[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1629141B1 - Vorrichtung und verfahren zur steuerung der luftströme in einer anlage zur faserherstellung durch extrusion - Google Patents

Vorrichtung und verfahren zur steuerung der luftströme in einer anlage zur faserherstellung durch extrusion Download PDF

Info

Publication number
EP1629141B1
EP1629141B1 EP04752807.0A EP04752807A EP1629141B1 EP 1629141 B1 EP1629141 B1 EP 1629141B1 EP 04752807 A EP04752807 A EP 04752807A EP 1629141 B1 EP1629141 B1 EP 1629141B1
Authority
EP
European Patent Office
Prior art keywords
air
fibers
fiber
outlet
fiber flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04752807.0A
Other languages
English (en)
French (fr)
Other versions
EP1629141A4 (de
EP1629141A2 (de
Inventor
Arnold E. Wilkie
James Brang
Angel Antonio De La Hoz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hills Inc
Original Assignee
Hills Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hills Inc filed Critical Hills Inc
Publication of EP1629141A2 publication Critical patent/EP1629141A2/de
Publication of EP1629141A4 publication Critical patent/EP1629141A4/de
Application granted granted Critical
Publication of EP1629141B1 publication Critical patent/EP1629141B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D13/00Complete machines for producing artificial threads
    • D01D13/02Elements of machines in combination
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments

