftschichten können prinzipiell sowohl Diffusions- als auch Auflageschichten zum Einsatz kommen.
- An die Haftschichten werden die folgenden komplexen Anforderungen gestellt, nämlich geringe statische und zyklische Oxidationsraten, die Bildung einer möglichst reinen Aluminiumoxidschicht als TGO (bei nach dem EB-PVD-Verfahren hergestellten Schichten), eine hinreichende Beständigkeit gegen Hochtemperaturkorrosion, eine niedrige Spröd-/, Duktil-Übergangstemperatur, eine hohe Kriechfestigkeit, eine gute Haftung, eine minimale Langzeit-Interdiffusion mit dem Grundwerkstoff und ein wirtschaftliches Aufbringen der Haftschicht in reproduzierbarer Qualität.
- Für die besonderen Anforderungen in stationären Gasturbinen bieten metallische Auflageschichten aus einer Sonderlegierung auf MCrAlY-Basis (M = Ni, Co) die besten Möglichkeiten zur Erfüllung der chemischen und mechanischen Voraussetzungen. Die Eigenschaften der Auflageschichten können durch Zulegieren spezieller Refraktärelemente wie Rhenium und Tantal oder durch Alitieren weiter verbessert werden. MCrAlY-Schichten enthalten in einer NiCoCr ("y")-Matrix die intermetallische β-Phase NiCoAl als Aluminium-Vorrat. Diese Phase hat allerdings auch einen versprödenden Einfluss, so dass der praktisch realisierbare Al-Gehalt in der MCrAlY-Schicht bei weniger als 12 Gew.-% liegt. Zur weiteren Steigerung der Oxidationsbeständigkeit ist es bekannt (WO 96/34129), die MCrAlY-Schichten mit einer Al-Diffusionsschicht zu überziehen, um deren Al-Gehalt zu erhöhen. Wegen der Versprödungsgefahr beschränkte man dieses Verfahren allerdings bisher weitgehend auf aluminiumarme Ausgangsschichten.
- Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, mit dessen Hilfe die Oxidationsbeständigkeit einfacher MCrAlY-Schichten als Haftschichten durch eine Erhöhung des Al-Gehaltes der MCrAlY-Schicht zu verbessern, ohne dass eine Versprödung eintritt.
- Die Aufgabe wird bei einem gattungsgemäßen Verfahren erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.
- Die Struktur der alitierten MCrAlY-Schicht besteht aus der inneren, weitgehend unveränderten y/β-Mischphase, einer Diffusionszone, in der der A1-Gehalt auf etwa 20 % ansteigt und einer äußeren Schicht mit einer β-NiAl-Phase, die einen Anteil von etwa 30 % Al aufweist. Diese äußere Schicht stellt die Schwachstelle des Schichtsystems hinsichtlich Sprödigkeit und Rissempfindlichkeit dar. Sie wird erfindungsgemäß durch die Abrasivbehandlung bis herab zur Diffusionszone entfernt, wodurch in der Oberfläche der verbleibenden Schicht ein Al-Gehalt von 18 bis unter 30 % eingestellt wird. Das Entfernen der äußeren Schicht kann durch Strahlen mit üblichen Medien wie Korund, Siliziumkarbid, verkleinerten Metalldrähten und ähnliche Materialien erfolgen.
- Durch die Erhöhungdes Al-Gehaltes in der einfachen MCrAlY-Schicht aufgrund der Alitierung wird die Oxidationsbeständigkeit dieser als Haftschicht dienenden Schicht verbessert. Die durch die Alitierung hervorgerufene Versprödung an der Oberfläche der alitierten Schicht wird durch die abrasive Nachbehandlung vermieden, zumindest aber minimiert werden.
- Die Standzeit der insbesondere mittels Elektronenstrahl aufgedampften Wärmedämmschichten wird durch den höheren Aluminiumgehalt der alitierten Schicht erheblich verlängert. Bei vorzeitigem Versagen der Wärmedämmschicht, z. B. durch Fremdkörpereinschlag oder Erosion ist ein längerer "Notbetrieb" möglich. Andererseits wird durch das Entfernen der besonders spröden ß-NiAl-Phase das Risiko einer Risseinleitung minimiert.
