[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1613719A1 - Antibacterial light duty liquid cleaning composition - Google Patents

Antibacterial light duty liquid cleaning composition

Info

Publication number
EP1613719A1
EP1613719A1 EP04759519A EP04759519A EP1613719A1 EP 1613719 A1 EP1613719 A1 EP 1613719A1 EP 04759519 A EP04759519 A EP 04759519A EP 04759519 A EP04759519 A EP 04759519A EP 1613719 A1 EP1613719 A1 EP 1613719A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
light duty
duty liquid
ethoxylated
surfactants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04759519A
Other languages
German (de)
French (fr)
Inventor
Thomas Connors
Robert D'ambrogio
Bruce Nascimbeni
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Colgate Palmolive Co
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Publication of EP1613719A1 publication Critical patent/EP1613719A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/65Mixtures of anionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/835Mixtures of non-ionic with cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/86Mixtures of anionic, cationic, and non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • C11D3/33Amino carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/143Sulfonic acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/29Sulfates of polyoxyalkylene ethers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • C11D1/52Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
    • C11D1/523Carboxylic alkylolamides, or dialkylolamides, or hydroxycarboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain one hydroxy group per alkyl group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/75Amino oxides

Definitions

  • 4,329,335 also discloses a shampoo containing a betaine surfactant as the major ingredient and minor amounts of a nonionic surfactant and of a fatty acid mono- or di- ethanolamide.
  • U.S. Patent No. 4,259,204 discloses a shampoo comprising 0.8 to 20% by weight of an anionic phosphoric acid ester and one additional surfactant which may be either anionic, amphoteric, or nonionic.
  • U.S. Patent No. 4,329,334 discloses an anionic-amphoteric based shampoo containing a major amount of anionic surfactant and lesser amounts of a betaine and nonionic surfactants.
  • U.S. Patent No. 3,935,129 discloses a liquid cleaning composition containing an alkali metal silicate, urea, glycerin, triethanolamine, an anionic detergent and a nonionic detergent.
  • the silicate content determines the amount of anionic and/or nonionic detergent in the liquid cleaning composition.
  • the foaming properties of these detergent compositions are not discussed therein.
  • U.S. Patent No. 4,129,515 discloses a heavy duty liquid detergent for laundering fabrics comprising a mixture of substantially equal amounts of anionic and nonionic surfactants, alkanolamines and magnesium salts, and, optionally, zwittehonic surfactants as suds modifiers.
  • U.S. Patent No. 4,224,195 discloses an aqueous detergent composition for laundering socks or stockings comprising a specific group of nonionic detergents, namely, an ethylene oxide of a secondary alcohol, a specific group of anionic detergents, namely, a sulfuric ester salt of an ethylene oxide adduct of a secondary alcohol, and an amphoteric surfactant which may be a betaine, wherein either the anionic or nonionic surfactant may be the major ingredient.
  • the prior art also discloses detergent compositions containing all nonionic surfactants as shown in U.S. Patent Nos.
  • a high foaming antibacterial liquid cleaning composition with properties good grease cutting properties can be formulated with at least two different surfactants, a zinc inorganic salt, sodium salt of lauryol ethylene diamine triacetate and water.
  • the novel, high foaming, light duty liquid detergent of this invention comprises a Cg-Cig ethoxylated alkyl ether sulfate, a magnesium salt of a Cs-C ⁇ s linear alkyl benzene sulfonate, a sodium salt of a Cg-C-jg linear alkyl benzene sulfonate, an alkyl polyglucoside, an amine oxide, a zinc inorganic salt, a sodium salt of lauryol ethylene diamine triacetate, and water, wherein the composition does not contain a glycol ether solvent, an alpha olefin sulfonate surfactant, a polyoxyalkylene glycol fatty acid, a builder, a polymeric thickener, a clay, an alkali metal salt of ethylene diamine tetraacetic acid or hydroxy
  • the present invention relates to a light duty liquid detergent which comprises approximately by weight:
  • the balance being water wherein the composition does not contain a glycol ether solvent, sodium citrate, an alpha olefin sulfonate surfactant, a polyoxyalkylene glycol fatty acid, a builder, a polymeric thickener, an alkali metal salt of ethylene diamine tetraacetic acid or a hydroxy ethylene diamine tetraacetic acid, a clay, abrasive, silicas, triclosan, alkaline earth metal carbonates, alkyl glycine surfactant or cyclic imidinium surfactant.
  • a glycol ether solvent sodium citrate
  • an alpha olefin sulfonate surfactant e.g., sodium citrate, an alpha olefin sulfonate surfactant, a polyoxyalkylene glycol fatty acid, a builder, a polymeric thickener, an alkali metal salt of ethylene diamine tetraacetic acid or
  • the C8-C ⁇ 8 ethoxylated alkyl sulfate surfactants have the structure
  • n 1 to 22 more preferably 1 to 3 and R is an alkyl group having 8 to 18 carbon atoms, more preferably 12 to 15 and natural cuts, for example, C12-14; C12-15 and M is an ammonium cation, alkali metal or an alkaline earth metal cation, most preferably magnesium, sodium or ammonium.
  • the ethoxylated alkyl ether sulfate may be made by sulfating the condensation product of ethylene oxide and C ⁇ -10 alkanol, and neutralizing the resultant product.
  • the ethoxylated alkyl ether sulfates differ from one another in the number of carbon atoms in the alcohols and in the number of moles of ethylene oxide reacted with one mole of such alcohol.
  • Preferred ethoxylated alkyl ether polyethenoxy sulfates contain 12 to 15 carbon atoms in the alcohols and in the alkyl groups thereof, e.g., sodium myristyl (3 EO) sulfate.
  • Ethoxylated C8-18 alkylphenyl ether sulfates containing from 2 to 6 moles of ethylene oxide in the molecule are also suitable for use in the invention compositions.
  • These detergents can be prepared by reacting an alkyl phenol with 2 to 6 moles of ethylene oxide and sulfating and neutralizing the resultant ethoxylated alkylphenol.
  • the concentration of the ethoxylated alkyl ether sulfate surfactant is 1 to 8 wt. %.
