EP1637576B1 - Hydroconversion of a heavy feedstock using a dispersed catalyst - Google Patents
Hydroconversion of a heavy feedstock using a dispersed catalyst Download PDFInfo
- Publication number
- EP1637576B1 EP1637576B1 EP05291928.9A EP05291928A EP1637576B1 EP 1637576 B1 EP1637576 B1 EP 1637576B1 EP 05291928 A EP05291928 A EP 05291928A EP 1637576 B1 EP1637576 B1 EP 1637576B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- liquid
- reaction zone
- reactor
- catalytic
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003054 catalyst Substances 0.000 title claims description 51
- 239000007788 liquid Substances 0.000 claims description 110
- 238000006243 chemical reaction Methods 0.000 claims description 109
- 230000003197 catalytic effect Effects 0.000 claims description 92
- 239000002243 precursor Substances 0.000 claims description 82
- 238000000034 method Methods 0.000 claims description 57
- 230000008569 process Effects 0.000 claims description 48
- 239000007789 gas Substances 0.000 claims description 46
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims description 24
- 239000001257 hydrogen Substances 0.000 claims description 24
- 238000002347 injection Methods 0.000 claims description 22
- 239000007924 injection Substances 0.000 claims description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 21
- 239000012084 conversion product Substances 0.000 claims description 21
- 238000000926 separation method Methods 0.000 claims description 17
- 238000009835 boiling Methods 0.000 claims description 16
- 239000002002 slurry Substances 0.000 claims description 15
- 229930195733 hydrocarbon Natural products 0.000 claims description 14
- 150000002430 hydrocarbons Chemical class 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 10
- 230000005587 bubbling Effects 0.000 claims description 9
- 229920005989 resin Polymers 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims description 8
- 239000012263 liquid product Substances 0.000 claims description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 125000003118 aryl group Chemical group 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 3
- 150000003839 salts Chemical class 0.000 claims description 3
- 239000007790 solid phase Substances 0.000 claims description 3
- 150000002902 organometallic compounds Chemical group 0.000 claims description 2
- 239000005864 Sulphur Substances 0.000 claims 1
- 238000004064 recycling Methods 0.000 description 30
- 239000012071 phase Substances 0.000 description 27
- 238000011144 upstream manufacturing Methods 0.000 description 19
- 238000004821 distillation Methods 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 238000006731 degradation reaction Methods 0.000 description 11
- 230000015556 catabolic process Effects 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 10
- 239000002184 metal Substances 0.000 description 10
- 230000004913 activation Effects 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 239000003208 petroleum Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 230000003750 conditioning effect Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000009849 deactivation Effects 0.000 description 4
- 230000002349 favourable effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000000571 coke Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 239000007792 gaseous phase Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 150000002736 metal compounds Chemical class 0.000 description 3
- 229910052976 metal sulfide Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- -1 diesel Substances 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000005194 fractionation Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 125000002524 organometallic group Chemical group 0.000 description 2
- DHRLEVQXOMLTIM-UHFFFAOYSA-N phosphoric acid;trioxomolybdenum Chemical compound O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.O=[Mo](=O)=O.OP(O)(O)=O DHRLEVQXOMLTIM-UHFFFAOYSA-N 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005987 sulfurization reaction Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QGAVSDVURUSLQK-UHFFFAOYSA-N ammonium heptamolybdate Chemical compound N.N.N.N.N.N.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.[Mo].[Mo].[Mo].[Mo].[Mo].[Mo].[Mo] QGAVSDVURUSLQK-UHFFFAOYSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000004517 catalytic hydrocracking Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000012444 downstream purification process Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- UIEKYBOPAVTZKW-UHFFFAOYSA-L naphthalene-2-carboxylate;nickel(2+) Chemical compound [Ni+2].C1=CC=CC2=CC(C(=O)[O-])=CC=C21.C1=CC=CC2=CC(C(=O)[O-])=CC=C21 UIEKYBOPAVTZKW-UHFFFAOYSA-L 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000004227 thermal cracking Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/02—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
Definitions
- the present invention relates to a process for hydroconversion of a heavy petroleum feedstock in which it undergoes cracking and / or purification reactions in the presence of hydrogen.
- the invention is therefore particularly applicable to hydrocracking and hydrotreatment processes such as the hydrodesulphurization, hydrodenitrogenation, hydrodemetallization or hydrodearomatization processes of various petroleum fractions.
- the feedstocks treated by this type of process are heavy feedstocks such as distillates or residues resulting from the distillation of oil under vacuum.
- the treated fillers may also be coals or cokes introduced into suspension in liquid petroleum fractions.
- the process is particularly suitable for the treatment of petroleum fractions such as atmospheric residues obtained by atmospheric distillation at the bottom of the column or a fraction of these residues, or the residues resulting from distillation under vacuum (bottom of column). These cuts are generally characterized by a boiling point greater than 340 ° C for at least 90% by weight of the cut.
- the process is particularly applicable to heavy loads having a boiling point greater than 540 ° C for at least 80% by weight of the feedstock.
- said invention makes it possible to inject a dispersed phase containing a catalytic precursor promoting hydroconversion and to proceed with its activation by virtue of rapid contact under the conditions appropriate for its activation without thermally degrading it to form an active catalytic phase in the reactor. and then hydroconverting the heavy products in one or more reaction zones in the presence of hydrogen.
- the reaction zone of the process therefore operates in a bubbling bed (presence of a catalyst as defined below) or in slurry (in the presence of a circulating catalytic phase).
- the present invention finds its application in the conversion of a heavy hydrocarbon feed introduced essentially liquid into a reaction zone, said conversion being carried out by contacting with a gaseous phase, comprising hydrogen (hydroconversion) and with a catalytic phase and / or a catalyst, under conditions favorable to hydroconversion, that is to say at a total pressure of 10 to 500 bar, preferably 20 to 300 bar, with a hydrogen partial pressure ranging from 10 to 500 bar, preferably from 20 to 300 bar, with a temperature of 350 to 500 ° C, the contact taking place for a certain time necessary for the conversion of the residue, ranging from 5 minutes to 20 hours, and preferably between 1 and 10 hours. hr.
- the ebullated bed process used for the hydroconversion of heavy hydrocarbon fractions or coal is a well-known method which generally involves contacting, in a co-current flow, a hydrocarbon feedstock. liquid phase and a gaseous phase in a reactor containing a hydroconversion catalyst.
- the reaction zone preferably comprises at least one reactor equipped with at least one catalyst removal means located near the bottom of the reactor and at least one additional catalyst means near the top of said reactor. This makes it possible to continuously add and remove the catalyst and maintain the activity thereof if deactivation phenomena are observed.
- Said reaction zone comprises most often at least one circuit for recycling the liquid phase, located inside or outside the reaction zone, said recycling being intended, according to a technique known to those skilled in the art , to maintain a sufficient level of expansion of the bed to ensure the proper functioning of the reaction zone in three-phase (gas / solid / liquid). Thanks to this recycling, the catalyst is maintained in the fluidized state.
- the patent US Re25,770 describes for example such a method.
- a mixture of liquid hydrocarbons and hydrogen is injected through a catalyst bed in such a way that the bed is expanded.
- the level of catalyst is controlled by recycling the liquid, said catalyst level remaining below that of the liquid.
- the gas and the hydrogenated liquid pass through an interface defining an area containing most of the solid particles of the catalyst bed and are found in a zone substantially free of said particles.
- said fluids are then divided into two fractions: a fraction containing most of the liquid is recycled to the boiling pump and another part is withdrawn from the reactor with the gas.
- the bubbling bed process employs a supported catalyst containing metals whose catalytic action is in the form of sulfide, the size of which is such that the catalyst remains in the reactor overall.
- the liquid velocity in the reactor makes it possible to fluidize this catalyst but does not make it possible to drive it outside the reaction zone with the liquid effluents. Continuous addition and removal of catalyst is possible and makes it possible to compensate for deactivation of the catalyst.
- the patent US2003 / 0021738 shows a new implementation bubbling bed further to separate in the reactor effluent gas from liquid effluents.
- This new implementation is interesting because it makes it possible to evacuate the liquid effluents separately from the gaseous effluents, while ensuring a liquid recycling to the reactor. separation taking place at the temperature and pressure conditions of the reactor. It is an advanced implementation of slurry and ebullated bed technologies adapted to the hydroconversion of residues, making it possible to limit the number of high pressure equipment in the reaction zone while maintaining easy control of important operating parameters (liquid level and level). catalyst in the reactor).
- the patent US 3,231,488 shows that it is also possible to obtain hydrorefining heavy loads in the presence of a soluble catalyst.
- the inventors claim that metals injected in an organometallic form (the assembly forming a catalytic precursor) can form in the presence of other substances (such as asphaltenes colloids), in the presence of hydrogen and or of H2S a finely dispersed catalytic phase for hydrorefining the residue after injection into the feedstock.
- This catalytic agent then passes through the reaction zone without being separated from the liquid in the reactor.
- the size of the particles of the catalytic phase formed in this type of process remains small enough that it is difficult to fluidize these particles in the reaction zone without driving them with the liquid.
- a catalytic precursor in a heavy hydrocarbon feedstock was injected into an upstream zone of the reactor and then this precursor was activated to obtain a finely dispersed catalytic phase which was then injected into the reactor and which will flow with liquid products.
- This implementation in slurry could be advantageous compared to the implementation in bubbling bed under certain conditions.
- the fine dispersion of the catalytic phase in slurry mode can make it possible to promote the hydrogenation and the conversion of very large hydrocarbon structures, such as resins and asphaltenes, the ultimate conversion of which is made difficult on the catalysts supported by the more limited accessibility of active sites inside the pores.
- a slurry process can be very advantageous because the metals, known to promote the deactivation of the catalyst, are discharged continuously with the finely dispersed catalyst and no longer accumulate on the supported catalyst. (This would then require the implementation of very important additions and catalyst withdrawals). It is clear that this implementation is particularly interesting if the deactivation is important.
- the coal is liquefied and after liquid-gas separation and deasphalting, the catalyst slurry is recycled. Before being sent to the reactor, the coal particles are mixed, in a mixing zone upstream of the reactor, with an asphaltenic solvent and optionally with recycled slurry, the precursor being able to be added again.
- the prior art proposes the control of the conditions of mixing and exposure to temperature. However, this lengthens the catalyst preparation time and induces additional investments.
- the invention relates to a process for hydroconversion in a reaction zone of sulfur-containing liquid heavy hydrocarbon feedstocks, in the presence of hydrogen and a catalytic solid phase as described by claim 1.
- the invention therefore consists in injecting the catalytic precursor into a part of the liquid products of the reaction containing dissolved hydrogen sulphide, under conditions as close as possible to the temperature and pressure conditions at the outlet of the reactor.
- the reaction is in fact generally exothermic and the highest temperature is generally encountered at the outlet of the reactor.
- the liquid products of the reaction contain a substantial portion of dissolved hydrogen sulfide from the hydrodesulfurization of the charge molecules which occurs during the hydroconversion reactions.
- the liquid products of the reaction also contain unconverted fractions of the feedstock in non-negligible amounts, such as asphaltenes, which will form the desired catalytic phase with the metal sulphide.
- the temperature must indeed remain as high as possible close to the temperature of the reactor to promote the sulphurization of the catalytic precursor. If, on the other hand, the temperature is much higher than in the reactor, a drop in the concentration of sulfur in the liquid resulting from the desorption of sulfur-containing molecules such as dissolved H2S will be observed also limiting the sulphidation of the catalytic precursor. .
- the pressure must also remain close to the outlet pressure of the reactor; an excessive pressure drop would have an effect similar to an increase in temperature; an increase in pressure would, on the other hand, have no detrimental effect on the conditioning of the precursor.
- the temperature Tmel greater than 350 ° C, and preferably between 380 and 500 ° C.
- the temperature Tmel is between 380 and 500 ° C.
- the invention thus relates more precisely to the injection of a catalytic precursor in the presence of products of the hydroconversion reaction, in a line for recycling the liquid internal to the reaction zone where the presence of hydrogen sulphide is found. , a high temperature favorable to the rapid sulphurization of the precursor and asphaltenes.
- the pressure and temperature conditions encountered under these conditions are indeed very close to the reactor outlet conditions, the pressure drop and the hydrostatic pressure variation in the near recycling line, to the possible thermal losses.
- the present invention relates to a heavy charge hydroconversion process using a catalytic precursor injected, preferably regularly, into one or more reactors that can be provided with internal recycling means of the liquid fractions, under conditions allowing its activation. optimal without degradation.
- the catalytic precursor is injected into the recycled liquid portion to the reaction zone.
