EP1618073A1 - Method for purifying coke waste water using a gas-permeable membrane - Google Patents
Method for purifying coke waste water using a gas-permeable membraneInfo
- Publication number
- EP1618073A1 EP1618073A1 EP04724283A EP04724283A EP1618073A1 EP 1618073 A1 EP1618073 A1 EP 1618073A1 EP 04724283 A EP04724283 A EP 04724283A EP 04724283 A EP04724283 A EP 04724283A EP 1618073 A1 EP1618073 A1 EP 1618073A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waste water
- biofilm
- liquid circuit
- liquid
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2806—Anaerobic processes using solid supports for microorganisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23124—Diffusers consisting of flexible porous or perforated material, e.g. fabric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23124—Diffusers consisting of flexible porous or perforated material, e.g. fabric
- B01F23/231244—Dissolving, hollow fiber membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/29—Mixing systems, i.e. flow charts or diagrams
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/102—Permeable membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/20—Activated sludge processes using diffusers
- C02F3/208—Membrane aeration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/231—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
- B01F23/23105—Arrangement or manipulation of the gas bubbling devices
- B01F23/2312—Diffusers
- B01F23/23126—Diffusers characterised by the shape of the diffuser element
- B01F23/231265—Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
- B01F23/23—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
- B01F23/237—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
- B01F23/2376—Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
- B01F23/23761—Aerating, i.e. introducing oxygen containing gas in liquids
- B01F23/237612—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/163—Nitrates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/18—Cyanides
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/003—Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/03—Pressure
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/22—O2
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/40—Liquid flow rate
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Definitions
- the invention has for its object to provide a method for cleaning coke oven wastewater contaminated with nitrogen compounds, cyanides and sulfides, which allows low investment and operating costs.
- the object of the invention and the solution to the problem is a process for the purification of coking plant wastewater which is contaminated with nitrogen compounds, cyanides and sulfides, wherein the coking plant wastewater flows through a reactor which is integrated in a liquid circuit and which contains at least one gas-permeable membrane hose to which an oxygen-containing compressed gas acts on the inside, and
- the compact design allows production-integrated use at significantly higher concentrations than in the final wastewater, which makes cleaning the wastewater considerably easier.
- the reactor with gas-permeable membrane hose used in the process according to the invention is known per se. So far, however, such a reactor has only been used for experimental purposes with synthetic wastewater and organically contaminated wastewater from slaughterhouses. Surprisingly, however, the reactor is also suitable for cleaning coke oven wastewater, which is contaminated with cyanides and sulfides compared to previously known applications.
- the biofilm adhering to the surface of the membrane tube arises when microorganisms accumulate at interfaces and grow there.
- a plurality of membrane hoses acted upon by an oxygen-containing compressed gas can also be arranged one behind the other in the flow direction.
- the thickness of the biofilm is regulated by the flow rate of the liquid in the reactor. This prevents the denitrification layer from growing too rapidly, which can be associated with blockage of the reactor. From a thickness of 100 to 200 ⁇ m, biofilms no longer participate in the material turnover. The formation of too thick biofilms must therefore be prevented. By setting a suitable flow velocity, biofilm areas with a large thickness are sheared off and the formation of excessively large film thicknesses is prevented.
- this partial flow is preferably freed of biofilm particles with the aid of a clarifying device integrated in the liquid circuit.
- a clarifier can be used as a clarifier, within which sedimentation of the biofilm particles takes place, or a centrifuge.
- a supply of unpurified coke plant wastewater into the liquid circuit is preferably regulated or controlled with the aid of analysis values of the cleaned wastewater. This allows safe compliance with limit values with stable behavior in the reactor.
- the analysis values in turn include, for example, the content of 0 2 , NH, N ⁇ 3 ⁇ , N ⁇ 2 ⁇ , CO 2 and N 2 in the liquid circuit. This enables a targeted setting of the dwell time of the wastewater in the liquid circuit.
- the unpurified coke plant wastewater can be passed through a chemical precipitation stage before it is introduced into the liquid circuit.
- This upstream first cleaning stage relieves the biological cleaning process.
- FeC ⁇ for example, some of the nitrogen compounds are already removed from the waste water in the chemical precipitation stage.
- the temperature of the waste water in the reactor is preferably set using a heat exchanger. This ensures a uniformly optimal temperature for the microorganisms.
- the heat exchanger is integrated in the liquid circuit of the wastewater to be cleaned.
- Fig. 2 shows a cross section through a pressurized gas-permeable, gas-permeable membrane hose in a reactor used according to the invention.
- FIG. 2 shows a cross section through the biofilm 6 jacketed gas permeable membrane tube 5. While there is an abundant supply of oxygen in the area 7 of the biofilm 6 immediately adjacent to the surface of the membrane tube 5, which ensures very high nitrification rates there, there is a very low oxygen concentration on the outside 8 of the biofilm 6, which in turn is very high in this area 8 enables high denitrification rates.
- the thickness of the biofilm 6 is regulated by means of a pump 9 via the flow rate of the liquid in the reactor 3. This prevents excessive growth of the denitrification layer 8, which can lead to blocking of the reactor 3. From a thickness of 100 to 200 ⁇ m, biofilms no longer participate in the material turnover.
- the flow set with the aid of the pump 9 shears off areas of great thickness and thus prevents excessively large biofilm thicknesses.
- the compressed gas flow 4 fed to the membrane hose 5 is regulated with the aid of analysis values of the waste water measured in the liquid circuit 2. As a result, very high denitrification rates on the outside 9 of the biofilm 6 and very high nitrification rates on the inside 7 of the biofilm 6 can be set at the same time.
- the analysis values are continuously monitored via measuring instruments 10.
- this partial stream 11 is freed from biofilm particles with the aid of a secondary settling tank 12 integrated into the liquid circuit 2. This prevents organic sludge from being entrained in the treated wastewater.
- a supply of unpurified coke oven wastewater from the template 1 into the liquid circuit 2 is regulated or controlled with the aid of analysis values of the cleaned wastewater. This allows reliable compliance with limit values with stable operation within the reactor 3.
- the resulting dilution means that problematic constituents, for example cyanides and sulfides, can also be controlled.