  • An alkali metal or alkaline earth metal salt of the CS-C-J S linear alkyl benzene sulfonate or C8-C18 paraffin sulfonate surfactant can be used in the instant compositions.
  • suitable sulfonated anionic surfactants are the well known higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 8 to 18 carbon atoms, more preferably 10 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, C8-C15 alkyl toluene sulfonates and C8-C15 alkyl phenol sulfonates.
  • One of preferred sulfonates is linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50%) of 2- (or lower) phenyl isomers, that is, wherein the benzene ring is preferably attached in large part at the 3 or higher (for example, 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low.
  • Particularly preferred materials are set forth in U.S. Patent 3,320,174.
  • the alkyl polysaccharides surfactants which can be used in conjunction with the aforementioned surfactant have a hydrophobic group containing from 8 to 20 carbon atoms, preferably from 10 to 16 carbon atoms, most preferably from 12 to 14 carbon atoms, and polysaccharide hydrophilic group containing from 1.5 to 10, preferably from 1.5 to 4, most preferably from 1.6 to 2.7 saccharide units (e.g., galactoside, glucoside, fructoside, glucosyl, fructosyl; and/or galactosyl units). Mixtures of saccharide moieties may be used in the alkyl polysaccharide surfactants.
  • the number x indicates the number of saccharide units in a particular alkyl polysaccharide surfactant.
  • x can only assume integral values.
  • the physical sample can be characterized by the average value of x and this average value can assume non-integral values.
  • the values of x are to be understood to be average values.
  • the hydrophobic group (R) can be attached at the 2-, 3-, or 4- positions rather than at the 1 -position, (thus giving e.g. a glucosyl or galactosyl as opposed to a glucoside or galactoside).
  • glucosides i.e., glucosides, galactoside, fructosides, etc.
  • additional saccharide units are predominately attached to the previous saccharide unit's 2-position. Attachment through the 3-, 4-, and 6- positions can also occur.
  • the preferred alkoxide moiety is ethoxide.
  • Typical hydrophobic groups include alkyl groups, either saturated or unsaturated, branched or unbranched containing from 8 to 20, preferably from 10 to 18 carbon atoms.
  • the alkyl group is a straight chain saturated alkyl group.
  • the alkyl ' group can contain up to 3 hydroxy groups and/or the polyalkoxide chain can contain up to 30, preferably less than 10, alkoxide moieties.
  • Suitable alkyl polysaccharides are decyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, and octadecyl, di-, tri-, tetra-, penta-, and hexaglucosides, galactosides, lactosides, fructosides, fructosyls, lactosyls, glucosyls and/or galactosyls and mixtures thereof.
  • the alkyl monosaccharides are relatively less soluble in water than the higher alkyl polysaccharides. When used in admixture with alkyl polysaccharides, the alkyl monosaccharides are solubilized to some extent.
  • the use of alkyl monosaccharides in admixture with alkyl polysaccharides is a preferred mode of carrying out the invention. Suitable mixtures include coconut alkyl, di-, tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hexaglucosides.
  • the preferred alkyl polysaccharides are alkyl polyglucosides having the formula wherein Z is derived from glucose, R is a hydrophobic group selected from the group consisting of alkyl, alkylphenyl, hydroxyalkylphenyl, and mixtures thereof in which said alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14 carbon atoms; n is 2 or 3 preferably 2, r is from 0 to 10, preferable 0; and x is from 1.5 to 8, preferably from 1.5 to 4, most preferably from 1.6 to 2.7.
  • R2OH long chain alcohol
  • the alkyl polyglucosides can be prepared by a two step procedure in which a short chain alcohol (R-
  • the short chain alkylglucoside content of the final alkyl polyglucoside material should be less than 50%, preferably less than 10%, more preferably less than 5%, most preferably 0% of the alkyl polyglucoside.
  • the amount of unreacted alcohol (the free fatty alcohol content) in the desired alkyl polysaccharide surfactant is preferably less than 2%, more preferably less than about 0.5% by weight of the total of the alkyl polysaccharide. For some uses it is desirable to have the alkyl monosaccharide content less than 10%.
  • alkyl polysaccharide surfactant is intended to represent both the preferred glucose and galactose derived surfactants and the less preferred alkyl polysaccharide surfactants.
  • alkyl polyglucoside is used to include alkyl polyglycosides because the stereochemistry of the saccharide moiety is changed during the preparation reaction.
  • APG glycoside surfactant is APG 625 glycoside manufactured by the Henkel Corporation of Ambler, PA.
  • APG 625 has: a pH of 6 to 10 (10% of APG 625 in distilled water); a specific gravity at 25°C of 1.1 g/ml; a density at 25°C of 9.1 lbs/gallon; a calculated HLB of 12.1 and a Brookfield viscosity at 35°C, 21 spindle, 5-10 RPM of 3,000 to 7,000 cps.
  • the water-soluble zwitterionic surfactant which can also be used provides good foaming properties and mildness to the present nonionic based liquid detergent.
  • the zwitterionic surfactant is a water soluble betaine having the general formula:
  • R- ⁇ is an alkyl group having 10 to 20 carbon atoms, preferably 12 to 16 carbon atoms, or the amido radical:
  • R is an alkyl group having 9 to 19 carbon atoms and a is the integer 1 to 4;
  • R2 and R3 are each alkyl groups having 1 to 3 carbons and preferably 1 carbon;
  • R4 is an alkylene or hydroxyalkylene group having from 1 to 4 carbon atoms and, optionally, one hydroxyl group.
  • Typical alkyldimethyl betaines include decyl dimethyl betaine or 2-(N- decyl-N, N-dimethyl-ammonia) acetate, coco dimethyl betaine or 2-(N-coco N, N- dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, lauryl diemethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine, etc.
  • the amidobetaines similarly include cocoamidoethylbetaine, cocoamidopropyl betaine and the like.
  • a preferred betaine is coco (Cs-Cis) amidopropyl dimethyl betaine.
  • Amine oxide semi-polar nonionic surfactants comprise compounds and mixtures of compounds have the formula:
  • R 3 wherein R-j is an alkyl, 2-hydroxyalkyl, 3-hydroxyalkyl, or 3-alkoxy-2-hydroxypropyl radical in which the alkyl and alkoxy, respectively, contain from 8 to 18 carbon atoms, R2 and R3 are each methyl, ethyl, propyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, or 3-hydroxypropyl, and n is from 0 to 10.
  • Particularly preferred are amine oxides of the formula:
