EP1621730B1 - Cooled turbomachinery element and casting method thereof - Google Patents
Cooled turbomachinery element and casting method thereof Download PDFInfo
- Publication number
- EP1621730B1 EP1621730B1 EP04017673A EP04017673A EP1621730B1 EP 1621730 B1 EP1621730 B1 EP 1621730B1 EP 04017673 A EP04017673 A EP 04017673A EP 04017673 A EP04017673 A EP 04017673A EP 1621730 B1 EP1621730 B1 EP 1621730B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- cooling passage
- moving blade
- turbine moving
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005266 casting Methods 0.000 title abstract description 11
- 238000000034 method Methods 0.000 title abstract description 6
- 238000001816 cooling Methods 0.000 claims abstract description 83
- 239000012809 cooling fluid Substances 0.000 claims abstract description 40
- 238000012546 transfer Methods 0.000 description 14
- 238000002485 combustion reaction Methods 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012356 Product development Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/14—Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
- F01D11/20—Actively adjusting tip-clearance
- F01D11/24—Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D25/00—Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
- F01D25/08—Cooling; Heating; Heat-insulation
- F01D25/12—Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23M—CASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
- F23M5/00—Casings; Linings; Walls
- F23M5/08—Cooling thereof; Tube walls
- F23M5/085—Cooling thereof; Tube walls using air or other gas as the cooling medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/005—Combined with pressure or heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/21—Manufacture essentially without removing material by casting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/20—Three-dimensional
- F05D2250/25—Three-dimensional helical
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2212—Improvement of heat transfer by creating turbulence
Definitions
- the invention relates to a cooled turbine blade of a gas turbine, in which can be acted upon by the working medium outer wall, a cooling channel is provided, which is flowed through along its longitudinal axis by a cooling fluid.
- a heat exchanger tube which has along its longitudinal axis, extending inside and twisted around the main flow direction ribs.
- the ribs serve to enlarge the inner surface of the tube and to generate a twist in the medium flowing through the tube. This is intended to increase the heat transfer compared to a smooth tube.
- a turbine blade is known as a cooled component of a gas turbine.
- the hot working fluid generated in a gas turbine by the combustion of a fuel flows along the blades of the rotor to generate rotational energy.
- they are cooled by means of air or steam.
- the blades of the gas turbine have a channel extending in the interior of the blade in the region of a leading edge and extending in the radial direction of the rotor. A cooling fluid flowing in this channel cools the particularly thermally stressed leading edge.
- a blade is eg from the DE 197 38 065 A1 known.
- FIG. 10 shows the US 2004/96313 A1 a hollow turbine blade with a leading edge channel, which is connected to a downstream in the flow direction of the hot gas lying second cooling channel via a connecting channel.
- the connecting channel runs approximately parallel to the outer wall of the turbine blade and flows tangentially into the leading edge channel.
- the connecting channel is also, with respect to the main flow direction of the hot gas, slightly inclined at an angle between 5 ° and 45 ° in order to provide for improved cooling the inflow channel along cooling air flowing with a directed around the channel axis swirl. It is also proposed to provide the leading edge channel with one or more vanes with identical inclination as the connecting channel, which impart additional swirl to the incoming cooling air, or which maintain the swirl of the cooling air.
- the guide elements and grooves can be provided.
- the object of the invention is to provide a cooled turbine blade for a gas turbine, which can be cooled more efficiently to increase efficiency.
- a means be provided in the cooling channel, which imparts a twist to the flowing cooling fluid and that the cooling channel has on its inner surface at least one turbulator element, which is only in the region or the part of the cooling channel periphery is provided, which faces the suction-side outer wall.
- the swirl in the cooling fluid increases the heat transfer. Consequently, the component can be cooled more efficiently, which can be used either to a cooling fluid savings or to a greater heat dissipation. In both cases, the cooling effect is increased, which leads either by an increased hot gas temperature to an improved efficiency or by a lowered thermal component load to improve the economy.
- An angular momentum on the cooling fluid may be generated if the means for imparting the twist is formed as at least one guide element arranged on the inner surface of the cooling channel, which extends along a helix having a pitch angle of 45 ° or greater. Accordingly, in the cooling fluid flow locally another component in the circumferential direction of the cooling channel is impressed, which represents the twist around the main flow direction.
- the cooling channel in the manner of a multi-start screw several guide elements with identical pitch angles, thereby creating a flowing in the center of the cooling channel core flow, from which directed transversely to the main flow direction Form part streams as continuous branches. Therefore, all flow channel segments existing between the vanes can communicate with each other.
- the formation of a controlled and effective core flow over the vane tips in the longitudinal axis leads to increased power values with respect to the heat transfer.
- the central core flow can form centrally in the interior of the cooling channel if each guide element projects into the cooling channel with a radial extent which is less than half the diameter of the cooling channel.
- the cooling channel does not have a massive core in the center.
- each guide element is approximately 0.2 times the diameter of the cooling channel.
- the guide element protrudes into the cooling channel with a radial extent, which is different along the helical profile of the guide element.
- the turbulator when the turbulator is formed as a transversely to the helical line of the guide element extending rib or aligned or staggered portions of a rib or nubs, an increase in the heat transfer can be achieved.
- the turbulence in the cooling fluid caused by the turbulator element can also be used for local adaptation and for increasing the heat transfer.
- Particularly advantageous is the embodiment in which the turbulator elements protrude with a radial extent in the cooling channel, which is less than the radial extent of the guide elements.
- the radial extent of each turbulator element is approximately 0.1 times the diameter of the cooling channel.
- the cross section of the means for impressing the twist in the manner of a pointed thread shaped like a trapezoidal thread, in the manner of a saw thread or in the manner of a round thread.
- the component is a turbine vane or a turbine blade and the cooling channel extends in the region of a leading edge in the blade longitudinal direction.
- the means for imparting a twist during casting be produced by inserting the corresponding guide element structure and / or the turbulator element structure into a casting core to be used for forming a cooling channel in the casting mold prior to insertion is incorporated.
- FIG. 6 shows a gas turbine 11 with a compressor 13, a combustion chamber 15 and a turbine unit 17, which follow one another along a rotor 19 of the gas turbine 11.
- a working machine for. B. a generator (not shown) coupled.
- Both in the compressor 13 and in the turbine unit 17 are consecutively provided in blade rings 21, 25 vanes 23 and blades 27.
- the guide vanes 23 and rotor blades 27 of the turbine unit 17 are cooled with a cooling fluid KF, for example air or steam, so that they are at the temperatures prevailing there of the hot working medium A can withstand.