Definitions

  • Spunbond system 10 includes dual fiber extrusion apparatus for deposing fibers on a forming belt at two different locations.
  • Each apparatus includes polymer extruders 12 for respectively melting pellets of two different polymer components (e.g., for forming bicomponent fibers) prior to delivery to respective polymer filters 14.
  • Melt pumps and corresponding drives 16 meter the molten polymer streams into spin beams 18, such that the molten polymer is received by spin packs 20 within the spin beams in a controlled manner.
  • the molten polymer streams are distributed in the spin packs and extruded through a spinneret to form extruded fiber filaments 22 of selected cross-sectional geometric configurations.
  • quench air is blown onto the extruded filaments from the sides to at least partially quench the filaments, with some portion of the quench air being exhausted to the sides, as shown in Fig. 1 .
  • the quenched fibers enter a high speed slot aspirator 24, which draws and attenuates the fibers using compressed air. A portion of the quench air and some of the surrounding ambient room air become entrained with the fibers as they flow from the spinneret into the aspirator. The extruded fibers exit the aspirator along with a substantial volume of entrained air, including air introduced in the aspirator.
  • the drawn fibers Upon exiting the aspirator, the drawn fibers are deposited as a web onto a foraminous surface 26 (e.g., a continuous screen belt) and are collected and/or subjected to further conventional or other processing treatments (e.g., bonding, heat treatment, etc.).
  • a suction device 28 positioned below the foraminous surface draws in and exhausts a substantial portion of the air entrained with the filaments arriving at the foraminous surface.
  • Compaction rolls 30 can be used to compact the web to form a loosely bonded fabric.
  • Optional meltblown beam(s) 32 can be used to deposit meltblown filaments in conjunction with or separate from the spunbond filaments.
  • Typical bonding and finishing options include: calendar bonding, through-air bonding, chemical bonding, hydro-entangling, fiber splitting, needle punching, finish application, lamination, coating, and slitting and winding.
  • Fig. 1 The system shown in Fig. 1 is a so-called open system.
  • the filament draw is primarily produced by the quench air which is forced along with the fibers into a draw slot below the quench (a so-called closed system).
  • a so-called closed system An example of such a system is disclosed in U. S. Patent No. 5,814,349 .
  • the entrained air above the aspirator is due primarily to the quench air, the high speed filaments and the aspirator suction. Below the aspirator, the entrained air is due primarily to the high speed filaments and the high speed air exiting the aspirator as well as the high suction required through the foraminous belt.
  • the problem of handling the large volume of compressed air, quench air and room air induced into the aspirator, and the entrained air from within the room below the aspirator, has been and remains a serious problem despite nearly fifty years of development to try to control the excess air. There is simply too much air causing substantial filament and fabric disturbance, especially in modem high spinning speed processes.
  • the cooling in the precooling zone and in the aftercooling zone is adjusted such that the group of yarns is cooled within the aftercooling zone by the action of a coolant flow directed into the path of the yarn, so that the filaments of the group of yarns solidify in a solidification range within the aftercooling zone.
  • a melt spinning apparatus and a method for spinning a synthetic yarn are known, wherein the yarn is formed by combining a plurality of filaments and wound to a package by means of a takeup device downstream of the spinning apparatus.
  • a takeup device downstream of the spinning apparatus.
  • an inlet cylinder with a gas-permeable wall and a cooling tube are arranged downstream of the spinning apparatus.
  • the cooling tube connects to a suction device such that an air stream forms in the cooling tube in the direction of the advancing yam. This air stream assists the advance of the filaments and leads to a delayed cooling.
  • an air supply device is provided for generating an additional cooling air stream which flows in the axial direction of the cooling tube for cooling the filaments downstream of the inlet to the cooling tube.
  • U.S. Patent Publication US-A-6,444,151 B1 discloses a melt spinning apparatus for spinning continuous polymeric filaments including a first stage gas inlet chamber adapted to be located below a spinneret and optionally a second stage gas inlet chamber located below the first stage gas inlet chamber.
  • the gas inlet chambers supply gas to the filaments to control the temperature of the filaments.
  • the melt spinning apparatus also includes a tube located below the second stage gas inlet chamber for surrounding the filaments as they cool.
  • the tube may include an interior wall having a converging section, optionally followed by a diverging section.
  • a melt spun filament group cooling equipment which has an air conditioning unit in the closed coolant circuit formed by cooling shafts and coolant flow producer. Filaments from a spinning nozzle pass through an upper pre-cooling shaft and a lower post-cooling shaft connected together.
  • a coolant flow generator drives cooling gas through the shafts, the flow speed being selected to ensure that filaments are cooled only inside the post cooling shaft.
  • An air conditioning unit located at the lower end of the post-cooling shaft treats used gas and is included in a closed coolant with both shafts and the coolant flow generator.
  • the present invention relates to an apparatus for receiving extruded and drawn fibers and for controlling the flow of air in a fiber extrusion process as defined in claim 1. Further, the present invention relates to a method for controlling the flow of air in a fiber extrusion process as defined in claim 36. Finally, the present invention relates to a system for controlling air flow as defined in claim 38.
  • an apparatus for controlling the flow of air in a fiber extrusion process includes a fiber flow region between an inlet through which extruded fibers are received and an outlet through which the extruded fibers are discharged and at least one surface providing a boundary between the fiber flow region and another region, wherein the surface includes apertures permitting air to flow between the fiber flow region and the other region to control airflow at the outlet of the fiber flow region.
  • the apparatus can include a housing which contains at least one chamber, with the surface being an internal surface that forms a boundary between the fiber flow region and the chamber.
  • the airflow control device can be positioned between the outlet of the aspirator and the web-forming surface (e.g., foraminous belt or drum).
  • the airflow control device receives drawn filaments and process air from the aspirator at the inlet and discharges the filaments and remaining air, if any, at the outlet onto the web-forming surface.
  • the housing may be positioned relative to the aspirator to form an air gap between the inlet and the aspirator, and the length of the air gap can be adjustable.
  • the width of the inlet and the width of the outlet can be adjustable.
  • two adjacent plates may be moved relative to another so that apertures in one or the other or both can be positioned to effectively modify the size or shape of some or all of the combined openings, or even close the combined openings, etc.
  • Dampers would be another mechanism for effecting the desired modifications.
  • the chambers can .include an external wall with an opening or vent that permits ingress or egress of air into or out of the chamber.
  • the opening in the external wall can be located toward the outlet end of the housing for ducting air into an exhaust passage or duct extending from the chamber.
  • Another option is to place an opening or vent in the external wall near the inlet end of the housing to permit ingress of air into the chamber via the external wall, which is particularly useful in the aforementioned air recycling configuration.
  • the chamber can also include a bottom surface adjacent the outlet of the housing. The bottom surface can be substantially solid (i.e., no apertures), or the bottom surface can include apertures in communication with the chamber to permit ingress or egress of air via the bottom surface.