  • R-] is a C-12-I6 a 'ky' ar, d ⁇ 2 anc ' R 3 are methyl or ethyl.
  • the instant composition can contain a mixture of a C ⁇
  • 2-14 alkyl monoalkanol amide such as lauryl monoalkanol amide
  • a C-J2-14 alkyl dialkanol amide such as lauryl diethanol amide or coco diethanol amide.
  • the water soluble nonionic surfactants which can be utilized in this invention are commercially well known and include the primary aliphatic alcohol ethoxylates, secondary aliphatic alcohol ethoxylates, alkylphenol ethoxylates and ethylene-oxide- propylene oxide condensates on primary alkanols, such a Plurafacs (BASF) and condensates of ethylene oxide with sorbitan fatty acid esters such as the Tweens (ICI).
  • the nonionic synthetic organic detergents generally are the condensation products of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups.
  • any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen or the oxygen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a water-soluble nonionic detergent. Further, the length of the polyethenoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
  • the nonionic detergent class includes the condensation products of a higher alcohol (e.g., an alkanol containing 8 to 18 carbon atoms in a straight or branched chain configuration) condensed with 5 to 30 moles of ethylene oxide, for example, lauryl or myristyl alcohol condensed with 16 moles of ethylene oxide (EO), tridecanol condensed with 6 to moles of EO, myristyl alcohol condensed with 10 moles of EO per mole of myristyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms in length and wherein the condensate contains either 6 moles of EO per mole of total alcohol or 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing 6 EO to 11 EO per mole of alcohol.
  • a higher alcohol e.g., an alkanol containing 8 to
  • Neodol ethoxylates which are higher aliphatic, primary alcohol containing about 9- 15 carbon atoms, such as Cg-C ⁇ -j alkanol condensed with 7 to 10 moles of ethylene oxide (Neodol 91-8), C-12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol
  • ethoxamers 15 alkanol condensed with 13 moles ethylene oxide (Neodol 45-13), and the like.
  • HLB hydrophobic lipophilic balance
  • ethoxamers with HLB values below 8 contain less than 5 ethyleneoxide groups and tend to be poor emulsifiers and poor detergents.
  • Additional satisfactory water soluble alcohol ethylene oxide condensates are the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide.
  • Examples of commercially available nonionic detergents of the foregoing type are C ⁇ 1-C-15 secondary alkanol condensed with either 9 EO (Tergitol 15-S-9) or 12 EO
  • nonionic detergents include the polyethylene oxide condensates of one mole of alkyl phenol containing from 8 to 18 carbon atoms in a straight- or branched chain alkyl group with 5 to 30 moles of ethylene oxide.
  • alkyl phenol ethoxylates include nonyl phenol condensed with 9.5 moles of EO per mole of nonyl phenol, dinonyl phenol condensed with 12 moles of EO per mole of phenol, dinonyl phenol condensed with 15 moles of EO per mole of phenol and di-isoctylphenol condensed with 15 moles of EO per mole of phenol.
  • nonionic surfactants of this type include Igepal CO-630 (nonyl phenol ethoxylate) marketed by
  • nonionic detergents are the water-soluble condensation products of a C8-C20 alkanol with a heteric mixture of ethylene oxide and propylene oxide wherein the weight ratio of ethylene oxide to propylene oxide is from
  • Such detergents are commercially available from BASF-Wyandotte and a particularly preferred detergent is a C ⁇ Q-C- ⁇ Q alkanol condensate with ethylene oxide and propylene oxide, the weight ratio of ethylene oxide to propylene oxide being
  • C20 alkanoic acid esters having a HLB of 8 to 15 also may be employed as the nonionic detergent ingredient in the described composition.
  • These surfactants are well known and are available from Imperial Chemical Industries under the Tween trade name. Suitable surfactants include polyoxyethylene (4) sorbitan monolaurate, polyoxyethylene (4) sorbitan monostearate, polyoxyethylene (20) sorbitan trioleate and polyoxyethylene (20) sorbitan tristearate.
  • the water is present at a concentration of 40 wt. % to 83 wt. %.
  • various coloring agents and perfumes such as the Uvinuls, which are products of GAF Corporation; magnesium sulfate heptahydrate; pH modifiers; etc.
  • the proportion of such adjuvant materials, in total will normally not exceed 15% by weight of the detergent composition, and the percentages of most of such individual components will be a maximum of 5% by weight and preferably less than 2% by weight.
  • Sodium formate or formalin can be included in the formula as a preservative at a concentration of 0.1 to 4.0 wt. %.
  • Sodium bisulfite can be used as a color stabilizer at a concentration of 0.01 to 0.2 wt. %.
  • the present light duty liquid detergents such as dishwashing liquids are readily made by simple mixing methods from readily available components which, on storage, do not adversely affect the entire composition.
  • Solubilizing agent such as ethanol, sodium chloride and/or sodium cumene or sodium xylene sulfonate and mixtures thereof are used at a concentration of 0.5 wt. % ' t ⁇ TO wt. % to assist in solubilizing the surfactants.
  • the viscosity of the light duty liquid composition desirably will be at least 100 centipoises (cps) at room temperature, but may be up to 1 ,000 centipoises as measured with a Brookfield Viscometer using a number 3 spindle rotating at 12 rpm.
  • the viscosity of the light duty liquid composition may approximate those of commercially acceptable light duty liquid compositions now on the market.
  • the viscosity of the light duty liquid composition and the light duty liquid composition itself remain stable on storage for lengthy periods of time, without color changes or settling out of any insoluble materials.
  • the pH of the composition is substantially neutral to skin, e.g., 4.5 to 8 and preferably 5.0 to 7.0.
  • the pH of the composition can be adjusted by the addition of Na2 ⁇ (caustic soda) to the composition.
  • the instant compositions have a minimum foam volume of 400 mis after 40 rotation at 25°C as measured by the foam volume test using 0.033 wt. % of the composition in 150 ppm of water.
  • the foam test is an inverted cylinder test in which 100 ml.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A light duty, liquid cleaning composition comprising: at least two different surfactants, lauryol ethylene diamine triacetate, a zinc inorganic salt, and water.