- a cooling fluid KF for example air or steam
- Such a vane 23 is as a cooled component 28 in Fig. 1 shown.
- the guide blade 23 has a blade root 31, a platform region 33 and an airfoil 35 successively along the blade axis 29.
- the airfoil 35 extends with a pressure-side outer wall 36 and suction-side outer wall 38 of a leading edge 37 to a trailing edge 39.
- cooling channel 41 is arranged on the inner surface of a guide member 43 is arranged, the protrudes into the cooling channel 41.
- Fig. 2 shows a section through the airfoil 35 of a turbine blade, which may be formed as a vane 23 or as a blade 27.
- a diameter D projecting into the four guide elements 43 in the manner of a four-speed screw.
- the diameter D is described by a dividable in sections boundary of the cooling channel cross-section, which belongs to an area equal to the cooling channel cross-section circle.
- the guide elements 43 run in the direction of a center 49 of the cooling channel 41 analogous to a saw thread pointed.
- the cross section of the guide elements could also be trapezoidal triangular.
- Fig. 3 The main flow direction of the cooling fluid KF runs along the longitudinal axis 45 of the cooling channel 41.
- the helical line 44 of the guide element 43 with respect to each plane perpendicular to the longitudinal axis 45, a pitch angle S. on, which is 45 ° or larger.
- the guide element 43 protrudes with a radial extent h 1 in the circular cross-section in the cooling channel 41, which is on the order of 0.2 times the diameter D.
- Fig. 3 transverse to the helix 44 the guide elements 43 extending rib or knob-shaped Turbulatormaschine 47, the radial extent h 2 is smaller than that of the guide elements 43, in particular of the order of 0.1 times the diameter D.
- the airfoil 35 of the turbine blade is flowed around by the working medium A.
- the cooling fluid KF for example compressor air
- the cooling channel 41 in the direction of the longitudinal axis 45.
- the guide elements 43 imprint the cooling fluid KF a transverse to the main flow direction, in particular in the circumferential direction, directed flow component.
- a swirling core flow flowing in the center 49 is generated, which rotates about the longitudinal axis 45 of the cooling channel 41.
- the angular momentum exerted on the cooling fluid KF allows the core flow to flow to the outer edge of the cooling passage 41 into the pocket-shaped flow passage segments 50.
- the radial extent h 1 of the guide elements 43 can extend over the circumference and / or length of the cooling channel 41 rising and decreasing, so that a different sized transverse partial flow can be achieved.
- the turbulator elements 47 are to be arranged in the flow channel sectors 50 at the parts of the circumference of the cooling channel 41 of the blades 27, which are to be designated in the direction of rotation of the rotor 19 as a leading part of the circumference of the cooling channel 41 with locally lower pressure in the cooling fluid flow, ie the turbulator elements 47th are arranged on the side of the cooling channel 41, which faces the suction-side outer wall 38 (see Fig. 2 ).
- the volume flow rate of the cooling fluid flow decreases, and at the same time, the cooling fluid flow rate and the local heat transfer inducing turbulence increase.
- the turbulent amplification of the cooling effect is locally supported by the flow guidance in the region of the rib structure via the specifically placed turbulator elements 47 on the leading side in the rotating system channel side, so that the adverse effect of the centrifugal force field on the heat transfer of the cooling fluid flow is reduced and a smoothing of local temperature gradients and a Improvement of the low-cycle fatigue behavior is brought about.
- Fig. 4 shows a combustion chamber heat shield 55 as a cooled component 28 of a gas turbine engine.
- the combustion chamber heat shield 55 has an outer wall 36a which can be acted upon by a hot working medium and in which a plurality of cooling channels 41 are provided for cooling the same.
- the channels 41 are each formed with four guide elements 43 in the manner of a four-speed screw.
- Fig. 5 shows the rotor 19 of a gas turbine 11 with a blade attached thereto 27.
- a respective guide vane 23 is disposed adjacent.
- a guide ring 61 of the blade tip 52 is opposite.
- the guide ring 61 limits the flow channel of the turbine unit 17 radially outward.
- a plurality of cooling channels 41 are arranged, in which the cooling fluid KF can flow, wherein a plurality of guide elements 43 impose an angular momentum or a twist on the cooling fluid KF.
- turbulators 47 are applicable in the areas of the cooling passage circumference of combustion heat shields 55 and / or guide rings 61, which is closest to the hot gas loaded outer wall.
- Fig. 5 Analogous to Fig. 2 is in Fig. 5 provided in the blade 27 in the region of the leading edge 37 of the cooling channel 41, in which the guide member 43, the cooling fluid KF imparting a twist.
- the pitch angle S of the helix 44 is increased in comparison to the radially inner region 67, which leads to an acceleration of the cooling fluid KF. It can thus be a targeted influencing the flow velocity of the cooling fluid KF and the heat transfer.
- the cooled component 28, in particular a moving blade 27, is known to be produced in the casting process.
- the means for impressing a swirl ie the guide elements 43 and possibly the turbulator elements, are already taken into account during casting by incorporating the corresponding guide element structure and / or the turbulator element structure before a casting core to be used for forming a cooling channel in a casting mold becomes.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft eine gekühlte Turbinenlaufschaufel einer Gasturbine, in dessen mit dem Arbeitsmedium beaufschlagbarer Außenwand ein Kühlkanal vorgesehen ist, der entlang seiner Längsachse von einem Kühlfluid durchströmbar ist.The invention relates to a cooled turbine blade of a gas turbine, in which can be acted upon by the working medium outer wall, a cooling channel is provided, which is flowed through along its longitudinal axis by a cooling fluid.
Aus der Zeitschrift "Konstruktion", Zeitschrift für Produktentwicklung und Ingenieur-Werkstoffe, 55. Jahrgang 2003, Heft 9, Seite IW 9, ist ein Wärmetauscherrohr bekannt, welches entlang seiner Längsachse verlaufende, innen liegende und um die Hauptströmungsrichtung verdrehte Rippen aufweist. Die Rippen dienen zur Vergrößerung der inneren Oberfläche des Rohres und zum Erzeugen eines Dralls in dem das Rohr durchströmenden Medium. Hierdurch soll eine Steigerung der Wärmeübertragung im Vergleich zu einem Glattrohr erzielt werden.From the magazine "Construction", Journal of Product Development and Engineering Materials, 55th year 2003, Issue 9, page IW 9, a heat exchanger tube is known, which has along its longitudinal axis, extending inside and twisted around the main flow direction ribs. The ribs serve to enlarge the inner surface of the tube and to generate a twist in the medium flowing through the tube. This is intended to increase the heat transfer compared to a smooth tube.