- the catalytic precursor is injected into the recycled liquid portion to the reaction zone.
- the catalytic precursor is injected before the liquid / external gas separation, the catalytic precursor is recycled to the reaction zone with the recycled conversion products.
- the catalytic precursors that can be envisaged in the context of the invention are typically organometallic compounds, salts or acids, linked to one or more metals of groups II, III, IV, V, VIB, VIIB or VIII, such as molybdenum compounds such as molybdenum naphthenate, molybdenum octoate, ammonium heptamolybdate or phosphomolybdic acid.
- the temperature in the injection line (before contacting the catalytic precursor with the liquid conversion products) will be less than 200 ° so as to avoid any thermal degradation of the precursor before its transformation. in the catalytic phase.
- the catalytic precursor will then be brought into contact with at least a portion of the effluents of the reaction, under conditions close to the conditions of the outlet of the reactor considered for injection, as described above.
- the precursor is preferably injected regularly and preferably continuously. It can also be injected intermittently according to the needs of the process.
- a supported catalyst may be disposed in the reaction zone and used as a bubbling bed; the process in the reaction zone can also be carried out in slurry form.
- reaction zones can be linked to one or more reactors in series or to several trains in parallel of series reactors, the reactors may comprise clean recycling means of the liquid, and separation means downstream of the reactors.
- the catalytic precursor will preferably be injected in contact with the reaction effluents of the first reactor.
- Said first reactor will preferably comprise internal recycling means of the liquid.
- the other reactors may also comprise said means.
- at least one external separation means is advantageously arranged in order to at least partially degas the effluent.
- reaction effluents from the zone (or zones) reaction (s) (and preferably the last zone when the process has several). At least part is recycled as well as part of the catalytic phase (contained in said fractions) upstream of the process, at the inlet of one of the reactors (generally in the first reactor) mixed with its liquid feed. The conversion of the residual fractions is favored and the amount of catalytic phase is increased in the reaction zone.
- a preheating zone of the charge and the gas containing hydrogen there is provided a preheating zone of the charge and the gas containing hydrogen.
- an aromatic section with high aromaticity such as, for example, a catalytic cracking HCO section
- HCO section can be injected into the process, for example with the feedstock. upstream of one of the zones (reactors) of the process or with the effluent before the distillation and for example with the fresh feed, or at the level of the external separator when it exists or distillation.
- the conversion products will, after the hydroconversion, usually be separated, preferably by distillation.
- the invention also relates to a device including at least one reactor with a reaction zone (6) containing a catalytic phase formed from a catalytic precursor, at least one pipe (4) for the introduction of a heavy liquid charge containing sulfur, asphaltenes and / or resins, and a hydrogen-conducting conduit (3), at least one liquid conversion product discharge line and at least one catalytic precursor injection line in at least one part of the liquid conversion products, saturated with H2S and containing asphaltenes and / or resins.
- this device comprises, connected to the discharge line of the liquid conversion products, a recycling line (8) towards the reaction zone of at least a portion of the liquid conversion products, saturated with H2S and containing asphaltenes. and / or resins, and a line for injecting the catalytic precursor into said recycling line (8).
- the recycled liquid has been at least partially degassed by passing through a liquid / gas separator external or internal to the reactor, to separate a liquid-gas or liquid fraction.
- the device is provided with a conduit external to the reactor for discharging the effluents (including the liquid conversion products) out of the reactor, of a pipe (14) for injecting the catalytic precursor into the reactor.
- the device is provided with a conduit external to the reactor for discharging the effluents (including the liquid conversion products) out of the reactor, a liquid / gas separation means (20) external to the reactor to separate a reactor. part of the liquid conversion products containing dissolved hydrogen sulphide, asphaltenes and / or resins, said part being at least partially recycled to the reaction zone via a pipe (8) and the device being provided with a pipe (10). or 11) for injecting the catalytic precursor into the recycle line (8).
- the device is provided with an internal liquid / gas separator (20) for separating a portion of the liquid conversion products containing dissolved hydrogen sulphide, asphaltenes and / or resins, said portion being removed and at least partly recycled to the reaction zone via a pipe (8), and the device being provided with a pipe (10 or 11) for injecting the catalytic precursor into the recycling pipe (8).
- the device may comprise at least two successive reactors each having a reaction zone (6) containing a catalytic phase formed from a catalytic precursor, with a first reactor as described above, provided with a recycling line of effluent from the first reactor to said first reactor, the separated non-recycled liquid being sent to the next reaction zone or discharged.
- the device comprises at least 2 successive reactors each having a reaction zone (6) containing a catalytic phase formed from a catalytic precursor, with a first reactor as described above, said device comprising for each reactor a liquid recycle line after at least partial degassing in a liquid / gas separator, the separated non-recycled liquid being sent to the next reaction zone or discharged.
- the device in its generality, advantageously comprises at least one distillation column located after the last reaction zone, for separating the heavy fractions from the reaction effluents which contain a part of the catalytic phase, and a pipe for recycling a part at least said upstream fractions with its liquid charge.
- the device is provided with at least one pipe for introducing an aromatic section into the feedstock upstream of at least one reactor and / or in the effluent before distillation.
- the hydroconversion of the residues is carried out in a reaction zone consisting of a single reactor.
- Load of heavy hydrocarbons advantageously consisting essentially of compounds derived from the bottom of the atmospheric distillation or of the vacuum distillation of a petroleum fraction, flows in a line (1) at a temperature permitting its flow, generally ranging between 50 ° and 180 ° depending on the nature of the charge and its boiling properties.
- the charge is then pressurized (generally between 10 and 500 bar, often around 100-300 bar), for example by means of pumps (15) and then preheated without thermal cracking, for example in an oven (16).
- the temperature at the outlet of the furnaces is voluntarily limited to 300-380 °, preferably 350 ° C., in order to avoid any cracking and any thermal degradation related to the temperature.
- preheated charge (2) is then mixed with a gas (3) containing hydrogen and preferably a very large proportion of preheated hydrogen, preferably in a separate oven (17), at a temperature of from 100 to 800 °, and preferably between 300 and 600 °.
- the assembly is then introduced into the reactor (18) in a mixing zone (5) located upstream of distribution means (19) (on the fig.1 reactor distribution chamber) allowing uniform distribution over the section of the reaction zone of the gas and the liquid.
- distribution means (19) on the fig.1 reactor distribution chamber
- Other methods of conditioning the charge are also possible: for example, the charge (1) and the gas (3) containing the hydrogen can be mixed before the charge preheating furnace (16). It is also possible to introduce, on the one hand, the liquid under pressure and preheated, and on the other hand the gas under pressure and preheated separately in the reaction zone. It is then simply necessary to increase the pressure of the charge and the temperature of each flow to meet the temperature and pressure conditions required to perform the reaction.
- the gas (3) mixed with the feedstock and containing hydrogen generally comes partly from the recycling of uncondensed gaseous fractions downstream of the reaction zone, optionally purified to remove the H 2 S formed during the reaction and to which will be added a adding hydrogen to compensate for the consumption of a part of this gas in the reaction zone.
- the reaction is carried out in the zone of the reactor (6) (reaction) located above distribution means (19) in which there is optionally a supported catalyst, in the form of balls or extrudates of equivalent diameter generally between 0.25 and 10 mm and density of dry grain generally between 1000 and 5000 kg / m3.
- the reaction zone is preferably a substantially elongated zone in which the superficial velocity of the liquid is sufficient to maintain the boiled supported catalysts (VSL> VMF) and to avoid settling and sedimentation of all the particles formed from the catalytic precursor in the reaction zone. reactor and avoid entrainment of all supported catalyst particles (VSL ⁇ UT).
- the gas and liquid effluents (7) are discharged to a degasser (20) external to the reaction chamber.
- the supported catalyst remains in the reaction chamber because the superficial velocity of the liquid is not sufficient to cause its entrainment.
- the function of the degasser (20) is to disengage most of the gas (at least large bubbles) from a portion of the liquid.
- the at least partially degassed liquid (8) is recycled to the inlet of the reactor (18) through a pump (21) to restore the necessary pressure.
- the gas and the non-degassed liquid are discharged through the pipe (9).
- the degassed liquid (8) and the non-degassed liquid (7) still contain a large portion of dissolved H2S, since the temperature and the pressure are substantially those of the reactor (18), the thermal losses and the pressure losses of the equipment close to the reactor. . It is therefore possible to add the catalytic precursor downstream of the reactor (18). Thanks to the internal recycling, this one will then be reintroduced in the reactor (18) the precursor will be immediately subjected to a high temperature in the presence of H2S which will allow the sulphuration of the precursor and the formation of fine particles in contact with asphaltenes not converted to the outcome of the passage in the reactor.
- the catalytic precursor is injected by a pump directly into contact with the products of the reaction
- the catalytic precursor may be injected into a liquid saturated with H2S and at least partially degassed (circulating in the recycle line (8)) upstream (reference 10) or (reference 11) downstream of the boiling pump (21) or upstream of the degasser (reference 14).
- the catalytic precursor will encounter high temperature H2S and unconverted asphaltenes. Injections (10) and (11), thanks to the absence of gas bubbles, however, allow better control of the mixture and therefore represent a preferred embodiment of the invention.
- the contact temperature between the precursor and the effluents is higher there than in (12) for example, because the effluent is not diluted with the fresh feed. This will result in more effective activation.
- figure 1 presents a preferred mode with recycling of a portion of the effluent from the reaction.
- a liquid gas separation is carried out under pressure in the flask (22).
- the liquid leaving the bottom of the separator (22) is generally sent after expansion to a fractionation to recover the converted petroleum fractions and residual fractions.
- the gas leaving the top of the separator (22) then passes into a separator train, from which incondensables including hydrogen can be extracted which are often recompressed and recycled in the process upstream of the reaction zone after treatment.
- the figure 2 represents another embodiment of the invention different from the first in that the outgassing at the outlet of the reactor is carried out internally in the reactor (18), the other arrangements described above being valid for this embodiment.
- the mixture of liquid hydrocarbons and hydrogen is injected through a distributor (19) into the reactor (18).
- a distributor (19) into the reactor (18).
- catalyst is present in the reactor, the liquid flow rate in the reactor resulting from the fresh feed rate (4) and the internal recycle (8) is controlled so that the catalyst bed is expanded.
- the level of catalyst is controlled by the recycling (8) of the liquid.
- the catalytic precursor can be injected into a liquid saturated with H2S and at least partially degassed (flowing in the discharge pipe (7) or recycling (8)) upstream (reference 10 or reference 11) downstream of the pump. boiling (21).
- the conditions Ps and Ts are those prevailing at the internal separator (20).
- a gas / liquid separation is carried out in the balloon (22), the provisions relating to this part which are described in fig.1 suitable.
- the figure 3 represents a third embodiment of the invention, differing from the second in that the separator (20) located in the reactor (18) is now a set of means for separating the liquid from the gas and not the liquid of a gas-liquid mixture.
- the reactor effluent (24) is now a substantially gaseous phase (possibly containing unseparated liquid traces).
- the non-recycled part of liquid products is now evacuated by a line (23) located upstream or downstream (preferred) means for pumping the liquid (21), but upstream of the distribution chamber (19).
- a fraction containing most of the liquid is recycled via line (8) to the boiling pump (8) (21) and another gaseous portion is withdrawn from the reactor via line (24).
- the recycled liquid is reintroduced into the reaction zone preferably via a separate pipe ( figure 3 ). Possible points are recognized for the injection of the catalytic precursor, as described from FIG. figure 1 .
- the catalytic precursor may be injected into a liquid saturated with H2S and at least partially degassed (flowing in the pipe (7) or recycling (8)) upstream (reference 10) or (reference 11) downstream of the pump. boiling (21).
- the figure 4 represents an embodiment of the invention in which several reactors are connected in series We recognize the provisions referenced (1) to (23) of the fig.2 for the first reactor equipped with an internal separator.
- the second reactor is fed (line 26) by the non-vaporized fractions from the first reactor containing the bulk of the unconverted fractions, separated by an external separator of the type (22) from that of the figure (2 ).
- the second reactor can be fed by the non-recycled liquid portion of the first reactor provided with an internal separator of the type (20) of the figure 3 this part having preferably been degassed at least partially.
- Preheated or unheated hydrogen is then generally introduced into the liquid feedstock of the second reactor (line 26). It is also possible to cool the liquid effluent from the first reactor before its introduction to the second reactor.
- Adding a second reactor allows for an identical reactor volume to improve the conversion. Indeed, the succession of two mixed conversion areas of small volume allows a better conversion than a single mixed zone of equivalent volume. Such a device also makes it possible to impose a temperature gradient between the two reactors, which can make it possible to better control the stability of the products formed, especially when the conversion of the residue is very high.