Description

ANTIBACTERIAL LIGHT DUTY LIQUID CLEANING COMPOSITION Background of the Invention
The prior art is replete with light duty liquid detergent compositions containing nonionic surfactants in combination with anionic and/or betaine surfactants wherein the nonionic detergent is not the major active surfactant. In U.S. Patent No. 3,658,985 an anionic based shampoo contains a minor amount of a fatty acid alkanolamide. U.S. Patent No. 3,769,398 discloses a betaine-based shampoo containing minor amounts of nonionic surfactants. This patent states that the low foaming properties of nonionic detergents renders its use in shampoo compositions non-preferred. U.S. Patent No. 4,329,335 also discloses a shampoo containing a betaine surfactant as the major ingredient and minor amounts of a nonionic surfactant and of a fatty acid mono- or di- ethanolamide. U.S. Patent No. 4,259,204 discloses a shampoo comprising 0.8 to 20% by weight of an anionic phosphoric acid ester and one additional surfactant which may be either anionic, amphoteric, or nonionic. U.S. Patent No. 4,329,334 discloses an anionic-amphoteric based shampoo containing a major amount of anionic surfactant and lesser amounts of a betaine and nonionic surfactants.
U.S. Patent No. 3,935,129 discloses a liquid cleaning composition containing an alkali metal silicate, urea, glycerin, triethanolamine, an anionic detergent and a nonionic detergent. The silicate content determines the amount of anionic and/or nonionic detergent in the liquid cleaning composition. However, the foaming properties of these detergent compositions are not discussed therein.
U.S. Patent No. 4,129,515 discloses a heavy duty liquid detergent for laundering fabrics comprising a mixture of substantially equal amounts of anionic and nonionic surfactants, alkanolamines and magnesium salts, and, optionally, zwittehonic surfactants as suds modifiers.
U.S. Patent No. 4,224,195 discloses an aqueous detergent composition for laundering socks or stockings comprising a specific group of nonionic detergents, namely, an ethylene oxide of a secondary alcohol, a specific group of anionic detergents, namely, a sulfuric ester salt of an ethylene oxide adduct of a secondary alcohol, and an amphoteric surfactant which may be a betaine, wherein either the anionic or nonionic surfactant may be the major ingredient. The prior art also discloses detergent compositions containing all nonionic surfactants as shown in U.S. Patent Nos. 4,154,706 and 4,329,336 wherein the shampoo compositions contain a plurality of particular nonionic surfactants in order to affect desirable foaming and detersive properties despite the fact that nonionic surfactants are usually deficient in such properties. U.S. Patent No. 4,595,526 describes a composition comprising a nonionic surfactant, a betaine surfactant, an anionic surfactant and a C-12-C-14 fatty acid monoethanolamide foam stabilizer. Summary of the Invention
It has now been found that a high foaming antibacterial liquid cleaning composition with properties good grease cutting properties can be formulated with at least two different surfactants, a zinc inorganic salt, sodium salt of lauryol ethylene diamine triacetate and water.
To achieve the foregoing and other objects and in accordance with the purpose of the present invention, as embodied and broadly described herein the novel, high foaming, light duty liquid detergent of this invention comprises a Cg-Cig ethoxylated alkyl ether sulfate, a magnesium salt of a Cs-C^s linear alkyl benzene sulfonate, a sodium salt of a Cg-C-jg linear alkyl benzene sulfonate, an alkyl polyglucoside, an amine oxide, a zinc inorganic salt, a sodium salt of lauryol ethylene diamine triacetate, and water, wherein the composition does not contain a glycol ether solvent, an alpha olefin sulfonate surfactant, a polyoxyalkylene glycol fatty acid, a builder, a polymeric thickener, a clay, an alkali metal salt of ethylene diamine tetraacetic acid or hydroxy ethylene diamine tetraacetic acid, a sodium citrate, abrasive, silicas, tricloscan, alkaline earth metal carbonates, alkyl glycine surfactant or cyclic imidinium surfactant. Detailed Description of the Invention
The present invention relates to a light duty liquid detergent which comprises approximately by weight:
(a) 5% to 55%, more preferably 10% to 45% of at least two surfactants selected from the group consisting of paraffin sulfonate, linear alkyl benzene sulfonates, alkyl sulfate, ethoxylated alkyl ether sulfate, alkyl polyglucoside, amine oxide, ethoxylated nonionics, ethoxylated/propoxylated nonionics, C12-C14 alkyl monoalkanol amides and zwitterionic surfactants and mixtures thereof;
(b) 0.25% to 6% of a zinc inorganic salt such as zinc chloride, zinc bromide or zinc sulfate;
(c) 0.25% to 6% of a sodium salt of lauryolethylenediaminetriacetate; and
(d) the balance being water wherein the composition does not contain a glycol ether solvent, sodium citrate, an alpha olefin sulfonate surfactant, a polyoxyalkylene glycol fatty acid, a builder, a polymeric thickener, an alkali metal salt of ethylene diamine tetraacetic acid or a hydroxy ethylene diamine tetraacetic acid, a clay, abrasive, silicas, triclosan, alkaline earth metal carbonates, alkyl glycine surfactant or cyclic imidinium surfactant.
The C8-C^8 ethoxylated alkyl sulfate surfactants have the structure
- + R-(OCHCH2)nOSO3M wherein n is 1 to 22 more preferably 1 to 3 and R is an alkyl group having 8 to 18 carbon atoms, more preferably 12 to 15 and natural cuts, for example, C12-14; C12-15 and M is an ammonium cation, alkali metal or an alkaline earth metal cation, most preferably magnesium, sodium or ammonium. The ethoxylated alkyl ether sulfate may be made by sulfating the condensation product of ethylene oxide and Cδ-10 alkanol, and neutralizing the resultant product.
The ethoxylated alkyl ether sulfates differ from one another in the number of carbon atoms in the alcohols and in the number of moles of ethylene oxide reacted with one mole of such alcohol. Preferred ethoxylated alkyl ether polyethenoxy sulfates contain 12 to 15 carbon atoms in the alcohols and in the alkyl groups thereof, e.g., sodium myristyl (3 EO) sulfate.
Ethoxylated C8-18 alkylphenyl ether sulfates containing from 2 to 6 moles of ethylene oxide in the molecule are also suitable for use in the invention compositions. These detergents can be prepared by reacting an alkyl phenol with 2 to 6 moles of ethylene oxide and sulfating and neutralizing the resultant ethoxylated alkylphenol. The concentration of the ethoxylated alkyl ether sulfate surfactant is 1 to 8 wt. %.
An alkali metal or alkaline earth metal salt of the CS-C-J S linear alkyl benzene sulfonate or C8-C18 paraffin sulfonate surfactant can be used in the instant compositions. Examples of suitable sulfonated anionic surfactants are the well known higher alkyl mononuclear aromatic sulfonates such as the higher alkyl benzene sulfonates containing from 8 to 18 carbon atoms, more preferably 10 to 16 carbon atoms in the higher alkyl group in a straight or branched chain, C8-C15 alkyl toluene sulfonates and C8-C15 alkyl phenol sulfonates. One of preferred sulfonates is linear alkyl benzene sulfonate having a high content of 3- (or higher) phenyl isomers and a correspondingly low content (well below 50%) of 2- (or lower) phenyl isomers, that is, wherein the benzene ring is preferably attached in large part at the 3 or higher (for example, 4, 5, 6 or 7) position of the alkyl group and the content of the isomers in which the benzene ring is attached in the 2 or 1 position is correspondingly low. Particularly preferred materials are set forth in U.S. Patent 3,320,174.