Ferner ist z.B. eine Turbinenschaufel als ein gekühltes Bauteil einer Gasturbine bekannt. Das in einer Gasturbine durch die Verbrennung eines Brennstoffes erzeugte heiße Arbeitsmedium strömt zur Erzeugung von Rotationsenergie an den Schaufeln des Rotors entlang. Um die Schaufeln gegen die heißen Temperaturen zu schützen, werden diese mittels Luft oder Dampf gekühlt. Hierzu weisen die Schaufeln der Gasturbine einen im Inneren des Schaufelblatts im Bereich einer Anströmkante verlaufenden, sich in Radialrichtung des Rotors erstreckenden Kanal auf. Ein in diesem Kanal strömendes Kühlfluid kühlt die besonders thermisch beanspruchte Anströmkante. Eine solche Schaufel ist z.B. aus der
Weiter zeigt die
Die Aufgabe der Erfindung ist es, eine gekühlte Turbinenlaufschaufel für eine Gasturbine anzugeben, welche zur Wirkungsgradsteigerung effizienter gekühlt werden kann.The object of the invention is to provide a cooled turbine blade for a gas turbine, which can be cooled more efficiently to increase efficiency.
Die auf die gekühlte Turbinenlaufschaufel gerichtete Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.The object directed to the cooled turbine blade is solved by the features of claim 1. Advantageous embodiments are specified in the subclaims.
Zur Lösung der auf das Bauteil gerichteten Aufgabe wird vorgeschlagen, dass im Kühlkanal ein Mittel vorgesehen ist, welches dem strömenden Kühlfluid einen Drall aufprägt und dass der Kühlkanal an seiner inneren Oberfläche mindestens ein Turbulatorelement aufweist, welches lediglich in dem Bereich bzw. dem Teil des Kühlkanalumfangs vorgesehen ist, welcher der saugseitigen Außenwand zugewandt ist.To solve the object directed to the component, it is proposed that a means be provided in the cooling channel, which imparts a twist to the flowing cooling fluid and that the cooling channel has on its inner surface at least one turbulator element, which is only in the region or the part of the cooling channel periphery is provided, which faces the suction-side outer wall.
Durch den Drall im Kühlfluid wird eine Steigerung des Wärmeübergangs erreicht. Folglich kann das Bauteil effizienter gekühlt werden, was entweder zu einer Kühlfluideinsparung oder zu einer größeren Wärmeabfuhr genutzt werden kann. In beiden Fällen wird die Kühlwirkung gesteigert, was entweder durch eine erhöhte Heißgastemperatur zu einem verbesserten Wirkungsgrad oder durch eine abgesenkte thermische Bauteilbelastung zu einer Verbesserung der Wirtschaftlichkeit führt.The swirl in the cooling fluid increases the heat transfer. Consequently, the component can be cooled more efficiently, which can be used either to a cooling fluid savings or to a greater heat dissipation. In both cases, the cooling effect is increased, which leads either by an increased hot gas temperature to an improved efficiency or by a lowered thermal component load to improve the economy.
Ein Drehimpuls auf das Kühlfluid kann erzeugt werden, wenn das Mittel zum Aufprägen des Dralls als zumindest ein an der inneren Oberfläche des Kühlkanals angeordnetes Leitelement ausgebildet ist, welches sich entlang einer Schraubenlinie mit einem Steigungswinkel von 45° oder größer erstreckt. Dementsprechend wird in der Kühlfluidströmung örtlich eine weitere Komponente in Umfangsrichtung des Kühlkanals aufgeprägt, welche den Drall um die Hauptströmungsrichtung darstellt.An angular momentum on the cooling fluid may be generated if the means for imparting the twist is formed as at least one guide element arranged on the inner surface of the cooling channel, which extends along a helix having a pitch angle of 45 ° or greater. Accordingly, in the cooling fluid flow locally another component in the circumferential direction of the cooling channel is impressed, which represents the twist around the main flow direction.
Durch die Rotation des Rotors und der damit mitbewegten Turbinenlaufschaufel treten im, im Kühlkanal strömenden Kühlfluid Sekundärströmungen auf, die entlang des Umfangs des Kühlkanals einen unterschiedlichen kanalseitigen Wärmeübergang vom Schaufelmaterial ins Kühlfluid bedingen. In dem Bereich des Umfangs des Kühlkanals, welcher der druckseitigen Außenwand der Turbinenlaufschaufel zugewandt ist, herrscht durch die Rotation eine höhere Stromliniendichte (und somit ein höherer Kühlfluiddruck) als in dem Bereich, welcher der saugseitigen Außenwand zugewandt ist, so dass kanalseitig die druckseitige Außenwand verglichen mit der saugseitigen Außenwand besser gekühlt wird, Jedoch ist die saugseitige Außenwand einer Turbinenschaufel aufgrund der Umströmung mit Heißgas höheren Temperaturen ausgesetzt als die druckseitige Außenwand. Daher ist eine unterschiedlich stark ausgeprägte Kühlung der saugseitigen Außenwand gegenüber der druckseitigen Außenwand bei Turbinenlaufschaufeln wünschenswert. Dem wird vorteilhafterweise Rechnung getragen, indem die Turbulatoren lediglich in dem Bereich des Umfangs des Kanals angeordnet sind, welcher der saugseitigen Außenwand der Turbinenlaufschaufel zugewandt ist. Hierdurch kann an dieser Stelle ein höherer kanalseitiger Wärmeübergang als bisher erzielt werden.As a result of the rotation of the rotor and the turbine blade moving therewith, secondary flows occur in the cooling fluid flowing in the cooling channel, which cause a different channel-side heat transfer from the blade material into the cooling fluid along the circumference of the cooling channel. In the region of the circumference of the cooling channel, which faces the pressure-side outer wall of the turbine blade, there is a higher current line density (and thus a higher cooling fluid pressure) than in the region facing the suction-side outer wall, so that the channel side compares the pressure-side outer wall is better cooled with the suction-side outer wall, However, the suction-side outer wall of a turbine blade is exposed to higher temperatures than the pressure-side outer wall due to the flow around hot gas. Therefore, a different degrees of cooling the suction-side outer wall against the pressure-side outer wall in turbine blades is desirable. This is advantageously taken into account by the turbulators are arranged only in the region of the circumference of the channel, which faces the suction-side outer wall of the turbine blade. As a result, at this point a higher channel-side heat transfer can be achieved than before.