- the operation of the second reactor is generally substantially similar to the operation of the first reactor.
- a distributor (29) allows the good distribution of gas and liquid. The reaction is carried out in the reaction zone (30) located in the reactor above the distributor (19), in the presence or absence of catalyst.
- the effluents are separated in an internal separator (31) as in the fig.2 , allowing to recycle a portion of the liquid effluents from the reaction (evacuation-recycling line 32) and to evacuate the non-recycled gas-liquid effluents (line 34). Downstream of the reactor, a separator (35) separates the gas, discharged at the top (line 37) and liquid discharged at the bottom (line 36).
- the conversion products are recycled via a pump (33) to the reaction zone.
- the catalytic precursor is injected by a pump directly into contact with the reaction products of the first reactor, alone.
- its temperature is preferably maintained at 190 ° C.
- the catalytic precursor may be injected into a liquid saturated with H 2 S and at least partially degassed (circulating in the recycle line (8)) upstream (reference 10) or (reference 11) downstream of the boiling pump (21) .
- the catalytic precursor will encounter high temperature H2S and unconverted asphaltenes. Injections (10) and (11), thanks to the absence gas bubbles, however, allow better control of the mixture and therefore represent a preferred embodiment of the invention. It is also possible to inject a quantity of catalytic precursor in a manner similar to the second reactor. The injection can take place at the second reactor, alone or in combination with an injection at the first reactor. Therefore, the possible injection points are the same as before.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
La présente invention concerne un procédé d'hydroconversion d'une charge pétrolière lourde dans lequel celle-ci subit des réactions de craquage et / ou de purification en présence d'hydrogène.The present invention relates to a process for hydroconversion of a heavy petroleum feedstock in which it undergoes cracking and / or purification reactions in the presence of hydrogen.
L'invention s'applique donc particulièrement aux procédés d'hydrocraquage et d'hydrotraitement tels que les procédés d'hydrodésulfuration, d'hydrodéazotation, d'hydrodémétallisation ou d'hydrodéaromatisation de diverses coupes pétrolières.The invention is therefore particularly applicable to hydrocracking and hydrotreatment processes such as the hydrodesulphurization, hydrodenitrogenation, hydrodemetallization or hydrodearomatization processes of various petroleum fractions.
Les charges traitées par ce type de procédé sont des charges lourdes telles que des distillats ou des résidus issus de la distillation du pétrole sous vide. Les charges traitées peuvent également être des charbons ou cokes introduits en suspension dans des coupes pétrolières liquides. Plus généralement, le procédé est particulièrement adapté aux traitement de coupes pétrolières telles que les résidus atmosphériques obtenus par distillation atmosphérique en fond de colonne ou une fraction de ces résidus, ou les résidus issus de la distillation sous vide (fond de colonne). Ces coupes sont généralement caractérisées par une température d'ébullition supérieure à 340°C pour au moins 90% en poids de la coupe. Le procédé s'applique particulièrement aux charges lourdes ayant une température d'ébullition supérieure à 540°C pour au moins 80% pds de la charge. Elles présentent (charges fraîches) une viscosité inférieure à 40.000 cSt à 100°C, et de préférence inférieure à 20.000 cSt à 100°C. Elles doivent généralement être converties pour produire des produits finis tels que le gazole, l'essence et les GPL, de température d'ébullition plus faible. Ces coupes sont généralement également purifiées car elles contiennent des quantités de soufre, de métaux (notamment le nickel et le vanadium), d'azote, de carbone conradson et d'asphaltènes qui doivent diminuer pour permettre aux coupes plus légères produites par conversion d'être traitées dans des procédés de purification en aval ou pour satisfaire aux spécifications des produits finaux.The feedstocks treated by this type of process are heavy feedstocks such as distillates or residues resulting from the distillation of oil under vacuum. The treated fillers may also be coals or cokes introduced into suspension in liquid petroleum fractions. More generally, the process is particularly suitable for the treatment of petroleum fractions such as atmospheric residues obtained by atmospheric distillation at the bottom of the column or a fraction of these residues, or the residues resulting from distillation under vacuum (bottom of column). These cuts are generally characterized by a boiling point greater than 340 ° C for at least 90% by weight of the cut. The process is particularly applicable to heavy loads having a boiling point greater than 540 ° C for at least 80% by weight of the feedstock. They have (fresh feeds) a viscosity of less than 40,000 cSt at 100 ° C, and preferably less than 20,000 cSt at 100 ° C. They usually have to be converted to produce finished products such as diesel, gasoline and LPG, with lower boiling point. These cuts are generally also purified because they contain amounts of sulfur, metals (especially nickel and vanadium), nitrogen, conradson carbon and asphaltenes which must decrease to allow lighter cuts produced by conversion of be processed in downstream purification processes or to meet final product specifications.
Plus précisément ladite invention permet d'injecter une phase dispersée contenant un précurseur catalytique favorisant l'hydroconversion et de procéder à son activation grâce à un contact rapide dans les conditions appropriées à son activation sans le dégrader thermiquement pour former une phase catalytique active dans le réacteur et puis de procéder à l'hydroconversion des produits lourds dans une ou plusieurs zones réactionnelles en présence d'hydrogène.More specifically, said invention makes it possible to inject a dispersed phase containing a catalytic precursor promoting hydroconversion and to proceed with its activation by virtue of rapid contact under the conditions appropriate for its activation without thermally degrading it to form an active catalytic phase in the reactor. and then hydroconverting the heavy products in one or more reaction zones in the presence of hydrogen.
De préférence, la zone réactionnelle du procédé opère donc en lit bouillonnant (présence d'un catalyseur tel que défini ci-après) ou en slurry (en présence d'une phase catalytique circulante).Preferably, the reaction zone of the process therefore operates in a bubbling bed (presence of a catalyst as defined below) or in slurry (in the presence of a circulating catalytic phase).
La présente invention trouve son application dans la conversion d'une charge lourde d'hydrocarbures introduite essentiellement liquide dans une zone réactionnelle , ladite conversion s'effectuant par mise en contact avec une phase gazeuse, comprenant de l'hydrogène (hydroconversion) et avec une phase catalytique et/ou un catalyseur, dans des conditions favorables à l'hydroconversion, c'est à dire à une pression totale de 10 à 500 bars, préférentiellement de 20 à 300 bars, avec une pression partielle d'hydrogène variant de 10 à 500 bars, préférentiellement de 20 à 300 bars, avec une température de 350 à 500°C, le contact s'effectuant pendant un certain temps nécessaire à la conversion du résidu, allant de 5 mn à 20hr, et préférentiellement compris entre 1 et 10 hr . En fonction des applications, on pourra envisager de recycler avec la charge une partie des fractions lourdes des effluents ayant un point d'ébullition sensiblement égal ou supérieur à celui de la charge grâce à un fractionnement par distillation par exemple de l'effluent en aval de la zone réactionnelle ou du procédé (en aval de la dernière zone réactionnelle).The present invention finds its application in the conversion of a heavy hydrocarbon feed introduced essentially liquid into a reaction zone, said conversion being carried out by contacting with a gaseous phase, comprising hydrogen (hydroconversion) and with a catalytic phase and / or a catalyst, under conditions favorable to hydroconversion, that is to say at a total pressure of 10 to 500 bar, preferably 20 to 300 bar, with a hydrogen partial pressure ranging from 10 to 500 bar, preferably from 20 to 300 bar, with a temperature of 350 to 500 ° C, the contact taking place for a certain time necessary for the conversion of the residue, ranging from 5 minutes to 20 hours, and preferably between 1 and 10 hours. hr. Depending on the applications, it is possible to envisage recycling with the feedstock some of the heavy fractions of the effluents having a boiling point substantially equal to or greater than that of the feedstock by fractionation by distillation, for example of the effluent downstream of the feedstock. the reaction zone or the process zone (downstream of the last reaction zone).
Par la suite, le terme "phase catalytique" réfère au solide résultant de la transformation d'un précurseur catalytique injecté dans le procédé et pouvant être entraîné par le liquide, le terme catalyseur réfère lui à un solide présent dans la zone réactionnelle possédant des propriétés catalytiques, et dont les propriétés de taille et de densité sont telles qu'il n'est pas entraîné par le liquide hors du réacteur. De ce fait:
- la phase catalytique voyagera donc dans la (les) zone(s) réactionnelle(s) du procédé selon l'invention et sortira (au moins en partie) du réacteur, du procédé avec les effluents liquides.
- le catalyseur restera dans le réacteur
- the catalytic phase will therefore travel in the (the) zone (s) reaction (s) of the process according to the invention and will leave (at least in part) the reactor, the process with the liquid effluents.
- the catalyst will remain in the reactor
Le procédé en lit bouillonnant utilisé pour l'hydroconversion des fractions lourdes d'hydrocarbures ou du charbon est un procédé bien connu qui consiste généralement à mettre en contact, en écoulement à co-courant ascendant, une charge hydrocarbonée en phase liquide et une phase gazeuse dans un réacteur contenant un catalyseur d'hydroconversion. La zone réactionnelle comporte de préférence au moins un réacteur équipé d'au moins un moyen de soutirage du catalyseur situé à proximité du bas du réacteur et au moins un moyen d'appoint du catalyseur à proximité du sommet dudit réacteur. Cela permet d'ajouter et de soutirer en continu du catalyseur et de maintenir l'activité de celui-ci si des phénomènes de désactivation sont observés. Ladite zone réactionnelle comporte le plus souvent au moins un circuit permettant le recyclage de la phase liquide, situé à l'intérieur ou à l'extérieur de la zone de réaction, ledit recyclage étant destiné, selon une technique connue de l'homme du métier, à maintenir un niveau d'expansion du lit suffisant pour assurer le bon fonctionnement de la zone réactionnelle en régime triphasique (gaz/solide/liquide). Grâce à ce recyclage, le catalyseur est maintenu à l'état fluidisé.The ebullated bed process used for the hydroconversion of heavy hydrocarbon fractions or coal is a well-known method which generally involves contacting, in a co-current flow, a hydrocarbon feedstock. liquid phase and a gaseous phase in a reactor containing a hydroconversion catalyst. The reaction zone preferably comprises at least one reactor equipped with at least one catalyst removal means located near the bottom of the reactor and at least one additional catalyst means near the top of said reactor. This makes it possible to continuously add and remove the catalyst and maintain the activity thereof if deactivation phenomena are observed. Said reaction zone comprises most often at least one circuit for recycling the liquid phase, located inside or outside the reaction zone, said recycling being intended, according to a technique known to those skilled in the art , to maintain a sufficient level of expansion of the bed to ensure the proper functioning of the reaction zone in three-phase (gas / solid / liquid). Thanks to this recycling, the catalyst is maintained in the fluidized state.
Le brevet
Le procédé en lit bouillonnant met en oeuvre un catalyseur supporté, contenant des métaux dont l'action catalytique s'effectue sous la forme de sulfure, dont la taille est telle que le catalyseur reste globalement dans le réacteur. La vitesse liquide dans le réacteur permet de fluidiser ce catalyseur mais ne permet pas d'entraîner celui ci à l'extérieur de la zone réactionnelle avec les effluents liquides. L'ajout et le soutirage de catalyseur en continu est possible et permet de compenser la désactivation du catalyseur.The bubbling bed process employs a supported catalyst containing metals whose catalytic action is in the form of sulfide, the size of which is such that the catalyst remains in the reactor overall. The liquid velocity in the reactor makes it possible to fluidize this catalyst but does not make it possible to drive it outside the reaction zone with the liquid effluents. Continuous addition and removal of catalyst is possible and makes it possible to compensate for deactivation of the catalyst.