- a heat exchanger 13 is also integrated in the liquid circuit 2 in order to be able to adjust the temperature of the waste water in the reactor 3.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Microbiology (AREA)
- Engineering & Computer Science (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Activated Sludge Processes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Abstract
The invention relates to a method for purifying coke waste water that is charged with nitrogen compounds, cyanides and sulfides. According to the inventive method, the coke waste water passes through a reactor (3) that is integrated into a liquid cycle (2) and that comprises at least one gas-permeable membrane tube (5) whose interior is impinged upon by an oxygenous pressurized gas (4). On the exterior of the membrane tube (5) which is immersed in the liquid, a biofilm (6) is maintained in whose inner region (7) rich in oxygen due to the gas-permeability of the membrane tube (5) nitrogenous compounds are selectively nitrified to nitrates while at the same time nitrates are denitrified to elemental nitrogen in an oxygen-poor outer region (8) of the biofilm (6).
Description
VERFAHREN ZUR REINIGUNG VON KOKEREIABWASSER MIT GASDURCHLÄSSIGER MEMBRANMETHOD FOR PURIFYING COOKERY WASTE WATER WITH A GAS-PERMEABLE MEMBRANE
Beschreibung:Description:
Die Erfindung betrifft ein Verfahren zur Reinigung von Kokereiabwasser, das mit Stickstoffverbindungen, wie z.B. N -, NO2 "-, NC»3— -Ionen sowie Cyaniden und Sulfiden belastet ist.The invention relates to a process for the purification of coking plant wastewater which is contaminated with nitrogen compounds such as N -, NO 2 " -, NC» 3 - ions as well as cyanides and sulfides.
Im Stand der Technik wird die Reinigung dieser Kokereiabwasser in mehr- stufigen Verfahren innerhalb großvolumiger Behälter durchgeführt. Im Allgemeinen erfolgt zunächst eine Denitrifikation in Abwesenheit von Sauerstoff, bei der Nθ3 ~-lonen abgebaut werden. Anschließend wird ein Kohlenstoffabbau bzw. CSB-Abbau mit Hilfe aerober Bakterienstämme durchgeführt. Danach erfolgt eine Zwischenklärung, bei der mitgeschwemmte Biomasse abgetrennt wird. Es schließt sich eine Nitrifikation an, die im allgemeinen als Trägerbiologie ausgebildet ist. Zur Immobilisierung der Mikroorganismen werden Kunststoff- Füllkörper als Trägermaterial eingesetzt. Bei diesem Verfahrensschritt erfolgt eine Umwandlung von Nh -lonen in NÜ2- - bzw. NÜ3- -Ionen. Hieran schließt sich eine zweite Denitrifikationsstufe an, in der die NÜ2- sowie NÜ3- -Ionen zu elementarem Stickstoff (N2) umgewandelt werden. Es schließen sich eine Nachbelüftung zur Anreicherung des Belebtschlammes mit Sauerstoff sowie eine Nachklärung, in der der Belebtschlamm vom Abwasser getrennt wird, an.In the prior art, the cleaning of this coking plant wastewater is carried out in multi-stage processes within large-volume containers. In general, denitrification takes place in the absence of oxygen, in which Nθ 3 ~ ions are broken down. Then a carbon breakdown or COD breakdown is carried out with the help of aerobic bacterial strains. This is followed by an intermediate clarification in which the biomass that is washed away is separated off. This is followed by nitrification, which is generally designed as carrier biology. Plastic fillers are used as carrier material to immobilize the microorganisms. In this process step, Nh ions are converted into NÜ 2 - or NÜ 3 - ions. This is followed by a second denitrification stage, in which the NÜ 2 - and NÜ 3 - ions are converted to elemental nitrogen (N 2 ). This is followed by post-aeration to enrich the activated sludge with oxygen and a final clarification in which the activated sludge is separated from the waste water.
Die bei der Nitπfikation und Denitrifikation ablaufenden chemischen Vorgänge können durch die im Folgenden angegebenen Reaktionsgleichungen beschrieben werden:The chemical processes taking place during nitfication and denitrification can be described by the reaction equations given below:
Umwandlung von stickstoffhaltigen Verbindungen durch Nitrifikation:
NH4 + + - O2 D N02~ + H20 + 2H+ Conversion of nitrogenous compounds by nitrification: NH 4 + + - O 2 D N0 2 ~ + H 2 0 + 2H +
22
N02 " + - O2 D N03 ~ N0 2 " + - O 2 D N0 3 ~
22
Abbau von Nitraten durch Denitrifikation in Abwesenheit von Sauerstoff:Degradation of nitrates by denitrification in the absence of oxygen:
10H + 2N03 ~ D 20H" + N2 + 4H2010H + 2N0 3 ~ D 20H " + N 2 + 4H 2 0
Als Wasserstoff-Donatoren bei der Denitrifikation können organische Kohlen- Stoffverbindungen dienen.Organic carbon compounds can serve as hydrogen donors in denitrification.
Ein großer Nachteil konventioneller biologischer Reinigungsverfahren besteht darin, dass ein gleichgerichteter Sauerstoff- und Substrattransport von außen in die Bakterienflocken hinein stattfindet. Die Nitrifikation läuft daher sauerstoff- limitiert ab und ein Großteil der in den Bakterienflocken enthaltenen Nitrifikanten nimmt am Umsatz nicht teil. Dies ist als wesentlicher Grund dafür anzusehen, dass die konventionellen biologischen Reinigungsverfahren einen hohen Platzbedarf und damit einhergehend große Investitions- und Betriebskosten verursachen.A major disadvantage of conventional biological cleaning processes is that oxygen and substrate are transported in the same direction from the outside into the bacterial flakes. The nitrification is therefore limited to oxygen and a large part of the nitrificants contained in the bacterial flakes do not participate in the turnover. This can be seen as an essential reason for the fact that the conventional biological cleaning processes require a lot of space and, as a result, large investment and operating costs.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Reinigung von mit Stickstoffverbindungen, Cyaniden und Sulfiden belasteten Kokereiabwasser anzugeben, welches niedrige Investitions- und Betriebskosten erlaubt.The invention has for its object to provide a method for cleaning coke oven wastewater contaminated with nitrogen compounds, cyanides and sulfides, which allows low investment and operating costs.