  • the airflow control device of the present invention can substantially reduce the suction typically required through the web-forming surface, which minimizes the criticality of the open area of the expensive forming wire while maximizing the capability of multi-laydowns, and the capability to make composites, even composites onto impervious or microporous substrates.
  • the device may reduce the energy costs required because of lower air handling and conditioning requirements, and the air can be recycled if economical.
  • the airflow control device also considerably reduces the noise caused by open airflow.
  • the airflow control device also provides the versatility to control filament velocity in web formation independent of a filament spinning velocity.
  • improved web formation can be achieved, particularly at higher spinning speeds, due to reduced air disturbance and a smoother laydown of fibers onto the foraminous surface, and improved fiber orientation can be obtained.
  • a method of controlling the flow of air in a fiber extrusion process includes: receiving extruded fibers at an inlet of an airflow control device; passing the extruded fibers through a fiber flow region of the airflow control device, wherein at least one surface provides a boundary between the fiber flow region and at least one other region; and discharging the extruded fibers through an outlet of the fiber control device, wherein the surface includes apertures permitting air to flow between the fiber flow region and the other region to control airflow at the outlet of the airflow control device.
  • the present invention overcomes the aforementioned problems associated with excess air in fiber extrusion systems in an innovative and relatively low cost manner by introducing a device and methods for controlling airflow either by separating at least a portion of entrained air from extruded fibers or directing the airflow in a more controlled manner.
  • the airflow control device controls the amount and velocity of air that is allowed to exit with the spun filaments into the fabric formation zone. This process allows for controlled recycling or other controlled handling of the bulk of the air.
  • the device can also be adjusted to cause the high speed yarn filaments to decelerate to a substantially lower velocity before exiting into the fabric formation zone, and minimizing or even eliminating entrained air that is generated below the aspirator in the prior art.
  • an air control device includes a housing having a generally inverted V-shape formed by two adjoined duct sections 102 and 104.
  • Each duct section has a somewhat triangular cross-sectional shape in the machine direction (i.e., the direction along which the fibers travel on the foraminous belt) and a generally rectangular cross-sectional shape in the cross direction (i.e., the horizontal direction perpendicular to the machine direction).
  • the duct sections are not limited to these cross-sectional shapes.
  • the walls of the duct sections can be constructed, for example, from sheet metal or the like.
  • Each duct section is essentially a chamber for receiving air, with the chamber being bounded by external lateral side walls 106 (at the cross directional ends of the duct sections), a top wall 108, a bottom wall 110, an external back wall 112, and an internal wall or plate 114 (see Fig. 4 ).
  • internal wall 114 includes perforations or apertures 115 for permitting airflow between the chamber and a fiber flow region within the airflow control device.
  • a slot-shaped outlet 122 extending in the cross direction is formed between the two duct sections at the lower end of the housing, centered in the machine direction. Fibers entering the airflow control device via inlet 116 travel along the fiber flow region within the housing and exit the airflow control device via outlet 122.
  • the width of outlet 122 is adjustable.
  • arc-shaped slots 124 and mating pins or bolts 126 respectively formed on the lateral side walls 106 of the two duct sections 102 and 104 can be used to select the width of the outlet by sliding the pins or bolts 126 to the appropriate position within slots 124.
  • the shape of the fiber flow region as well as the relative orientation of the internal walls 115 that bound the fiber flow region are affected by selection of the widths of the inlet and outlet via positioning of the respective pins and slots, which in turn impacts how the airflow control device handles incoming air.
  • bound(s) or “bounding” indicates that a surface or wall serves as at least a portion of or lies along a boundary of a region or like and does not necessarily suggest or require that surface completely surround or enclose a region or define the entire extent of the region.
  • duct sections 102 and 104 can be coupled to respective exhaust ducts 128 and 130, which in certain configurations can be used to remove air separated from the fibers.
  • the amount of air flowing into the exhaust ducts can be controlled (e.g., by adjustable baffles), and in certain configurations the passage to the exhaust ducts can be completely blocked or the exhaust ducts can be eliminated entirely.
  • Fig. 3 depicts the airflow control device 100 mounted below a compressed-air-powered slot aspirator 134 via mounting brackets 136 extending from aspirator 134, such that a vertical air gap exists between the outlet at the bottom of aspirator 134 and inlet 116 at the top of airflow control device 100.
  • the length of the vertical air gap impacts the amount of entrained air that enters inlet 116 from aspirator 134, with a greater air gap generally reducing the amount of entrained entering the airflow control device.
  • the length of the air gap is adjustable, and optionally the air gap can be eliminated altogether, as will be shown in a particular configuration below.
  • the perforated internal wall 114 of duct section 104 is shown in Fig. 4 as a flat plate extending substantially parallel to the fiber flow direction, with equally-sized round apertures 115 arranged in regular rows and columns distributed uniformly over the plate.
  • the orientation of the internal walls 114 can be altered by selecting the width of the inlet and outlet of the airflow control device.
  • the attributes of the apertures are not limited to the configuration shown in Fig. 4 , and the apertures need not be uniform with respect to any of these attributes.
  • the apertures need not have a uniform distribution across the internal walls 114, and the spacing, shape, and size may vary as desired or necessary to effect a certain airflow pattern.
  • a significant consideration in this regard is the ratio of open area to closed area (or total wall surface) resulting from the size and spacing of the apertures and how this ratio may vary over the wall surface.
  • the amount of open area is important, because it affects the pressure drop of the volume of air that passes through the device and significantly impacts the overall airflow control. While the internal wall 114 is shown in Fig.
  • the internal walls can be any internal surface having any suitable contour for producing a fiber flow region and chambers of a desired shape, including but not limited to curved surfaces and multiple planar surfaces at different angles.
  • the internal surfaces need not form a symmetric fiber flow region, and the internal walls can be positioned at different angles to yield an asymmetric fiber flow region and corresponding airflow, depending on the particular fiber laydown orientation sought.
  • a test airflow control device was constructed in accordance with the embodiment shown in Figs. 2-4 .
  • the test airflow device stands approximately 16 inches in height and is approximately 6.5 inches wide (in the cross machine direction).
  • the width of the outlet slot can be set on the order of 4 to 5 millimeters; however, it will be understood that the inlet and outlet widths are limited to any particular values.
  • This particular airflow control device was operated on a small spunbond pilot line which produced fabric approximately 4 inches wide. For commercial spunbond lines which produce fabrics to greater than 4 meters wide, a similarly designed airflow control device can be used, with the cross-directional width slightly exceeding the width of the fabric produced.
  • the airflow control device shown herein is only illustrative, and those skilled in the art will readily appreciate that alternative configurations and embodiments fall within the scope of the invention described. A number of configurations and variations will be described in connection with Figs. 5-10B .