- Die Alitierung der Haftschicht und der inneren Kühlkanäle des Bauteils kann simultan durchgeführt werden, so dass nur geringe Mehrkosten für das Abstrahlen entstehen.
- Das erfindungsgemäße Verfahren ist auf alle Schaufeln und gegebenenfalls andere heißgasbeaufschlagte Turbinenbauteile anwendbar, die mit Wärmedämmschichten, insbesondere mit nach dem EB-PVD-Verfahren hergestellten Wärmedämmschichten beschichtet werden.
- Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird nachfolgend näher erläutert. Es zeigen:
- Fig. 1
- schematisch und in nicht maßstabsgerechter Darstellung den Schnitt durch ein mit einer Beschichtung versehenes Basismetall und
- Fig. 2
- den Längsschnitt durch eine Gasturbinenschaufel.
- Die Gasturbinenschaufel 10 gemäß Fig. 2 ist hohl ausgebildet und weist im Inneren Kühlkanäle 11 auf.
Eine Basismetallschicht 1, die der Grundwerkstoff für die Schaufel 10 der Gasturbine oder auch für ein anderes mit Heißgas in Berührung kommendes Bauteil einer Gasturbine sein kann, ist zum Schutz gegen Hochtemperaturkorrosion und Hochtemperaturerosion mit einer keramischen Wärmedämmschicht 2 versehen. Die Wärmedämmschicht 2 besteht aus Zirkonoxid, das mit etwa 7 Gew.-% teilstablisiert ist. - Zur Verbesserung der Haftung der Wärmedämmschicht 2 auf dem Grundwerkwerkstoff der Basismetallschicht 1 wird zunächst auf den Grundwerkstoff eine als Haftschicht 3 dienende Auflageschicht aufgebracht. Die Haftschicht 3 besteht aus einer Sonderlegierung auf MCrAlY-Basis. Der Buchstabe M steht hier für Ni oder Co. Das Aufbringen der Haftschicht erfolgt nach dem physikalischen Dampfabscheideprozess unter Verwendung von Elektronenstrahlen (EB-PVD-Verfahren), oder vorzugsweise durch das Niederdruckplasmaspritz-Verfahren (LPPS-Verfahren).
- Zur Erhöhung des Al-Gehaltes in der Haftschicht 3 wird diese mit einer Al-Diffusionsschicht 4 überzogen. Das Überziehen erfolgt durch Alitierung, das heißt durch eine Behandlung, bei der ein reaktives Al-haltiges Gas, das in der Regel ein Al-Halogenid (A1X2) ist, bei höherer Temperatur eine Einwärtsdiffusion von Al, verbunden mit einer Auswärtsdiffusion von Ni bewirkt.
- Gleichzeitig kann durch eine entsprechende Führung des reaktiven Al-haltigen Gases (AlX2) eine Innenbeschichtung der Kühlkanäle 11 der Gasturbinenschaufel 10 vorgenommen werden.
- Durch das Alitieren entsteht auf der weitgehend unveränderten Haftschicht 3 innerhalb der Diffusionsschicht 4 eine innere Diffusionszone 4,1 und darüber eine äußere Aufbauschicht 4,2 aus einer spröden β-NiAl-Phase.
- Die äußere Aufbauschicht 4,2 wird durch Strahlen mit harten Partikeln, wie Korund, Siliziumkarbid, Metalldrähten oder anderen bekannten Schleif- oder Poliermitteln bis herab auf die innere Diffusionszone 4,1 der Diffusionsschicht 4 entfernt.
- Die abrasive Behandlung wird soweit getrieben, dass die Oberfläche der verbliebenen Diffusionsschicht 4 einen Al-Gehalt von über 18% und unter 30% aufweist.
- Die gestrahlte Diffusionsschicht 4 wird nach der abrasiven Behandlung vorzugsweise einer Feinglättung unterworfen.
- Im Anschluss an die oben geschilderten Verfahrensschritte wird die Wärmedämmschicht 2 durch einen physikalischen Dampfabscheideprozess mittels Elektronenstrahlen aufgebracht.