Gegenstand der Erfindung und Lösung der Aufgabe ist ein Verfahren zur Reinigung von Kokereiabwasser, das mit Stickstoffverbindungen, Cyaniden und Sulfiden belastet ist,
wobei das Kokereiabwasser einen in einen Flüssigkeitskreislauf eingebundenen Reaktor durchströmt, der mindestens einen innenseitig von einem sauerstoffhaltigen Druckgas beaufschlagten gasdurchlässigen Membranschlauch enthält, undThe object of the invention and the solution to the problem is a process for the purification of coking plant wastewater which is contaminated with nitrogen compounds, cyanides and sulfides, wherein the coking plant wastewater flows through a reactor which is integrated in a liquid circuit and which contains at least one gas-permeable membrane hose to which an oxygen-containing compressed gas acts on the inside, and
wobei an der flussigkeitsumstromten Außenseite des Membranschlauches ein Biofilm aufrechterhalten wird, in dessen aufgrund der Gasdurchlässigkeit des Membranschlauches sauerstoffreichen Innenbereich eine selektive Nitrifikation von im Abwasser enthaltenen stick- stoffhaltigen Verbindungen zu Nitraten stattfindet und gleichzeitig in einem sauerstoffarmen Außenbereich des Biofilms eine Denitrifikation von Nitraten zu elementarem Stickstoff erfolgt.whereby a biofilm is maintained on the outside of the membrane tube around which the liquid flows, in which, owing to the gas permeability of the membrane tube, an oxygen-rich inner region is subjected to a selective nitrification of nitrogen-containing compounds contained in the wastewater to nitrates and, at the same time, a denitrification of nitrates to elementary nitrogen occurs in an oxygen-poor outer region of the biofilm he follows.
Das erfindungsgemäße Verfahren erlaubt einen wirksamen Abbau stickstoff- haltiger Verunreinigungen. Die Verwendung des beschriebenen Reaktors gewährleistet sehr hohe Nitrifikationsraten bei gleichzeitig sehr hohen Denitrifikationsraten. Aufgrund des gasdurchlässigen Membranschlauches ist eine voneinander unabhängige Substrat- und Sauerstoffversorgung der Mikroorganismen des Biofilms möglich. Während an der Außenseite des Biofilms ein sauer- stoffarmes Milieu vorliegt, welches sehr hohe Denitrifikationsraten in diesem Bereich erlaubt, sind in den direkt an die Oberfläche des Membranschlauches angrenzenden Bereichen des Biofilms aufgrund des dort herrschenden reichlichen Angebotes an Sauerstoff sehr gute Nitrifikationsraten erzielbar. Die bei konventionellen biologischen Reinigungsverfahren erforderlichen separaten Nitrifikations- und Denitrifikationsstufen können beim erfindungsgemäßen Verfahren zu einem einzigen Verfahrensschritt zusammengefasst werden. Dadurch können der apparative Aufwand, der Platzbedarf sowie die Investitions- und Betriebskosten gegenüber dem konventionellen Verfahren deutlich reduziert werden. Die kompakte Bauweise erlaubt einen produktionsintegrierten Einsatz bei deutlich höheren Konzentrationen als im Endabwasser, wodurch die Reinigung des Abwassers erheblich erleichtert wird.
Der beim erfindungsgemäßen Verfahren eingesetzte Reaktor mit gasdurchlässigem Membranschlauch ist an sich bekannt. Bislang wurde ein solcher Reaktor jedoch lediglich zu Versuchszwecken mit synthetischen Abwassern und organisch belasteten Abwassern aus Schlachthöfen eingesetzt. Über- raschenderweise ist der Reaktor jedoch auch für die Reinigung von Kokereiabwasser geeignet, das im Vergleich zu vorbekannten Anwendungen mit Cyaniden und Sulfiden belastet ist. Der an der Oberfläche des Membranschlauches anhaftende Biofilm entsteht, wenn sich Mikroorganismen an Grenzflächen anlagern und dort wachsen. Der Biofilm kann hierbei entweder aus im Abwasser enthaltenen Stoffen und/oder aus dem Abwasser zugesetzten Bioschlämmen entstehen. Als Membranschläuche werden vorzugsweise porenfreie Schläuche, z.B. Silikonmembranschläuche, eingesetzt. Besonders bewährt hat in diesem Zusammenhang ein Polyestergarn, welches mit Silicium beschichtet ist. Als sauerstoffhaltiges Druckgas kommt elementarer Sauerstoff (02), aber auch Kohlendioxid (CO2) in Frage.The method according to the invention allows an effective breakdown of nitrogen-containing impurities. The use of the described reactor ensures very high nitrification rates with very high denitrification rates. Due to the gas-permeable membrane hose, an independent supply of substrate and oxygen to the microorganisms of the biofilm is possible. While there is a low-oxygen environment on the outside of the biofilm, which allows very high denitrification rates in this area, very good nitrification rates can be achieved in the areas of the biofilm directly adjacent to the surface of the membrane tube due to the abundant supply of oxygen. The separate nitrification and denitrification stages required in conventional biological purification processes can be combined into a single process step in the process according to the invention. As a result, the outlay on equipment, the space requirement and the investment and operating costs can be significantly reduced compared to the conventional method. The compact design allows production-integrated use at significantly higher concentrations than in the final wastewater, which makes cleaning the wastewater considerably easier. The reactor with gas-permeable membrane hose used in the process according to the invention is known per se. So far, however, such a reactor has only been used for experimental purposes with synthetic wastewater and organically contaminated wastewater from slaughterhouses. Surprisingly, however, the reactor is also suitable for cleaning coke oven wastewater, which is contaminated with cyanides and sulfides compared to previously known applications. The biofilm adhering to the surface of the membrane tube arises when microorganisms accumulate at interfaces and grow there. The biofilm can arise either from substances contained in the wastewater and / or from bio-sludge added to the wastewater. Pore-free hoses, for example silicone membrane hoses, are preferably used as membrane hoses. In this context, a polyester yarn coated with silicon has proven particularly useful. Elementary oxygen (0 2 ), but also carbon dioxide (CO 2 ) can be used as the oxygen-containing compressed gas.