The alkyl polysaccharides surfactants, which can be used in conjunction with the aforementioned surfactant have a hydrophobic group containing from 8 to 20 carbon atoms, preferably from 10 to 16 carbon atoms, most preferably from 12 to 14 carbon atoms, and polysaccharide hydrophilic group containing from 1.5 to 10, preferably from 1.5 to 4, most preferably from 1.6 to 2.7 saccharide units (e.g., galactoside, glucoside, fructoside, glucosyl, fructosyl; and/or galactosyl units). Mixtures of saccharide moieties may be used in the alkyl polysaccharide surfactants. The number x indicates the number of saccharide units in a particular alkyl polysaccharide surfactant. For a particular alkyl polysaccharide molecule x can only assume integral values. In any physical sample of alkyl polysaccharide surfactants there will be in general molecules having different x values. The physical sample can be characterized by the average value of x and this average value can assume non-integral values. In this specification the values of x are to be understood to be average values. The hydrophobic group (R) can be attached at the 2-, 3-, or 4- positions rather than at the 1 -position, (thus giving e.g. a glucosyl or galactosyl as opposed to a glucoside or galactoside). However, attachment through the 1- position, i.e., glucosides, galactoside, fructosides, etc., is preferred. In the preferred product the additional saccharide units are predominately attached to the previous saccharide unit's 2-position. Attachment through the 3-, 4-, and 6- positions can also occur. Optionally and less desirably there can be a polyalkoxide chain joining the hydrophobic moiety (R) and the polysaccharide chain. The preferred alkoxide moiety is ethoxide. Typical hydrophobic groups include alkyl groups, either saturated or unsaturated, branched or unbranched containing from 8 to 20, preferably from 10 to 18 carbon atoms. Preferably, the alkyl group is a straight chain saturated alkyl group. The alkyl ' group can contain up to 3 hydroxy groups and/or the polyalkoxide chain can contain up to 30, preferably less than 10, alkoxide moieties. Suitable alkyl polysaccharides are decyl, dodecyl, tetradecyl, pentadecyl, hexadecyl, and octadecyl, di-, tri-, tetra-, penta-, and hexaglucosides, galactosides, lactosides, fructosides, fructosyls, lactosyls, glucosyls and/or galactosyls and mixtures thereof.
The alkyl monosaccharides are relatively less soluble in water than the higher alkyl polysaccharides. When used in admixture with alkyl polysaccharides, the alkyl monosaccharides are solubilized to some extent. The use of alkyl monosaccharides in admixture with alkyl polysaccharides is a preferred mode of carrying out the invention. Suitable mixtures include coconut alkyl, di-, tri-, tetra-, and pentaglucosides and tallow alkyl tetra-, penta-, and hexaglucosides.
The preferred alkyl polysaccharides are alkyl polyglucosides having the formula wherein Z is derived from glucose, R is a hydrophobic group selected from the group consisting of alkyl, alkylphenyl, hydroxyalkylphenyl, and mixtures thereof in which said alkyl groups contain from about 10 to about 18, preferably from about 12 to about 14 carbon atoms; n is 2 or 3 preferably 2, r is from 0 to 10, preferable 0; and x is from 1.5 to 8, preferably from 1.5 to 4, most preferably from 1.6 to 2.7. To prepare these compounds a long chain alcohol (R2OH) can be reacted with glucose, in the presence of an acid catalyst to form the desired glucoside. Alternatively the alkyl polyglucosides can be prepared by a two step procedure in which a short chain alcohol (R-|OH) can be reacted with glucose, in the presence of an acid catalyst to form the desired glucoside. Alternatively the alkyl polyglucosides can be prepared by a two step procedure in which a short chain alcohol (C1-6) is reacted with glucose or a polyglucoside (x=2 to 4) to yield a short chain alkyl glucoside (x=1 to 4) which can in turn be reacted with a longer chain alcohol (R2OH) to displace the short chain alcohol and obtain the desired alkyl polyglucoside. If this two step procedure is used, the short chain alkylglucoside content of the final alkyl polyglucoside material should be less than 50%, preferably less than 10%, more preferably less than 5%, most preferably 0% of the alkyl polyglucoside. The amount of unreacted alcohol (the free fatty alcohol content) in the desired alkyl polysaccharide surfactant is preferably less than 2%, more preferably less than about 0.5% by weight of the total of the alkyl polysaccharide. For some uses it is desirable to have the alkyl monosaccharide content less than 10%. The used herein, "alkyl polysaccharide surfactant" is intended to represent both the preferred glucose and galactose derived surfactants and the less preferred alkyl polysaccharide surfactants. Throughout this specification, "alkyl polyglucoside" is used to include alkyl polyglycosides because the stereochemistry of the saccharide moiety is changed during the preparation reaction.
An especially preferred APG glycoside surfactant is APG 625 glycoside manufactured by the Henkel Corporation of Ambler, PA. APG25 is a nonionic alkyl polyglycoside characterized by the formula: wherein n=10 (2%); n=122 (65%); n=14 (21-28%); n=16 (4-8%) and n=18 (0.5%) and x (degree of polymerization) = 1.6. APG 625 has: a pH of 6 to 10 (10% of APG 625 in distilled water); a specific gravity at 25°C of 1.1 g/ml; a density at 25°C of 9.1 lbs/gallon; a calculated HLB of 12.1 and a Brookfield viscosity at 35°C, 21 spindle, 5-10 RPM of 3,000 to 7,000 cps.
The water-soluble zwitterionic surfactant, which can also be used provides good foaming properties and mildness to the present nonionic based liquid detergent. The zwitterionic surfactant is a water soluble betaine having the general formula:
wherein R-\ is an alkyl group having 10 to 20 carbon atoms, preferably 12 to 16 carbon atoms, or the amido radical:
wherein R is an alkyl group having 9 to 19 carbon atoms and a is the integer 1 to 4; R2 and R3 are each alkyl groups having 1 to 3 carbons and preferably 1 carbon; R4 is an alkylene or hydroxyalkylene group having from 1 to 4 carbon atoms and, optionally, one hydroxyl group. Typical alkyldimethyl betaines include decyl dimethyl betaine or 2-(N- decyl-N, N-dimethyl-ammonia) acetate, coco dimethyl betaine or 2-(N-coco N, N- dimethylammonio) acetate, myristyl dimethyl betaine, palmityl dimethyl betaine, lauryl diemethyl betaine, cetyl dimethyl betaine, stearyl dimethyl betaine, etc. The amidobetaines similarly include cocoamidoethylbetaine, cocoamidopropyl betaine and the like. A preferred betaine is coco (Cs-Cis) amidopropyl dimethyl betaine.
Amine oxide semi-polar nonionic surfactants comprise compounds and mixtures of compounds have the formula:
R2 Rι(C2H4θ)n N^O
R3 wherein R-j is an alkyl, 2-hydroxyalkyl, 3-hydroxyalkyl, or 3-alkoxy-2-hydroxypropyl radical in which the alkyl and alkoxy, respectively, contain from 8 to 18 carbon atoms, R2 and R3 are each methyl, ethyl, propyl, isopropyl, 2-hydroxyethyl, 2-hydroxypropyl, or 3-hydroxypropyl, and n is from 0 to 10. Particularly preferred are amine oxides of the formula:
wherein R-] is a C-12-I6 a'ky' ar,d ^2 anc' R3 are methyl or ethyl. The above ethylene oxide condensates, amides, and amine oxides are more fully described in U.S. Pat. No. 4,316,824 which is hereby incorporated herein by reference.
The instant composition can contain a mixture of a C<|2-14 alkyl monoalkanol amide such as lauryl monoalkanol amide and a C-J2-14 alkyl dialkanol amide such as lauryl diethanol amide or coco diethanol amide.