Le brevet
Le brevet
Dans le brevet
D'une manière générale, l'action de ces composés métalliques est maintenant assez bien connue: dans certaines conditions, préférentiellement en présence de sulfure d'hydrogène et de température, ces sels, acides ou composés contenant des métaux des groupes II, III, IV, V, VIB, VIIB ou VIII se décomposent et se sulfurent pour former les sulfures métalliques dont l'activité catalytique dans les procédés d'hydroconversion favorise les réactions de craquage, d'hydrogénation, d'hydrodésulfuration, d'hydrodéazotation et d'hydrodémétallation (...) des hydrocarbures lourds. La complexation du ou des atomes métalliques avec des structures organiques complexes telles que les résines ou les asphaltènes présents dans les charges lourdes semble acquise et permet de former une phase catalytique de très petites particules contenant une phase active à base de sulfure métallique et de coke. Ainsi, pour ce type de procédé en slurry, on a injecté dans une zone en amont du réacteur un précurseur catalytique dans une charge hydrocarbonée lourde puis on a activé ce précurseur pour obtenir une phase catalytique finement dispersée qui est alors injectée dans le réacteur et qui s'écoulera avec les produits liquides.In general, the action of these metal compounds is now quite well known: under certain conditions, preferably in the presence of hydrogen sulphide and these salts, acids or compounds containing Group II, III, IV, V, VIB, VIIB or VIII metals decompose and become sulphurous to form metal sulphides whose catalytic activity in hydroconversion processes favors reactions of cracking, hydrogenation, hydrodesulfurization, hydrodenitrogenation and hydrodemetallation (...) of heavy hydrocarbons. The complexing of the metal atom (s) with complex organic structures such as resins or asphaltenes present in heavy feeds appears to be acquired and makes it possible to form a catalytic phase of very small particles containing an active phase based on metal sulphide and coke. Thus, for this type of slurry process, a catalytic precursor in a heavy hydrocarbon feedstock was injected into an upstream zone of the reactor and then this precursor was activated to obtain a finely dispersed catalytic phase which was then injected into the reactor and which will flow with liquid products.
Cette mise en oeuvre en slurry pourrait s'avérer avantageuse par rapport à la mise en oeuvre en lit bouillonnant dans certaines conditions. En effet, la fine dispersion de la phase catalytique en mode slurry peut permettre de favoriser l'hydrogénation et la conversion des très grosses structures hydrocarbonées, telles que les résines et les asphaltènes, dont la conversion ultime est rendue difficile sur les catalyseurs supportés à cause de l'accessibilité plus limitée des sites actifs à l'intérieur des pores. Dans le cas de charges fortement métallisées également, un procédé en slurry peut s'avérer très avantageux car les métaux, connus pour favoriser la désactivation du catalyseur, sont évacués en continu avec le catalyseur finement dispersé et ne s'accumulent plus sur le catalyseur supporté (ce qui nécessiterait alors la mise en oeuvre d'ajouts et de soutirages de catalyseur très importants). On voit bien que cette mise en oeuvre est particulièrement intéressante si la désactivation est importante.This implementation in slurry could be advantageous compared to the implementation in bubbling bed under certain conditions. In fact, the fine dispersion of the catalytic phase in slurry mode can make it possible to promote the hydrogenation and the conversion of very large hydrocarbon structures, such as resins and asphaltenes, the ultimate conversion of which is made difficult on the catalysts supported by the more limited accessibility of active sites inside the pores. In the case of highly metallized fillers as well, a slurry process can be very advantageous because the metals, known to promote the deactivation of the catalyst, are discharged continuously with the finely dispersed catalyst and no longer accumulate on the supported catalyst. (This would then require the implementation of very important additions and catalyst withdrawals). It is clear that this implementation is particularly interesting if the deactivation is important.
Mentionnons également le brevet
Cependant, pour que la mise en oeuvre en slurry soit efficace, il convient de maîtriser parfaitement la transformation du précurseur catalytique. Ainsi, Cyr et al.., dans le brevet
De nombreuses mises en oeuvre du précurseur de molybdène sont présentées dans la littérature. Ainsi le brevet
Dans le brevet
Dans le brevet
Dans le brevet
On peut également citer
Dans
Ainsi, dans tous les procédés de l'art antérieur, en l'absence de contrôle strict des conditions de température (i.e. opérer en-dessous de 350°C), il y a dégradation thermique partielle du précurseur catalytique. Il en résulte une activation limitée du précurseur en phase catalytique et la formation de particules de taille importante, souvent collantes, difficiles à évacuer de la zone réactionnelle et qui pourraient sédimenter, coker et boucher le réacteur.
Néanmoins, l'activation du catalyseur nécessite le contact, en présence de molécules lourdes, du précurseur catalytique avec un agent sulfurant tel que le sulfure d'hydrogène (H2S). Ce contact génère la sulfuration du ou des métaux contenus dans le précurseur catalytique et cette réaction est d'autant plus rapide que la température est élevée. Si la température n'est pas assez élevée, des réactions de dégradation thermique du précurseur rendant plus difficile sa sulfuration peuvent être observées pendant le déroulement de la sulfuration.Thus, in all the processes of the prior art, in the absence of strict control of the temperature conditions (ie operating below 350 ° C.), there is partial thermal degradation of the catalytic precursor. This results in a limited activation of the precursor in the catalytic phase and the formation of large particles, often sticky, difficult to remove from the reaction zone and which could sediment, coker and plug the reactor.
Nevertheless, the activation of the catalyst requires the contact, in the presence of heavy molecules, of the catalytic precursor with a sulfurizing agent such as hydrogen sulphide (H2S). This contact generates sulphidation of the metal or metals contained in the catalytic precursor and this reaction is even faster than the temperature is high. If the temperature is not high enough, thermal degradation reactions of the precursor making it more difficult its sulfurization can be observed during the course of the sulfurization.
Pour pallier à ces inconvénients, l'art antérieur propose le contrôle des conditions de mélange et d'exposition à la température. Celà allonge cependant le temps de préparation du catalyseur et induit des investissements supplémentaires.To overcome these drawbacks, the prior art proposes the control of the conditions of mixing and exposure to temperature. However, this lengthens the catalyst preparation time and induces additional investments.
On a recherché un autre procédé permettant une activation suffisante mais sans dégradation du précurseur catalytique. De façon inattendue, et contrairement aux techniques antérieures, le procédé de l'invention apporte une solution d'une extrême simplicité de mise en oeuvre, et pour les réalisations en lit bouillonnant, il utilise des dispositions déjà existantes dans les unités industrielles, réduisant ainsi les coûts d'installation. L'invention remédie également aux inconvénients des procédés de l'art antérieur.Another method has been investigated which allows sufficient activation but without degradation of the catalytic precursor. Unexpectedly, and contrary to the prior art, the method of the invention provides a solution of extreme simplicity of implementation, and for embodiments bubbling bed, it uses provisions already existing in industrial units, thus reducing installation costs. The invention also overcomes the disadvantages of the methods of the prior art.
Plus précisément, l'invention concerne un procédé d'hydroconversion dans une zone réactionnelle de charges hydrocarbonées lourdes liquides contenant du soufre , en présence d'hydrogène et d'une phase solide catalytique comme décrit par la revendication 1.More specifically, the invention relates to a process for hydroconversion in a reaction zone of sulfur-containing liquid heavy hydrocarbon feedstocks, in the presence of hydrogen and a catalytic solid phase as described by claim 1.
L'invention consiste donc à injecter le précurseur catalytique dans une partie des produits liquides de la réaction contenant du sulfure d'hydrogène dissous, dans des conditions aussi proches que possible des conditions de température et de pression en sortie du réacteur. Dans les procédés d'hydroconversion, la réaction est en effet généralement exothermique et la température la plus élevée est généralement rencontrée à la sortie du réacteur. Les produits liquides de la réaction contiennent une partie importante de sulfure d'hydrogène dissous provenant de l'hydrodésulfuration des molécules de la charge qui s'effectue lors des réactions d'hydroconversion. Enfin, les produits liquides de la réaction contiennent également des fractions de la charge non converties en quantité non négligeables telles que les asphaltènes qui formeront avec le sulfure de métal la phase catalytique recherchée.The invention therefore consists in injecting the catalytic precursor into a part of the liquid products of the reaction containing dissolved hydrogen sulphide, under conditions as close as possible to the temperature and pressure conditions at the outlet of the reactor. In hydroconversion processes, the reaction is in fact generally exothermic and the highest temperature is generally encountered at the outlet of the reactor. The liquid products of the reaction contain a substantial portion of dissolved hydrogen sulfide from the hydrodesulfurization of the charge molecules which occurs during the hydroconversion reactions. Finally, the liquid products of the reaction also contain unconverted fractions of the feedstock in non-negligible amounts, such as asphaltenes, which will form the desired catalytic phase with the metal sulphide.
Il est important de rester, au moment de l'injection du précurseur dans le procédé, dans des conditions proches de celles rencontrées en sortie de réacteur. La température doit en effet rester la plus élevée possible à proximité de la température du réacteur pour favoriser la sulfuration du précurseur catalytique. Si par contre, la température est bien plus élevée que dans le réacteur, une baisse de la concentration en soufre dans le liquide, résultant de la désorption de molécules contenant du soufre tel que l'H2S dissous sera observée limitant également la sulfuration du précurseur catalytique. La pression doit également rester proche de la pression en sortie du réacteur; une baisse de pression trop importante aurait un effet similaire à une augmentation de température ; une augmentation de pression n'aurait par contre aucun effet néfaste sur le conditionnement du précurseur.It is important to remain, at the time of injection of the precursor into the process, under conditions close to those encountered at the reactor outlet. The temperature must indeed remain as high as possible close to the temperature of the reactor to promote the sulphurization of the catalytic precursor. If, on the other hand, the temperature is much higher than in the reactor, a drop in the concentration of sulfur in the liquid resulting from the desorption of sulfur-containing molecules such as dissolved H2S will be observed also limiting the sulphidation of the catalytic precursor. . The pressure must also remain close to the outlet pressure of the reactor; an excessive pressure drop would have an effect similar to an increase in temperature; an increase in pressure would, on the other hand, have no detrimental effect on the conditioning of the precursor.
On veillera donc à ce que la température Tmel, température de mélange, résultant du contact du précurseur avec les produits liquides de conversion, soit comprise dans l'intervalle (Ts= température de leur sortie de la zone réactionnelle) Ts+/-10°C, et que la pression totale de mise en contactIt will therefore be ensured that the temperature Tmel, mixing temperature, resulting from the contact of the precursor with the liquid conversion products, is in the range (Ts = temperature of their exit from the reaction zone) Ts +/- 10 ° C. , and that the total pressure of contacting
Pmel soit (Ps= pression totale Ps en sortie de zone réactionnelle) Ps +/- 10 bars, préférentiellement Ps +/-5 bars.Pmel is (Ps = total pressure Ps at the outlet of the reaction zone) Ps +/- 10 bar, preferably Ps +/- 5 bar.
Généralement la température Tmel supérieure à 350°C, et de préférence comprise entre 380 et 500°C.Generally the temperature Tmel greater than 350 ° C, and preferably between 380 and 500 ° C.
La température Tmel est comprise entre 380 et 500°C.The temperature Tmel is between 380 and 500 ° C.
Ces conditions favorables se retrouvent dans la (les) lignes de recyclage des effluents de réaction (avant séparation totale de l'hydrogène sulfuré), qu'elle(s) soit (soient) externe ou interne au réacteur.These favorable conditions are found in the recycling line (s) of the reaction effluents (before total separation of the hydrogen sulphide), whether they are (are) external or internal to the reactor.
L'invention concerne donc plus précisément l'injection d'un précurseur catalytique en présence de produits de la réaction d'hydroconversion, dans une ligne de recyclage du liquide interne à la zone réactionnelle où l'on trouve la présence de sulfure d'hydrogène, une température élevée favorable à la sulfuration rapide du précurseur et des asphaltènes. Les conditions de pression et de température rencontrées dans ces conditions restent en effet très proches des conditions de sortie du réacteur, à la perte de charge et à la variation de pression hydrostatique dans la ligne de recyclage près, aux éventuelles pertes thermiques près.The invention thus relates more precisely to the injection of a catalytic precursor in the presence of products of the hydroconversion reaction, in a line for recycling the liquid internal to the reaction zone where the presence of hydrogen sulphide is found. , a high temperature favorable to the rapid sulphurization of the precursor and asphaltenes. The pressure and temperature conditions encountered under these conditions are indeed very close to the reactor outlet conditions, the pressure drop and the hydrostatic pressure variation in the near recycling line, to the possible thermal losses.
Plus particulièrement, la présente invention concerne un procédé d'hydroconversion de charge lourde mettant en oeuvre un précurseur catalytique injecté, de préférence régulièrement, dans un ou plusieurs réacteurs pouvant être munis de moyens de recyclage interne des fractions liquides, dans des conditions permettant son activation optimale sans dégradation.More particularly, the present invention relates to a heavy charge hydroconversion process using a catalytic precursor injected, preferably regularly, into one or more reactors that can be provided with internal recycling means of the liquid fractions, under conditions allowing its activation. optimal without degradation.