Vorzugsweise sind innerhalb des Flüssigkeitskreislaufes mehrere Reaktoren in Reihe geschaltet, die von dem Flüssigkeitsstrom nacheinander durchströmt werden. Entsprechend können im Strömungsraum eines Reaktors auch mehrere, von einem sauerstoffhaltigen Druckgas beaufschlagte Membranschläuche in Strömungsrichtung hintereinander angeordnet werden. Die Dicke des Biofilms wird über die Strömungsgeschwindigkeit der Flüssigkeit im Reaktor reguliert. Dies verhindert ein zu starkes Wachstum der Denitrifikationsschicht, die mit einem Verblocken des Reaktors einhergehen kann. Ab einer Dicke von 100 bis 200 μm nehmen Biofilme nicht mehr am Stoffumsatz teil. Daher muss die Bildung von zu dicken Biofilmen verhindert werden. Durch die Einstellung einer geeigneten Strömungsgeschwindigkeit werden Biofilmbereiche mit großer Dicke abgeschert und die Bildung von zu großen Filmdicken verhindert. Anhand einer kontinuierlichen Überwachung von Analysen-Messdaten innerhalb des Flüssigkeitskreislaufes kann festgestellt werden, ob eine für die biologische Reinigung optimale Strömungsgeschwindigkeit vorliegt.
Vorzugsweise wird der dem Membranschlauch zugeführte Druckgasstrom mit Hilfe von im Flüssigkeitskreislauf gemessenen Analysewerten des Abwassers reguliert. Dies erlaubt sehr hohe Denitrifikationsraten an der Außenseite des Biofilms bei gleichzeitig sehr hohen Nitrifikationsraten im an den Membranschlauch angrenzenden Innenbereich des Biofilms. Als Messdaten eignen sich beispielsweise der O2-, NH4 +-, NO3 ~-, N02 "-, Cθ2-sowie N2-Gehalt im Flüssigkeitskreislauf. Die gezielte Regulierung des zugeführten Druckgasstromes erlaubt eine präzise Steuerung und/oder Regulierung der ablaufenden Denitri- fikations- und Nitrifikationsvorgänge.Preferably, several reactors are connected in series within the liquid circuit, through which the liquid stream flows in succession. Correspondingly, in the flow space of a reactor, a plurality of membrane hoses acted upon by an oxygen-containing compressed gas can also be arranged one behind the other in the flow direction. The thickness of the biofilm is regulated by the flow rate of the liquid in the reactor. This prevents the denitrification layer from growing too rapidly, which can be associated with blockage of the reactor. From a thickness of 100 to 200 μm, biofilms no longer participate in the material turnover. The formation of too thick biofilms must therefore be prevented. By setting a suitable flow velocity, biofilm areas with a large thickness are sheared off and the formation of excessively large film thicknesses is prevented. On the basis of continuous monitoring of analysis measurement data within the liquid circuit, it can be determined whether there is an optimal flow rate for biological cleaning. The compressed gas flow fed to the membrane hose is preferably regulated with the aid of analysis values of the waste water measured in the liquid circuit. This allows very high denitrification rates on the outside of the biofilm and at the same time very high nitrification rates in the inner area of the biofilm adjacent to the membrane tube. Suitable measurement data are, for example, the O 2 -, NH 4 + -, NO 3 ~ -, N0 2 " -, Cθ 2 - and N 2 content in the liquid circuit. The targeted regulation of the compressed gas flow supplied enables precise control and / or regulation the ongoing denitrification and nitrification processes.
Vor Entnahme eines gereinigten Teilstromes aus dem Flüssigkeitskreislauf wird dieser Teilstrom vorzugsweise mit Hilfe einer in den Flüssigkeitskreislauf eingebundenen Kläreinrichtung von Biofilmteilchen befreit. Dadurch wird verhindert, dass das die Reinigungsanlage verlassende gereinigte Abwasser mit Schlamm verunreinigt ist. Als Kläreinrichtung kommt sowohl ein Nachklärbecken in Frage, innerhalb dessen eine Sedimentation der Biofilmteilchen erfolgt, oder aber auch eine Zentrifuge. Eine Zufuhr von ungereinigtem Kokereiabwasser in den Flüssigkeitskreislauf wird vorzugsweise mit Hilfe von Analysewerten des gereinigten Abwassers reguliert oder gesteuert. Dies erlaubt ein sicheres Einhalten von Grenzwerten bei gleichzeitig stabilem Verhalten im Reaktor. Als Analysewerte kommen wiederum beispielsweise der Gehalt von 02, NH , Nθ3 ~~, Nθ2 ~, CO2 sowie N2 im Flüssigkeitskreislauf in Frage. Hiermit ist eine gezielte Einstellung der Verweilzeit des Abwassers im Flüssigkeitskreislauf möglich.Before a cleaned partial flow is removed from the liquid circuit, this partial flow is preferably freed of biofilm particles with the aid of a clarifying device integrated in the liquid circuit. This prevents the cleaned waste water leaving the cleaning system from being contaminated with sludge. A clarifier can be used as a clarifier, within which sedimentation of the biofilm particles takes place, or a centrifuge. A supply of unpurified coke plant wastewater into the liquid circuit is preferably regulated or controlled with the aid of analysis values of the cleaned wastewater. This allows safe compliance with limit values with stable behavior in the reactor. The analysis values in turn include, for example, the content of 0 2 , NH, Nθ 3 ~~ , Nθ 2 ~ , CO 2 and N 2 in the liquid circuit. This enables a targeted setting of the dwell time of the wastewater in the liquid circuit.
Das ungereinigte Kokereiabwasser kann vor der Einleitung in den Flüssigkeitskreislauf durch eine chemische Fällungsstufe geführt werden. Diese vorgeschaltete erste Reinigungsstufe entlastet das biologische Reinigungsverfahren. Durch die Zugabe von beispielsweise FeC^ werden in der chemischen Fällungsstufe bereits ein Teil der Stickstoffverbindungen aus dem Abwasser entfernt.
Die Temperatur des Abwassers im Reaktor wird vorzugsweise über einen Wärmetauscher eingestellt. Hierdurch kann eine gleichmäßig optimale Temperatur für die Mikroorganismen gewährleistet werden. Der Wärmetauscher ist hierbei in den Flüssigkeitskreislauf des zu reinigenden Abwassers einge- bunden.The unpurified coke plant wastewater can be passed through a chemical precipitation stage before it is introduced into the liquid circuit. This upstream first cleaning stage relieves the biological cleaning process. By adding FeC ^, for example, some of the nitrogen compounds are already removed from the waste water in the chemical precipitation stage. The temperature of the waste water in the reactor is preferably set using a heat exchanger. This ensures a uniformly optimal temperature for the microorganisms. The heat exchanger is integrated in the liquid circuit of the wastewater to be cleaned.