The water soluble nonionic surfactants which can be utilized in this invention are commercially well known and include the primary aliphatic alcohol ethoxylates, secondary aliphatic alcohol ethoxylates, alkylphenol ethoxylates and ethylene-oxide- propylene oxide condensates on primary alkanols, such a Plurafacs (BASF) and condensates of ethylene oxide with sorbitan fatty acid esters such as the Tweens (ICI). The nonionic synthetic organic detergents generally are the condensation products of an organic aliphatic or alkyl aromatic hydrophobic compound and hydrophilic ethylene oxide groups. Practically any hydrophobic compound having a carboxy, hydroxy, amido, or amino group with a free hydrogen attached to the nitrogen or the oxygen can be condensed with ethylene oxide or with the polyhydration product thereof, polyethylene glycol, to form a water-soluble nonionic detergent. Further, the length of the polyethenoxy chain can be adjusted to achieve the desired balance between the hydrophobic and hydrophilic elements.
The nonionic detergent class includes the condensation products of a higher alcohol (e.g., an alkanol containing 8 to 18 carbon atoms in a straight or branched chain configuration) condensed with 5 to 30 moles of ethylene oxide, for example, lauryl or myristyl alcohol condensed with 16 moles of ethylene oxide (EO), tridecanol condensed with 6 to moles of EO, myristyl alcohol condensed with 10 moles of EO per mole of myristyl alcohol, the condensation product of EO with a cut of coconut fatty alcohol containing a mixture of fatty alcohols with alkyl chains varying from 10 to 14 carbon atoms in length and wherein the condensate contains either 6 moles of EO per mole of total alcohol or 9 moles of EO per mole of alcohol and tallow alcohol ethoxylates containing 6 EO to 11 EO per mole of alcohol.
A preferred group of the foregoing nonionic surfactants are the Neodol ethoxylates (Shell Co.), which are higher aliphatic, primary alcohol containing about 9- 15 carbon atoms, such as Cg-C^ -j alkanol condensed with 7 to 10 moles of ethylene oxide (Neodol 91-8), C-12-13 alkanol condensed with 6.5 moles ethylene oxide (Neodol
23-6.5), C-12-15 alkanol condensed with 12 moles ethylene oxide (Neodol 25-12), C-|4_
15 alkanol condensed with 13 moles ethylene oxide (Neodol 45-13), and the like. Such ethoxamers have an HLB (hydrophobic lipophilic balance) value of 8 to 15 and give good O/W emulsification, whereas ethoxamers with HLB values below 8 contain less than 5 ethyleneoxide groups and tend to be poor emulsifiers and poor detergents.
Additional satisfactory water soluble alcohol ethylene oxide condensates are the condensation products of a secondary aliphatic alcohol containing 8 to 18 carbon atoms in a straight or branched chain configuration condensed with 5 to 30 moles of ethylene oxide. Examples of commercially available nonionic detergents of the foregoing type are Cι 1-C-15 secondary alkanol condensed with either 9 EO (Tergitol 15-S-9) or 12 EO
(Tergitol 15-S-12) marketed by Union Carbide.
Other suitable nonionic detergents include the polyethylene oxide condensates of one mole of alkyl phenol containing from 8 to 18 carbon atoms in a straight- or branched chain alkyl group with 5 to 30 moles of ethylene oxide. Specific examples of alkyl phenol ethoxylates include nonyl phenol condensed with 9.5 moles of EO per mole of nonyl phenol, dinonyl phenol condensed with 12 moles of EO per mole of phenol, dinonyl phenol condensed with 15 moles of EO per mole of phenol and di-isoctylphenol condensed with 15 moles of EO per mole of phenol. Commercially available nonionic surfactants of this type include Igepal CO-630 (nonyl phenol ethoxylate) marketed by
GAF Corporation.
Also among the satisfactory nonionic detergents are the water-soluble condensation products of a C8-C20 alkanol with a heteric mixture of ethylene oxide and propylene oxide wherein the weight ratio of ethylene oxide to propylene oxide is from
2.5:1 to 4:1 , preferably 2.8:1 to 3.3:1 , with the total of the ethylene oxide and propylene oxide (including the terminal ethanol or propanol group) being from 60-85%, preferably
70-80%, by weight. Such detergents are commercially available from BASF-Wyandotte and a particularly preferred detergent is a C^ Q-C-\ Q alkanol condensate with ethylene oxide and propylene oxide, the weight ratio of ethylene oxide to propylene oxide being
3:1 and the total alkoxy content being about 75% by weight.
Condensates of 2 to 30 moles of ethylene oxide with sorbitan mono- and tri-C-|n-
C20 alkanoic acid esters having a HLB of 8 to 15 also may be employed as the nonionic detergent ingredient in the described composition. These surfactants are well known and are available from Imperial Chemical Industries under the Tween trade name. Suitable surfactants include polyoxyethylene (4) sorbitan monolaurate, polyoxyethylene (4) sorbitan monostearate, polyoxyethylene (20) sorbitan trioleate and polyoxyethylene (20) sorbitan tristearate. The water is present at a concentration of 40 wt. % to 83 wt. %. In addition to the previously constituents of the light duty liquid detergent, one may also employ normal and conventional adjuvants, provided they do not adversely affect the properties of the detergent. Thus, there may be used various coloring agents and perfumes; ultraviolet light absorbers such as the Uvinuls, which are products of GAF Corporation; magnesium sulfate heptahydrate; pH modifiers; etc. The proportion of such adjuvant materials, in total will normally not exceed 15% by weight of the detergent composition, and the percentages of most of such individual components will be a maximum of 5% by weight and preferably less than 2% by weight. Sodium formate or formalin can be included in the formula as a preservative at a concentration of 0.1 to 4.0 wt. %. Sodium bisulfite can be used as a color stabilizer at a concentration of 0.01 to 0.2 wt. %.
The present light duty liquid detergents such as dishwashing liquids are readily made by simple mixing methods from readily available components which, on storage, do not adversely affect the entire composition. Solubilizing agent such as ethanol, sodium chloride and/or sodium cumene or sodium xylene sulfonate and mixtures thereof are used at a concentration of 0.5 wt. %'tό TO wt. % to assist in solubilizing the surfactants. The viscosity of the light duty liquid composition desirably will be at least 100 centipoises (cps) at room temperature, but may be up to 1 ,000 centipoises as measured with a Brookfield Viscometer using a number 3 spindle rotating at 12 rpm. The viscosity of the light duty liquid composition may approximate those of commercially acceptable light duty liquid compositions now on the market. The viscosity of the light duty liquid composition and the light duty liquid composition itself remain stable on storage for lengthy periods of time, without color changes or settling out of any insoluble materials. The pH of the composition is substantially neutral to skin, e.g., 4.5 to 8 and preferably 5.0 to 7.0. The pH of the composition can be adjusted by the addition of Na2θ (caustic soda) to the composition. The instant compositions have a minimum foam volume of 400 mis after 40 rotation at 25°C as measured by the foam volume test using 0.033 wt. % of the composition in 150 ppm of water. The foam test is an inverted cylinder test in which 100 ml. of a 0.033 wt. % LDL formula in 150 ppm of H2O is placed in a stoppered graduate cylinder (500 ml) and inverted 40 cycles at a rate of 30 cycles/minute. After 40 inversions, the foam volume which has been generated is measured in mis inside the graduated cylinder. This value includes the 100 ml of LDL solution inside the cylinder. The minimum foam volume with soil is 150 ml.
The following examples illustrate liquid cleaning compositions of the described invention. Unless otherwise specified, all percentages are by weight. The exemplified compositions are illustrative only and do no limit the scope of the invention. Unless otherwise specified, the proportions in the examples and elsewhere in the specification are by weight. Description of the Preferred Embodiments
Example 1
The following formulas were prepared at room temperature by simple liquid mixing procedures as previously described'