  • a diagrammatic cross-sectional side view of an exemplary airflow control device is shown in Fig. 5 .
  • Features shown in Fig. 5 are not necessarily to scale, but show the relationship and configurability of the various parts of the device.
  • the speed at which fibers exit the airflow control device, the density and denier of the fibers, the laydown orientation of the fibers, and the amount and location of air exiting with the fibers can be controlled by varying the configuration of the airflow control device and its components.
  • the fiber flow region 150 and two substantially symmetric airflow control chambers 152 and 154 can be seen in Fig. 5 , with the internal walls 114 forming a boundary between the fiber flow region and the walls or chambers.
  • Internal walls 114 are illustrated with dashed lines to indicate that at least some portion of the internal walls includes apertures permitting airflow between the fiber flow region and the chambers.
  • the internal walls can have open area, solid area or combinations of both as required.
  • some portion or all of the bottom walls 110 of each chamber can also include apertures, as suggested by the dashed lines.
  • air or other gaseous or vapor material may be forced or pumped into the fiber flow region via one or more apertures or air vents in any desired direction (e.g., transverse, downstream, upstream, or vectorial combinations thereof) relative to fiber flow through the device.
  • the amount of air or other flow material admitted into the fiber flow region will depend upon the chemical or physical effects to be produced on the flowing fibers.
  • the nature of the inflowing material e.g., air, other gas, vapor, etc., with or without additives
  • the length of the vertical air gap between inlet 116 and aspirator 134 can be a fixed distance or can be adjustable.
  • the airflow control device can be attached below the aspirator slot (see Fig. 3 ) with or without a small air gap between the aspirator slot and the device inlet, or the air gap can be part of the airflow control device itself.
  • the slot-shaped inlet can be adjusted to a desired width in the machine direction, such as in the manner described above, or the inlet width can be fixed. It should be noted that the device can be part of the aspirator structure, if desired, so that there would be no gap between the device and the aspirator.
  • the internal walls 114 are shown as diverging in the fiber flow direction in Fig. 5 , the internal walls can be arranged in parallel or in a converging orientation, and the distance between the internal walls optionally can be adjusted to get the desire air and fiber flow at the inlet and outlet (as suggested by the arrows shown in Fig. 5 ). If desirable for certain airflow control conditions, the internal walls can be arranged asymmetrically with respect to the fiber flow direction, resulting in an asymmetric fiber flow region and asymmetric chambers. This may be desirable where a particular machine direction/cross direction orientation is desired. According to another configuration, one of the internal walls can be solid (without apertures) and angled such that the fiber tend to flow toward the solid wall rather than the perforated wall. In this case, only one chamber is necessary, since air will not pass though the solid wall.
  • the setting of the internal plates (parallel, converging or diverging position) and the configuration of the chambers have a significant effect on the behavior of the flow (velocities, pressure zones, etc.), the amount of air coming into the process (reduce or prevent), the amount of air going out (to the foraminous belt, room, out of the process area, etc), and the amount of air being recycled within the chamber to the process. Since air is the tension media in the fiber laydown process, control of airflows provides a better control of the fiber tension, the fiber orientation, and the amount of air in the laydown.
  • the internal walls can be an internal surface having any shape that is suitable to the extrusion process being performed.
  • the internal surface could be a single continuous wall having a conical, frusto-conical, cylindrical, polygonal, elliptical, convex, concave, or other shape as appropriate.
  • the minimum requirement for the airflow control device of the present invention is a fiber flow region between and inlet and outlet with at least one perforated surface (i.e., a surface with apertures) providing a boundary between the fiber flow region and at least one other region, where the apertures permit air to flow between the fiber flow region and the other region to control airflow at the outlet.
  • An external housing then makes the "other" region into a partially or fully enclosed chamber with potentially greater airflow control options. Where the external housing is omitted, other mechanisms can be used to achieve greater airflow control, such as surfaces positioned near but not necessarily attached to the airflow control device or the positioning of separate suction devices near the exterior of the fiber flow region.
  • the "other" region may be the ambient environment in which the system is located.
  • the outlet 122 can have a fixed size or can be adjustable to a desired width in the machine direction (i.e., the spacing of the gap between the duct sections at the outlet).
  • the fibers may collect near the outlet or form a plug-like collection.
  • the surfaces of the outlet optionally can be spring loaded or otherwise actuated to maintain a controlled force against the filament collection or plug.
  • Another option is to include adjustable speed driven roller(s) at or near the outlet.
  • Yet another option is to form internal walls 114 using movable perforated belts having adjustable speed. Suction supplied from below the foraminous surface can be used in whole or part to pull the fibers from the airflow control device where substantially all of the air is removed from the fibers.
  • Figs. 8-10A illustrate the air and fiber flows resulting from a number of representative configurations of the airflow control device of the present invention.
  • duct sections 102 and 104 are configured with openings at the outlet end of the external back walls 112, with the openings leading to exhaust ducts in an arrangement similar to that shown in Figs. 2-4 .
  • Internal walls 114 diverge in the fiber flow direction, with apertures distributed throughout the walls 114.
  • An air gap exists between the device inlet 116 and the outlet slot of aspirator 134. In this configuration, most of the air entering the chambers via the apertures flows through the exhaust ducts and is removed from the process.
  • a small amount of the air entering the chambers near the inlet may circulate and return to the fiber flow region. Due to the divergence of the internal walls 114, at least a portion of the air entering the device inlet travels through the fiber flow region and exits with the fibers at the outlet. The amount of air discharged from the outlet depends on the specific configuration of the airflow control device and the spunbond process.
  • the filaments exit the airflow control device and are deposited onto the foraminous belt or drum in the form of an unbonded spun web, where the web is maintained on the moving belt or drum by a minimum amount of suction or other technique for holding the web on the foraminous collector.
  • the unbonded web is transported by the moving foraminous surface to compaction and/or bonding stations, and ultimately to a winder or other collection device. Any air exiting the outlet can be drawn in and evacuated by the suction unit positioned below the foraminous belt.
  • Fig. 9 differs from that in Fig. 8 in that internal walls 114 converge in the fiber flow direction, such that virtually all incoming air is diverted into the chambers and separated from the fibers. Additionally, the air gap between the inlet 116 and aspirator 134 has been eliminated entirely. Due to the minimal amount of air exiting the outlet in this configuration, the filaments are decelerated to a much lower speed at the outlet and may partially block the outlet, further causing the air to exit the fiber flow region via the chambers and exhaust ducts. Such air can then be ducted from the immediate area of the spinning section where it can be recycled or otherwise handled in a controlled manner.
  • airflow can be controlled such that the filaments exiting the aspirator are caused to decelerate and essentially form a loose collection or plug of filaments, impeding the flow of air downstream.