Ces lignes de recyclage interne du liquide sont connues de l'homme de l'art et déjà largement utilisées dans les réacteurs en lit bouillonnant pour recycler une partie du liquide et augmenter la vitesse superficielle du liquide dans le réacteur et favoriser l'ébullition du catalyseur supporté dans les procédés mettant en oeuvre ce type de catalyseur, tels que les procédés d'hydroconversion de résidu du type H-Oil. Leur utilisation comme zone de contact initial d'un précurseur catalytique est une innovation proposée dans le cadre de cette invention.These internal recycling lines of the liquid are known to those skilled in the art and already widely used in bubbling bed reactors to recycle a portion of the liquid and increase the superficial velocity of the liquid in the reactor and promote the boiling of the supported catalyst in processes employing this type of catalyst, such as H-Oil residue hydroconversion processes. Their use as an initial contact zone of a catalytic precursor is an innovation proposed in the context of this invention.
Dans le cas où les produits de conversion issus de la zone réactionnelle sont séparés dans un séparateur interne liquide/gaz , le précurseur catalytique est injecté dans la partie liquide recyclée vers la zone réactionnelle.In the case where the conversion products from the reaction zone are separated in an internal liquid / gas separator, the catalytic precursor is injected into the recycled liquid portion to the reaction zone.
Dans le cas où les produits de conversion issus de la zone réactionnelle sont séparés dans un séparateur liquide/gaz externe, le précurseur catalytique est injecté dans la partie liquide recyclée vers la zone réactionnelle.In the case where the conversion products from the reaction zone are separated in an external liquid / gas separator, the catalytic precursor is injected into the recycled liquid portion to the reaction zone.
Dans le cas où le précurseur catalytique est injecté avant la séparation liquide/gaz externe le précurseur catalytique est recyclé à la zone réactionnelle avec les produits de conversion recyclés.In the case where the catalytic precursor is injected before the liquid / external gas separation, the catalytic precursor is recycled to the reaction zone with the recycled conversion products.
Tous ces modes de réalisation sont utilisés seuls ou en combinaison.All these embodiments are used alone or in combination.
Les précurseurs catalytiques envisageables dans le cadre de l'invention sont typiquement des composés organo-métalliques, des sels ou des acides, liés à un ou plusieurs métaux des groupes II, III, IV, V, VIB, VIIB ou VIII, tels que les composés à base de molybdène comme le naphténate de molybdène, l'octoate de molybdène, l'heptamolybdate d'ammonium ou l'acide phospho-molybdique.The catalytic precursors that can be envisaged in the context of the invention are typically organometallic compounds, salts or acids, linked to one or more metals of groups II, III, IV, V, VIB, VIIB or VIII, such as molybdenum compounds such as molybdenum naphthenate, molybdenum octoate, ammonium heptamolybdate or phosphomolybdic acid.
Les conditions à l'hydroconversion sont les suivantes:
- Pression totale comprise
entre 10 et 500 bars, préférentiellement 20-300 bars - Pression partielle d'hydrogène comprise entre 10 et 500 bars, préférentiellement 20-300 bars
- Température comprise entre 350 et 500°C
- Temps de séjour des hydrocarbures liquide dans la zone réactionnelle entre 5 mn et 20hr, préférentiellement entre 1h et 10hr.
- Total pressure between 10 and 500 bar, preferably 20-300 bar
- Partial hydrogen pressure of between 10 and 500 bar, preferably 20-300 bar
- Temperature between 350 and 500 ° C
- The residence time of the liquid hydrocarbons in the reaction zone between 5 min and 20 h, preferably between 1 h and 10 h.
Selon un mode préféré de l'invention, la température dans la ligne d'injection (avant la mise en contact du précurseur catalytique avec les produits liquides de conversion) sera inférieure à 200° de façon à éviter toute dégradation thermique du précurseur avant sa transformation en phase catalytique. Le précurseur catalytique sera en suite mis au contact avec au moins une partie des effluents de la réaction, dans des conditions proches des conditions de la sortie du réacteur considéré pour l'injection, tel que décrit précédemment.According to a preferred embodiment of the invention, the temperature in the injection line (before contacting the catalytic precursor with the liquid conversion products) will be less than 200 ° so as to avoid any thermal degradation of the precursor before its transformation. in the catalytic phase. The catalytic precursor will then be brought into contact with at least a portion of the effluents of the reaction, under conditions close to the conditions of the outlet of the reactor considered for injection, as described above.
Le précurseur est de préférence injecté régulièrement et de préférence de façon continue. Il peut aussi être injecté de façon intermittente selon les besoins du procédé.The precursor is preferably injected regularly and preferably continuously. It can also be injected intermittently according to the needs of the process.
Pour ce procédé, un catalyseur supporté peut être disposé dans la zone réactionnelle et mis en oeuvre sous forme d'un lit bouillonnant; le procédé dans la zone réactionnelle peut également être mis en oeuvre sous forme slurry.For this process, a supported catalyst may be disposed in the reaction zone and used as a bubbling bed; the process in the reaction zone can also be carried out in slurry form.
Plusieurs zones réactionnelles peuvent s'enchaîner avec un ou plusieurs réacteurs en série ou de plusieurs trains en parallèle de réacteurs en série, les réacteurs pouvant comporter des moyens de recyclage propres du liquide, et des moyens de séparation en aval des réacteurs.Several reaction zones can be linked to one or more reactors in series or to several trains in parallel of series reactors, the reactors may comprise clean recycling means of the liquid, and separation means downstream of the reactors.
Dans le cas d'un ensemble de plusieurs réacteurs en série, le précurseur catalytique sera préférentiellement injecté au contact des effluents de réaction du premier réacteur.In the case of a set of several reactors in series, the catalytic precursor will preferably be injected in contact with the reaction effluents of the first reactor.
Ledit premier réacteur comportera préférentiellement des moyens de recyclage interne du liquide. Les autres réacteurs peuvent comporter également lesdits moyens. Entre 2 réacteurs successifs, au moins un moyen de séparation externe est avantageusement disposé afin de dégazer au moins partiellement l'effluent.Said first reactor will preferably comprise internal recycling means of the liquid. The other reactors may also comprise said means. Between 2 successive reactors, at least one external separation means is advantageously arranged in order to at least partially degas the effluent.
Par ailleurs, des moyens de séparation par distillation permettront éventuellement de séparer les fractions lourdes (point d'ébullition généralement égal ou supérieur à celui de la charge) des effluents de réaction issus de la zone (ou des zones) réactionnelle(s) (et de préférence de la dernière zone lorsque le procédé en comporte plusieurs). Une partie au moins est recyclée ainsi qu'une partie de la phase catalytique (contenue dans lesdites fractions) en amont du procédé, à l'entrée de l'un des réacteurs (généralement au premier réacteur) en mélange avec sa charge liquide. On favorise la conversion des fractions résiduelles et on augmente la quantité de phase catalytique dans la zone réactionnelle.Moreover, separation means by distillation will eventually allow the heavy fractions to be separated (boiling point generally equal to or greater than that of the feedstock). reaction effluents from the zone (or zones) reaction (s) (and preferably the last zone when the process has several). At least part is recycled as well as part of the catalytic phase (contained in said fractions) upstream of the process, at the inlet of one of the reactors (generally in the first reactor) mixed with its liquid feed. The conversion of the residual fractions is favored and the amount of catalytic phase is increased in the reaction zone.
De façon habituelle, il est prévu une zone de préchauffe de la charge et du gaz contenant l'hydrogène.
Afin de limiter la floculation (dans certaines conditions) des composés lourds non convertis tels que les asphaltènes, une coupe aromatique (à forte aromaticité telle que par exemple une coupe HCO de craquage catalytique) peut être injectée dans le procédé, par exemple avec la charge en amont d'une des zones (réacteurs) du procédé ou avec l'effluent avant la distillation et par exemple avec la charge fraîche, ou au niveau du séparateur externe lorsqu'il existe ou de la distillation.
Ces modes peuvent être combinés.Usually, there is provided a preheating zone of the charge and the gas containing hydrogen.
In order to limit the flocculation (under certain conditions) of unconverted heavy compounds such as asphaltenes, an aromatic section (with high aromaticity such as, for example, a catalytic cracking HCO section) can be injected into the process, for example with the feedstock. upstream of one of the zones (reactors) of the process or with the effluent before the distillation and for example with the fresh feed, or at the level of the external separator when it exists or distillation.
These modes can be combined.
Les produits de conversion seront, à l'issue de l'hydroconversion, de façon habituelle séparés, de préférence par distillation.The conversion products will, after the hydroconversion, usually be separated, preferably by distillation.
L'invention concerne également un dispositif incluant au moins un réacteur avec une zone réactionnelle (6) contenant une phase catalytique formée à partir d'un précurseur catalytique, au moins une conduite (4) pour l'introduction d'une charge lourde liquide contenant du soufre, des asphaltènes et/ou des résines, et une conduite amenant de l'hydrogène (3), au moins une conduite d'évacuation des produits de conversion liquides et au moins une conduite pour l'injection du précurseur catalytique dans au moins une partie des produits de conversion liquides, saturée en H2S et contenant des asphaltènes et/ou des résines.The invention also relates to a device including at least one reactor with a reaction zone (6) containing a catalytic phase formed from a catalytic precursor, at least one pipe (4) for the introduction of a heavy liquid charge containing sulfur, asphaltenes and / or resins, and a hydrogen-conducting conduit (3), at least one liquid conversion product discharge line and at least one catalytic precursor injection line in at least one part of the liquid conversion products, saturated with H2S and containing asphaltenes and / or resins.
De préférence, ce dispositif comprend , reliée à la conduite d'évacuation des produits de conversion liquides, une conduite de recyclage (8) vers la zone réactionnelle d'au moins une partie des produits de conversion liquides, saturée en H2S et contenant des asphaltènes et/ou des résines, et une conduite pour l'injection du précurseur catalytique dans ladite conduite (8) de recyclage. Avantageusement, le liquide recyclé a été au moins partiellement dégazé par passage dans un séparateur liquide/gaz externe ou interne au réacteur, pour séparer une fraction liquide-gaz ou liquide.Preferably, this device comprises, connected to the discharge line of the liquid conversion products, a recycling line (8) towards the reaction zone of at least a portion of the liquid conversion products, saturated with H2S and containing asphaltenes. and / or resins, and a line for injecting the catalytic precursor into said recycling line (8). Advantageously, the recycled liquid has been at least partially degassed by passing through a liquid / gas separator external or internal to the reactor, to separate a liquid-gas or liquid fraction.
Dans un mode de réalisation avantageux, le dispositif est muni d'une conduite externe au réacteur pour évacuer les effluents (dont les produits de conversion liquides) hors du réacteur , d'une conduite (14) pour l'injection du précurseur catalytique dans la conduite (7), d'un moyen de séparation liquide/gaz (20) externe au réacteur pour séparer une partie des produits de conversion liquides contenant du sulfure d'hydrogène dissous, des asphaltènes et/ou des résines, ladite partie étant au moins partiellement recyclée vers la zone réactionnelle par une conduite (8).In an advantageous embodiment, the device is provided with a conduit external to the reactor for discharging the effluents (including the liquid conversion products) out of the reactor, of a pipe (14) for injecting the catalytic precursor into the reactor. pipe (7), a liquid / gas separation means (20) external to the reactor for separating a part of the liquid conversion products containing dissolved hydrogen sulphide, asphaltenes and / or resins, said part being at least partially recycled to the reaction zone via a pipe (8).
Dans un autre mode, le dispositif est muni d'une conduite externe au réacteur pour évacuer les effluents (dont les produits de conversion liquides) hors du réacteur , d'un moyen de séparation liquide/gaz (20) externe au réacteur pour séparer une partie des produits de conversion liquides contenant du sulfure d'hydrogène dissous, des asphaltènes et/ou des résines ,ladite partie étant au moins partiellement recyclée vers la zone réactionnelle par une conduite (8) et le dispositif étant muni d'une conduite (10 ou 11) pour l'injection du précurseur catalytique dans la conduite de recyclage(8).In another embodiment, the device is provided with a conduit external to the reactor for discharging the effluents (including the liquid conversion products) out of the reactor, a liquid / gas separation means (20) external to the reactor to separate a reactor. part of the liquid conversion products containing dissolved hydrogen sulphide, asphaltenes and / or resins, said part being at least partially recycled to the reaction zone via a pipe (8) and the device being provided with a pipe (10). or 11) for injecting the catalytic precursor into the recycle line (8).
Dans un autre mode, le dispositif est muni d'un séparateur liquide/gaz interne (20) pour séparer une partie des produits de conversion liquides contenant du sulfure d'hydrogène dissous, des asphaltènes et/ou des résines, ladite partie étant évacuée et au moins en partie recyclée vers la zone réactionnelle par une conduite (8), et le dispositif étant muni d'une conduite (10 ou 11) pour l'injection du précurseur catalytique dans la conduite de recyclage(8).In another mode, the device is provided with an internal liquid / gas separator (20) for separating a portion of the liquid conversion products containing dissolved hydrogen sulphide, asphaltenes and / or resins, said portion being removed and at least partly recycled to the reaction zone via a pipe (8), and the device being provided with a pipe (10 or 11) for injecting the catalytic precursor into the recycling pipe (8).