In einer besonders vorteilhaften Ausgestaltung der Erfindung weist der Kühlkanal nach Art einer mehrgängigen Schraube mehrere Leitelemente mit identischen Steigungswinkeln auf, Hierdurch entsteht eine im Zentrum des Kühlkanals strömende Kernströmung, aus der sich quer zur Hauptströmungsrichtung gerichtete Teilströme als kontinuierliche Abzweigungen ausbilden. Daher können alle zwischen den Leitelementen vorhandenen Strömungskanalsegmente miteinander kommunizieren. Die Ausbildung einer kontrollierten und effektiven Kernströmung über die Leitelementspitzen in der Längsachse führt zu erhöhten Leistungswerten bezüglich des Wärmeübergangs.In a particularly advantageous embodiment of the invention, the cooling channel in the manner of a multi-start screw several guide elements with identical pitch angles, thereby creating a flowing in the center of the cooling channel core flow, from which directed transversely to the main flow direction Form part streams as continuous branches. Therefore, all flow channel segments existing between the vanes can communicate with each other. The formation of a controlled and effective core flow over the vane tips in the longitudinal axis leads to increased power values with respect to the heat transfer.
Die zentrale Kernströmung kann sich mittig im Inneren des Kühlkanals ausbilden, wenn jedes Leitelement in den Kühlkanal mit einer radialen Erstreckung hineinragt, die geringer ist als die Hälfte des Durchmessers des Kühlkanals. Somit weist der Kühlkanal keinen massiven Kern im Zentrum auf.The central core flow can form centrally in the interior of the cooling channel if each guide element projects into the cooling channel with a radial extent which is less than half the diameter of the cooling channel. Thus, the cooling channel does not have a massive core in the center.
Zweckmäßigerweise beträgt die radiale Erstreckung jedes Leitelements annähernd das 0,2-fache des Durchmessers des Kühlkanals.Conveniently, the radial extent of each guide element is approximately 0.2 times the diameter of the cooling channel.
Gemäß einem vorteilhaften Vorschlag ragt das Leitelement in den Kühlkanal mit einer radialen Erstreckung hinein, die entlang des schraubenförmigen Verlaufs des Leitelementes unterschiedlich ist. Somit kann die in die Strömungskanalsegmente einströmende Teilströmung, welche quer zur Hauptströmungsrichtung des Kühlfluids strömt, an die lokalen thermischen Bedingungen des zu kühlenden Bauteils bedarfsgerecht angepasst werden.According to an advantageous proposal, the guide element protrudes into the cooling channel with a radial extent, which is different along the helical profile of the guide element. Thus, the partial flow entering the flow channel segments, which flows transversely to the main flow direction of the cooling fluid, can be adapted to the local thermal conditions of the component to be cooled as required.
Insbesondere wenn das Turbulatorelement sich als quer zur Schraubenlinie des Leitelementes erstreckende Rippe bzw. fluchtende oder versetzte Teilstücke einer Rippe oder als Noppen ausgebildet ist, lässt sich eine Steigerung des Wärmeübergangs erzielen. Die durch das Turbulatorelement hervorgerufenen Verwirbelungen im Kühlfluid können ebenso zur lokalen Anpassung und zur Steigerung des Wärmeüberganges eingesetzt werden.
Besonders vorteilhaft ist die Ausgestaltung, bei der die Turbulatorelemente mit einer radialen Erstreckung in den Kühlkanal hineinragen, die geringer ist als die radiale Erstreckung der Leitelemente. Somit wird die den Drall bildende Teilströmung des Kühlfluids nicht übermäßig gestört. Die radiale Erstreckung jedes Turbulatorelements beträgt dabei annähernd das 0,1-fache des Durchmessers des Kühlkanals.In particular, when the turbulator is formed as a transversely to the helical line of the guide element extending rib or aligned or staggered portions of a rib or nubs, an increase in the heat transfer can be achieved. The turbulence in the cooling fluid caused by the turbulator element can also be used for local adaptation and for increasing the heat transfer.
Particularly advantageous is the embodiment in which the turbulator elements protrude with a radial extent in the cooling channel, which is less than the radial extent of the guide elements. Thus, the partial flow forming the swirl becomes the cooling fluid is not disturbed excessively. The radial extent of each turbulator element is approximately 0.1 times the diameter of the cooling channel.
Eine Anpassung an die lokalen Anforderungen bzgl. der Kühlung kann erreicht werden, wenn der Steigungswinkel der Leitelemente entlang des Kühlkanals unterschiedlich ist. Somit wird mehr oder minder eine Teilströmung quer zur Hauptströmungsrichtung des Kühlfluids erzeugt. Dies ermöglicht je nach Ausbildung eine Beschleunigung bzw. eine Verzögerung des Kühlfluids, so dass sich hierdurch der Wärmeübergang von der Außenwand in das Kühlfluid vorteilhafter Weise beeinflussen lässt,An adaptation to the local requirements with respect to the cooling can be achieved if the pitch angle of the guide elements along the cooling channel is different. Thus, a partial flow is generated more or less transverse to the main flow direction of the cooling fluid. Depending on the design, this enables an acceleration or a deceleration of the cooling fluid, so that the heat transfer from the outer wall into the cooling fluid can be advantageously influenced as a result,
In einer vorteilhaften Ausgestaltung ist der Querschnitt der Mittel zum Aufprägen des Dralls nach Art eines Spitzgewindes, nach Art eines Trapezgewindes, nach Art eines Sägengewindes oder nach Art eines Rundgewindes geformt.In an advantageous embodiment, the cross section of the means for impressing the twist in the manner of a pointed thread, shaped like a trapezoidal thread, in the manner of a saw thread or in the manner of a round thread.
Besonders vorteilhaft ist die Ausgestaltung, bei der das Bauteil eine Turbinenleitschaufel oder eine Turbinenlaufschaufel ist und der Kühlkanal im Bereich einer Anströmkante in Schaufellängsrichtung verläuft.Particularly advantageous is the embodiment in which the component is a turbine vane or a turbine blade and the cooling channel extends in the region of a leading edge in the blade longitudinal direction.