Claims (4)
- Verfahren zum Aufbringen einer gegen Hochtemperaturkorrosion und Hochtemperaturerosion beständigen Schutzschicht auf eine Basismetallschicht (1), wobei auf die Basismetallschicht (1) eine Haftschicht (3) auf MCrAlY-Basis aufgebracht wird, die Haftschicht (3) durch Alitieren mit einer Al-Diffusionschicht (4) überzogen wird, auf die Diffusionschicht (4) eine keramische Wärmedämmschicht (2) aus Zirkonoxid, das durch Yttriumoxid teilstabilisiert ist, aufgebracht wird, dadurch gekennzeichnet, dass die Diffusionsschicht (4) einer Abrasivbehandlung unterworfen wird, so dass durch die Abrasivbehandlung die äußere Aufbauschicht (4,2) der durch Alitierung erzeugten Diffusionsschicht (4) entfernt wird.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch das Alitieren eine Diffusionsschicht (4) mit der eigentlichen Diffusionszone (4,1) mit einem Al-Gehalt von etwa 20 % und eine äußere Aufbauschicht (4,2) mit einem Al-Gehalt von etwa 30% erzeugt wird und dass durch die Abrasivbehandlung die äußere Aufbauschicht (4,2) der Diffusionsschicht(4), die oberhalb der eigentlichen Diffusionszone (4,1) liegt, soweit entfernt wird, dass der Gehalt an A1 in der Oberfläche der verbliebenen Diffusionsschicht (4) mindestens 18% und maximal 30% beträgt.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die abrasiv behandelte Diffusionsschicht (4) einer Feinglättung unterworfen wird.
- Verfahren nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass das Alitieren der Haftschicht (3) in einem Verfahrensschritt simultan mit einer Innenbeschichtung der Kühlkanäle eines hohlen Bauteils vorgenommen wird.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004045049A DE102004045049A1 (de) | 2004-09-15 | 2004-09-15 | Verfahren zum Aufbringen einer Schutzschicht |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1637622A1 true EP1637622A1 (de) | 2006-03-22 |
Family
ID=35431301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05018871A Ceased EP1637622A1 (de) | 2004-09-15 | 2005-08-31 | Verfahren zum Aufbringen einer Schutzschicht |
Country Status (5)
Country | Link |
---|---|
US (1) | US7736704B2 (de) |
EP (1) | EP1637622A1 (de) |
JP (1) | JP2006083469A (de) |
CA (1) | CA2517298C (de) |
DE (1) | DE102004045049A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007054265A2 (de) * | 2005-11-08 | 2007-05-18 | Man Turbo Ag | Wärmedämmende schutzschicht für ein bauteil innerhalb des heissgasbereiches einer gasturbine |
WO2007101465A1 (de) * | 2005-12-14 | 2007-09-13 | Man Turbo Ag | Verfahren zum beschichten einer schaufel und schaufel einer gasturbine |
EP1840238A2 (de) | 2006-03-27 | 2007-10-03 | Mitsubishi Heavy Industries, Ltd. | Oxidationsbeständige Beschichtung und Herstellungsverfahren dafür, Wärmesperrbeschichtung, wärmebeständiges Element und Gasturbine |
CN102352680A (zh) * | 2011-11-04 | 2012-02-15 | 北京恒源景升生态科技有限责任公司 | 一种围护、保温一体墙板 |
DE102011103731A1 (de) | 2011-05-31 | 2012-12-06 | Man Diesel & Turbo Se | Verfahren zum Aufbringen einer Schutzschicht, mit einer Schutzschicht beschichtetes Bauteil und Gasturbine mit einem solchen Bauteil |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2921937B1 (fr) * | 2007-10-03 | 2009-12-04 | Snecma | Procede d'aluminisation en phase vapeur d'une piece metallique de turbomachine |
JP5435395B2 (ja) * | 2008-02-06 | 2014-03-05 | 日本電気硝子株式会社 | ガラス物品の製造方法 |