Les modes décrits sont utilisés seuls ou en combinaison.The modes described are used alone or in combination.
Le dispositif peut comporter au moins 2 réacteurs successifs avec chacun une zone réactionnelle (6) contenant une phase catalytique formée à partir d'un précurseur catalytique, avec un premier réacteur tel que décrit ci-dessus, muni d'une conduite de recyclage de l'effluent issu du premier réacteur vers ledit premier réacteur, le liquide séparé non recyclé étant envoyé dans la zone réactionnelle suivante ou évacué.The device may comprise at least two successive reactors each having a reaction zone (6) containing a catalytic phase formed from a catalytic precursor, with a first reactor as described above, provided with a recycling line of effluent from the first reactor to said first reactor, the separated non-recycled liquid being sent to the next reaction zone or discharged.
Dans une réalisation préférée, le dispositif comporte au moins 2 réacteurs successifs avec chacun une zone réactionnelle (6) contenant une phase catalytique formée à partir d'un précurseur catalytique, avec un premier réacteur tel que décrit précédemment, ledit dispositif comprenant pour chaque réacteur une conduite de recyclage de liquide après dégazage au moins partiel dans un séparateur liquide/gaz , le liquide séparé non recyclé étant envoyé dans la zone réactionnelle suivante ou évacué.In a preferred embodiment, the device comprises at least 2 successive reactors each having a reaction zone (6) containing a catalytic phase formed from a catalytic precursor, with a first reactor as described above, said device comprising for each reactor a liquid recycle line after at least partial degassing in a liquid / gas separator, the separated non-recycled liquid being sent to the next reaction zone or discharged.
Par ailleurs, le dispositif (dans sa généralité) comprend avantageusement au moins une colonne de distillation située après la dernière zone réactionnelle, pour séparer les fractions lourdes des effluents de réaction qui contiennent une partie de la phase catalytique, et une conduite pour recycler une partie au moins desdites fractions en amont avec sa charge liquide.Furthermore, the device (in its generality) advantageously comprises at least one distillation column located after the last reaction zone, for separating the heavy fractions from the reaction effluents which contain a part of the catalytic phase, and a pipe for recycling a part at least said upstream fractions with its liquid charge.
Avantageusement, le dispositif est muni d'au moins une conduite pour introduire une coupe aromatique dans la charge en amont d'au moins un réacteur et/ou dans l'effluent avant distillation.Advantageously, the device is provided with at least one pipe for introducing an aromatic section into the feedstock upstream of at least one reactor and / or in the effluent before distillation.
Les
- la
figure 1 représente un réacteur avec une ligne de recyclage issue d'un séparateur externe et des modes de réalisation de l'injection de précurseur catalytique., - la
figure 2 montre une ligne de recyclage issue d'un séparateur interne et également des modes de réalisation de l'injection de précurseur catalytique, - la
figure 3 inclut les 2 types de ligne de recyclage issue d'un séparateur gaz/liquide interne, - la
figure 4 représente une zone à 2 réacteurs ,chacun ayant une ligne de recyclage issue de séparateur interne.
- the
figure 1 represents a reactor with a recycling line from an external separator and embodiments of the catalytic precursor injection. - the
figure 2 shows a recycling line from an internal separator and also embodiments of the catalytic precursor injection, - the
figure 3 includes the 2 types of recycling line from an internal gas / liquid separator, - the
figure 4 represents a zone with 2 reactors, each having a recycling line from internal separator.
Selon un premier mode de réalisation de l'invention (
La charge est ensuite mise en pression (généralement entre 10 et 500 bars, souvent aux alentours de 100-300 bars), par exemple grâce à des pompes (15) puis préchauffée sans craquage thermique , par exemple dans un four (16). Sur les charges pétrolières de type résidu, on limite volontairement la température en sortie des fours à 300-380°, préférentiellement 350°C, pour éviter tout craquage et toute dégradation thermique liée à la température.The charge is then pressurized (generally between 10 and 500 bar, often around 100-300 bar), for example by means of pumps (15) and then preheated without thermal cracking, for example in an oven (16). On residue-type petroleum feeds, the temperature at the outlet of the furnaces is voluntarily limited to 300-380 °, preferably 350 ° C., in order to avoid any cracking and any thermal degradation related to the temperature.
La charge en pression et ainsi préchauffée (2) est ensuite mélangée à un gaz (3) contenant de l'hydrogène et de préférence une proportion très importante d'hydrogène préchauffé , de préférence dans un four séparé (17), à une température pouvant aller de 100 à 800°, et préférentiellement comprise entre 300 et 600°.The pressure and thus preheated charge (2) is then mixed with a gas (3) containing hydrogen and preferably a very large proportion of preheated hydrogen, preferably in a separate oven (17), at a temperature of from 100 to 800 °, and preferably between 300 and 600 °.
Le mélange de la charge avec le gaz contenant l'hydrogène permet d'ajuster la température du mélange charge + gaz (4) à une température proche de celle de la réaction (typiquement 380-500°C) sans dégrader la charge thermiquement.Mixing the feedstock with the gas containing the hydrogen makes it possible to adjust the temperature of the feed + gas mixture (4) to a temperature close to that of the reaction (typically 380-500 ° C.) without degrading the heat load.
L'ensemble est alors introduit dans le réacteur (18) dans une zone de mélange (5) située en amont de moyens de distribution (19) (sur la
Le gaz (3) mélangé à la charge et contenant de l'hydrogène provient généralement en partie du recyclage des fractions gazeuses non condensées en aval de la zone réactionnelle, éventuellement purifiées pour éliminer l'H2S formé pendant la réaction et auxquelles on aura ajouté un appoint d'hydrogène pour compenser la consommation d'une partie de ce gaz dans la zone réactionnelle.The gas (3) mixed with the feedstock and containing hydrogen generally comes partly from the recycling of uncondensed gaseous fractions downstream of the reaction zone, optionally purified to remove the H 2 S formed during the reaction and to which will be added a adding hydrogen to compensate for the consumption of a part of this gas in the reaction zone.
Le mode d'introduction de la charge et de l'hydrogène décrit dans le cas présent est uniquement illustratif et ne limite pas l'invention. Tous ces types de conditionnement de la charge sont bien connus de l'homme du métier.The mode of introduction of the charge and the hydrogen described in the present case is only illustrative and does not limit the invention. All these types of charge conditioning are well known to those skilled in the art.
La réaction s'effectue dans la zone du réacteur (6) (réactionnelle) située au dessus de moyens de distribution (19) dans laquelle se trouve éventuellement un catalyseur supporté, sous forme de billes ou d'extrudés de diamètre équivalent généralement compris entre 0.25 et 10 mm et de masse volumique de grain sec généralement compris entre 1000 et 5000 kg/m3. La zone réactionnelle est préférentiellement une zone sensiblement allongée dans laquelle la vitesse superficielle du liquide est suffisante pour maintenir les catalyseurs supportés en ébullition (VSL > VMF) et pour éviter la décantation et la sédimentation de toutes les particules formées à partir du précurseur catalytique dans le réacteur et éviter l'entraînement de toutes les particules de catalyseur supporté (VSL < UT).The reaction is carried out in the zone of the reactor (6) (reaction) located above distribution means (19) in which there is optionally a supported catalyst, in the form of balls or extrudates of equivalent diameter generally between 0.25 and 10 mm and density of dry grain generally between 1000 and 5000 kg / m3. The reaction zone is preferably a substantially elongated zone in which the superficial velocity of the liquid is sufficient to maintain the boiled supported catalysts (VSL> VMF) and to avoid settling and sedimentation of all the particles formed from the catalytic precursor in the reaction zone. reactor and avoid entrainment of all supported catalyst particles (VSL <UT).
En sortie du réacteur, les effluents gaz et liquide (7) (incluant la phase catalytique constituée des particules formées à partir du précurseur catalytique) sont évacués vers un dégazeur (20) externe à l'enceinte réactionnelle. Le catalyseur supporté reste dans l'enceinte réactionnelle car la vitesse superficielle du liquide n'est pas suffisante pour provoquer son entraînement. Le dégazeur (20) a pour fonction de désengager l'essentiel du gaz (au moins les grosses bulles) d'une partie du liquide. Le liquide au moins partiellement dégazé (8) est recyclé vers l'entrée du réacteur (18) à travers une pompe (21) permettant de lui redonner la pression nécessaire. Le gaz et le liquide non dégazé sont évacués par la conduite (9). Le liquide dégazé (8) et le liquide non dégazé (7) contiennent encore une grande partie d'H2S dissous, car la température et la pression sont sensiblement celles du réacteur (18), aux pertes thermiques et aux pertes de charge des équipements près. Il est donc possible d'ajouter en aval du réacteur (18) le précurseur catalytique. Grâce au recyclage interne, celui ci sera ensuite réintroduit dans le réacteur (18) Le précurseur sera immédiatement soumis à une température élevée en présence d'H2S ce qui permettra la sulfuration du précurseur et la formation de fines particules au contact des asphaltènes non convertis à l'issue du passage dans le réacteur.At the outlet of the reactor, the gas and liquid effluents (7) (including the catalytic phase consisting of particles formed from the catalytic precursor) are discharged to a degasser (20) external to the reaction chamber. The supported catalyst remains in the reaction chamber because the superficial velocity of the liquid is not sufficient to cause its entrainment. The function of the degasser (20) is to disengage most of the gas (at least large bubbles) from a portion of the liquid. The at least partially degassed liquid (8) is recycled to the inlet of the reactor (18) through a pump (21) to restore the necessary pressure. The gas and the non-degassed liquid are discharged through the pipe (9). The degassed liquid (8) and the non-degassed liquid (7) still contain a large portion of dissolved H2S, since the temperature and the pressure are substantially those of the reactor (18), the thermal losses and the pressure losses of the equipment close to the reactor. . It is therefore possible to add the catalytic precursor downstream of the reactor (18). Thanks to the internal recycling, this one will then be reintroduced in the reactor (18) the precursor will be immediately subjected to a high temperature in the presence of H2S which will allow the sulphuration of the precursor and the formation of fine particles in contact with asphaltenes not converted to the outcome of the passage in the reactor.
Le précurseur catalytique est injecté par une pompe directement au contact des produits de la réactionThe catalytic precursor is injected by a pump directly into contact with the products of the reaction
Sur la
Le précurseur catalytique peut être injecté dans un liquide saturé en H2S et au moins partiellement dégazé (circulant dans la conduite de recyclage (8)) en amont (référence 10) ou (référence 11) en aval de la pompe d'ébullition (21) ou en amont du dégazeur (référence 14).The catalytic precursor may be injected into a liquid saturated with H2S and at least partially degassed (circulating in the recycle line (8)) upstream (reference 10) or (reference 11) downstream of the boiling pump (21) or upstream of the degasser (reference 14).
Dans chacun de ces cas, le précurseur catalytique rencontrera de l'H2S à haute température et des asphaltènes non convertis. Les injections (10) et (11), grâce à l'absence de bulles de gaz permettent cependant de mieux contrôler le mélange et représentent donc une mise en oeuvre privilégiée de l'invention. De plus, la température de contact entre le précurseur et les effluents y est plus élevée qu'en (12) par exemple, car l'effluent n'est pas dilué avec la charge fraîche. Il en résultera une activation plus efficace.In each of these cases, the catalytic precursor will encounter high temperature H2S and unconverted asphaltenes. Injections (10) and (11), thanks to the absence of gas bubbles, however, allow better control of the mixture and therefore represent a preferred embodiment of the invention. In addition, the contact temperature between the precursor and the effluents is higher there than in (12) for example, because the effluent is not diluted with the fresh feed. This will result in more effective activation.
On notera que la
En sortie du dégazeur, une séparation gaz liquide s'effectue en pression dans le ballon (22). Le liquide, sortant en fond du séparateur (22) est généralement envoyé après détente vers un fractionnement permettant de récupérer les coupes pétrolières converties et les fractions résiduelles. Le gaz, sortant en tête du séparateur (22) passe ensuite dans un train de séparateurs, duquel on peut extraire les incondensables dont l'hydrogène qui sont souvent recomprimés et recyclés dans le procédé en amont de la zone réactionnelle après traitement.At the outlet of the degasser, a liquid gas separation is carried out under pressure in the flask (22). The liquid leaving the bottom of the separator (22) is generally sent after expansion to a fractionation to recover the converted petroleum fractions and residual fractions. The gas leaving the top of the separator (22) then passes into a separator train, from which incondensables including hydrogen can be extracted which are often recompressed and recycled in the process upstream of the reaction zone after treatment.