Ferner wird zum Herstellen eines Bauteils in einem Gießverfahren mit einer Gießform vorgeschlagen, dass das Mittel zum Aufprägen eines Dralls beim Gießen hergestellt wird, indem in ein zum Ausbilden eines Kühlkanals in der Gießform einzusetzender Gusskern vor dem Einsetzten die korrespondierende Leitelementstruktur und/oder die der Turbulatorelementstruktur eingearbeitet wird.Furthermore, for producing a component in a casting method with a casting mold, it is proposed that the means for imparting a twist during casting be produced by inserting the corresponding guide element structure and / or the turbulator element structure into a casting core to be used for forming a cooling channel in the casting mold prior to insertion is incorporated.
Die Erfindung wird anhand einer Zeichnung erläutert. Es zeigt
- Fig. 1
- eine Turbinenschaufel mit einem Kühlkanal im Bereich einer Anströmkante,
- Fig. 2
- einen Schnitt durch das Schaufelblatt einer Turbinenschaufel mit einem Kühlkanal,
- Fig. 3
- einen Kühlkanal für ein gekühltes Bauteil mit Leitund Turbulatorelementen,
- Fig. 4
- ein Brennkammerhitzeschild mit einem Kühlkanal für die Brennkammer einer Gasturbine,
- Fig. 5
- ein Führungsring mit einem Kühlkanal für den Strömungskanal einer Gasturbine und
- Fig. 6
- eine erfindungsgemäße Gasturbine.
- Fig. 1
- a turbine blade with a cooling channel in the region of a leading edge,
- Fig. 2
- a section through the airfoil of a turbine blade with a cooling channel,
- Fig. 3
- a cooling channel for a cooled component with guide and turbulator elements,
- Fig. 4
- a combustion chamber heat shield with a cooling channel for the combustion chamber of a gas turbine,
- Fig. 5
- a guide ring with a cooling channel for the flow channel of a gas turbine and
- Fig. 6
- a gas turbine according to the invention.
Gasturbinen und deren Arbeitsweisen sind allgemein bekannt.
Sowohl im Verdichter 13 als auch in der Turbineneinheit 17 sind aufeinander folgend jeweils in Schaufelkränzen 21, 25 Leitschaufeln 23 und Laufschaufeln 27 vorgesehen.Both in the
Beim Betrieb der Gasturbine 11 wird vom Verdichter 13 Luft L angesaugt und verdichtet. Die verdichtete Luft wird anschließend der Brennkammer 15 zugeführt und unter Zumischung eines Brennmittels B zu einem heißen Arbeitsmedium A verbrannt. In der Turbineneinheit 17 entspannt sich das heiße Arbeitsmedium A arbeitsleistend an den Laufschaufeln 27, welche den Rotor 19 und dieser den Verdichter 13 und die nicht dargestellte Arbeitsmaschine antreibt.During operation of the
Die Leitschaufeln 23 und Laufschaufeln 27 der Turbineneinheit 17 werden dabei mit einem Kühlfluid KF, beispielsweise Luft oder Dampf gekühlt, damit sie den dort herrschenden Temperaturen des heißen Arbeitsmediums A widerstehen können. Eine solche Leitschaufel 23 ist als gekühltes Bauteil 28 in
Im Querschnitt laufen die Leitelemente 43 in Richtung eines Zentrums 49 des Kühlkanals 41 analog einem Sägengewinde spitz zu. Alternativ könnte der Querschnitt der Leitelemente auch trapezförmig dreieckförmig sein.In cross section, the
Beim Betrieb der Gasturbine 11 wird das Schaufelblatt 35 der Turbinenschaufel von dem Arbeitsmedium A umströmt. Zur Kühlung der besonders thermisch beanspruchten Außenwand 36, 38 durchströmt das Kühlfluid KF, beispielsweise Verdichterluft, den Kühlkanal 41 in Richtung der Längsachse 45. Die Leitelemente 43 prägen dem Kühlfluid KF eine zur Hauptströmungsrichtung quer, insbesondere in Umfangsrichtung, gerichtete Strömungskomponente auf. Hierdurch wird eine im Zentrum 49 strömende verdrallte Kernströmung erzeugt, die sich um die Längsachse 45 des Kühlkanals 41 dreht. Der so auf das Kühlfluid KF ausgeübte Drehimpuls lässt die Kernströmung zum äußeren Rand des Kühlkanals 41 in die taschenförmigen Strömungskanalsegmente 50 strömen. Die hierdurch erzielte bessere Durchmischung des Kühlfluids führt zu einer Vergleichmäßigung der Kühlwirkung einerseits und zu einer Steigerung des Wärmeübergangs von der Außenwand ins Kühlfluid KF andererseits. Somit erfolgt eine effizientere Kühlung der Anströmkante 37 der Turbinenschaufel.During operation of the
Besonders vorteilhaft erweist sich die gezeigte Anordnung bei der Anwendung in Laufschaufeln 27, da die Laufschaufel 27 mit dem Rotor 19 rotiert und somit das Kühlfluid KF einer Fliehkrafteinwirkung ausgesetzt ist. Die nach Art einer Gewindeschraube sich verwindenden, rippenförmigen Leitelemente 43 bewirken die quer zu Hauptströmungsrichtung gerichtete drallförmige Bewegung des Kühlfluids KF, so dass die auch als Sekundärströmungen bezeichneten Teilströmungen eine Steigerung der Effektivität des Wärmeübergangs erzielen. Hierdurch kann Kühlluft zur Wirkungsgradsteigerung der Gasturbine 11 eingespart werden. Anstelle einer Senkung des Kühlluft-Durchsatzes kann der örtlich verbesserte Wärmeübergang und die erhöhte Wärmeabfuhr durch das Kühlfluid eine Erhöhung der Temperatur des heißen Arbeitsmedium A ermöglichen, was gleichfalls zu einer Wirkungsgradsteigerung der Gasturbine 11 führt.Particularly advantageous is the arrangement shown in the application in blades 27, since the blade 27 rotates with the
Die radiale Erstreckung h1 der Leitelemente 43 kann dabei über den Umfang und/oder Länge des Kühlkanals 41 ansteigend und abnehmend verlaufen, so dass eine unterschiedlich große quergerichtete Teilströmung erzielt werden kann. Die Turbulatorelemente 47 sind in den Strömungskanalsektoren 50 an den Teilen des Umfangs des Kühlkanals 41 der Laufschaufeln 27 anzuordnen, die in Drehrichtung des Rotors 19 als voreilender Teil des Umfangs des Kühlkanals 41 mit örtlich geringerem Druck in der Kühlfluidströmung zu bezeichnen sind, d.h. die Turbulatorelemente 47 sind an der Seite des Kühlkanals 41 angeordnet, welche der saugseitigen Außenwand 38 zugewandt ist (siehe
Mit Zunahme des Dralls wird die Größe des Volumenstroms des Kühlfluidstroms geringer, gleichzeitig nehmen der Kühlfluid-Durchsatz und die örtliche, den Wärmeübergang anfachende Turbulenz zu. Die turbulente Anfachung der Kühlwirkung wird örtlich durch die Strömungsführung im Bereich der Rippenstruktur über die gezielt platzierten Turbulatorelemente 47 an der im im rotierenden System voreilenden Kanalseite unterstützt, so dass die nachteilige Fernwirkung des Fliehkraftfeldes auf den Wärmeübergang der Kühlfluidströmung vermindert und eine Glättung örtlicher Temperaturgradienten und eine Verbesserung des Low-Cycle Fatigue-Verhaltens herbeigeführt wird.As the swirl increases, the volume flow rate of the cooling fluid flow decreases, and at the same time, the cooling fluid flow rate and the local heat transfer inducing turbulence increase. The turbulent amplification of the cooling effect is locally supported by the flow guidance in the region of the rib structure via the specifically placed
Ebenfalls sind Turbulatoren 47 in den Bereichen des Kühlkanalumfangs von Brennkammerhitzeschildern 55 und/oder Führungsringen 61 anwendbar, welcher der heißgasbeaufschlagten Außenwand am nächsten gegenüberliegt.Also, turbulators 47 are applicable in the areas of the cooling passage circumference of combustion heat shields 55 and / or guide rings 61, which is closest to the hot gas loaded outer wall.