Im Folgenden wird die Erfindung anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung ausführlich erläutert. Es zeigen schematisch:In the following, the invention is explained in detail on the basis of a drawing representing only one exemplary embodiment. They show schematically:
Fig. 1 ein Verfahrenfließbild des erfindungsgemäßen biologischen Reinigungsverfahrens, und1 is a process flow diagram of the biological purification process according to the invention, and
Fig. 2 einen Querschnitt durch einen von Druckgas beaufschlagten, gasdurchlässigen Membranschlauch in einem erfindungsgemäß eingesetzten Reaktor.Fig. 2 shows a cross section through a pressurized gas-permeable, gas-permeable membrane hose in a reactor used according to the invention.
Die Fig. 1 zeigt einen schematischen Aufbau des erfindungsgemäßen biologischen Verfahrens zur Reinigung von mit Stickstoffverbindungen, Cyaniden und Sulfiden belastetem Kokereiabwasser. Das zu reinigende Kokereiabwasser wird aus einer Vorlage 1 in einen Flüssigkeitskreislauf 2 eingespeist, in den ein vom Kokereiabwasser durchströmter Reaktor 3 eingebunden ist. Der Reaktor 3 enthält mehrere innenseitig von einem sauerstoffhaltigen Druckgas 4 beaufschlagte gasdurchlässige Membranschläuche 5. Im Ausführungsbeispiel wird als sauerstoffhaltiges Druckgas 4 elementarer Sauerstoff eingesetzt. An der flüssigkeitsüberströmten Außenseite der Membranschläuche 5 wird ein Biofilm 6 aufrechterhalten. Aufgrund der Gasdurchlässigkeit des Membranschlauches 5 findet im sauerstoffreichen Innenbereich 7 des Biofilms 6 eine selektive Nitrifikation vom im Abwasser enthaltenen stickstoffhaltigen Verbindungen zu Nitraten statt. Gleichzeitig erfolgt in einem sauerstoffarmen Außenbereich 8 des Biofilms 6 eine Denitrifikation von Nitraten zu elementarem Stickstoff. Dies wird besonders in der Fig. 2 deutlich, die einen Querschnitt durch den vom Biofilm 6
ummantelten gasdurchlässigen Membranschlauch 5 darstellt. Während in dem an die Oberfläche des Membranschlauches 5 unmittelbar angrenzenden Bereich 7 des Biofilms 6 ein reichliches Sauerstoffangebot vorliegt, welches dort für sehr hohe Nitrifikationsraten sorgt, liegt an der Außenseite 8 des Biofilms 6 eine sehr niedrige Sauerstoffkonzentration vor, die ihrerseits in diesem Bereich 8 sehr hohe Denitrifikationsraten ermöglicht. Aufgrund der Entkopplung von Substrat- und Sauerstoffversorgung der Mikroorganismen des Biofilms 6 können auf engstem Raum sowohl Nitrifikations- als auch Denitrifikationsprozesse mit sehr hohen Raten stattfinden. Gegenüber konventionellen bioio- gischen Reinigungsverfahren, bei denen die Nitrifikation und die Denitrifikation in zwei voneinander getrennten Behältern nacheinander durchgeführt werden müssen, zeichnet sich das erfindungsgemäße Verfahren durch einen sehr geringen apparativen Aufwand, einen geringen Platzbedarf und gleichzeitig geringe Investitions- und Betriebskosten aus.1 shows a schematic structure of the biological process according to the invention for the purification of coking plant waste water contaminated with nitrogen compounds, cyanides and sulfides. The coking plant waste water to be cleaned is fed from a template 1 into a liquid circuit 2, in which a reactor 3 through which the coking plant waste water flows is integrated. The reactor 3 contains a plurality of gas-permeable membrane tubes 5 acted upon on the inside by an oxygen-containing pressure gas 4. In the exemplary embodiment, elemental oxygen is used as the oxygen-containing pressure gas 4. A biofilm 6 is maintained on the outside of the membrane tubes 5 overflowing with liquid. Due to the gas permeability of the membrane tube 5, a selective nitrification of the nitrogen-containing compounds contained in the waste water to nitrates takes place in the oxygen-rich inner region 7 of the biofilm 6. At the same time, denitrification of nitrates to elemental nitrogen takes place in an oxygen-poor outer region 8 of the biofilm 6. This is particularly clear in FIG. 2, which shows a cross section through the biofilm 6 jacketed gas permeable membrane tube 5. While there is an abundant supply of oxygen in the area 7 of the biofilm 6 immediately adjacent to the surface of the membrane tube 5, which ensures very high nitrification rates there, there is a very low oxygen concentration on the outside 8 of the biofilm 6, which in turn is very high in this area 8 enables high denitrification rates. Due to the decoupling of the substrate and oxygen supply to the microorganisms of the biofilm 6, both nitrification and denitrification processes can take place at very high rates in a very small space. Compared to conventional biological cleaning processes, in which the nitrification and denitrification have to be carried out in two separate containers one after the other, the process according to the invention is characterized by a very low outlay in terms of apparatus, a small space requirement and at the same time low investment and operating costs.
Der im Ausführungsbeispiel eingesetzte Membranschlauch 5 besteht aus einem mit Silicium beschichten Polyestergarn. Der Außendurchmesser des Membranschlauches beträgt 3 mm bei einer Wandstärke von 0,5 mm. Die spezifische Oberfläche des Schlauches beträgt zwischen 20 und 200 m2/m3. Der an dem Membranschlauch 5 anhaftende Biofilm 6 entsteht aus im Abwasser enthaltenen Stoffen und/oder aus dem Abwasser zugesetzten Bioschlämmen. Hierbei lagern sich Mikroorganismen an der Oberfläche des Membranschlauches an und wachsen dort.The membrane tube 5 used in the exemplary embodiment consists of a polyester yarn coated with silicon. The outer diameter of the membrane hose is 3 mm with a wall thickness of 0.5 mm. The specific surface area of the hose is between 20 and 200 m 2 / m 3 . The biofilm 6 adhering to the membrane tube 5 arises from substances contained in the waste water and / or from bio-sludge added to the waste water. Here, microorganisms accumulate on the surface of the membrane tube and grow there.