DE102009022059A1 (de) * | 2009-05-20 | 2010-11-25 | Schott Solar Ag | Strahlungsselektive Absorberbeschichtung und Absorberrohr mit strahlungsselektiver Absorberbeschichtung |
US9175568B2 (en) | 2010-06-22 | 2015-11-03 | Honeywell International Inc. | Methods for manufacturing turbine components |
US9085980B2 (en) | 2011-03-04 | 2015-07-21 | Honeywell International Inc. | Methods for repairing turbine components |
US8807955B2 (en) * | 2011-06-30 | 2014-08-19 | United Technologies Corporation | Abrasive airfoil tip |
US8506836B2 (en) * | 2011-09-16 | 2013-08-13 | Honeywell International Inc. | Methods for manufacturing components from articles formed by additive-manufacturing processes |
US8956700B2 (en) | 2011-10-19 | 2015-02-17 | General Electric Company | Method for adhering a coating to a substrate structure |
US9266170B2 (en) | 2012-01-27 | 2016-02-23 | Honeywell International Inc. | Multi-material turbine components |
US9120151B2 (en) | 2012-08-01 | 2015-09-01 | Honeywell International Inc. | Methods for manufacturing titanium aluminide components from articles formed by consolidation processes |
US9527262B2 (en) * | 2012-09-28 | 2016-12-27 | General Electric Company | Layered arrangement, hot-gas path component, and process of producing a layered arrangement |
RU2528695C1 (ru) * | 2013-06-11 | 2014-09-20 | Общество с ограниченной ответственностью "Новые углеволоконные материалы" | Бестраншейный способ нанесения изоляции на внутреннюю поверхность трубопровода |
US9587302B2 (en) * | 2014-01-14 | 2017-03-07 | Praxair S.T. Technology, Inc. | Methods of applying chromium diffusion coatings onto selective regions of a component |
US9243511B2 (en) | 2014-02-25 | 2016-01-26 | Siemens Aktiengesellschaft | Turbine abradable layer with zig zag groove pattern |
US9151175B2 (en) | 2014-02-25 | 2015-10-06 | Siemens Aktiengesellschaft | Turbine abradable layer with progressive wear zone multi level ridge arrays |
US8939706B1 (en) | 2014-02-25 | 2015-01-27 | Siemens Energy, Inc. | Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface |
RU2662003C2 (ru) | 2014-02-25 | 2018-07-23 | Сименс Акциенгезелльшафт | Компонент газовой турбины, газотурбинный двигатель, способ изготовления компонента газотурбинного двигателя |
WO2016133582A1 (en) | 2015-02-18 | 2016-08-25 | Siemens Aktiengesellschaft | Turbine shroud with abradable layer having dimpled forward zone |
WO2016133982A1 (en) | 2015-02-18 | 2016-08-25 | Siemens Aktiengesellschaft | Forming cooling passages in thermal barrier coated, combustion turbine superalloy components |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321310A (en) * | 1980-01-07 | 1982-03-23 | United Technologies Corporation | Columnar grain ceramic thermal barrier coatings on polished substrates |
US4897315A (en) * | 1985-10-15 | 1990-01-30 | United Technologies Corporation | Yttrium enriched aluminide coating for superalloys |
US4916022A (en) * | 1988-11-03 | 1990-04-10 | Allied-Signal Inc. | Titania doped ceramic thermal barrier coatings |
EP0532255A1 (de) * | 1991-09-13 | 1993-03-17 | General Electric Company | Hochtemperatur-Schutzschicht |
JPH0578860A (ja) * | 1991-09-20 | 1993-03-30 | Hitachi Ltd | 合金被覆ガスタービン翼及びその製造方法 |
WO1996034129A1 (en) | 1995-04-25 | 1996-10-31 | Siemens Aktiengesellschaft | Superalloy component with a protective coating system |
WO1996034130A1 (en) | 1995-04-27 | 1996-10-31 | Siemens Aktiengesellschaft | Metal component with a high-temperature protection coating system and a method of coating the component |