Analog zu
Das gekühlte Bauteil 28, insbesondere eine Laufschaufel 27, wird bekanntermaßen im Gießverfahren hergestellt. Dabei werden vorteilhafter Weise die Mittel zum Aufprägen eines Dralls, d.h. die Leitelemente 43 und ggf. die Turbulatorelemente, bereits beim Gießen berücksichtigt, indem ein zum Ausbilden eines Kühlkanals in einer Gießform einzusetzender Gusskern vor dem Einsetzten die korrespondierende Leitelementstruktur und/oder die der Turbulatorelementstruktur eingearbeitet wird.The cooled component 28, in particular a moving blade 27, is known to be produced in the casting process. In this case, the means for impressing a swirl, ie the
Ebenfalls denkbar ist, die rippenförmigen Leitelemente 43 in Vollschaufeln durch ein geeignetes Ätzverfahren oder mittels eines zweistufigen Verfahrens wie beim Gewindebohrverfahren, herzustellen.It is also conceivable to produce the rib-shaped
Claims (12)
- Cooled turbine moving blade (27) of a gas turbine (11), in whose outer wall (36, 38), to which the working medium (A) can be applied, a cooling passage (41) is provided, through which a cooling fluid (KF) can flow along its longitudinal axis (45), characterized in that at least one baffle element (43), which is arranged on the inner surface of the cooling passage (41), and which imposes a swirl on the flowing cooling fluid (KF) is provided in the cooling passage (41), the baffle element (43) extending along a helical line (44) with a helix angle (S) of 45° or greater and in that the cooling passage (41) has at least one turbulator element (47) on its inner surface, the turbulators (47) arranged in the cooling passage (41) being provided merely in that region of the cooling-passage circumference which faces the suction-side outer wall (38).
- Turbine moving blade (27) according to Claim 1, characterized in that the cooling passage (41), like a multi-start screw, has a plurality of baffle elements (43) with identical helix angles (S).
- Turbine moving blade (27) according to Claim 1 or 2, characterized in that each baffle element (43) projects into the cooling passage (41) to a radial extent (h1) which is less than half the diameter (D) of the cooling passage (41).
- Turbine moving blade (27) according to Claim 3, characterized in that the radial extent (h1) of the baffle elements (43) is approximately 0.2 times the diameter (D) of the cooling passage (41).
- Turbine moving blade (27) according to one of Claims 1 to 4, characterized in that the baffle element (43) projects into the cooling passage (41) to a radial extent (h1) which varies along the helical course of the baffle element (43).
- Turbine moving blade (27) according to one of Claims 1 to 5, characterized in that the turbulator element (47) is designed as a rib extending transversely, in particular perpendicularly, to the helical line (44) of the baffle element (43).
- Turbine moving blade (27) according to one of Claims 1 to 5, characterized in that the turbulator elements (47) project into the cooling passage (41) to a radial extent (h2) which is less than the radial extent (h1) of the baffle elements (43).
- Turbine moving blade (27) according to Claim 7, characterized in that the radial extent (h2) of the turbulator elements (47) is approximately 0.1 times the diameter (D) of the cooling passage (41).
- Turbine moving blade (27) according to one of Claims 1 to 4, characterized in that the helix angle (S) varies along the cooling passage (41).
- Turbine moving blade (27) according to one of Claims 1 to 9, characterized in that the cross section of the means for imposing the swirl is designed like a V thread, like a trapezoidal thread, like a buttress thread or like a round thread.
- Turbine moving blade (27) according to one of Claims 1 to 10, characterized in that the cooling passage (41) extends in the region of a leading edge (37) in the blade longitudinal direction (29).