Die Dicke des Biofilms 6 wird mit Hilfe einer Pumpe 9 über die Strömungsgeschwindigkeit der Flüssigkeit im Reaktor 3 reguliert. Hierdurch wird ein zu starkes Wachstum der Denitrifikationsschicht 8 verhindert, die zu einem Verblocken des Reaktors 3 führen kann. Ab einer Dicke vom 100 bis 200 μm nehmen Biofilme nicht mehr am Stoffumsatz teil. Die mit Hilfe der Pumpe 9 eingestellte Strömung schert Bereiche großer Dicke ab und verhindert damit zu große Biofilmdicken.
Der dem Membranschlauch 5 zugeführte Druckgasstrom 4 wird mit Hilfe von im Flüssigkeitskreislauf 2 gemessenen Analysewerten des Abwassers reguliert. Hierdurch können gezielt gleichzeitig sehr hohe Denitrifikationsraten an der Außenseite 9 des Biofilms 6 und sehr hohe Nitrifikationsraten im Innenbereich 7 des Biofilms 6 eingestellt werden. Die Analysewerte werden über Messinstrumente 10 fortlaufend überwacht. Vor Entnahme eines gereinigten Teilstromes 11 aus dem Flüssigkeitskreislauf 2 wird dieser Teilstrom 11 mit Hilfe eines in den Flüssigkeitskreislauf 2 eingebundenen Nachklärbeckens 12 von Biofilmteilchen befreit. Dadurch wird ein Mitriss von Bioschlamm im gereinigten Ab- wasser verhindert. Eine Zufuhr von ungereinigtem Kokereiabwasser aus der Vorlage 1 in den Flüssigkeitskreislauf 2 wird mit Hilfe von Analysewerten des gereinigten Abwassers reguliert oder gesteuert. Dies erlaubt ein sicheres Einhalten von Grenzwerten bei gleichzeitig stabiler Betriebsweise innerhalb des Reaktors 3. Durch die sich dabei einstellende Verdünnung lassen sich auch problematische Bestandteile, z.B. Cyanide und Sulfide, beherrschen. In den Flüssigkeitskreislauf 2 ist auch ein Wärmetauscher 13 eingebunden, um die Temperatur des Abwassers im Reaktor 3 einstellen zu können. Hierdurch kann eine stets optimale Temperatur für die Mikroorganismen des Biofilms 6 sicher gewährleistet werden. Die Temperatur wird mit Hilfe einer entsprechenden Messvorrichtung 14 überwacht. Ferner ist eine pH-Wert-Regelung 15 vorgesehen, um die Konzentration von H+- bzw. OH- -Ionen im Flüssigkeitskreislauf 2 einstellen zu können.
The thickness of the biofilm 6 is regulated by means of a pump 9 via the flow rate of the liquid in the reactor 3. This prevents excessive growth of the denitrification layer 8, which can lead to blocking of the reactor 3. From a thickness of 100 to 200 μm, biofilms no longer participate in the material turnover. The flow set with the aid of the pump 9 shears off areas of great thickness and thus prevents excessively large biofilm thicknesses. The compressed gas flow 4 fed to the membrane hose 5 is regulated with the aid of analysis values of the waste water measured in the liquid circuit 2. As a result, very high denitrification rates on the outside 9 of the biofilm 6 and very high nitrification rates on the inside 7 of the biofilm 6 can be set at the same time. The analysis values are continuously monitored via measuring instruments 10. Before a cleaned partial stream 11 is removed from the liquid circuit 2, this partial stream 11 is freed from biofilm particles with the aid of a secondary settling tank 12 integrated into the liquid circuit 2. This prevents organic sludge from being entrained in the treated wastewater. A supply of unpurified coke oven wastewater from the template 1 into the liquid circuit 2 is regulated or controlled with the aid of analysis values of the cleaned wastewater. This allows reliable compliance with limit values with stable operation within the reactor 3. The resulting dilution means that problematic constituents, for example cyanides and sulfides, can also be controlled. A heat exchanger 13 is also integrated in the liquid circuit 2 in order to be able to adjust the temperature of the waste water in the reactor 3. In this way, an optimal temperature for the microorganisms of the biofilm 6 can always be guaranteed. The temperature is monitored using an appropriate measuring device 14. Furthermore, a pH value control 15 is provided in order to be able to adjust the concentration of H + or OH- ions in the liquid circuit 2.
Claims
1. Verfahren zur Reinigung von Kokereiabwasser, das mit Stickstoffverbindungen, Cyaniden und Sulfiden belastet ist,1. Process for the cleaning of coking plant wastewater contaminated with nitrogen compounds, cyanides and sulfides,
wobei das Kokereiabwasser einen in einen Flüssigkeitskreislauf (2) eingebundenen Reaktor (3) durchströmt, der mindestens einen innenseitig von einem sauerstoffhaltigen Druckgas (4) beaufschlagten gasdurchlässigen Membranschlauch (5) enthält, undwherein the coking plant waste water flows through a reactor (3) which is integrated in a liquid circuit (2) and which contains at least one gas-permeable membrane hose (5) which is pressurized on the inside by an oxygen-containing compressed gas (4), and
wobei an der flussigkeitsumstromten Außenseite des Membranschlauches (5) ein Biofilm (6) aufrechterhalten wird, in dessen aufgrund der Gasdurchlässigkeit des Membranschlauches (5) sauerstoffreichen Innenbereich (7) eine selektive Nitrifikation von im Abwasser enthaltenen stickstoffhaltigen Verbindungen zu Nitraten stattfindet und gleichzeitig in einem sauerstoffarmen Außenbereich (8) des Biofilms (6) eine Denitrifikation von Nitraten zu elementarem Stickstoff erfolgt.A biofilm (6) is maintained on the outside of the membrane hose (5) around which the liquid flows, in which, due to the gas permeability of the membrane hose (5), the oxygen-rich inner region (7) is subjected to a selective nitrification of nitrogen-containing compounds contained in the waste water to nitrates and at the same time in a low-oxygen state Outside (8) of the biofilm (6) a nitration of nitrates to elemental nitrogen takes place.
2. Verfahren nach Anspruch 1 , wobei innerhalb des Flüssigkeitskreislaufes (2) mehrere Reaktoren (3) in Reihe geschaltet und von dem Flüssigkeitsstrom nacheinander durchströmt werden.2. The method according to claim 1, wherein a plurality of reactors (3) are connected in series within the liquid circuit (2) and the liquid stream flows through them in succession.