La
Le mélange d'hydrocarbures liquides et d'hydrogène est injecté au travers d'un distributeur (19) dans le réacteur (18). On ne reprendra pas ici la description du conditionnement de la charge identique à la figure précédente.
Si du catalyseur est présent dans le réacteur , le débit de liquide dans le réacteur, résultant du débit de charge fraîche (4) et du recyclage interne (8) est contrôlé de telle manière que le lit de catalyseur soit mis en expansion. Le niveau de catalyseur est contrôlé grâce au recyclage (8) du liquide.The
The mixture of liquid hydrocarbons and hydrogen is injected through a distributor (19) into the reactor (18). We will not repeat here the description of the conditioning of the load identical to the previous figure.
If catalyst is present in the reactor, the liquid flow rate in the reactor resulting from the fresh feed rate (4) and the internal recycle (8) is controlled so that the catalyst bed is expanded. The level of catalyst is controlled by the recycling (8) of the liquid.
En sortie de la zone réactionnelle (6), après une séparation gaz/liquide dans un séparateur interne (20) des fluides issus de la réaction, lesdits fluides sont divisés alors en deux fractions: une fraction contenant la majeure partie du liquide est recyclée par la conduite (8) vers la pompe d'ébullition (21) et une autre partie est soutirée du réacteur avec le gaz (9). Le liquide recyclé est réintroduit dans la zone réactionnelle de préférence par une conduite séparée (
On reconnaît les points possibles pour l'injection du précurseur catalytique ,tels que décrits à partir de la
Les conditions Ps et Ts sont celles régnant au niveau du séparateur interne (20). Avantageusement, sur la partie liquide/gaz soutirée par la conduite (9) une séparation gaz/liquide est effectuée dans le ballon (22), les dispositions relatives à cette partie qui sont décrites en
The conditions Ps and Ts are those prevailing at the internal separator (20). Advantageously, on the liquid / gas part withdrawn by the pipe (9) a gas / liquid separation is carried out in the balloon (22), the provisions relating to this part which are described in
Pour les
La
En sortie du réacteur de la zone réactionnelle (6), après une séparation gaz/liquide dans un séparateur interne (20) des fluides issus de la réaction, lesdits fluides sont divisés alors en deux fractions: une fraction contenant la majeure partie du liquide est recyclée par la conduite (8) vers la pompe d'ébullition (8) (21) et une autre partie gazeuse est soutirée du réacteur par la conduite (24).
Le liquide recyclé est réintroduit dans la zone réactionnelle de préférence par une conduite séparée (
On reconnaît les points possibles pour l'injection du précurseur catalytique ,tels que décrits à partir de la
At the outlet of the reactor from the reaction zone (6), after a gas / liquid separation in an internal separator (20) from the fluids resulting from the reaction, said fluids are then divided into two fractions: a fraction containing most of the liquid is recycled via line (8) to the boiling pump (8) (21) and another gaseous portion is withdrawn from the reactor via line (24).
The recycled liquid is reintroduced into the reaction zone preferably via a separate pipe (
Possible points are recognized for the injection of the catalytic precursor, as described from FIG.
Les conditions Ps et Ts sont celles régnant au niveau du séparateur interne (20).
On notera que la séparation gaz du liquide est effectuée dans le séparateur (20), de sorte que le ballon (22) décrit sur les
It will be noted that the gas separation of the liquid is carried out in the separator (20), so that the balloon (22) describes on the
La
On reconnaît les dispositions référencées (1) à (23) de la
We recognize the provisions referenced (1) to (23) of the
Dans le cas précis de la
Dans une autre disposition (non représentée), le deuxième réacteur peut être alimenté par la partie liquide non recyclée du premier réacteur muni d'un séparateur interne du type (20) de la
De l'hydrogène préchauffé ou non est alors généralement introduit dans la charge liquide du deuxième réacteur (conduite 26). Il est également possible de refroidir l'effluent liquide issu du premier réacteur avant son introduction au deuxième réacteur.In the specific case of
In another arrangement (not shown), the second reactor can be fed by the non-recycled liquid portion of the first reactor provided with an internal separator of the type (20) of the
Preheated or unheated hydrogen is then generally introduced into the liquid feedstock of the second reactor (line 26). It is also possible to cool the liquid effluent from the first reactor before its introduction to the second reactor.
Le fait d'ajouter un deuxième réacteur permet pour un volume de réacteur identique d'améliorer la conversion. En effet, la succession de deux zones de conversion mélangée de petit volume permet une meilleure conversion qu'une seule zone mélangée de volume équivalent. Un tel dispositif permet de plus d'imposer un gradient de température entre les deux réacteurs ce qui peut permettre de mieux contrôler la stabilité des produits formés, notamment lorsque la conversion du résidu est très élevée. Le fonctionnement du deuxième réacteur est généralement sensiblement similaire au fonctionnement du premier réacteur. Un distributeur (29) permet la bonne distribution du gaz et du liquide. La réaction s'effectue dans la zone réactionnelle (30) située dans le réacteur au dessus du distributeur (19), en présence ou non de catalyseur.Adding a second reactor allows for an identical reactor volume to improve the conversion. Indeed, the succession of two mixed conversion areas of small volume allows a better conversion than a single mixed zone of equivalent volume. Such a device also makes it possible to impose a temperature gradient between the two reactors, which can make it possible to better control the stability of the products formed, especially when the conversion of the residue is very high. The operation of the second reactor is generally substantially similar to the operation of the first reactor. A distributor (29) allows the good distribution of gas and liquid. The reaction is carried out in the reaction zone (30) located in the reactor above the distributor (19), in the presence or absence of catalyst.
Les effluents sont séparés dans un séparateur interne (31) comme dans le mode
En aval du réacteur, un séparateur (35) effectue une séparation du gaz, évacué en tête (conduite 37) et du liquide évacué en fond (conduite 36).The effluents are separated in an internal separator (31) as in the
Downstream of the reactor, a separator (35) separates the gas, discharged at the top (line 37) and liquid discharged at the bottom (line 36).
Les produits de conversion sont recyclés par l'intermédiaire d'une pompe (33) vers la zone réactionnelle.The conversion products are recycled via a pump (33) to the reaction zone.
Dans le cas de zones réactionnelles multiples comme représenté sur la
On reconnaît les points possibles pour l'injection du précurseur catalytique ,tels que décrits à partir de la
Dans chacun de ces cas , le précurseur catalytique rencontrera de l'H2S à haute température et des asphaltènes non convertis. Les injections (10) et (11), grâce à l'absence de bulles de gaz permettent cependant de mieux contrôler le mélange et représentent donc une mise en oeuvre privilégiée de l'invention.
Il est également possible d'injecter une quantité de précurseur catalytique de façon similaire au deuxième réacteur. L'injection peut avoir lieu au niveau du deuxième réacteur, seule ou en combinaison avec une injection au niveau du premier réacteur. Dès lors, les points d'injection possibles sont les mêmes que précédemment.In each of these cases, the catalytic precursor will encounter high temperature H2S and unconverted asphaltenes. Injections (10) and (11), thanks to the absence gas bubbles, however, allow better control of the mixture and therefore represent a preferred embodiment of the invention.
It is also possible to inject a quantity of catalytic precursor in a manner similar to the second reactor. The injection can take place at the second reactor, alone or in combination with an injection at the first reactor. Therefore, the possible injection points are the same as before.
Cependant, le catalyseur dispersé circulant dans le procédé en suivant le liquide, l'ensemble du catalyseur dispersé injecté au premier réacteur passera au deuxième réacteur. Il n'est donc pas généralement nécessaire, même si cela est possible d'injecter du catalyseur dispersé dans les réacteurs en avalHowever, since the dispersed catalyst circulates in the process following the liquid, all of the dispersed catalyst injected into the first reactor will pass to the second reactor. It is therefore not generally necessary, even if it is possible to inject dispersed catalyst into the downstream reactors
On peut également envisager une succession de plusieurs réacteurs successifs supérieure à 2.It is also possible to envisage a succession of several successive reactors greater than 2.
Claims (8)
- Process for hydroconversion in a reaction zone of heavy hydrocarbon feedstocks containing sulphur, in the presence of hydrogen and a catalytic solid phase, said solid phase being obtained from a catalytic precursor, said process being operated at a total pressure that can range from 10 to 500 bar, with a partial hydrogen pressure varying from 10 to 500 bar, at a temperature of 350 to 500°C, a residence time of the liquid hydrocarbons in the reaction zone between 5 mn and 20 h, a process in which the conversion products from the reaction zone are separated in an internal or external liquid/gas separator, and the catalytic precursor is directly injected into the part of the liquid conversion products which contain dissolved hydrogen sulphide and asphaltenes and/or resins which is recycled to the reaction zone, said injection being performed into the part of recycled liquid conversion products before the separation of said conversion products in the liquid/gas separator when an external liquid/gas separator is used, or after the separation of said conversion products in the liquid/gas separator when an internal liquid/gas separator is used, the temperature Tmel, resulting from the contact of the catalytic precursor with said liquid products, is comprised in the range Ts +/- 10°C (Ts is the temperature at which said liquid products leave the reaction zone), and the total pressure Pmel is comprised in the range Ps +/- 10°C (Ps is the pressure at which said liquid products leave the reaction zone), said temperature Tmel being comprised in the range 380°C and 500°C, and the obtained mixture reacts in the reaction zone.
- Process according to claim 1 in which the catalytic precursor is an organometallic compound, a salt or a molybdenum-based acid.
- Process according to one of the preceding claims in which a supported catalyst is arranged in the reaction zone and used in the form of a bubbling bed.
- Process according to one of the preceding claims in which the process being used in the reaction zone is in the form of a slurry bed.
- Process according to one of the preceding claims in which the heavy feedstock has a boiling point above 340°C for at least 90% by weight of the feedstock.
- Process according to one of the preceding claims in which the heavy feedstock has a boiling point above 540°C for at least 80% by weight of the feedstock.
- Process according to one of the preceding claims in which the heavy feedstock has a viscosity below 40,000 cSt at 100°C.