  • the airflow control device can be designed so that as the fibers build up, they close off more and more of the apertures, causing an increase in pressure within the device, which eventually overcomes the frictional force holding the fibers. When this occurs, some amount of fibers will be pushed out of the device until there is no longer sufficient pressure inside the device to push additional filaments out. New fibers entering the fiber flow region will start to close off the apertures again, setting up a continuous process of fibers moving in and out of the device, simulating a pneumatic stuffer box texturing process.
  • the entrained air provides tension on the filaments as they are laid on the foraminous belt. Where substantially all of the air is separated from the fibers, as with parallel or converging plates, tension is instead provided by the fiber contacting the surfaces of the internal plates. Nevertheless, it may be desirable to allow at least some amount of air to exit the outlet to prevent development of a plug of fibers and to provide additional control of the fibers in the laydown process. This result can be achieved by adjusting the size of the outlet relative to the size/area of the apertures (or others of the aforementioned parameters) such that a desired volume of air remains with the fiber to maintain a continuous flow.
  • Fig. 10A illustrates a useful embodiment of the invention in which the advantages mentioned above related to handling and control of the air can be obtained by configuring the airflow control device to keep virtually all of the air in the system while controlling the airflow by re-circulating air through the chambers.
  • external back walls 112 include air vents at the inlet end, allowing air to enter the chambers 152 and 154. This incoming air can aid in either accelerating or decelerating the main airflow in the fiber flow region and ultimately can impact the final fiber denier. Air vents or passages at the outlet end of the external back walls 112 are closed or eliminated entirely, such that little or no air is removed from the process via the side chambers. As shown in Fig.
  • internal plates 115 include apertures at an inlet end portion and at an outlet end portion, but the center portion of each plate is substantially solid (no apertures or substantially fewer apertures).
  • Bottom walls 110 are angled upward in the direction toward the fiber flow region 150 and optionally can include apertures to permit air to enter the chambers along the bottom of the device. In operation, air entering the chambers from the apertures (primarily from the lower apertures), flows upward within the chamber, mixes with room air entering via the vents, and reenters the fiber flow region via the upper apertures, resulting in a recycling of the airflow.
  • the amount of airflow reentering the fiber flow region from the chambers can have a significant impact on fiber denier, since an incoming airflow near the inlet can accelerate the fiber flow speed while air flowing out of the fiber flow region near the inlet can decelerate the fiber flow speed, where a higher fiber flow speed could potentially reduce the resulting filament denier.
  • the overall volume of air exiting the device remains substantial, since virtually no air is removed from the process via the chambers; however, the circulation and recycling of the airflow through the chambers results in a more manageable airflow pattern distributed in a controlled manner at the outlet and at the foraminous belt where the fiber web is formed.
  • the shape of the chambers and the positioning of the apertures can be tailored to promote recycling of the airflow having a desired flow pattern.
  • the divergent arrangement of the internal walls and the angling of the bottom walls provides more area at the bottom of the airflow control device to distribute air, which can be more smoothly suctioned into the table.
  • the arrangement shown in Fig. 10A is also advantageous, because the airflow maintains tension on the fibers through the laydown process, thereby permitting a controlled laydown.
  • the airflow control device of the invention can be particularly useful in improving airflow conditions in higher speed extrusion processes.
  • the device can also be useful where a particular machine direction/cross direction (md/cd) web orientation is desired, since such orientation generally results from fiber flow conditions at the point of deposition on the foraminous surface.
  • md/cd machine direction/cross direction
  • the invention has many other useful features. For example, by reducing the amount of entrained air in the process, the airflow control device can reduce or eliminate the suction required through the forming table or drum, which minimizes the criticality of the open area of the expensive forming wire, while maximizing the capability of multi-laydowns, and the capability to make composites, even composites onto impervious or microporous substrates. Further, in certain configurations, the device can greatly simplify the air handling system by reducing the problem of entrained room air. Likewise, the device may reduce the energy costs required because of lower air handling and conditioning requirements, and the air can be recycled if economical. The airflow control device also considerably reduces the noise caused by open airflow.
  • the invention provides the versatility to control filament velocity in web formation independent of a filament spinning velocity.
  • improved web formation can be achieved, particularly at higher spinning speeds, due to reduced air disturbance and a smoother laydown of fibers onto the foraminous surface, and improved fiber orientation can be obtained.
  • the ability to separate a selected amount of air from the fibers allows the option to generate a zone of lower or no tension in the fibers for a finite residence time prior to web formation or fabric bounding.
  • the airflow control device of the present invention has been described primarily in the context of an open spunbond system; however, the invention is not limited to this particular eonrext While the present invention is described by reference to an open system, it could be used equally well in a closed system. Further, the airflow control device can be configured for use in meltblown processes.
  • a meltblown process differs from a spunbond process in that extruded polymer filaments, upon emerging from an extruder die, are immediately blown with a high velocity, heated medium (e.g., air) onto a suitable support surface.
  • extruded but substantially solidified filaments in a spunbond process are drawn and attenuated utilizing a suitable drawing unit (e.g., an aspirator or godet rolls) prior to being laid down on a support surface.
  • a suitable drawing unit e.g., an aspirator or godet rolls
  • meltblown processes are typically utilized in forming fibers having diameters on a micron level, whereas spunbond processes are typically employed to produce fibers having normal textile dimensions.
  • the invention is not limited to processes where the fibers are immediately deposited on a surface to form a web.
  • the airflow control device can be used in systems where the extruded fibers (e.g., spunbond or meltblown) are wound up on a mandrel in the manufacture a cartridge filter or the like.
  • Another option is to directly feed spunbond or meltblown fibers discharged from the airflow control device to a lapping machine to make a non-woven web with multiple layers of lapped web.
  • air egressing via the apertures in the fiber flow region can be fed back into the region either as a result of pressure differentials existing at different longitudinal flow locations adjacent the flowing fibers or by forcefully directing air back into the fiber flow region. He feedback air can be supplemented by additional air or other fluid before being fed back.
  • additional fluid can be delivered through the apertures into the fiber flow region to produce desired chemical and physical effects on the fibers.
  • the additional fluid can be air, other gases, vapor, or any of these bearing an additive to produce the desired effects on the fibers.
  • Additives my be used, for example, as drying agents, wetting agents, pH modifiers, coloring agents, etc.
  • the direction of flow of fluid entering the fiber flow region via the apertures in the sidewalls can be transverse, upstream or downstream (or some vectorial combination thereof) relative to the fiber flow direction, again depending on the effects to be produced on the fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Claims (40)