- Gas turbine (11) having a turbine moving blade (27) according to one of Claims 1 to 11.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE502004008210T DE502004008210D1 (en) | 2004-07-26 | 2004-07-26 | Cooled component of a turbomachine and method for casting this cooled component |
ES04017673T ES2312890T3 (en) | 2004-07-26 | 2004-07-26 | COOLED ELEMENT OF A TURBOMACHINE AND MOLDING PROCEDURE OF THIS COOLED ELEMENT. |
EP04017673A EP1621730B1 (en) | 2004-07-26 | 2004-07-26 | Cooled turbomachinery element and casting method thereof |
AT04017673T ATE410586T1 (en) | 2004-07-26 | 2004-07-26 | COOLED COMPONENT OF A FLOW MACHINE AND METHOD FOR CASTING THIS COOLED COMPONENT |
CN200510084761.0A CN1727643B (en) | 2004-07-26 | 2005-07-20 | Cooled turbomachinery element and casting method thereof, turbomachinery having the element |
US11/189,409 US7824156B2 (en) | 2004-07-26 | 2005-07-26 | Cooled component of a fluid-flow machine, method of casting a cooled component, and a gas turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04017673A EP1621730B1 (en) | 2004-07-26 | 2004-07-26 | Cooled turbomachinery element and casting method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1621730A1 EP1621730A1 (en) | 2006-02-01 |
EP1621730B1 true EP1621730B1 (en) | 2008-10-08 |
Family
ID=34925939
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04017673A Expired - Lifetime EP1621730B1 (en) | 2004-07-26 | 2004-07-26 | Cooled turbomachinery element and casting method thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US7824156B2 (en) |
EP (1) | EP1621730B1 (en) |
CN (1) | CN1727643B (en) |
AT (1) | ATE410586T1 (en) |
DE (1) | DE502004008210D1 (en) |
ES (1) | ES2312890T3 (en) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7665955B2 (en) * | 2006-08-17 | 2010-02-23 | Siemens Energy, Inc. | Vortex cooled turbine blade outer air seal for a turbine engine |
US7665965B1 (en) * | 2007-01-17 | 2010-02-23 | Florida Turbine Technologies, Inc. | Turbine rotor disk with dirt particle separator |
GB2498551B (en) * | 2012-01-20 | 2015-07-08 | Rolls Royce Plc | Aerofoil cooling |
US10689986B1 (en) * | 2012-06-01 | 2020-06-23 | United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | High blowing ratio high effectiveness film cooling configurations |
DE102012017491A1 (en) | 2012-09-04 | 2014-03-06 | Rolls-Royce Deutschland Ltd & Co Kg | Turbine blade of a gas turbine with swirl-generating element |
US9995148B2 (en) | 2012-10-04 | 2018-06-12 | General Electric Company | Method and apparatus for cooling gas turbine and rotor blades |
US9850762B2 (en) | 2013-03-13 | 2017-12-26 | General Electric Company | Dust mitigation for turbine blade tip turns |
EP3039340B1 (en) * | 2013-08-30 | 2018-11-28 | United Technologies Corporation | Vena contracta swirling dilution passages for gas turbine engine combustor |
US20160199954A1 (en) * | 2013-09-09 | 2016-07-14 | Siemens Aktiengesellschaft | Combustion chamber for a gas turbine, and tool and method for producing cooling ducts in a gas turbine component |
WO2015094531A1 (en) * | 2013-12-20 | 2015-06-25 | United Technologies Corporation | Gas turbine engine component cooling cavity with vortex promoting features |
KR101509385B1 (en) * | 2014-01-16 | 2015-04-07 | 두산중공업 주식회사 | Turbine blade having swirling cooling channel and method for cooling the same |
US20150204197A1 (en) * | 2014-01-23 | 2015-07-23 | Siemens Aktiengesellschaft | Airfoil leading edge chamber cooling with angled impingement |
US20150260048A1 (en) * | 2014-03-11 | 2015-09-17 | United Technologies Corporation | Component with cooling hole having helical groove |
US9932835B2 (en) * | 2014-05-23 | 2018-04-03 | United Technologies Corporation | Airfoil cooling device and method of manufacture |
US10690055B2 (en) | 2014-05-29 | 2020-06-23 | General Electric Company | Engine components with impingement cooling features |
US9957816B2 (en) | 2014-05-29 | 2018-05-01 | General Electric Company | Angled impingement insert |
US10422235B2 (en) | 2014-05-29 | 2019-09-24 | General Electric Company | Angled impingement inserts with cooling features |
US10364684B2 (en) | 2014-05-29 | 2019-07-30 | General Electric Company | Fastback vorticor pin |
US10563514B2 (en) | 2014-05-29 | 2020-02-18 | General Electric Company | Fastback turbulator |
WO2016014056A1 (en) * | 2014-07-24 | 2016-01-28 | Siemens Aktiengesellschaft | Turbine airfoil cooling system with spanwise extending flow blockers |
US10012090B2 (en) * | 2014-07-25 | 2018-07-03 | United Technologies Corporation | Airfoil cooling apparatus |
JP5679246B1 (en) * | 2014-08-04 | 2015-03-04 | 三菱日立パワーシステムズ株式会社 | High-temperature component of gas turbine, gas turbine including the same, and method for manufacturing high-temperature component of gas turbine |
JP6437099B2 (en) * | 2014-08-26 | 2018-12-12 | シーメンス エナジー インコーポレイテッド | Cooling system for fuel nozzles in a turbine engine combustor. |
US10697306B2 (en) | 2014-09-18 | 2020-06-30 | Siemens Aktiengesellschaft | Gas turbine airfoil including integrated leading edge and tip cooling fluid passage and core structure used for forming such an airfoil |
US10280785B2 (en) | 2014-10-31 | 2019-05-07 | General Electric Company | Shroud assembly for a turbine engine |
US10233775B2 (en) | 2014-10-31 | 2019-03-19 | General Electric Company | Engine component for a gas turbine engine |
KR101609562B1 (en) | 2014-11-27 | 2016-04-06 | 한국항공우주연구원 | Turbine blade with flow guide |
WO2016160029A1 (en) | 2015-04-03 | 2016-10-06 | Siemens Aktiengesellschaft | Turbine blade trailing edge with low flow framing channel |
US10577947B2 (en) * | 2015-12-07 | 2020-03-03 | United Technologies Corporation | Baffle insert for a gas turbine engine component |
DE102016221566A1 (en) * | 2016-11-03 | 2018-05-03 | Bayerische Motoren Werke Aktiengesellschaft | Water separator for separating water in a vehicle |
GB2574368A (en) * | 2018-04-09 | 2019-12-11 | Rolls Royce Plc | Coolant channel with interlaced ribs |
GB201902997D0 (en) | 2019-03-06 | 2019-04-17 | Rolls Royce Plc | Coolant channel |
CN110700896B (en) * | 2019-11-29 | 2020-09-01 | 四川大学 | Gas turbine rotor blade with swirl impingement cooling structure |
US11441778B2 (en) * | 2019-12-20 | 2022-09-13 | Raytheon Technologies Corporation | Article with cooling holes and method of forming the same |
CN115247575B (en) * | 2022-05-12 | 2024-05-03 | 中国航发四川燃气涡轮研究院 | Helical turbine blade cooling unit and cooling structure |
US12129796B1 (en) | 2023-04-24 | 2024-10-29 | Rtx Corporation | Vortex restart structures for turbulated passages |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2138220A (en) * | 1935-12-12 | 1938-11-29 | William E Trumpler | Internal combustion turbine |