JPH09157866A (ja) * | 1995-11-30 | 1997-06-17 | Mitsubishi Heavy Ind Ltd | 耐食・耐酸化コーティング膜 |
DE19609690A1 (de) * | 1996-03-13 | 1997-10-09 | Karlsruhe Forschzent | Turbinenschaufel |
US6129991A (en) * | 1994-10-28 | 2000-10-10 | Howmet Research Corporation | Aluminide/MCrAlY coating system for superalloys |
EP1260612A1 (de) * | 2001-05-25 | 2002-11-27 | ALSTOM (Switzerland) Ltd | MCrAlY-Haftschicht bzw. Überzug |
EP1378587A1 (de) * | 2002-06-27 | 2004-01-07 | General Electric Company | Hochtemperatur-Gegenstände und zugehöriges Herstellungsverfahren |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0266150A (ja) * | 1988-08-31 | 1990-03-06 | Mitsubishi Heavy Ind Ltd | 遮熱コーティング方法 |
GB9116332D0 (en) * | 1991-07-29 | 1991-09-11 | Diffusion Alloys Ltd | Refurbishing of corroded superalloy or heat resistant steel parts and parts so refurbished |
GB2269383A (en) | 1992-08-04 | 1994-02-09 | Secr Defence | Ferrocene compounds for liquid crystals |
DE4226272C1 (de) | 1992-08-08 | 1994-02-10 | Mtu Muenchen Gmbh | Verfahren zur Behandlung von MCrAlZ-Schichten und mit dem Verfahren hergestellte Bauteile |
WO1997002947A1 (en) * | 1995-07-13 | 1997-01-30 | Advanced Materials Technologies, Inc. | Method for bonding thermal barrier coatings to superalloy substrates |
FR2745590B1 (fr) * | 1996-02-29 | 1998-05-15 | Snecma | Revetement de barriere thermique a sous-couche amelioree et pieces revetues par une telle barriere thermique |
US6149389A (en) | 1996-03-13 | 2000-11-21 | Forschungszentrum Karlsruhe Gmbh | Protective coating for turbine blades |
US5728227A (en) * | 1996-06-17 | 1998-03-17 | General Electric Company | Method for removing a diffusion coating from a nickel base alloy |
US6022632A (en) * | 1996-10-18 | 2000-02-08 | United Technologies | Low activity localized aluminide coating |
US6544346B1 (en) * | 1997-07-01 | 2003-04-08 | General Electric Company | Method for repairing a thermal barrier coating |
US6273678B1 (en) * | 1999-08-11 | 2001-08-14 | General Electric Company | Modified diffusion aluminide coating for internal surfaces of gas turbine components |
US6472018B1 (en) * | 2000-02-23 | 2002-10-29 | Howmet Research Corporation | Thermal barrier coating method |
US6607611B1 (en) * | 2000-03-29 | 2003-08-19 | General Electric Company | Post-deposition oxidation of a nickel-base superalloy protected by a thermal barrier coating |
US6482469B1 (en) * | 2000-04-11 | 2002-11-19 | General Electric Company | Method of forming an improved aluminide bond coat for a thermal barrier coating system |
US6706325B2 (en) * | 2000-04-11 | 2004-03-16 | General Electric Company | Article protected by a thermal barrier coating system and its fabrication |
US6340500B1 (en) * | 2000-05-11 | 2002-01-22 | General Electric Company | Thermal barrier coating system with improved aluminide bond coat and method therefor |
US20030039764A1 (en) * | 2000-12-22 | 2003-02-27 | Burns Steven M. | Enhanced surface preparation process for application of ceramic coatings |
US6881452B2 (en) * | 2001-07-06 | 2005-04-19 | General Electric Company | Method for improving the TBC life of a single phase platinum aluminide bond coat by preoxidation heat treatment |
US7094450B2 (en) * | 2003-04-30 | 2006-08-22 | General Electric Company | Method for applying or repairing thermal barrier coatings |