  1. Eine Vorrichtung zur Aufnahme extrudierter und gezogener Fasern und zur Steuerung eines Luftstroms in einem Faserextrudiervorgang, wobei die Vorrichtung umfasst:
    ein Faserfließgebiet (150) zwischen einem Einlass (116), über welchen extrudierte und gezogene Fasern aufgenommen werden, und einem Auslass (122), über welchen die extrudierten und gezogenen Fasern abgeführt werden;
    mindestens eine Oberfläche (114), die eine Grenze zwischen dem Faserfließgebiet (150) und mindestens einem anderen Gebiet bildet, wobei die mindestens eine Oberfläche (114) Öffnungen (115) enthält, die ein Strömen von Luft zwischen dem Faserfließgebiet (150) und dem mindestens einen anderen Gebiet zur Steuerung der Luftströmung an dem Auslass (122) des Faserfließgebiets (150) ermöglichen; und
    ein Gehäuse, das den Einlass (116), über welchen extrudierte Fasern aufgenommen werden, und den Auslass (122) enthält, über welchen die extrudierten Fasern abgeführt werden;
    wobei die mindestens eine Oberfläche (114) eine Grenze zwischen dem Faserfließgebiet (150) und mindestens einer Kammer (152, 154) in dem Gehäuse derart bildet, dass die Öffnungen (115) in der mindestens einen Oberfläche (114) ein Strömen von Luft zwischen dem Faserfließgebiet (150) und der mindestens einen Kammer (152, 154) in dem Gehäuse zur Steuerung des Luftstroms an dem Auslass (122) des Faserfließgebiets ermöglichen.
  2. Die Vorrichtung nach Anspruch 1, wobei die mindestens eine Oberfläche (114) eine erste und eine zweite Wand enthält, und wobei die erste und/oder die zweite Wand Öffnungen (115) aufweisen.
  3. Die Vorrichtung nach Anspruch 2, wobei die erste und die zweite Wand im wesentlichen parallel sind.
  4. Die Vorrichtung nach Anspruch 2, wobei die erste und die zweite Wand in Richtung des Fließens der Fasern zusammenlaufend sind.
  5. Die Vorrichtung nach Anspruch 2, wobei die erste und die zweite Wand in Richtung des Fließens der Fasern auseinanderlaufend sind.
  6. Die Vorrichtung nach einem der Ansprüche 2 bis 5, wobei der Winkel oder der Abstand zwischen der ersten und der zweiten Wand einstellbar sind.
  7. Die Vorrichtung nach einem der Ansprüche 2 bis 6, wobei die erste und die zweite Wand im wesentlichen eben sind.
  8. Die Vorrichtung nach einem der Ansprüche 2 bis 6, wobei die erste und die zweite Wand gekrümmte Flächen sind.
  9. Die Vorrichtung nach einem der Ansprüche 2 bis 8, wobei entweder die erste oder die zweite Wand Öffnungen enthält.
  10. Die Vorrichtung nach einem der Ansprüche 2 bis 9, wobei die erste und die zweite Wand in Bezug auf die Richtung des Fließens der Fasern asymmetrisch angeordnet sind.
  11. Die Vorrichtung nach einem der Ansprüche 1 bis 10, wobei die Öffnungen (115) ungleichmäßig über die mindestens eine Oberfläche verteilt sind.
  12. Die Vorrichtung nach einem der Ansprüche 1 bis 10, wobei die Öffnungen. (115) im Wesentlichen gleichmäßig über die mindestens eine Oberfläche verteilt sind.
  13. Die Vorrichtung nach einem der Ansprüche 1 bis 12, wobei die Öffnungen (115) in der mindestens einen Oberfläche (114) in Form und/oder Größe und/oder Abstand und/oder Verteilung über die mindestens eine Oberfläche (114) variieren.
  14. Die Vorrichtung nach einem der Ansprüche 1 bis 13, wobei die Vorrichtung ausgebildet ist, am Einlass gezogene Fasern, die von einem Saugapparat (134) abgegeben werden, aufzunehmen.
  15. Die Vorrichtung nach einem der Ansprüche 1 bis 14, wobei die Vorrichtung ausgebildet ist, die extrudierten Fasern auf einer, kleine Öffnungen aufweisenden Oberfläche zur Bildung eines Vliesstoffes abzuscheiden.
  16. Die Vorrichtung nach einem der Ansprüche 1 bis 15, wobei die Größe des Einlasses (116) verstellbar ist.
  17. Die Vorrichtung nach einem der Ansprüche 1 bis 16, wobei die Größe des Auslasses (122) verstellbar ist.
  18. Die Vorrichtung nach einem der Ansprüche 1 bis 17, wobei die Vorrichtung Bestandteil eines Spinn-Bond-Systems ist.
  19. Die Vorrichtung nach einem der Ansprüche 1 bis 17, wobei die Vorrichtung Bestandteil eines Heißluftzieh-Systems ist.
  20. Die Vorrichtung nach einem der Ansprüche 1 bis 19, wobei die von dem Auslass abgeführten Fasern direkt auf eine Spindel aufgewickelt sind.
  21. Die Vorrichtung nach einem der Ansprüche 1 bis 19, wobei die von dem Auslass (122) abgeführten Fasern direkt auf eine Läppmaschine aufgewickelt sind.
  22. Die Vorrichtung nach einem der Ansprüche 1 bis 21, wobei die mindestens eine Oberfläche (114) eine erste Wand und eine zweite Wand enthält, und wobei die erste und/oder die zweite Wand Öffnungen (115) aufweisen, und wobei die mindestens eine Kammer (152, 154) eine erste Kammer und eine zweite Kammer umfasst, die mit dem Faserfließgebiet (150) entsprechend über die erste Wand und die zweite Wand in Verbindung stehen.
  23. Die Vorrichtung nach Anspruch 22, wobei die mindestens eine Kammer (152, 154) eine externe Wand (112) mit einer Öffnung (132) aufweist, die Eintritt oder Austritt von Luft über die externe Wand (112) ermöglicht.
  24. Die Vorrichtung nach Anspruch 23, wobei die Öffnung (132) in der externen Wand (112) das Leiten von Luft in einen Absaugdurchlass (128, 130) ermöglicht, der sich von der mindestens einen Kammer (152, 154) erstreckt.
  25. Die Vorrichtung nach Anspruch 23 oder 24, wobei die Öffnung (132) in der externen Wand (112) in Richtung eines Einlassendes des Gehäuses angeordnet ist, um den Eintritt von Luft in die mindestens eine Kammer (152, 154) über die externe Wand (112) zu ermöglichen.
  26. Die Vorrichtung nach einem der Ansprüche 22 bis 25, wobei das Gehäuse mindestens eine Bodenfläche (110) benachbart zu dem Auslass (122) aufweist.
  27. Die Vorrichtung nach Anspruch 26, wobei die mindestens eine Bodenfläche (110) Öffnungen (115) aufweist, die mit der mindestens einen Kammer (152, 154) in Verbindung stehen, wobei die Öffnungen (115) Eintritt oder Austritt von Luft über die mindestens eine Bodenfläche (110) ermöglichen.
  28. Die Vorrichtung nach Anspruch 26, wobei die mindestens eine Bodenfläche (110) eine nicht durchstoßene Oberfläche ist.
  29. Die Vorrichtung nach einem der Ansprüche 22 bis 28, wobei die mindestens eine Oberfläche (114) Öffnungen (115) an einem Einlassendbereich und einen Auslassendbereich aufweist, wobei die mindestens eine Oberfläche (114) ferner einen im wesentlichen massiven zentralen Bereich ohne Öffnungen aufweist.
  30. Die Vorrichtung nach Anspruch 29, wobei Luft von dem Faserfließgebiet (150) zu der mindestens einen Kammer (152, 154) durch die Öffnungen (115) in dem Auslassendbereich und von der mindestens einen Kammer (152, 154) zu dem Faserfließgebiet (150) durch die Öffnungen (115) in dem Einlassendbereich zirkuliert.
  31. Die Vorrichtung nach einem der Ansprüche 22 bis 30, wobei das Gehäuse so angeordnet ist, dass ein Luftspalt zwischen dem Einlass (116) und einem Saugapparat (134) gebildet ist.
  32. Die Vorrichtung nach Anspruch 31, wobei die Länge des Luftspalts verstellbar ist.
  33. Die Vorrichtung nach einem der Ansprüche 1 bis 32, wobei Wärme oder Feuchtigkeit oder ein anderer Zusatz den Fasern in dem Faserfließgebiet (150) oder zwischen dem Auslass (122) des Faserfließgebiets (150) und einer Gewebe bildenden Oberfläche zugeführt werden.
  34. Die Vorrichtung nach einem der Ansprüche 1 bis 33, wobei das mindestens eine andere Gebiet die Umgebung ist, in der die Vorrichtung aufgestellt ist.
  35. Die Vorrichtung nach Anspruch 14, die ferner einen Luftspalt zwischen dem Einlass (116) und dem Saugapparat (134) aufweist.
  36. Ein Verfahren zur Steuerung des Strömens von Luft in einem Faserextrudiervorgang mit den Schritten:
    Aufnehmen extrudierter und gezogener Fasern an einem Einlass (116) einer Luftstromsteuereinrichtung (100);
    Führen der extrudierten und gezogenen Fasern durch ein Faserfließgebiet (150) der Luftstromsteuereinrichtung (100), wobei mindestens eine Oberfläche (114) eine Grenze zwischen dem Faserfließgebiet (150) und mindestens einem anderen Gebiet bildet; und
    Abführen der extrudierten und gezogenen Fasern durch einen Auslass (122) der Luftstromsteuereinrichtung (100), wobei die Oberfläche Öffnungen (115) aufweist, die ein Strömen von Luft zwischen dem Faserfließgebiet (150) und dem anderen Gebiet zur Steuerung des Luftstroms an dem Auslass (122) der Luftstromsteuereinrichtung (100) ermöglichen;
    wobei die mindestens eine Oberfläche (114) eine Grenze zwischen dem Faserfließgebiet (150) und mindestens einer Kammer (152, 154) in einem Gehäuse derart bildet, dass die Öffnungen (115) in der mindestens einen Oberfläche (114) ein Strömen von Luft zwischen dem Faserfließgebiet (150) und der mindestens einen Kammer (152, 154) in dem Gehäuse zur Steuerung des Luftstroms an dem Auslass (122) des Faserfließgebiets (150) ermöglichen, wobei das Gehäuse den Einlass (116), über welchen extrudierte Fasern aufgenommen werden, und den Auslass (122), über welchen die extrudierten Fasern abgeführt werden, enthält.
  37. Das Verfahren nach Anspruch 36, wobei am Einlass gezogene Fasern aufgenommen werden, die von einem Saugapparat (134) abgegeben werden.
  38. Ein Faserextrudiersystem zur Steuerung eines Luftstroms, wobei das System umfasst:
    einen Spinnbalken (18) oder einen Schmelzblas-Balken (32);
    eine Luftstromsteuereinrichtung (100) zur Aufnahme extrudierter Fasern und zur Steuerung eines Luftstroms in einem Faserextrudiervorgang, wobei die Luftstromsteuereinrichtung (100) umfasst:
    ein Faserfließgebiet (150) zwischen einem Einlass (116), über welchen extrudierte Fasern aufgenommen werden, und einem Auslass (122), über welchen die extrudierten Fasern abgeführt werden;
    mindestens eine Oberfläche (114), die eine Grenze zwischen dem Faserfließgebiet (150) und mindestens einem anderen Gebiet bildet, wobei die mindestens eine Oberfläche (114) Öffnungen (115) aufweist, die ein Strömen von Luft zwischen dem Faserfließgebiet (150) und dem mindestens einen anderen Gebiet zur Steuerung des Luftstroms an dem Auslass (122) des Faserfließgebiets (150) ermöglichen; und
    eine Gewebe bildende Oberfläche (26), auf der die extrudierten Fasern zur Bildung eines Vliesstoffes abgeschieden werden; und
    ein Gehäuse, das den Einlass (116), über welchen extrudierte Fasern aufgenommen werden, und den Auslass (122), über welchen die extrudierten Fasern abgeführt werden, enthält;
    wobei die mindestens eine Oberfläche (114) eine Grenze zwischen dem Faserfließgebiet (150) und mindestens einer Kammer (152, 154) in dem Gehäuse derart bildet, dass die Öffnungen (115) in der mindestens einen Oberfläche (114) ein Strömen von Luft zwischen dem Faserfließgebiet (150) und der mindestens einen Kammer (152, 154) in dem Gehäuse zur Steuerung eines Luftstroms an dem Auslass (122) des Faserfließgebiets (150) ermöglichen.
  39. Das Faserextrudiersystem nach Anspruch 38, das ferner umfasst:
    eine Zieheinheit zum Ziehen der extrudierten Fasern derart, dass die Luftstromsteuereinrichtung (100) extrudierte und gezogene Fasern aufnimmt.
  40. Das Faserextrudiersystem nach Anspruch 38 oder 39, wobei die Zieheinheit ein Saugapparat (134) ist, und wobei die Luftstromsteuereinrichtung (100) gezogene Fasern und Prozessluft aus dem Saugapparat (134) an dem Einlass (116) aufnimmt und die Fasern und restliche Luft, falls vorhanden, an dem Auslass (122) auf die Gewebe bildende Oberfläche (26) ausgibt.
EP04752807.0A 2003-05-20 2004-05-20 Vorrichtung und verfahren zur steuerung der luftströme in einer anlage zur faserherstellung durch extrusion Expired - Lifetime EP1629141B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US47171003P 2003-05-20 2003-05-20
PCT/US2004/015860 WO2004104485A2 (en) 2003-05-20 2004-05-20 Methods and apparatus for controlling airflow in a fiber extrusion system