3. Verfahren nach Anspruch 1 oder 2, wobei die Dicke des Biofilms (6) über die Strömungsgeschwindigkeit der Flüssigkeit im Reaktor (3) reguliert wird.3. The method according to claim 1 or 2, wherein the thickness of the biofilm (6) is regulated via the flow rate of the liquid in the reactor (3).
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, dass der dem Membranschlauch (5) zugeführte Druckgasstrom (4) mit Hilfe von im Flüssigkeitskreislauf (2) gemessenen Analysenwerten des Abwassers reguliert wird. 4. The method according to claim 1 to 3, characterized in that the compressed gas flow (4) fed to the membrane hose (5) is regulated with the aid of analytical values of the waste water measured in the liquid circuit (2).
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, dass vor Entnahme eines gereinigten Teilstromes (11) aus dem Flüssigkeitskreislauf (2) dieser Teilstrom (11) mit Hilfe einer in den Flüssigkeitskreislauf (2) eingebundenen Kläreinrichtung (12) von Biofilmteilchen befreit wird.5. The method according to claim 1 to 4, characterized in that before removal of a cleaned partial stream (11) from the liquid circuit (2) this partial stream (11) is freed from biofilm particles by means of a clarifying device (12) integrated in the liquid circuit (2) ,
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, dass eine Zufuhr von ungereinigtem Kokereiabwasser in den Flüssigkeitskreislauf (2) mit Hilfe von Analysewerten des gereinigten Abwassers reguliert oder gesteuert wird.6. The method according to claim 1 to 5, characterized in that a supply of unpurified coke oven wastewater in the liquid circuit (2) is regulated or controlled with the aid of analysis values of the cleaned wastewater.
7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, dass das ungereinigte Kokereiabwasser vor der Einleitung in den Flüssigkeitskreislauf (2) durch eine chemische Fällungsstufe geführt wird.7. The method according to claim 1 to 6, characterized in that the unpurified coking plant waste water is passed through a chemical precipitation stage before being introduced into the liquid circuit (2).
8. Verfahren nach Anspruch 1 bis 7, dadurch gekennzeichnet, dass die Temperatur des Abwassers im Reaktor (3) über einen Wärmetauscher (13) eingestellt wird. 8. The method according to claim 1 to 7, characterized in that the temperature of the waste water in the reactor (3) is set via a heat exchanger (13).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003118736 DE10318736A1 (en) | 2003-04-25 | 2003-04-25 | Process for the treatment of coking plant waste water |
PCT/EP2004/003353 WO2004096719A1 (en) | 2003-04-25 | 2004-03-30 | Method for purifying coke waste water using a gas-permeable membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1618073A1 true EP1618073A1 (en) | 2006-01-25 |
Family
ID=33154411
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04724283A Withdrawn EP1618073A1 (en) | 2003-04-25 | 2004-03-30 | Method for purifying coke waste water using a gas-permeable membrane |
Country Status (16)
Country | Link |
---|---|
US (1) | US20070012619A1 (en) |
EP (1) | EP1618073A1 (en) |
JP (1) | JP2006524562A (en) |
KR (1) | KR20060014037A (en) |
CN (1) | CN100355673C (en) |
AR (1) | AR044047A1 (en) |
BR (1) | BRPI0409732A (en) |
CA (1) | CA2523360A1 (en) |
DE (1) | DE10318736A1 (en) |
MX (1) | MXPA05011489A (en) |
NO (1) | NO20054903L (en) |
PL (1) | PL378165A1 (en) |
RU (1) | RU2005136658A (en) |
TW (1) | TW200505804A (en) |
WO (1) | WO2004096719A1 (en) |
ZA (1) | ZA200508611B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007042036B4 (en) * | 2006-09-06 | 2014-02-13 | Uas Messtechnik Gmbh | Simultaneous denitrification |
CN103209932B (en) * | 2010-07-01 | 2015-11-25 | 亚历山大.法斯本德 | Treatment of waste water |
DE102011001962A1 (en) | 2011-04-11 | 2012-10-11 | Thyssenkrupp Uhde Gmbh | Process and plant for biological treatment of coking plant wastewater |
CN102432104B (en) * | 2011-11-04 | 2013-07-17 | 同济大学 | High-efficiency low-power multi-layer horizontal flow biomembrane sewage treatment method and equipment |
DE102011118937A1 (en) | 2011-11-21 | 2013-05-23 | Thyssenkrupp Uhde Gmbh | Process and apparatus for purifying waste water from a coke quench tower with shortened catchment residence time |
HUE050702T2 (en) | 2013-02-22 | 2020-12-28 | Bl Technologies Inc | Open tank reactor with membrane assembly for supporting a biofilm |
CA2901811A1 (en) * | 2013-02-22 | 2014-08-28 | General Electric Company | Wastewater treatment with membrane aerated biofilm and anaerobic digester |
CA3207201A1 (en) | 2014-03-20 | 2015-09-24 | Bl Technologies, Inc. | Wastewater treatment with primary treatment and mbr or mabr-ifas reactor |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2002926A1 (en) * | 1970-01-23 | 1971-07-29 | Roesler Norbert Dipl Ing | Cascade type water filter for waste water |
JPS5768195A (en) * | 1980-10-13 | 1982-04-26 | Mitsubishi Rayon Co Ltd | Method for biochemical purification of water using film-like matter |
DE3520160A1 (en) * | 1985-06-05 | 1986-12-11 | Noell GmbH, 8700 Würzburg | METHOD AND DEVICE FOR REMOVING NITRATE FROM SURFACE AND GROUND WATER, IN PARTICULAR DRINKING WATER |
US5094752A (en) * | 1990-02-09 | 1992-03-10 | Davis Water & Waste Industries, Inc. | Aerobic wastewater treatment with alkalinity control |
US5846425A (en) * | 1994-07-22 | 1998-12-08 | Whiteman; George R. | Methods for treatment of waste streams |
US5932099A (en) * | 1995-07-25 | 1999-08-03 | Omnium De Traitements Et De Valorisation (Otv) | Installation for biological water treatment for the production of drinkable water |
ZA958717B (en) * | 1995-10-16 | 1996-07-31 | Duckstreet Mining Private Limi | Process for purifying cyanide-containing effluent |