Claims

WHAT IS CLAIMED IS
1. A light duty liquid cleaning composition comprising by weight:
(a) 5% to 55% of at least two surfactants selected from the group consisting of alpha olefin sulfonate, paraffin sulfonate, linear alkyl benzene sulfonates, paraffin sulfonates, alkyl sulfate, ethoxylated alkyl ether sulfate, alkyl polyglucoside, amine oxide, ethoxylated nonionics, ethoxylated/propoxylated nonionics, C-12-C14 lalkyl monoalkanol amides and zwitterionic surfactants and mixtures thereof;
(b) 0.25% to 6% of a zinc inorganic salt;
(c) 0.25% to 6% of a sodium salt of lauryol ethylene diamine triacetate; and (d) the balance being water.
2. A light duty liquid composition according to Claim 1 which includes, in addition, 0.5% to 10% by weight of a solubilizing agent which is selected from the group consisting of a C1-C4 alkanol, sodium chloride and a water soluble salt of C1-C3 substituted benzene sulfonate hydrotropes and mixtures thereof.
3. A light duty liquid composition according to Claim 1 further including a perservative.
4. A light duty liquid composition according to Claim 1 further including a color stabilizer.
5. A light duty liquid composition according to Claim 1 wherein said zinc inorganic salt is zinc chloride.
EP04759519A 2003-04-14 2004-04-14 Antibacterial light duty liquid cleaning composition Withdrawn EP1613719A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/412,831 US7087567B2 (en) 2003-04-14 2003-04-14 Antibacterial light duty liquid cleaning composition
PCT/US2004/011478 WO2004092319A1 (en) 2003-04-14 2004-04-14 Antibacterial light duty liquid cleaning composition

Publications (1)

Publication Number Publication Date
EP1613719A1 true EP1613719A1 (en) 2006-01-11

Family

ID=33131302

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04759519A Withdrawn EP1613719A1 (en) 2003-04-14 2004-04-14 Antibacterial light duty liquid cleaning composition

Country Status (8)

Country Link
US (2) US7087567B2 (en)
EP (1) EP1613719A1 (en)
AU (1) AU2004230537A1 (en)
CA (1) CA2522250A1 (en)
EC (1) ECSP056155A (en)
MX (1) MXPA05010993A (en)
NO (1) NO20055339L (en)
WO (1) WO2004092319A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7087567B2 (en) * 2003-04-14 2006-08-08 Colgate-Palmolive Company Antibacterial light duty liquid cleaning composition
US20070167529A1 (en) * 2006-01-17 2007-07-19 Walton Rebecca A Antimicrobial compositions for treating fabrics and surfaces
US7470653B2 (en) 2006-04-07 2008-12-30 Colgate-Palmolive Company Liquid cleaning composition comprising an anionic/betaine surfactant mixture having low viscosity
US20080251105A1 (en) * 2007-04-13 2008-10-16 Christine Toussaint Cleaning Compositions Comprising Hydrogen Peroxide
US20100323946A1 (en) * 2008-05-23 2010-12-23 Colgate-Palmolive Company Liquid Cleaning Compositions and Methods of Use and Manaufacture
US8247362B2 (en) 2008-06-17 2012-08-21 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof
US7718595B2 (en) * 2008-06-17 2010-05-18 Colgate Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof comprising organic acids
US8022028B2 (en) * 2008-06-17 2011-09-20 Colgate-Palmolive Company Light duty liquid cleaning compositions and methods of manufacture and use thereof comprising organic acids
US20090312226A1 (en) * 2008-06-17 2009-12-17 Colgate-Palmolive Company Light Duty Liquid Cleaning Compositions And Methods Of Manufacture And Use Thereof
US9133417B2 (en) 2012-03-23 2015-09-15 The Procter & Gamble Company Liquid cleaning and disinfecting compositions comprising an assymetrically branched amine oxide
US8470755B1 (en) * 2012-03-23 2013-06-25 The Procter & Gamble Company Liquid cleaning and disinfecting compositions comprising a zinc inorganic salt
US20130338227A1 (en) 2012-06-13 2013-12-19 Marie-Esther Saint Victor Green Glycine Betaine Derivative Compounds And Compositions Containing Same
GB201211688D0 (en) 2012-07-02 2012-08-15 Reckitt Benckiser Llc Aqueous alcoholic microbicidal compositions comprising zinc ions
GB201211701D0 (en) 2012-07-02 2012-08-15 Reckitt Benckiser Llc Aqueous alcoholic microbicidal compositions comprising zinc ions
GB201211702D0 (en) 2012-07-02 2012-08-15 Reckitt Benckiser Llc Sprayable aqueous alcoholic microbicidal compostions comprising zinc ions
GB201211691D0 (en) 2012-07-05 2012-08-15 Reckitt Benckiser Llc Sprayable aqueous alcoholic microbicidal compositions comprising zinc ions
EP2727991A1 (en) * 2012-10-30 2014-05-07 The Procter & Gamble Company Cleaning and disinfecting liquid hand dishwashing detergent compositions
US9707162B2 (en) 2012-11-30 2017-07-18 Reckitt & Colman (Overseas) Limited Microbicidal personal care compositions comprising metal ions
DE102013224454A1 (en) * 2013-11-28 2015-05-28 Henkel Ag & Co. Kgaa Hand dishwashing detergent with improved range
WO2017173592A1 (en) * 2016-04-06 2017-10-12 The Procter & Gamble Company Stable liquid detergent composition containing self-structuring surfactant system
CN112522362A (en) * 2020-12-25 2021-03-19 南京申友生物技术有限公司 Preservation solution for preserving bacterial DNA in fecal sample at normal temperature