US2422193A (en) * | 1944-06-12 | 1947-06-17 | Westinghouse Electric Corp | Method of making cast turbine blading |
NL73916C (en) * | 1949-07-06 | 1900-01-01 | ||
IT1096996B (en) * | 1977-07-22 | 1985-08-26 | Rolls Royce | METHOD FOR THE MANUFACTURE OF A BLADE OR BLADE FOR GAS TURBINE ENGINES |
GB2163219B (en) * | 1981-10-31 | 1986-08-13 | Rolls Royce | Cooled turbine blade |
DE3211139C1 (en) * | 1982-03-26 | 1983-08-11 | MTU Motoren- und Turbinen-Union München GmbH, 8000 München | Axial turbine blades, in particular axial turbine blades for gas turbine engines |
DE3216960C2 (en) * | 1982-05-06 | 1994-01-05 | Kabelmetal Ag | Process for producing a coaxial heat exchanger tube |
US5002460A (en) * | 1989-10-02 | 1991-03-26 | General Electric Company | Internally cooled airfoil blade |
GB9525337D0 (en) * | 1995-12-12 | 1996-02-14 | Boc Group Plc | Improvements in vacuum pumps |
US5772397A (en) * | 1996-05-08 | 1998-06-30 | Alliedsignal Inc. | Gas turbine airfoil with aft internal cooling |
US5924843A (en) * | 1997-05-21 | 1999-07-20 | General Electric Company | Turbine blade cooling |
FR2765265B1 (en) * | 1997-06-26 | 1999-08-20 | Snecma | BLADED COOLING BY HELICAL RAMP, CASCADE IMPACT AND BY BRIDGE SYSTEM IN A DOUBLE SKIN |
DE19738065A1 (en) | 1997-09-01 | 1999-03-04 | Asea Brown Boveri | Turbine blade of a gas turbine |
SE512384C2 (en) * | 1998-05-25 | 2000-03-06 | Abb Ab | Component for a gas turbine |
DE50108466D1 (en) * | 2001-08-09 | 2006-01-26 | Siemens Ag | Cooling a turbine blade |
GB0222352D0 (en) * | 2002-09-26 | 2002-11-06 | Dorling Kevin | Turbine blade turbulator cooling design |
DE10248548A1 (en) * | 2002-10-18 | 2004-04-29 | Alstom (Switzerland) Ltd. | Coolable component |
GB2395232B (en) * | 2002-11-12 | 2006-01-25 | Rolls Royce Plc | Turbine components |
FR2858352B1 (en) * | 2003-08-01 | 2006-01-20 | Snecma Moteurs | COOLING CIRCUIT FOR TURBINE BLADE |
-
2004
- 2004-07-26 EP EP04017673A patent/EP1621730B1/en not_active Expired - Lifetime
- 2004-07-26 DE DE502004008210T patent/DE502004008210D1/en not_active Expired - Lifetime
- 2004-07-26 AT AT04017673T patent/ATE410586T1/en not_active IP Right Cessation
- 2004-07-26 ES ES04017673T patent/ES2312890T3/en not_active Expired - Lifetime
-
2005
- 2005-07-20 CN CN200510084761.0A patent/CN1727643B/en not_active Expired - Fee Related
- 2005-07-26 US US11/189,409 patent/US7824156B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE502004008210D1 (en) | 2008-11-20 |
US20070014664A1 (en) | 2007-01-18 |
CN1727643B (en) | 2010-12-15 |
EP1621730A1 (en) | 2006-02-01 |
ATE410586T1 (en) | 2008-10-15 |
CN1727643A (en) | 2006-02-01 |
US7824156B2 (en) | 2010-11-02 |
ES2312890T3 (en) | 2009-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1621730B1 (en) | Cooled turbomachinery element and casting method thereof | |
DE69718673T2 (en) | COOLABLE SHOVEL STRUCTURE FOR A GAS TURBINE | |
DE69420582T2 (en) | COOLING A SHOVEL NEAR THE DAM LINE | |
DE60024517T2 (en) | Turbine wall with grooves on the inside | |
EP1834066B1 (en) | Turbine blade for a gas turbine, use of a turbine blade and method for cooling a turbine blade | |
DE3530769C2 (en) | Blade for a gas turbine engine | |
EP0528138B1 (en) | Blade shroud for axial turbine | |
CH704935B1 (en) | Stator-rotor assembly, flow machine and method for producing a pattern of inverted turbulators | |
DE102011053048B4 (en) | Abradable blade shroud and method for minimizing leakage flow through a blade tip gap | |
EP2320030B1 (en) | Rotor and rotor blade for an axial turbomachine | |
DE2147537A1 (en) | Cooling device for the ends of turbine blades with air expansion | |
DE1601564A1 (en) | Jacket ring for gas turbine systems | |
DE102007045951A1 (en) | Stator/rotor arrangement for use in turbo engine i.e. gas turbine engine, has clearance area between stator and rotor surfaces, which are separated by gap, where stator or rotor surfaces within area is provided with pattern of concavities | |
EP1862641A1 (en) | Annular flow channel for axial flow turbomachine | |
DE102009044812A1 (en) | hollow channels | |
DE102010037862A1 (en) | Whirl chambers for slit flow control | |
DE102014114916A1 (en) | Turbine blade with tip rounding | |
EP3064706A1 (en) | Guide blade assembly for a flow engine with axial flow | |
DE102017116493A1 (en) | Blade with an internal rib with one or more corrugated surfaces | |
DE102017110050A1 (en) | Exploded central recess behind the sash leading edge | |
CH707844B1 (en) | Turbine blade with cooling channels for a gas turbine. | |
DE102010037692A1 (en) | Shaped honeycomb seal for a turbomachine | |
DE102015121651A1 (en) | Internal cooling channels in turbine blades | |
EP1766192A1 (en) | Vane wheel of a turbine comprising a vane and at least one cooling channel | |
AT512653B1 (en) | Rotor and radially flowable turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
17P | Request for examination filed |
Effective date: 20060322 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502004008210 Country of ref document: DE Date of ref document: 20081120 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2312890 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH) |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090108 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
26N | No opposition filed |
Effective date: 20090709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20130807 Year of fee payment: 10 Ref country code: DE Payment date: 20130918 Year of fee payment: 10 Ref country code: SE Payment date: 20130708 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20130710 Year of fee payment: 10 Ref country code: FR Payment date: 20130724 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20130726 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20131010 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004008210 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140726 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140726 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150203 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004008210 Country of ref document: DE Effective date: 20150203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140731 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140727 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140726 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20160201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140727 |