- Process according to one of the preceding claims in which a heavy aromatic cut is injected into the process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL05291928T PL1637576T3 (en) | 2004-09-20 | 2005-09-16 | Hydroconversion of a heavy feedstock using a dispersed catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0409936A FR2875509B1 (en) | 2004-09-20 | 2004-09-20 | METHOD OF HYDROCONVERSION OF HEAVY LOAD WITH DISPERSED CATALYST |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1637576A1 EP1637576A1 (en) | 2006-03-22 |
EP1637576B1 true EP1637576B1 (en) | 2015-07-29 |
Family
ID=34950861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05291928.9A Active EP1637576B1 (en) | 2004-09-20 | 2005-09-16 | Hydroconversion of a heavy feedstock using a dispersed catalyst |
Country Status (7)
Country | Link |
---|---|
US (1) | US20060060501A1 (en) |
EP (1) | EP1637576B1 (en) |
CA (1) | CA2519847C (en) |
FR (1) | FR2875509B1 (en) |
MX (1) | MXPA05009912A (en) |
PL (1) | PL1637576T3 (en) |
RU (1) | RU2387698C2 (en) |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10941353B2 (en) * | 2004-04-28 | 2021-03-09 | Hydrocarbon Technology & Innovation, Llc | Methods and mixing systems for introducing catalyst precursor into heavy oil feedstock |
PL1753846T3 (en) | 2004-04-28 | 2016-12-30 | Ebullated bed hydroprocessing methods and systems | |
US7972499B2 (en) | 2004-09-10 | 2011-07-05 | Chevron U.S.A. Inc. | Process for recycling an active slurry catalyst composition in heavy oil upgrading |
US7678732B2 (en) | 2004-09-10 | 2010-03-16 | Chevron Usa Inc. | Highly active slurry catalyst composition |
US7938954B2 (en) * | 2005-12-16 | 2011-05-10 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8372266B2 (en) * | 2005-12-16 | 2013-02-12 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8435400B2 (en) * | 2005-12-16 | 2013-05-07 | Chevron U.S.A. | Systems and methods for producing a crude product |
US7931796B2 (en) * | 2008-09-18 | 2011-04-26 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7431822B2 (en) | 2005-12-16 | 2008-10-07 | Chevron U.S.A. Inc. | Process for upgrading heavy oil using a reactor with a novel reactor separation system |
US7943036B2 (en) | 2009-07-21 | 2011-05-17 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8048292B2 (en) | 2005-12-16 | 2011-11-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
FR2910487B1 (en) * | 2006-12-21 | 2010-09-03 | Inst Francais Du Petrole | PROCESS FOR CONVERTING RESIDUES INCLUDING 2 SERIES DISASPHALTAGES |
EP2234710A2 (en) * | 2007-11-28 | 2010-10-06 | Saudi Arabian Oil Company | Process for catalytic hydrotreating of sour crude oils |
WO2010009082A1 (en) * | 2008-07-14 | 2010-01-21 | Saudi Arabian Oil Company | A prerefining process for the hydrodesulfurization of heavy sour crude oils to produce sweeter lighter crudes using moving catalyst system |
US9260671B2 (en) * | 2008-07-14 | 2016-02-16 | Saudi Arabian Oil Company | Process for the treatment of heavy oils using light hydrocarbon components as a diluent |
US8372267B2 (en) * | 2008-07-14 | 2013-02-12 | Saudi Arabian Oil Company | Process for the sequential hydroconversion and hydrodesulfurization of whole crude oil |
US7897036B2 (en) * | 2008-09-18 | 2011-03-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7897035B2 (en) * | 2008-09-18 | 2011-03-01 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US7931797B2 (en) * | 2009-07-21 | 2011-04-26 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
US8236169B2 (en) * | 2009-07-21 | 2012-08-07 | Chevron U.S.A. Inc | Systems and methods for producing a crude product |
US7935243B2 (en) * | 2008-09-18 | 2011-05-03 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
EP2328995A4 (en) * | 2008-09-18 | 2012-05-30 | Chevron Usa Inc | Systems and methods for producing a crude product |
US20110017637A1 (en) * | 2009-07-21 | 2011-01-27 | Bruce Reynolds | Systems and Methods for Producing a Crude Product |
EP2331657B1 (en) * | 2008-09-18 | 2023-10-18 | Chevron U.S.A. Inc. | Systems and methods for producing a crude product |
EP2445997B1 (en) * | 2009-06-22 | 2021-03-24 | Saudi Arabian Oil Company | Demetalizing and desulfurizing virgin crude oil for delayed coking |
US8759242B2 (en) | 2009-07-21 | 2014-06-24 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US9068132B2 (en) | 2009-07-21 | 2015-06-30 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8927448B2 (en) | 2009-07-21 | 2015-01-06 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
PL2658647T3 (en) | 2010-12-30 | 2024-10-21 | Chevron U.S.A., Inc. | Hydroprocessing catalysts and methods for making thereof |
US9790440B2 (en) * | 2011-09-23 | 2017-10-17 | Headwaters Technology Innovation Group, Inc. | Methods for increasing catalyst concentration in heavy oil and/or coal resid hydrocracker |
US9644157B2 (en) | 2012-07-30 | 2017-05-09 | Headwaters Heavy Oil, Llc | Methods and systems for upgrading heavy oil using catalytic hydrocracking and thermal coking |
US9321037B2 (en) | 2012-12-14 | 2016-04-26 | Chevron U.S.A., Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
US9687823B2 (en) | 2012-12-14 | 2017-06-27 | Chevron U.S.A. Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
US11414608B2 (en) | 2015-09-22 | 2022-08-16 | Hydrocarbon Technology & Innovation, Llc | Upgraded ebullated bed reactor used with opportunity feedstocks |
US11414607B2 (en) | 2015-09-22 | 2022-08-16 | Hydrocarbon Technology & Innovation, Llc | Upgraded ebullated bed reactor with increased production rate of converted products |
US11421164B2 (en) | 2016-06-08 | 2022-08-23 | Hydrocarbon Technology & Innovation, Llc | Dual catalyst system for ebullated bed upgrading to produce improved quality vacuum residue product |
RU2656673C2 (en) * | 2016-10-13 | 2018-06-06 | Публичное акционерное общество "Электрогорский институт нефтепереработки" (ПАО "ЭлИНП") | Method of hydrogenization processing of oil sludge |
US12071592B2 (en) | 2017-02-12 | 2024-08-27 | Magēmā Technology LLC | Multi-stage process and device utilizing structured catalyst beds and reactive distillation for the production of a low sulfur heavy marine fuel oil |
US20180230389A1 (en) | 2017-02-12 | 2018-08-16 | Magēmā Technology, LLC | Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil |
US12025435B2 (en) * | 2017-02-12 | 2024-07-02 | Magēmã Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil |
US10604709B2 (en) | 2017-02-12 | 2020-03-31 | Magēmā Technology LLC | Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials |
US11788017B2 (en) | 2017-02-12 | 2023-10-17 | Magëmã Technology LLC | Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil |
JP7336831B2 (en) | 2017-03-02 | 2023-09-01 | ハイドロカーボン テクノロジー アンド イノベーション、エルエルシー | Improved ebullated bed reactor with low fouling deposits |
US11732203B2 (en) | 2017-03-02 | 2023-08-22 | Hydrocarbon Technology & Innovation, Llc | Ebullated bed reactor upgraded to produce sediment that causes less equipment fouling |
CN107699296A (en) * | 2017-10-25 | 2018-02-16 | 山西潞安煤基精细化学品有限公司 | A kind of one-level hydrogenation pre-converter for setting up heating pipeline |
FR3074699B1 (en) | 2017-12-13 | 2019-12-20 | IFP Energies Nouvelles | PROCESS FOR HYDROCONVERSION OF HEAVY HYDROCARBON CHARGE INTO HYBRID REACTOR |
CA3057131C (en) | 2018-10-17 | 2024-04-23 | Hydrocarbon Technology And Innovation, Llc | Upgraded ebullated bed reactor with no recycle buildup of asphaltenes in vacuum bottoms |
CN111686648A (en) * | 2019-03-15 | 2020-09-22 | 南京延长反应技术研究院有限公司 | Fixed bed hydrogenation micro-interface reaction system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2987465A (en) * | 1958-06-20 | 1961-06-06 | Hydrocarbon Research Inc | Gas-liquid contacting process |
FR2529565B1 (en) * | 1982-07-02 | 1986-11-14 | Uop Inc | IMPROVED PROCESS FOR EXTRACTION OF COAL SOLVENT WITH HEAVY OIL |
US5094991A (en) * | 1983-08-29 | 1992-03-10 | Chevron Research Company | Slurry catalyst for hydroprocessing heavy and refractory oils |
US5108581A (en) | 1985-09-09 | 1992-04-28 | Exxon Research And Engineering Company | Hydroconversion of heavy feeds by use of both supported and unsupported catalysts |
US5372705A (en) * | 1992-03-02 | 1994-12-13 | Texaco Inc. | Hydroprocessing of heavy hydrocarbonaceous feeds |
-
2004
- 2004-09-20 FR FR0409936A patent/FR2875509B1/en not_active Expired - Lifetime
-
2005
- 2005-09-15 CA CA2519847A patent/CA2519847C/en active Active
- 2005-09-15 MX MXPA05009912A patent/MXPA05009912A/en active IP Right Grant
- 2005-09-16 PL PL05291928T patent/PL1637576T3/en unknown
- 2005-09-16 EP EP05291928.9A patent/EP1637576B1/en active Active
- 2005-09-19 RU RU2005129177/04A patent/RU2387698C2/en active
- 2005-09-20 US US11/229,706 patent/US20060060501A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
FR2875509A1 (en) | 2006-03-24 |
CA2519847C (en) | 2014-01-07 |
EP1637576A1 (en) | 2006-03-22 |
FR2875509B1 (en) | 2006-11-24 |
PL1637576T3 (en) | 2015-12-31 |
RU2005129177A (en) | 2007-04-10 |
MXPA05009912A (en) | 2006-04-24 |
US20060060501A1 (en) | 2006-03-23 |
RU2387698C2 (en) | 2010-04-27 |
CA2519847A1 (en) | 2006-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1637576B1 (en) | Hydroconversion of a heavy feedstock using a dispersed catalyst | |
EP3026097B1 (en) | Method for producing fuels such as heavy fuel oil from a heavy hydrocarbon feedstock using a separation between the hydrotreating step and the hydrocracking step | |
EP3018187B1 (en) | Process for converting petroleum feedstocks comprising an ebullating-bed hydrocracking stage, a maturation stage and a stage of separating the sediments for the production of fuel oils with a low sediment content | |
JP4874977B2 (en) | Recycling method of active slurry catalyst composition in heavy oil upgrade | |
EP2663616B1 (en) | Method for hydrotreating heavy hydrocarbon feedstocks using permutable reactors, including at least one step of short-circuiting a catalyst bed | |
EP3303522B1 (en) | Method for converting feedstocks comprising a hydrocracking step, a precipitation step and a sediment separation step, in order to produce fuel oils | |
EP2663615B1 (en) | Method for hydrotreating heavy hydrocarbon feedstocks using permutable reactors, including at least one step of gradual permutation | |
EP3018188B1 (en) | Process for converting petroleum feedstocks comprising a stage of fixed-bed hydrotreatment, a stage of ebullating-bed hydrocracking, a stage of maturation and a stage of separation of the sediments for the production of fuel oils with a low sediment content | |
WO2011042617A2 (en) | Method for hydroconverting heavy carbonaceous loads, including a bubbling bed technology and slurry technology | |
FR2951735A1 (en) | METHOD FOR CONVERTING RESIDUE INCLUDING MOBILE BED TECHNOLOGY AND BOILING BED TECHNOLOGY | |
FR2958657A1 (en) | METHOD OF HYDROCONVERSIONING OIL FILLERS VIA SLURRY TECHNOLOGY FOR RECOVERING METALS FROM THE CATALYST AND THE LOAD USING A COKEFACTION STEP | |
FR2958658A1 (en) | METHOD FOR HYDROCONVERSION OF PETROLEUM LOADS VIA SLURRY TECHNOLOGY FOR RECOVERING METALS FROM THE CATALYST AND THE LOAD USING A LEACHING STEP. | |
FR2958656A1 (en) | METHOD FOR HYDROCONVERSION OF PETROLEUM LOADS VIA SLURRY TECHNOLOGY FOR RECOVERING METALS FROM THE CATALYST AND THE LOAD USING AN EXTRACTION STEP | |
FR3027909A1 (en) | INTEGRATED PROCESS FOR THE PRODUCTION OF HEAVY FUEL TYPE FUELS FROM A HEAVY HYDROCARBONNE LOAD WITHOUT INTERMEDIATE SEPARATION BETWEEN THE HYDROTREATING STEP AND THE HYDROCRACKING STEP | |
WO2012085407A1 (en) | Method for converting hydrocarbon feedstock comprising a shale oil by hydroconversion in an ebullating bed, fractionation by atmospheric distillation and hydrocracking | |
FR2933711A1 (en) | CONVERSION PROCESS COMPRISING VISCOREDUCTION OF RESIDUE, THEN DESASPHALTAGE AND HYDROCONVERSION | |
CA2774169A1 (en) | Process for the hydroconversion of hydrocarbon feedstocks via slurry technology allowing the recovery of metals from the catalyst and feedstock using a gasification step | |
EP4367204A1 (en) | Hydroconversion of a hydrocarbon-based heavy feedstock in a hybrid ebullated-entrained bed, comprising premixing said feedstock with an organic additive | |
FR2933708A1 (en) | CONVERSION PROCESS COMPRISING HYDROCONVERSION OF THE LOAD THEN A VISCOREDUCTION AND A FRACTIONATION | |
EP4367206A1 (en) | Hydroconversion of a hydrocarbon-based heavy feedstock in a hybrid ebullated-entrained bed, comprising mixing said feedstock with a catalyst precursor containing an organic additive | |
EP4367207A1 (en) | Entrained-bed hydroconversion of a heavy hydrocarbon feedstock, comprising mixing said feedstock with a catalyst precursor containing an organic additive | |
EP4367205A1 (en) | Entrained-bed hydroconversion of a heavy hydrocarbon feedstock, comprising premixing said feedstock with an organic additive | |
WO2023117596A1 (en) | Hydroconversion in a bubbling or hybrid bubbling/entrained bed of a feedstock comprising a plastic fraction | |
WO2023165836A1 (en) | Ebullated bed or hybrid ebullated-entrained bed hydroconversion of a feedstock comprising a vegetable or animal oil fraction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20060922 |
|
AKX | Designation fees paid |
Designated state(s): FI IT PL SK |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
17Q | First examination report despatched |
Effective date: 20080328 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150326 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): FI IT PL SK |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 19713 Country of ref document: SK |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20160502 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20240926 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240909 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240904 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240924 Year of fee payment: 20 |