US5733456A (en) * | 1997-03-31 | 1998-03-31 | Okey; Robert W. | Environmental control for biological nutrient removal in water/wastewater treatment |
GB9823496D0 (en) * | 1998-10-27 | 1998-12-23 | Univ Manchester Metropolitan | Nitrification process |
US6183643B1 (en) * | 1999-02-24 | 2001-02-06 | Ag Tech International, Inc. | Method and apparatus for denitrification of water |
FR2793484B1 (en) * | 1999-05-12 | 2001-07-06 | Degremont | METHOD, DEVICE AND USE OF THE METHOD FOR THE BIOLOGICAL REMOVAL OF METAL ELEMENTS PRESENT IN THE IONIZED STATE IN WATERS |
EP1423338B1 (en) * | 2000-03-08 | 2007-01-24 | Zenon Technology Partnership | Reaktor with membrane module for gas transfer and membrane supported biofilm process |
CN1164506C (en) * | 2001-04-09 | 2004-09-01 | 南京化工大学 | Ceramic film tube bioreaction and separation system |
-
2003
- 2003-04-25 DE DE2003118736 patent/DE10318736A1/en not_active Withdrawn
-
2004
- 2004-03-30 MX MXPA05011489A patent/MXPA05011489A/en not_active Application Discontinuation
- 2004-03-30 JP JP2006504917A patent/JP2006524562A/en not_active Withdrawn
- 2004-03-30 RU RU2005136658/15A patent/RU2005136658A/en not_active Application Discontinuation
- 2004-03-30 EP EP04724283A patent/EP1618073A1/en not_active Withdrawn
- 2004-03-30 CN CNB2004800110720A patent/CN100355673C/en not_active Expired - Fee Related
- 2004-03-30 KR KR20057020311A patent/KR20060014037A/en not_active Application Discontinuation
- 2004-03-30 PL PL37816504A patent/PL378165A1/en not_active Application Discontinuation
- 2004-03-30 ZA ZA200508611A patent/ZA200508611B/en unknown
- 2004-03-30 US US10/554,256 patent/US20070012619A1/en not_active Abandoned
- 2004-03-30 BR BRPI0409732 patent/BRPI0409732A/en not_active IP Right Cessation
- 2004-03-30 CA CA 2523360 patent/CA2523360A1/en not_active Abandoned
- 2004-03-30 WO PCT/EP2004/003353 patent/WO2004096719A1/en active Search and Examination
- 2004-04-21 AR ARP040101351 patent/AR044047A1/en not_active Application Discontinuation
- 2004-04-23 TW TW093111462A patent/TW200505804A/en unknown
-
2005
- 2005-10-24 NO NO20054903A patent/NO20054903L/en not_active Application Discontinuation
Non-Patent Citations (1)
Title |
---|
See references of WO2004096719A1 * |
Also Published As
Publication number | Publication date |
---|---|
ZA200508611B (en) | 2008-01-30 |
WO2004096719A1 (en) | 2004-11-11 |
MXPA05011489A (en) | 2005-12-15 |
BRPI0409732A (en) | 2006-05-09 |
CN1802322A (en) | 2006-07-12 |
JP2006524562A (en) | 2006-11-02 |
DE10318736A1 (en) | 2004-11-11 |
US20070012619A1 (en) | 2007-01-18 |
AR044047A1 (en) | 2005-08-24 |
TW200505804A (en) | 2005-02-16 |
NO20054903D0 (en) | 2005-10-24 |
PL378165A1 (en) | 2006-03-06 |
KR20060014037A (en) | 2006-02-14 |
RU2005136658A (en) | 2006-03-20 |
CA2523360A1 (en) | 2004-11-11 |
NO20054903L (en) | 2005-11-25 |
CN100355673C (en) | 2007-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1943193B1 (en) | Method for the treatment of ammonium-containing effluent by means of ph-regulation | |
DE69708792T2 (en) | Biological wastewater treatment | |
EP2697173B1 (en) | Process for biological purification of coking plant wastewater | |
EP1968900A1 (en) | Anaerobic purification of wastewater | |
DE3726201C2 (en) | Activated sludge treatment process for wastewater or industrial wastewater | |
EP0357753B1 (en) | Process and device for biological purification of water contaminated with nitrogen and phosphor compounds and organic carbon | |
DE2454426A1 (en) | PROCESS FOR TREATMENT OF RAW WASTEWATER AND INSTALLATION FOR CARRYING OUT THE PROCESS | |
DE2821341A1 (en) | METHOD AND DEVICE FOR BIOLOGICAL SEWAGE PURIFICATION | |
EP1618073A1 (en) | Method for purifying coke waste water using a gas-permeable membrane | |
DE3412553C2 (en) | Process and device for biological aerobic purification of waste water | |
DE2935120A1 (en) | Activated sludge aeration control - by adjustment to optimum dissolved oxygen concentration | |
DE3833185C2 (en) | ||
DE102016113796A1 (en) | Method and plant for further microbiological purification of nitrogenous wastewater | |
EP2067750B1 (en) | Method and device for treating waste water with a high share of nitrogen and low share of BSB5, especially water on a waste tip | |
DE102015114881A1 (en) | Process for the treatment of industrial wastewater containing organic compounds | |
EP0261516B1 (en) | Process for the continuous microbiological denitrification of ground water | |
DE19716939C2 (en) | Process and wastewater treatment plant for the biological treatment of dye-containing wastewater from the textile and leather industry | |
DE4339630C1 (en) | Fixed-bed process for wastewater purification | |
EP0938455A2 (en) | Biological waste water purification process and device | |
EP0623099A1 (en) | Biological method for purifying waste water contaminated with organic carbon and nitrogen compounds | |
EP0634368A1 (en) | Process and device for directly biologically treating hot industrial wastewater or a partial stream thereof | |
DE4213846C1 (en) | Redn. of nitrogen content of foul sludge - by passing sludge through alternating nitrification-denitrification stage between decomposition and water extn. | |
WO2001025158A1 (en) | Method for treating sewage of a biological sewage treatment plant | |
DE202018101721U1 (en) | Plant for water treatment | |
DE3534244A1 (en) | Process for the biological purification of organically polluted waste waters |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051102 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17Q | First examination report despatched |
Effective date: 20060628 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20081001 |