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320174A (en) 1964-04-20 1967-05-16 Colgate Palmolive Co Detergent composition
US3619115A (en) * 1967-09-08 1971-11-09 Procter & Gamble Cool water laundering process
US3658985A (en) 1969-07-28 1972-04-25 Colgate Palmolive Co Oil and fluorescent dye containing luster imparting liquid shampoo
US3769398A (en) 1970-05-25 1973-10-30 Colgate Palmolive Co Polyethylenimine shampoo compositions
US4013787A (en) 1971-11-29 1977-03-22 Societe Anonyme Dite: L'oreal Piperazine based polymer and hair treating composition containing the same
US3935129A (en) 1973-10-25 1976-01-27 Jabalee Walter J Liquid cleaning compositions
US3970596A (en) * 1973-11-26 1976-07-20 Colgate-Palmolive Company Non-gelling alpha-olefin sulfonate liquid detergent
NL7500730A (en) * 1975-01-22 1976-07-26 Philips Nv MACHINE FOR MAGNETIC RECORDING OR DISPLAY OF SIGNALS WITH LARGE BANDWIDTH, SUCH AS VIDEO SIGNALS ON MAGNETIC TAPE.
JPS52130806A (en) 1976-04-28 1977-11-02 Tsumura Juntendo Kk Detergent composition
US4154706A (en) 1976-07-23 1979-05-15 Colgate-Palmolive Company Nonionic shampoo
US4129515A (en) 1976-09-13 1978-12-12 The Procter & Gamble Company Heavy-duty liquid detergent and process
JPS5846160B2 (en) 1978-07-13 1983-10-14 花王株式会社 Shampoo - Composition
US4492646A (en) * 1980-02-05 1985-01-08 The Procter & Gamble Company Liquid dishwashing detergent containing anionic surfactant, suds stabilizer and highly ethoxylated nonionic drainage promotor
US4316824A (en) 1980-06-26 1982-02-23 The Procter & Gamble Company Liquid detergent composition containing alkyl sulfate and alkyl ethoxylated sulfate
US4329334A (en) 1980-11-10 1982-05-11 Colgate-Palmolive Company Anionic-amphoteric based antimicrobial shampoo
US4329335A (en) 1980-11-10 1982-05-11 Colgate-Palmolive Company Amphoteric-nonionic based antimicrobial shampoo
US4329336A (en) 1980-11-10 1982-05-11 Colgate-Palmolive Company Nonionic based antimicrobial shampoo
US4450091A (en) 1983-03-31 1984-05-22 Basf Wyandotte Corporation High foaming liquid shampoo composition
US4595526A (en) 1984-09-28 1986-06-17 Colgate-Palmolive Company High foaming nonionic surfacant based liquid detergent
US5230823A (en) * 1989-05-22 1993-07-27 The Procter & Gamble Company Light-duty liquid or gel dishwashing detergent composition containing an alkyl ethoxy carboxylate surfactant
US5621008A (en) * 1995-10-27 1997-04-15 Avon Products, Inc. N-acyl-ethylene-triacetic acids
EP0906393A4 (en) * 1996-04-25 2000-10-25 Hampshire Chemical Corp Ultra mild detergent compositions
US5886031A (en) * 1997-01-27 1999-03-23 Pacific Corporation Hair-care cosmetic compositions having dandruff formation-suppressing effect
US5993504A (en) * 1997-11-25 1999-11-30 Hampshire Chemical Corp. Plant micronutrient chelating surfactant compounds
US6046146A (en) * 1999-05-24 2000-04-04 Colgate Palmolive Company Antibacterial liquid hand surface cleaning compositions comprising zinc salt
US6245730B1 (en) * 2000-12-12 2001-06-12 Colgate-Palmolive Co. Grease cutting light duty liquid detergent comprising lauryol ethylene diamine triacetate
US6291419B1 (en) * 2001-01-09 2001-09-18 Colgate-Palmolive Co. Grease cutting light duty liquid detergent comprising lauryol diamine triacetate
US6242411B1 (en) * 2001-01-09 2001-06-05 Colgate-Palmolive Co. Grease cutting light duty liquid detergent comprising lauryol ethylene diamine triacetate
US6331516B1 (en) * 2001-01-09 2001-12-18 Colgate Palmolive Company Grease cutting light duty liquid detergent containing lauryol ethylene diamine triacetate
US6268331B1 (en) * 2001-01-09 2001-07-31 Colgate Palmolive Company Grease cutting light duty liquid detergent comprising lauroyl ethylene diaminetriacetate
US6313084B1 (en) * 2001-01-09 2001-11-06 Colgate Palmolive Co. Grease cutting light duty liquid detergent comprising Lauroyl Ethylene Diamine Triacetate
US20030086962A1 (en) * 2001-07-11 2003-05-08 Westerfield Kelly J. Cleansing products
US20030064091A1 (en) * 2001-07-11 2003-04-03 Kinderdine Sherrie L. Cleansing products
US20030032573A1 (en) * 2001-07-11 2003-02-13 Tanner Paul Robert Cleansing compositions containing chelating surfactants
US6495500B1 (en) * 2002-07-11 2002-12-17 Colgate-Palmolive Co Antibacterial light duty liquid cleaning composition comprising zinc salt
US6492313B1 (en) * 2002-07-11 2002-12-10 Colgate-Palmolive Co. Antibacterial light duty liquid detergent containing zinc salt
US6617296B1 (en) * 2003-03-05 2003-09-09 Colgate-Palmolive Company Antibacterial light duty liquid detergent
US7087567B2 (en) * 2003-04-14 2006-08-08 Colgate-Palmolive Company Antibacterial light duty liquid cleaning composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004092319A1 *

Also Published As

Publication number Publication date
WO2004092319A1 (en) 2004-10-28
MXPA05010993A (en) 2005-12-12
AU2004230537A1 (en) 2004-10-28
NO20055339L (en) 2005-11-11
US20060264349A1 (en) 2006-11-23
CA2522250A1 (en) 2004-10-28
US20040204331A1 (en) 2004-10-14
US7087567B2 (en) 2006-08-08
ECSP056155A (en) 2006-04-19

Similar Documents

Publication Publication Date Title
US20060264349A1 (en) Antibacterial light duty liquid cleaning composition
US6060440A (en) Homogenous solution of an alpha olefin sulfonate surfactant
US6617296B1 (en) Antibacterial light duty liquid detergent
EP0892841B1 (en) Light duty liquid cleaning compositions
US6313084B1 (en) Grease cutting light duty liquid detergent comprising Lauroyl Ethylene Diamine Triacetate
US5856292A (en) Light duty liquid cleaning compositions
US5874394A (en) Light duty liquid cleaning compositions containing a monoalkyl phosphate ester
US5922662A (en) High foaming nonionic surfactant based liquid detergent
US6331515B1 (en) Color changing liquid cleaning composition comprising red dyes
US6242411B1 (en) Grease cutting light duty liquid detergent comprising lauryol ethylene diamine triacetate
US6326347B1 (en) Reddish peach colored stable liquid cleaning composition comprising red dye and lactic acid
US6472363B1 (en) High foaming, grease cutting light duty liquid composition containing at least one natural extract
CA2485962A1 (en) High foaming, grease cutting light duty liquid composition containing zinc chloride
US5856293A (en) Light duty liquid cleaning compositions
US6551984B1 (en) High foaming, grease cutting light duty liquid composition containing at least one natural extract
WO1998055572A1 (en) Light duty liquid cleaning compositions
WO1998005745A2 (en) Light duty liquid cleaning compositions
US6331516B1 (en) Grease cutting light duty liquid detergent containing lauryol ethylene diamine triacetate
US6245730B1 (en) Grease cutting light duty liquid detergent comprising lauryol ethylene diamine triacetate
US5856291A (en) Light duty liquid cleaning composition containing alkyl sucroglycerides
WO1998005743A1 (en) High foaming nonionic surfactant based liquid detergent
US6268331B1 (en) Grease cutting light duty liquid detergent comprising lauroyl ethylene diaminetriacetate
WO1997038071A1 (en) Light duty liquid cleaning compositions
WO1997038073A1 (en) Light duty liquid cleaning compositions
NZ526307A (en) Grease cutting light duty liquid detergent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051011

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060516