US20050036892A1 (en) * | 2003-08-15 | 2005-02-17 | Richard Bajan | Method for applying metallurgical coatings to gas turbine components |
-
2004
- 2004-09-15 DE DE102004045049A patent/DE102004045049A1/de not_active Ceased
-
2005
- 2005-08-29 CA CA2517298A patent/CA2517298C/en not_active Expired - Fee Related
- 2005-08-31 EP EP05018871A patent/EP1637622A1/de not_active Ceased
- 2005-09-12 JP JP2005264451A patent/JP2006083469A/ja active Pending
- 2005-09-13 US US11/225,660 patent/US7736704B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4321310A (en) * | 1980-01-07 | 1982-03-23 | United Technologies Corporation | Columnar grain ceramic thermal barrier coatings on polished substrates |
US4897315A (en) * | 1985-10-15 | 1990-01-30 | United Technologies Corporation | Yttrium enriched aluminide coating for superalloys |
US4916022A (en) * | 1988-11-03 | 1990-04-10 | Allied-Signal Inc. | Titania doped ceramic thermal barrier coatings |
EP0532255A1 (de) * | 1991-09-13 | 1993-03-17 | General Electric Company | Hochtemperatur-Schutzschicht |
JPH0578860A (ja) * | 1991-09-20 | 1993-03-30 | Hitachi Ltd | 合金被覆ガスタービン翼及びその製造方法 |
US6129991A (en) * | 1994-10-28 | 2000-10-10 | Howmet Research Corporation | Aluminide/MCrAlY coating system for superalloys |
WO1996034129A1 (en) | 1995-04-25 | 1996-10-31 | Siemens Aktiengesellschaft | Superalloy component with a protective coating system |
WO1996034130A1 (en) | 1995-04-27 | 1996-10-31 | Siemens Aktiengesellschaft | Metal component with a high-temperature protection coating system and a method of coating the component |
JPH09157866A (ja) * | 1995-11-30 | 1997-06-17 | Mitsubishi Heavy Ind Ltd | 耐食・耐酸化コーティング膜 |
DE19609690A1 (de) * | 1996-03-13 | 1997-10-09 | Karlsruhe Forschzent | Turbinenschaufel |
EP1260612A1 (de) * | 2001-05-25 | 2002-11-27 | ALSTOM (Switzerland) Ltd | MCrAlY-Haftschicht bzw. Überzug |
EP1378587A1 (de) * | 2002-06-27 | 2004-01-07 | General Electric Company | Hochtemperatur-Gegenstände und zugehöriges Herstellungsverfahren |
Non-Patent Citations (3)
Title |
---|
ASHOK, K,R AND STEINBRECH R.W: "Crack Propogation Studies of Thermal Barrier Coatings Under Bending", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 19, 1999, England, pages 2097 - 2109, XP002357805 * |
PATENT ABSTRACTS OF JAPAN vol. 017, no. 409 (C - 1091) 30 July 1993 (1993-07-30) * |
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 10 31 October 1997 (1997-10-31) * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007054265A2 (de) * | 2005-11-08 | 2007-05-18 | Man Turbo Ag | Wärmedämmende schutzschicht für ein bauteil innerhalb des heissgasbereiches einer gasturbine |
WO2007054265A3 (de) * | 2005-11-08 | 2007-11-01 | Man Turbo Ag | Wärmedämmende schutzschicht für ein bauteil innerhalb des heissgasbereiches einer gasturbine |
WO2007101465A1 (de) * | 2005-12-14 | 2007-09-13 | Man Turbo Ag | Verfahren zum beschichten einer schaufel und schaufel einer gasturbine |
US9109279B2 (en) | 2005-12-14 | 2015-08-18 | Man Diesel & Turbo Se | Method for coating a blade and blade of a gas turbine |
EP1840238A2 (de) | 2006-03-27 | 2007-10-03 | Mitsubishi Heavy Industries, Ltd. | Oxidationsbeständige Beschichtung und Herstellungsverfahren dafür, Wärmesperrbeschichtung, wärmebeständiges Element und Gasturbine |
EP1840238A3 (de) * | 2006-03-27 | 2008-06-25 | Mitsubishi Heavy Industries, Ltd. | Oxidationsbeständige Beschichtung und Herstellungsverfahren dafür, Wärmesperrbeschichtung, wärmebeständiges Element und Gasturbine |