Publications (3)

Publication Number Publication Date
EP1629141A2 EP1629141A2 (de) 2006-03-01
EP1629141A4 EP1629141A4 (de) 2008-08-20
EP1629141B1 true EP1629141B1 (de) 2013-12-25

Family

ID=33476876

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04752807.0A Expired - Lifetime EP1629141B1 (de) 2003-05-20 2004-05-20 Vorrichtung und verfahren zur steuerung der luftströme in einer anlage zur faserherstellung durch extrusion

Country Status (4)

Country Link
US (1) US7037097B2 (de)
EP (1) EP1629141B1 (de)
JP (1) JP4795243B2 (de)
WO (1) WO2004104485A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20041137A1 (it) * 2004-06-04 2004-09-04 Fare Spa Apparecchiatura per il trattamento di filati sintetici
US20090194899A1 (en) * 2004-07-30 2009-08-06 Invista North America S.A. R.L. Adjustable air shield for skewed godet rolls
CN101184872B (zh) * 2005-05-23 2011-10-05 3M创新有限公司 利用来自辅助歧管的流体流进行聚合材料熔喷的方法和设备
US20070205530A1 (en) * 2006-03-02 2007-09-06 Nordson Corporation Apparatus and methods for distributing a balanced air stream to an extrusion die of a meltspinning apparatus
CN101535537B (zh) * 2006-11-10 2011-01-26 欧瑞康纺织有限及两合公司 用于熔融纺制和冷却合成单丝的方法及装置
WO2008071658A2 (en) * 2006-12-12 2008-06-19 Oerlikon Textile Gmbh & Co. Kg Method and device for melt spinning and cooling synthetic filaments
US8246898B2 (en) 2007-03-19 2012-08-21 Conrad John H Method and apparatus for enhanced fiber bundle dispersion with a divergent fiber draw unit
DE102008051836B4 (de) * 2008-10-17 2012-09-13 Carl Freudenberg Kg Verfahren zur Herstellung von Spinnvliesen
US8501644B2 (en) * 2009-06-02 2013-08-06 Christine W. Cole Activated protective fabric
JP5738058B2 (ja) * 2010-06-29 2015-06-17 キヤノン株式会社 インクジェット記録媒体
GB201616932D0 (en) * 2016-10-05 2016-11-16 British American Tobacco (Investments) Limited And Tobacco Research And Development Institute (Propr Mathod and equipment for gathering fibres
EP3600856B1 (de) 2017-03-24 2023-06-07 British American Tobacco (Investments) Limited Verfahren und vorrichtung zur herstellung von rohren aus fasermaterial
CN111155240B (zh) * 2020-01-22 2024-07-16 宏大研究院有限公司 一种用于纺粘非织造布设备的切向补风装置
CN117026397B (zh) * 2023-10-09 2023-12-26 南通摩瑞纺织有限公司 一种纺丝冷却装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042170A (de) * 1973-08-16 1975-04-17