DE102011103731A1 (de) | 2011-05-31 | 2012-12-06 | Man Diesel & Turbo Se | Verfahren zum Aufbringen einer Schutzschicht, mit einer Schutzschicht beschichtetes Bauteil und Gasturbine mit einem solchen Bauteil |
WO2012163991A1 (de) | 2011-05-31 | 2012-12-06 | Man Diesel & Turbo Se | Verfahren zum aufbringen einer schutzschicht, mit einer schutzschicht beschichtetes bauteil und gasturbine mit einem solchen bauteil |
CN102352680A (zh) * | 2011-11-04 | 2012-02-15 | 北京恒源景升生态科技有限责任公司 | 一种围护、保温一体墙板 |
Also Published As
Publication number | Publication date |
---|---|
CA2517298C (en) | 2010-06-29 |
US7736704B2 (en) | 2010-06-15 |
JP2006083469A (ja) | 2006-03-30 |
CA2517298A1 (en) | 2006-03-15 |
US20060177582A1 (en) | 2006-08-10 |
DE102004045049A1 (de) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1637622A1 (de) | Verfahren zum Aufbringen einer Schutzschicht | |
EP1945834B1 (de) | Wärmedämmende schutzschicht für ein bauteil innerhalb des heissgasbereiches einer gasturbine | |
EP1969156B1 (de) | Verfahren zum beschichten einer schaufel und schaufel einer gasturbine | |
DE60302396T2 (de) | Verfharen zur Herstellung von Wärmedämmschicht mit Nitridpartikeln | |
DE102009010110B4 (de) | Erosionsschutz-Beschichtungssystem für Gasturbinenbauteile | |
EP0786017B1 (de) | Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung | |
EP1902160B1 (de) | Keramische wärmedämmschicht | |
DE69925590T2 (de) | Mehrschichtige haftbeschichtung für wärmedämmschicht und verfahren dazu | |
EP2468925A2 (de) | Verfahren zur Herstellung eines Wärmedämmschichtaufbaus | |
EP1123455A1 (de) | Erzeugnis mit wärmedämmschicht sowie verfahren zur herstellung einer wärmedämmschicht | |
CH704833A1 (de) | Komponente für eine Turbomaschine und ein Verfahren zum Herstellen einer derartigen Komponente. | |
EP3426815B1 (de) | Haftvermittlerschicht zur anbindung einer hochtemperaturschutzschicht auf einem substrat, sowie verfahren zur herstellung derselben | |
EP1754801B1 (de) | Bauteil mit einer Beschichtung | |
EP1260602B1 (de) | Verfahren zum Erzeugen eines wärmedämmenden Schichtsystems auf einem metallischen Substrat | |
WO2012163991A1 (de) | Verfahren zum aufbringen einer schutzschicht, mit einer schutzschicht beschichtetes bauteil und gasturbine mit einem solchen bauteil | |
DE10200803A1 (de) | Herstellung eines keramischen Werkstoffes für eine Wärmedämmschicht sowie eine den Werkstoff enthaltene Wärmedämmschicht | |
WO2022073697A1 (de) | Verfahren zur herstellung einer beschichtung sowie beschichtung | |
DE102014222686A1 (de) | Doppellagige Wärmedämmschicht durch unterschiedliche Beschichtungsverfahren | |
DE19536312C1 (de) | Verfahren zur Herstellung eines mehrlagig beschichteten Bauteils mit Bohrungen | |
EP1510592B1 (de) | Verfahren zur Beschichtung eines Bauteils und Bauteil | |
DE10336989B4 (de) | Verfahren zur Herstellung von Heissgas-Korrosionsschutzschichten | |
DE69835208T2 (de) | Haftbeschichtung für wärmedämmendes Beschichtungssystem | |
DE102005038374A1 (de) | Verfahren zur Herstellung einer Schutzschicht für ein Bauteil | |
WO2005033351A2 (de) | Schutz von metallischen oberflächen gegen thermisch beeinflusste faltenbildung (rumpling), insbesondere bei gasturbinen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20060309 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20060508 |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20100729 |