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3062611A (en) * 1959-10-26 1962-11-06 Eastman Kodak Co Method of making a roughened tow
US4492557A (en) * 1983-07-19 1985-01-08 Allied Corporation Filament quenching apparatus
EP0217097A3 (de) * 1985-08-31 1988-02-17 b a r m a g Barmer Maschinenfabrik Aktiengesellschaft Spinnschacht mit perforierter Teillänge in Düsennähe
US4712988A (en) * 1987-02-27 1987-12-15 E. I. Du Pont De Nemours And Company Apparatus for quenching melt sprun filaments
US5976431A (en) 1993-12-03 1999-11-02 Ronald Mears Melt spinning process to produce filaments
DE4409940A1 (de) * 1994-03-23 1995-10-12 Hoechst Ag Verfahren zum Verstrecken von Filamentbündeln in Form eines Fadenvorhanges, dafür geeignete Vorrichtung sowie deren Verwendung zur Herstellung von Spinnvliesen
JPH08218263A (ja) * 1995-02-10 1996-08-27 Asahi Chem Ind Co Ltd 不織布の製造方法
JP3259568B2 (ja) * 1995-02-24 2002-02-25 東レ株式会社 合成繊維の溶融紡糸方法
DE19521466C2 (de) * 1995-06-13 1999-01-14 Reifenhaeuser Masch Anlage für die Herstellung einer Spinnvliesbahn aus thermoplastischen Endlosfäden
DE19620379C2 (de) 1996-05-21 1998-08-13 Reifenhaeuser Masch Anlage zur kontinuierlichen Herstellung einer Spinnvliesbahn
US5935512A (en) * 1996-12-30 1999-08-10 Kimberly-Clark Worldwide, Inc. Nonwoven process and apparatus
TW476818B (en) * 1998-02-21 2002-02-21 Barmag Barmer Maschf Method and apparatus for spinning a multifilament yarn
WO2000005439A1 (de) 1998-07-23 2000-02-03 Barmag Ag Spinnvorrichtung und -verfahren zum spinnen eines synthetischen fadens
US6444151B1 (en) * 1999-04-15 2002-09-03 E. I. Du Pont De Nemours And Company Apparatus and process for spinning polymeric filaments
DE50005349D1 (de) 1999-09-07 2004-03-25 Barmag Barmer Maschf Verfahren zum schmelzspinnen
DE10046611A1 (de) 1999-09-21 2001-03-29 Barmag Barmer Maschf Vorrichtung zum Abkühlen einer Filamentschar

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042170A (de) * 1973-08-16 1975-04-17

Also Published As

Publication number Publication date
WO2004104485A2 (en) 2004-12-02
US20050008728A1 (en) 2005-01-13
JP2007502377A (ja) 2007-02-08
US7037097B2 (en) 2006-05-02
EP1629141A4 (de) 2008-08-20
EP1629141A2 (de) 2006-03-01
JP4795243B2 (ja) 2011-10-19
WO2004104485A3 (en) 2005-02-17

Similar Documents

Publication Publication Date Title
EP1629141B1 (de) Vorrichtung und verfahren zur steuerung der luftströme in einer anlage zur faserherstellung durch extrusion
EP1425442B1 (de) Vorrichtung zur herstellung von thermoplastischen vliesstoffen und verbundstoffen
US4340563A (en) Method for forming nonwoven webs
US4405297A (en) Apparatus for forming nonwoven webs
US7001567B2 (en) Melt spinning apparatus and process for making nonwoven webs
JP3704522B2 (ja) 不織繊維ウェブの連続製造用装置
JP4204548B2 (ja) 紡糸兼巻取り装置
EP1939334B1 (de) Vorrichtung und Prozess zur Herstellung einer Spinnvliesmatte
US6338814B1 (en) Spunbond web formation
CN1043911C (zh) 借助空气力输送和铺设连续丝线的方法和装置
JP4488980B2 (ja) 熱可塑性合成樹脂製のフィラメントから成る不織布ウエブを連続製造する装置
US5360589A (en) Process for producing synthetic filaments
US8206640B2 (en) Process for collection of continuous fibers as a uniform batt
KR100225086B1 (ko) 합성엔드리스 필라멘트의 제조방법 및 장치
RU2732563C1 (ru) Способ и устройство для производства нетканых материалов из бесконечных элементарных нитей
JP2006528283A (ja) 溶融紡糸、冷却及び巻取り装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051220

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20080722

17Q First examination report despatched

Effective date: 20081119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: D01D 5/092 20060101AFI20130327BHEP

Ipc: D01D 13/02 20060101ALI20130327BHEP

INTG Intention to grant announced

Effective date: 20130429

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131011

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 646715

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004044090

Country of ref document: DE

Effective date: 20140213

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DA VINCI PARTNERS LLC, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131225

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 646715

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140428

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004044090

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140520

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004044090

Country of ref document: DE

Effective date: 20140926

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140520

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131225

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040520

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230412

Year of fee payment: 20

Ref country code: FR

Payment date: 20230411

Year of fee payment: 20

Ref country code: DE

Payment date: 20230331

Year of fee payment: 20

Ref country code: CH

Payment date: 20230602

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 602004044090

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL