EP1603960A2 - Polymere produkte - Google Patents
Polymere produkteInfo
- Publication number
- EP1603960A2 EP1603960A2 EP04713054A EP04713054A EP1603960A2 EP 1603960 A2 EP1603960 A2 EP 1603960A2 EP 04713054 A EP04713054 A EP 04713054A EP 04713054 A EP04713054 A EP 04713054A EP 1603960 A2 EP1603960 A2 EP 1603960A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- group
- acrylate
- weight
- silicones
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/89—Polysiloxanes
- A61K8/891—Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
- A61K8/894—Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a polyoxyalkylene group, e.g. cetyl dimethicone copolyol
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/046—Aerosols; Foams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/81—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- A61K8/8141—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- A61K8/8152—Homopolymers or copolymers of esters, e.g. (meth)acrylic acid esters; Compositions of derivatives of such polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
- A61Q1/10—Preparations containing skin colorants, e.g. pigments for eyes, e.g. eyeliner, mascara
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
- A61Q17/04—Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q3/00—Manicure or pedicure preparations
- A61Q3/02—Nail coatings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/02—Preparations for cleaning the hair
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q5/00—Preparations for care of the hair
- A61Q5/06—Preparations for styling the hair, e.g. by temporary shaping or colouring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/06—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/062—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/08—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
- C08F290/14—Polymers provided for in subclass C08G
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/08—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
- C08F290/14—Polymers provided for in subclass C08G
- C08F290/142—Polyethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/08—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/59—Mixtures
- A61K2800/594—Mixtures of polymers
Definitions
- the present invention relates to polymeric products, a process for their preparation and the use of the polymeric products in cosmetic, in particular hair cosmetic, preparations.
- Polymers with film-forming properties are used for cosmetic and / or pharmaceutical preparations and are particularly suitable as additives for hair and skin cosmetics.
- polymers can have a particular effect.
- the polymers can contribute, among other things, to moisturizing and conditioning the skin and to improving the feeling on the skin.
- the skin becomes smoother and more supple.
- polymers are used to strengthen, improve the structure and shape of the hair. They increase combability and improve the feel of the hair.
- These hair treatment compositions generally contain a solution of the film former in an alcohol or a mixture of alcohol and water.
- the desired property profile includes strong strengthening with high air humidity, elasticity, washability from the hair and compatibility with the other formulation components.
- DE 4240 108 describes polysiloxane-containing binders which are suitable as dirt-repellent coatings, in particular as anti-graffiti coatings. However, these binders are varnish-like and are not suitable for cosmetic purposes.
- EP 0 953 015 describes amphiphilic polymers in combination with alkoxylated silicones.
- JP 06-192048 describes copolymers of (meth) acrylamide-based monomers in combination with polyoxyalkylated siloxanes.
- JP 10-226627 describes amphoteric polymers in combination with polyoxyalkylated siloxanes.
- EP 0 852 488 B1 describes cosmetic compositions which contain a silicone-containing graft polymer in combination with at least one further silicone.
- the object of the present invention was to provide polymeric products which are particularly suitable for hair cosmetic preparations. Of particular importance was the combination of various advantageous properties such as strong strengthening with high air humidity, elasticity, washability from the hair and compatibility with the other formulation components. The products are also said to give hair shine, flexibility and a natural, pleasant feel.
- the object of the invention is achieved by polymeric products which are obtainable by mixing
- the silicones (B) used are compounds which are selected from the group consisting of (B-1) silicones with at least one quaternized or non-quaternized amine function, (B-2) silicone resins, (B-3) Silicone rubbers, (B-4) polyalkoxylated silicones and / or (B-5) silicone-containing polyurethanes (B-5).
- Suitable suitable polymerizable monomers (A-1) are ethylenically unsaturated monomers. Either single monomers or combinations of two or more monomers can be used. Monomers that can be polymerized with a free radical initiated reaction are preferred. The term ethylenically unsaturated means that the monomers have at least one polymerizable carbon-carbon double bond which can be mono-, di-, tri- or tetrasubstituted.
- polymerizable it is meant that the monomers used can be polymerized using any conventional synthetic method.
- the ethylenically unsaturated monomers (A-1) can be described by the following general formula A-1 a:
- X is selected from the group consisting of -OH, -OM, -OR 8 , NH 2 , -NHR 8 , N (R 8 ) 2 ;
- M is a cation selected from the group consisting of: Na +, K +, Mg ++, Ca ++, Zn ++, NH +, alkylammonium, dialkylammonium, trialkylammonium and tetraalkylammonium;
- the radicals R 8 can be selected identically or differently from the group consisting of “-H, C1-C40 linear or branched-chain alkyl radicals, N, N-dimethylaminoethyl, 2-hydroxyethyl, 2-methoxyethyl, 2-ethoxyethyl, hydroxypropyl, Methoxypropyl or ethoxypropyl.
- R 7 and R 6 are independently selected from the group consisting of: -H, CC 8 linear or branched chain alkyl chains, melhoxy, ethoxy, 2-hydroxyethoxy, 2-methoxyethoxy and 2-ethoxyethyl.
- Suitable monomers (A-1) are, for example, acrylic acid and its salts, esters and amides.
- the salts can be derived from any non-toxic metal, ammonium or substituted ammonium counterions.
- the esters can be derived from C r C 40 linear, C 3 -C 40 branched chain, or C 3 -C 40 carbocyclic alcohols, from multifunctional alcohols with 2 to about 8 hydroxyl groups such as ethylene glycol, hexylene glycol, glycerol, and 1,2,6 -Hexantriol, from amino alcohols or from alcohol ethers such as methoxyethanol and ethoxyethanol or polyethylene glycols.
- N, N-Dialkylaminoalkylacrylate- and methacrylates and N-Dialkylaminoalkylacryl- and -methacrylamides of the general formula A-1b are also suitable
- R 9 H, alkyl with 1 to 8 C atoms
- R 10 H, methyl
- R alkylene with 1 to 24 carbon atoms, optionally substituted by alkyl
- R 12 , R 13 CC 40 alkyl radical
- the amides can be unsubstituted, N-alkyl or N-alkylamino monosubstituted, or N, N-dialkyl-substituted or N, N-dialkyIamino disubstituted, in which the alkyl or alkylamino groups of C 1 -C 4 linear, C 3 -C 40 branched, or C 3 -C 0 carbocyclic units are derived.
- the alkylamino groups can be quaternized.
- Preferred monomers of the formula A-1 b are N, N-dimethylaminomethyl (meth) acrylate, N, N-diethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate.
- Monomers (A-1) which can also be used are substituted acrylic acids and salts, esters and amides thereof, where the substituents on the carbon atoms are in the two or three positions of acrylic acid and are selected independently of one another from the group consisting of CC alkyl, -CN , COOH particularly preferably methacrylic acid, ethacrylic acid and 3-cyanoacrylic acid.
- These salts, esters and amides of these substituted acrylic acids can be selected as described above for the salts, esters and amides of acrylic acid.
- Suitable monomers (A-1) are vinyl and allyl esters of CC 40 linear, C 3 -C 0 branched-chain or C 3 -C 40 carbocyclic carboxylic acids (for example: vinyl acetate, vinyl propionate, vinyl neononanoate, vinyl neoundecanoic acid or t-butyl benzoic acid vinyl ester) ); Vinyl or allyl halides, preferably vinyl chloride and allyl chloride, vinyl ether, preferably methyl, ethyl, butyl or dodecyl vinyl ether, vinyl formamide, vinyl methyl acetamide, vinylamine; Vinyl lactams, preferably vinyl pyrrolidone and vinyl capro lactam, vinyl or allyl substituted heterocyclic compounds, preferably vinyl pyridine, vinyl oxazoline and allyl pyridine.
- N-vinylimidazoles of the general formula A-1c in which R 14 to R 16 independently of one another are hydrogen, CC 4 -alkyl or phenyl:
- Suitable monomers (A-1) are vinylidene chloride; and hydrocarbons with at least one carbon-carbon double bond, preferably styrene, alpha-methylstyrene, tert-butylstyrene, butadiene, isoprene, cyclohexadiene, ethylene, propylene, 1-butene, 2-butene, isobutylene, vinyltoluene, and mixtures of these monomers.
- Particularly suitable monomers (A-1) are acrylic acid, methacrylic acid, ethyl acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, iso-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, decyl acrylate, methyl methacrylate, ethyl methacrylate, propyl , iso-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, decyl methacrylate, methyl ethacrylate, ethyl ethacrylate, n-butyl ethacrylate, iso-butyl ethacrylate, t-butyl ethacrylate, 2-ethylhexylethacrylate, decyl ethacrylate, 2,3-dihydroxypropyl
- vinyl ether for example: methyl, ethyl, butyl or dodecyl vinyl ether
- vinyl formamide vinyl methylacetamide
- vinylamine Methyl vinyl ketone
- maleimide vinyl pyridine
- vinyl imidazole vinyl furan
- styrene styrene sulfonate
- allyl alcohol and mixtures thereof.
- acrylic acid methacrylic acid, maleic acid, fumaric acid, crotonic acid, maleic anhydride and its half esters, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, n-butyl acrylate, n-butyl methacrylal, t-butyl acrylate, t-butyl methacrylate, isobutyl acrylate Isobutyl methacrylate, 2-ethylhexyl acrylate, Nt-butylacrylamide, N-octylacrylamide, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, alkylene glycol (meth) acrylates, unsaturated sulfonic acids such as, for example, acrylamidopropransulfonic acid, vinyl ether (vinyl ca) acrylates, uns
- t-butyl acrylate and methacrylic acid are used as monomers (A-1).
- Monomers with a basic nitrogen atom can be quartemized in the following way:
- alkyl halides with 1 to 24 carbon atoms in the alkyl group e.g. Methyl chloride, methyl bromide, methyl iodide, ethyl chloride, ethyl bromide, propyl chloride, hexyl chloride, dodecyl chloride, lauryl chloride and benzyl halides, especially benzyl chloride and benzyl bromide.
- Further suitable quaternizing agents are dialkyl sulfates, especially dimethyl sulfate or diethyl sulfate.
- the quaternization of the basic amines can also be carried out with alkylene oxides such as ethylene oxide or propylene oxide in the presence of acids.
- alkylene oxides such as ethylene oxide or propylene oxide
- Preferred quaternizing agents are: methyl chloride, dimethyl sulfate or diethyl sulfate.
- the monomers used are (A-1) (meth) acrylates.
- the quaternization can be carried out before the polymerization or after the polymerization.
- reaction products of unsaturated acids such as acrylic acid or methacrylic acid
- Examples include:
- the basic monomers can also be cationized by mixing with mineral acids such as e.g. Sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, phosphoric acid or nitric acid, or with organic acids, e.g. Formic acid, acetic acid, lactic acid, or citric acid can be neutralized.
- mineral acids such as e.g. Sulfuric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, phosphoric acid or nitric acid
- organic acids e.g. Formic acid, acetic acid, lactic acid, or citric acid can be neutralized.
- macromonomers such as, for example, silicone-containing macromonomers
- monomers (A-1) with one or several free-radically polymerizable groups or alkyloxazoline macromonomers are used, as described for example in EP 408 311.
- crosslinking compounds or compounds which regulate the molecular weight can be used in combination or alone.
- Unsaturated polyalkylene glycols of the general formula are suitable as compounds (A-2)
- H 2 C CH-C C H 2 - O- (C 2 H 4 O) a (C 3 H 6 O) b -R 5 (A -2a) and / or
- H 2 C CH-C C H 2 - O- (C 4 H 8 O) a -R 5 (A-2b)
- the groups M which are identical or different from one another, denote hydrogen, Na, K, Li, NH or an organic amine,
- R 7 is hydrogen or SO 3 M, d is in the range from 1 to 10,
- - - s can be 0, 1 to 10
- - t can be 0.1 to 10
- a is in the range from 0 to 50
- - b is in the range from 0 to 50, - a + b is greater than 0,
- - Y is a monovalent inorganic or organic anion.
- Compounds (A-2) with R 5 H and / or a straight-chain or branched alkyl group with 1 to 12 carbon atoms, in particular -CH 3 and
- Compound (A-2) are commercially available, for example, under the trade names Pluriol from BASF AG. Examples include the products Pluriol® A 10 R and Pluriol® A 11 R.
- the compounds listed under CAS no. 27274-31-3 are available as polyalkylene glycol monoallyl ether or under CAS No. 126682-74-4 as polyalkylene glycol monovinyl ether from Clariant (designation A-and V-type polyglycols from Clariant).
- Non-volatile silicones are particularly suitable.
- Non-volatile silicones are compounds with a boiling point above 90 ° C, especially above 100 ° C.
- Water-soluble or water-dispersible silicones are particularly suitable.
- water-dispersible means silicones which form a fluid in contact with water within 24 hours and which do not reveal any solid particles to the eye without optical aids.
- 100 mg of the silicone in the form of a 100 mm thick film are placed in 100 ml of water (20 ° C.) and shaken on a commercially available shaking table for 24 hours. If no solid particles can be seen after shaking, but the fluid is cloudy, the silicone is water-dispersible; without cloudiness it is said to be water soluble.
- the silicone used is a compound selected from the group consisting of (B-1) silicones with at least one quaternized or non-quaternized amine function, (B-2) silicone resins, (B- 3) silicone rubbers, (B-4) polyalkoxylated silicones and / or (B-5) silicone-containing polyurethanes.
- B-1) silicones with at least one quaternized or non-quaternized amine function silicones with at least one quaternized or non-quaternized amine function
- B-2) silicone resins e.g., silicone resins, (B-3) silicone rubbers, (B-4) polyalkoxylated silicones and / or (B-5) silicone-containing polyurethanes.
- B-3 silicone rubbers
- B-4 polyalkoxylated silicones and / or (B-5) silicone-containing polyurethanes.
- mixtures of compounds within individual groups for example 2 compounds from B-4) and mixtures of compounds from different groups can be used (one compound from B-1
- silicones which contain at least one amino group, quaternized or not, the following can be mentioned:
- G 1 , G 2 , G 3 and G 4 which are identical or different, represent a hydrogen atom, a
- Phenyl group OH, C 8 -C 8 alkyl, for example methyl, C 2 -C 8 alkenyl or CC ⁇ - mean alkoxy; a, a ' , which are identical or different, represent 0 or an integer from 1 to 3, in particular 0; b represents 0 or 1 and in particular 1; m and n are numbers, the sum (n + m) of which can vary in particular between 1 and 2000 and in particular between 50 and 150, where n is a number from 0 to 1999 and in particular from 49 to 149 and m is a number from 1 to 2000, can particularly mean from 1 to 10;
- R ⁇ R 2 , R 3 , R 4 which are identical or different, a monovalent radical of the formula
- R 5 is an optionally hydroxylated alkylene group and L is one optionally quaternized aminated group selected from the following groups:
- R can mean hydrogen, phenyl, benzyl or a monovalent saturated hydrocarbon radical, for example an alkyl radical with 1 to 20 carbon atoms, and A ' a halide ion, such as fluoride, chloride, bromide or iodide.
- x ' and y ' are integers which depend on the molecular weight and generally those whose molecular weight is between 5000 and approximately 20,000.
- a product that conforms to Formula B-1a is the polymer named "Trimethylsilylamodimethicone" in the CTFA nomenclature, which corresponds to Formula B-1d:
- n and m have the meanings given above (cf. formula B-1a).
- a commercial product which corresponds to this definition is a mixture (90/10% by weight) of a polydimethylsiloxane with aminoethyl-aminoisobutyl groups and a polydimethylsiloxane, which is sold under the name Q2-8220 by DOW CORNING.
- Such polymers are described, for example, in patent application EP-A-95238.
- R 7 represents a monovalent hydrocarbon radical having 1 to 18 carbon atoms and in particular a CC 18 alkyl radical or C 2 -C 18 alkenyl radical, for example methyl;
- R 8 is a divalent hydrocarbon radical, especially a C ⁇ -C .8 - alkylene radical or a divalent C ⁇ -C ⁇ 8 -Alkenoxyradikal, z. B. CrC 8 ; -. Q "is a halide ion, especially chloride;
- r represents a statistical mean of 2 to 20 and in particular 2 to 8; s for a statistical mean from 20 to 200 and especially from 20 to
- a polymer which corresponds to the formula B1b is the polymer which is sold by Union Carbide under the name "Ucar Silicone ALE 56".
- Ucar Silicone ALE 56 When these silicone polymers are used, a particularly interesting embodiment is their use together with cationic and / or or non-ionic surfactants.
- the product sold under the name "Emulsion Cationique DC 929" by DOW CORNING can be used which, in addition to the amodimethicone, contains a cationic surfactant which contains a mixture of products according to the following formula:
- R 9 are alkenyl and / or alkyl radicals with 14 to 22 carbon atoms, derivatives of tallow fatty acids, together with a nonionic surfactant of the formula: C 9 H 19 -C 6 H 4 - (OC 2 H 4 ) ⁇ o-OH , known under the CTFA nomenclature "Nonoxynol 10".
- the silicone resins which can be used according to the invention are crosslinked siloxane systems which contain the units: R 2 SiO 2/2 , RSiO 32 and SiO 4/2 , in which R is a hydrocarbon Substance group which has 1 to 6 carbon atoms or represents a phenyl group.
- R is a hydrocarbon Substance group which has 1 to 6 carbon atoms or represents a phenyl group.
- R represents a lower alkyl radical (CC 6 ) or a phenyl radical are particularly preferred.
- the silicone rubbers according to the invention (B-3) are polydiorganosiloxanes of high molecular masses between 200,000 and 2,000,000, which are used alone or in a mixture in a solvent which consists of the volatile silicones, the polydimethylsiloxane oils, the polymethylphenylsiloxanes or Polydiphenyldimethylsiloxane oils, the isoparaffins, the methylene chloride, the pentane, the hydrocarbons or their mixtures is selected.
- a silicone rubber with a molecular weight below 1,500,000 is preferably used.
- the silicone rubber is e.g. a polydimethylsiloxane, a polyphenylmethylsiloxane, a poly (diphenylsiloxane-dimethylsiloxane), a polydimethylsiloxane-methylvinylsiloxane), a poly- (dimethylsiloxane-phenylmethylsiloxane), a poly- (diphenylsiloxane) -dimethylsiloxane.
- These silicone rubbers can terminate at the end of the chain with trimethylsilyl or dimethylhydroxysilyl groups.
- a silicone rubber which corresponds to the formula B-3a:
- R 1 , R 2 , R 5 and R 6 together or separately are an alkyl radical with 1 to 6 carbon atoms
- R 3 and R 4 together or separately are an alkyl radical with 1 to 6 carbon atoms or an aryl radical
- X is an alkyl radical with 1 to 6 carbon atoms, a hydroxyl radical or a vinyl radical, n and p being selected such that the silicone rubber has a viscosity higher than 100,000 mPa.s, preferably higher than 500,000 mPa.s.
- n and p can have values from 0 to 5000, preferably from 0 to 3000.
- the silicone rubber can be incorporated into the composition as it is or in a form dissolved in silicone oil, such as a volatile or non-volatile PDMS (polydimethylsiloxane).
- silicone rubber which can be used according to the invention, there can be mentioned those in which:
- the substituents R- t , R 2 , R 5 , R ⁇ and X denote a methyl group
- the substituents R 3 and R 4 denote an aryl group, such as the molecular weight of the compound is 600,000, such as that described under the name 761 by RHONE-POULENC is distributed.
- Polyalkoxylated silicones (B-4) are compounds which are selected from the compounds of the general formulas:
- the groups R 1 which are identical or different, a straight-chain or branched C to C 30 alkyl group or a phenyl group, in particular -CH 3,
- the groups R 2 which are identical or different, R 1 or a group -C 0 H 2c -O- (C 2 H 4 O) a (C 3 H 6 O) b -R 5 or a group C c H 2c -O- (CH 8 O) a -R 5 mean with the proviso that at least one of the radicals R 2 is a group - C c H 2C -O- (C 2 H 4 O) a (C 3 H 6 O) b -R 5 or a group C c H 2c -O- (C 4 H 8 O) a -R 5 ,
- R 3 and R 4 which are identical or different from one another, denote a straight-chain or branched C r to C 12 alkyl group and preferably methyl,
- the groups R 5 which are identical or different from one another, selected from a hydrogen atom, a straight-chain or branched alkyl group having 1 to 12 carbon atoms, a straight-chain or branched alkoxy group having 1 to 6 carbon atoms, a straight-chain or branched acyl group having 2 to 40 carbon atoms, -SO 3 M, an optionally substituted on the amino group -C.
- R 7 is hydrogen or SO 3 M
- n is in the range from 0 to 500
- o is in the range from 0 to 20
- p is in the range from 1 to 50
- a is in the range from 0 to 50
- b is in the range from 0 to 50
- a + b means at least 2
- c is in the range from 0 to 4
- x is in the range from 1 to 100
- Y is a monovalent inorganic or organic anion
- the polyalkoxylated silicones according to the invention can also be selected from the silicones of the following formula B-4e:
- R 2 and R ' 2 which are identical or different, represent a monovalent hydrocarbon-containing radical
- n is an integer from 2 to 4
- q is a number of at least 4, preferably between 4 and 200 and in particular between 4 and 100,
- r is a number of at least 4, preferably between 4 and 200 and in particular between 5 and 100,
- s is a number of at least 4, preferably between 4 and 1000 and in particular between 5 and 300,
- Z represents a divalent organic group which is bonded to the adjacent silicon atom via a carbon-silicon bond and to a polyoxyalkylene block via an oxygen atom,
- each siloxane block is between 400 and approximately 10,000, that of each polyoxyalkylene block is between approximately 300 and approximately 10,000,
- siloxane blocks represent about 10 to about 95% by weight of the block copolymer
- the number average molecular weight of the block copolymer can be between 2,500 to 1,000,000 and preferably between 3,000 and 200,000 and in particular between 6,000 and 100,000.
- R 2 and R ' 2 are preferably selected from the group containing the straight-chain or branched alkyl radicals, such as, for example, the methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, dodecyl radicals , the aryl radicals, such as, for example, the phenyl, naphthyl radicals, the aralkyl radicals or alkylaryl radicals, such as, for example, the benzyl, phenylethyl radicals, the tolyl, xylyl radicals.
- the straight-chain or branched alkyl radicals such as, for example, the methyl, ethyl, propyl, butyl, pentyl, hexyl, octyl, decyl, dodecyl radicals
- the aryl radicals such as, for example, the phenyl, nap
- Z is preferably -R "-, -R" -CO-, -R "-NHCO-, -R" -NH-CO-NH-R "-, -R '" - OCONH-R'"- NHCO-, where R "is a divalent, straight-chain or branched alkylene group having 1 to 6 C atoms, such as ethylene, propylene or butylene, straight-chain or branched, and R""is a divalent alkylene group or a divalent arylene group such as - C 8 H 4 - , - C 8 H 4 - CeH 4 -, - C ⁇ H 4 CH 2 - C ⁇ H 4 -, - C 8 H 4 C (CH 3 ) 2 C 6 H 4 -.
- Z represents a divalent alkylene radical, in particular the radical -C 3 H 6 or the radical CH 8 , straight-chain or branched.
- the silicones according to the invention can be in the form of aqueous solutions or, if appropriate, in the form of aqueous dispersions or emulsions.
- Silicones containing polyurethanes can also be used as silicones.
- Water-soluble or water-dispersible polyurethanes are particularly suitable
- polyurethane contains no unit derived from a primary or secondary amine which has an ionogenic or ionic group.
- Component a) is preferably a polymer having a number average molecular weight in the range from about 400 to 4,000, preferably 500 to 4,000, in particular 600 to 3,000.
- the polysiloxanes a) are preferably a compound of the formula B-5a
- R, 1 n and. D R2 independently of one another represent d- to C 4 -alkyl, benzyl or phenyl, X and Y independently of one another represent OH or NHR 3 , where R 3 represents hydrogen, C r to C 6 alkyl or C 5 to C 8 cycloalkyl,
- n and n independently of one another represent 2 to 8,
- p 3 to 50.
- Suitable alkyl radicals are e.g. As methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, n-pentyl, n-hexyl etc.
- Suitable cycloalkyl radicals are e.g. B. cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl etc.
- R 1 and R 2 are both methyl.
- Usable polyester diols b) have a number average molecular weight in the range from about 400 to 5,000, preferably 500 to 3,000, in particular 600 to 2,000.
- Suitable polyester diols are all those which are customarily used for the production of polyurethanes, in particular those based on aromatic dicarboxylic acids, such as terephthalic acid, isophthalic acid, phthalic acid, Na- or K-sulfoisophthalic acid etc., aliphatic dicarboxylic acids, such as adipic acid or succinic acid, etc. ., and cycloaliphatic dicarboxylic acids, such as 1, 2-, 1, 3- or 1,4-cyclohexanedicarboxylic acid.
- aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, Na- or K-sulfoisophthalic acid etc.
- aliphatic dicarboxylic acids such as adipic acid or succinic acid, etc. .
- cycloaliphatic dicarboxylic acids such as 1, 2-, 1, 3- or 1,4-cyclohexanedicarboxylic
- diols are aliphatic diols, such as ethylene glycol, propylene glycol, 1,6-hexanediol, neopentyl glycol, diethylene glycol, polyethylene glycols, polypropylene glycols, 1,4-dimethylolcyclohexane, and also poly (meth) acrylate diols of the formula B-5b
- R 10 is H or CH 3 and R 11 is -C 18 alkyl (in particular CC 12 - or CC 8 alkyl), which have a molecular weight of up to about 3000.
- Such diols can be prepared in the usual way and are commercially available (Tegomer TM types MD, BD and OD from Goldschmidt).
- Polyester diols based on aromatic and aliphatic dicarboxylic acids and aliphatic diols are preferred, in particular those in which the aromatic dicarboxylic acid contains 10 to 95 mol%, in particular 40 to 90 mol% and preferably 50 to 85 mol%, of the total dicarboxylic acid content (Rest of aliphatic dicarboxylic acids).
- polyester diols are the reaction products of phthalic acid / diethylene glycol, isophthalic acid / 1, 4-butanediol, isophthalic acid / adipic acid / 1, 6-hexanediol, 5-NaSO 3 -isophthalic acid / phthalic acid / adipic acid / 1, 6-hexanediol, adipic acid acid / ethylene glycol, isophthalic acid / adipic acid / neopentyl glycol, isophthalic acid / adipic acid / neopentyl glycol / diethylene glycol / dimethylolcyclohexane and 5-NaSO 3 -
- Component c) is preferably diols, diamines, amino alcohols and mixtures thereof.
- the molecular weight of these compounds is preferably in a range from about 56 to 280. If desired, up to 3 mol% of the compounds mentioned can be replaced by triols or triamines.
- the resulting polyurethanes are essentially uncrosslinked.
- Diols are preferably used as component c).
- Useful diols are e.g. B. ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, cyclohexanedimethylol, di-, tri-, tetra-, penta- or hexaethylene glycol and mixtures thereof. Neopentyl glycol and / or cyclohexanedimethylol are preferably used.
- Suitable amino alcohols are e.g. B. 2-aminoethanol, 2- (N-methylamino) ethanol, 3-aminopropanol, 4-aminobutanol, 1-ethylaminobutan-2-ol, 2-amino-2-methyl-1-propanol, 4-methyl-4-aminopentane -2-ol etc.
- Suitable diamines are e.g. B. ethylenediamine, propylenediamine, 1, 4-diaminobutane, 1,5-diaminopentane and 1, 6-diaminohexane and, ⁇ -diaminopolyether, which can be prepared by amination of polyalkylene oxides with ammonia.
- Suitable compounds d) which have two active hydrogen atoms and at least one aniohogeneic or anionic group per molecule are, for.
- B. Compounds with carboxylate and / or sulfonate groups.
- dimethylolpropanoic acid and mixtures which contain dimethylolpropanoic acid are particularly preferred.
- m and n independently of one another represent an integer from 1 to 8, in particular 1 to 6, and M represents Li, Na or K.
- Mixtures which contain dimethylolpropanoic acid and up to 3% by weight, based on the total amount of components a) to e), of at least one compound of the abovementioned formulas are preferably used as component d).
- Component e) is a customary aliphatic, cycloaliphatic and / or aromatic diisocyanate, such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diphenyl diisocyanate, 2,4- and 2,6-tolylene diisocyanate and their isomer mixtures, 1,5-naphthylene diisocyanate, 1,1 4-cyclohexylene diisocyanate, dicyclohexyl methane diisocyanate and mixtures thereof, in particular isophorone diisocyanate and / or dicyclohexyl methane diisocyanate. If desired, up to 3 mol% of the compounds mentioned can be replaced by triisocyanates.
- the silicone-containing polyurethanes are produced by reacting the compounds of components a), b), c) and d) with component e).
- the temperature is in a range from approximately 60 to 140 ° C., preferably approximately 70 to 100 ° C.
- the reaction can be carried out without a solvent or in a suitable inert solvent or solvent mixture.
- Suitable solvents are aprotic polar solvents, e.g. B. tetrahydrofuran, ethyl acetate, N-methylpyrrolidone, dimethylformamide and preferably ketones such as acetone and methyl ethyl ketone.
- the reaction is preferably carried out under an inert gas atmosphere, such as. B. under nitrogen.
- the components are used in amounts such that the ratio of NCO equivalent of the compounds of component e) to equivalent active hydrogen atom of components a), b), c) and d) is in a range of about 0.8: 1 to 1.25: 1, preferably 0.85: 1 to 1.2: 1, in particular 1.05: 1 to 1.15: 1. If the resulting polyurethanes still have free isocyanate groups, these are finally inactivated by adding amines, preferably amino alcohols. Suitable amino alcohols are those described above as component c), preferably 2-amino-2-methyl-1-propanol.
- the polyurethanes containing acid groups can be converted into a water-soluble or water-dispersible form by partial or complete neutralization with a base.
- the salts of the polyurethanes obtained generally have better water solubility or dispersibility in water than the non-neutralized polyurethanes.
- Alkali metal bases such as sodium hydroxide solution, potassium hydroxide solution, sodium carbonate, sodium hydrogen carbonate, potassium carbonate or potassium hydrogen carbonate and alkaline earth metal bases such as calcium hydroxide, calcium oxide, magnesium hydroxide or magnesium carbonate as well as ammonia and amines can be used as the base for the neutralization of the polyurethanes.
- Suitable amines are e.g. B.
- CC 6 -alkylamines preferably n-propylamine and n-butylamine, dialkylamines, preferably diethylpropylamine and dipropylmethylamine, trialkylamines, preferably triethylamine and triisopropylamine, CrC 6 alkyldiethyanolamines, preferably methyl- or ethyldiethanolamine and di-C 6 -Alkylethanolamine.
- neutralizing the acid Group-containing polyurethanes 2-amino-2-methyl-1-propanol, diethylaminopropyl laminate and triisopropanolamine have proven successful.
- the neutralization of the polyurethanes containing acid groups can also be carried out with the aid of mixtures of several bases, for. B. Mixtures of sodium hydroxide solution and triisopropanolamine. Depending on the application, the neutralization can be partially z. B. 20 to 40% or completely, ie 100%.
- a water-miscible organic solvent is used in the production of the polyurethanes, this can then be obtained by customary methods known to those skilled in the art, e.g. B. can be removed by distillation under reduced pressure. Water can also be added to the polyurethane before the solvent is separated off. After replacing the solvent with water, a solution or dispersion of the polymer is obtained, from which, if desired, the polymer can be obtained in a conventional manner, e.g. B. by spray drying.
- the silicone-containing polyurethanes (B-5) have K values (measured according to E. Fikentscher, Cellulose-Chemie 13 (1932), pp. 58-64, on a 1% solution in N-methylpyrrolidone) in a range from 15 to 90, preferably 20 to 60.
- Their glass transition temperature is generally at least 0 ° C., preferably at least 20 ° C., particularly preferably at least 25 ° C. and especially at least 30 ° C.
- the proportion of siloxane groups based on the solids content of the silicone-containing polyurethanes is generally about 0.05 to 20% by weight, preferably about 0 , 05 to 15 wt .-%, in particular 0.05 to
- Polyalkoxylated silicones (B-4) are particularly preferred as silicones.
- Another object of the present invention relates to a method for producing polymeric products, characterized in that
- Polyalkylene glycol vinyl ethers (A-2) polymerize ii) mix the polymer thus obtained with silicones at a temperature of greater than or equal to 30 ° C. i) Preparation of polymers (A)
- the polymers (A) can be prepared by customary conventional synthetic methods of polymerization.
- these can be solution polymerization, emulsion polymerization, reverse emulsion polymerization, suspension polymerization, reverse suspension polymerization or precipitation polymerization, without the methods which can be used being restricted thereto.
- solution polymerization water, conventional organic solvents or the unsaturated polyalkylene glycol vinyl ether (A-2) itself can be used as the solvent.
- the usual compounds known to the person skilled in the art such as, for example, sulfur compounds (for example: mercaptoethanol, 2-ethylhexylthioglycolate, thioglycolic acid or dodecyl mercaptan) and tribromochloromethane or other compounds which have a regulating effect on the molecular weight of the polymers obtained, can be used as regulators.
- sulfur compounds for example: mercaptoethanol, 2-ethylhexylthioglycolate, thioglycolic acid or dodecyl mercaptan
- tribromochloromethane or other compounds which have a regulating effect on the molecular weight of the polymers obtained can be used as regulators.
- silicone compounds containing thiol groups can also be used. Silicone-free controllers are preferably used.
- additional crosslinking monomers are used in the preparation of the polymers (A).
- Crosslinking monomers which can be used are compounds having at least two ethylenically unsaturated double bonds, for example esters of ethylenically unsaturated carboxylic acids, such as acrylic acid or methacrylic acid and polyhydric alcohols, ethers of at least dihydric alcohols, for example vinyl ether or allyl ether.
- esters of ethylenically unsaturated carboxylic acids such as acrylic acid or methacrylic acid and polyhydric alcohols
- ethers of at least dihydric alcohols for example vinyl ether or allyl ether.
- straight-chain or branched, linear or cyclic aliphatic or aromatic hydrocarbons which have at least two double bonds which must not be conjugated to the aliphatic hydrocarbons.
- Amides of acrylic and methacrylic acid and N-allylamines of at least divalent amines such as (1, 2-diaminoethane, 1, 3-diaminopropane) are also suitable. Furthermore, triallylamine or corresponding ammonium salts, N-vinyl compounds of urea derivatives, at least divalent amides, cyanurates or urethanes.
- Other suitable crosslinkers are divinyl dioxane, tetraallylsilane or tetravinylsilane.
- crosslinking agents are, for example, methylenebisacrylamide, triallylamine and triallylammonium salts, divinylimidazole, N, N'-divinylethylene urea, reaction products of polyhydric alcohols with acrylic acid or methacrylic acid, methacrylic acid esters and acrylic acid esters of polyalkylene oxides or polyhydric alcohols with ethylene oxide and / or / or propylene Epichlorohydrin have been implemented. If they contain ionizable groups, the monomers (A-1) according to the invention can be partially or completely neutralized with acids or bases before or after the polymerization in order, for example, to adjust the water solubility or dispersibility to a desired level.
- mineral bases such as sodium carbonate, alkali metal hydroxides and ammonia
- organic bases such as amino alcohols, especially 2-amino-2-methyl-1-propanol, monoethanolamine, diethanolamine, triethanolamine, triisopropanolamine, tri [(2-hydroxy) 1 - Propyl] amine, 2-amino-2-methyl-1, 3-propanediol, 2-amino-2-hydroxymethyl-1, 3-propanediol and diamines such as lysine can be used.
- mineral acids such as hydrochloric acid, sulfuric acid or phosphoric acid
- organic acids such as carboxylic acids, lactic acid, citric acid or others can be used as neutralizing agents for monomers bearing cationizable groups.
- the monomers (A-1) of the polymers (A) can be from 50 to 99.9% by weight, preferably 70 to 99% by weight, particularly preferably 85 to 98% by weight, in particular 80 to 97% by weight. % turn off.
- the monomers (A-2, unsaturated polyalkylene glycol vinyl ethers) are generally present in the polymer (A) in amounts of 0.1 to 50, preferably 0.5 to 20, particularly preferably 2 to 15% by weight.
- At least 2 monomers (a1 and a2) are used as monomers (A-1).
- Polymers (A) which are obtainable by polymerizing monomer (a1) tert-butyl acrylate and monomer (a2) methacrylic acid are particularly preferred. If the ethylenically unsaturated monomers (A-1) are used as a combination of two monomers (a1 and a2), it has proven advantageous to use 49.5 to 99% by weight (a1) and 0.5 to 40% by weight .-% (a2).
- the polymer (A) used is a polymer which can be obtained by free-radical polymerization of a monomer mixture from
- the polymer (A) used is a polymer which can be obtained by free-radical polymerization of a monomer mixture from
- H 2 C CH-C C H 2 - O- (C 2 H 4 O) a (C 3 H 6 O) b -R 5
- R 5 H, CH 3 , - a is in the range from 0 to 50,
- b is in the range from 0 to 50
- the polymers (A) preferably have a K value (according to Fickentscher, Cellulosechemie, Vol. 13, pp. 58-64 (1932) measured at 250 ° C. 0.1 5% in 0.5 molar saline solution) of 30 to 50, preferably 37 to 41.
- K value accordinging to Fickentscher, Cellulosechemie, Vol. 13, pp. 58-64 (1932) measured at 250 ° C. 0.1 5% in 0.5 molar saline solution
- water-dispersible means polymers which form a fluid in contact with the water within 24 hours and which have no optical
- Aids do not reveal any solid particles with the eye.
- 100 mg of the polymer in the form of a 100 mm thick film are placed in 100 ml of water (20 ° C.) and shaken for 24 hours on a commercially available shaking table. If, after shaking, no more solid particles can be seen, but the fluid is cloudy, the polymer is water-dispersible; without cloudiness it is said to be water soluble.
- polymers (A-1) and (A-2) in the polymerization of the monomers (A-1) and (A-2), other polymers, such as, for example, homopolymers and copolymers of ethylenically unsaturated monomers and polyamides, polyurethanes or polyesters, may also be present.
- the polyamides, polyurethanes, polyesters are preferably ionically modified, for example with carboxylate or sulfonate groups.
- the polymeric products according to the invention can be obtained by mixing components (A) and (B). It is essential to the invention that the temperature during mixing is greater than or equal to 30 ° C., in particular greater than or equal to 40 ° C.
- the polymeric products according to the invention are produced by mixing (A) and (B) at temperatures of greater than or equal to 50 ° C., in particular greater than or equal to 60 ° C., particularly preferably greater than or equal to 70 ° C.
- Mixing can be carried out under gassing with inert gas, e.g. Nitrogen fumigation can be carried out.
- 99.5 to 70% by weight in particular 99 to 85% by weight (A) and 0.5 to 30% by weight, in particular 1 to 15% by weight (B), are used.
- the polymeric products according to the invention are particularly suitable for use in cosmetic preparations, especially in hair cosmetic preparations.
- Another object of the present invention therefore relates to the use of the polymeric products in cosmetic preparations.
- the polymeric products according to the invention are used in cosmetic products for cleaning the skin.
- cosmetic cleaning agents are selected from bar soaps, such as toilet soaps, core soaps, transparent soaps, luxury soaps, deodorant soaps, cream soaps, baby soaps, skin protection soaps, abrasive soaps and syndets, liquid soaps such as pasty soaps, soft soaps and washing pastes, and liquid washing, showering and bathing preparations, such as washing lotions, shower baths and gels, foam baths, oil baths and scrub products.
- the polymeric products according to the invention are preferably used in cosmetic compositions for the care and protection of the skin, in nail care compositions and in preparations for decorative cosmetics.
- skin care products intimate care products, foot care products, deodorants, light stabilizers, repellents, shaving agents, hair removal agents, anti-acne agents, make-up, mascara, lipsticks, eye shadows, eye pencils, eyeliners, blushes, powders and eyebrow pencils is particularly preferred.
- the skin care products are in particular available as W / O or O / W skin creams, day and night creams, eye creams, face creams, anti-wrinkle creams, moisturizing creams, bleaching creams, vitamin creams, skin lotions, care lotions and moisturizing lotions.
- the polymeric products according to the invention can have particular effects in the cosmetic preparations. Among other things, they can help to moisturize and condition the skin and improve the feeling on the skin. By adding the polymeric products according to the invention, a considerable improvement in skin tolerance can be achieved in certain formulations.
- the polymeric products according to the invention are present in the skin cosmetic preparations in a proportion of about 0.001 to 20% by weight, preferably 0.01 to 10% by weight, very particularly preferably 0.1 to 5% by weight, based on the total weight of the agent.
- the agents according to the invention can be in a form suitable for skin care, such as can be applied as a cream, foam, gel, stick, powder, mousse, milk or lotion.
- the skin cosmetic preparations can also contain additives customary in cosmetics, such as emulsifiers, preservatives, perfume oils, cosmetic active ingredients such as phytantriol, vitamins A, E and C, retinol, bisabolol, panthenol, light stabilizers, bleach, colorants , Tinting agents, browning agents (eg dihydroxyacetone), collagen, protein hydrolyzates, stabilizers, pH regulators, dyes, salts, thickeners, gelling agents, consistency enhancers, silicones, humectants, refatting agents and other common additives.
- additives customary in cosmetics such as emulsifiers, preservatives, perfume oils, cosmetic active ingredients such as phytantriol, vitamins A, E and C, retinol, bisabolol, panthenol, light stabilizers, bleach, colorants , Tinting agents, browning agents (eg dihydroxyacetone), collagen, protein hydrolyzates, stabilizers, pH regulators, dyes
- Suitable solvents include water and lower monoalcohols or polyols with 1 to 6 carbon atoms or mixtures thereof; before- Preferred monoalcohols or polyols are ethanol, i-propanol, propylene glycol, glycerin and sorbitol.
- fatty substances such as mineral and synthetic oils such as paraffins, silicone oils and aliphatic hydrocarbons with more than 8 carbon atoms, animal and vegetable oils such as sunflower oil, coconut oil, avocado oil, olive oil, lanolin, or waxes , Fatty acids, fatty acid esters, such as triglycerides of C 6 -C 30 fatty acids, wax esters, such as jojoba oil, fatty alcohols, petroleum jelly, hydrogenated lanolin and acetylated lanolin. Mixtures of the same can of course also be used.
- Typical thickeners in such formulations are crosslinked polyacrylic acids and their derivatives, polysaccharides such as xanthan gum, agar agar, alginates or tyberg, carboxymethylceliulose or hydroxycarboxymethylcellulose, fatty alcohols, monoglycerides and fatty acids, polyvinyl glycol and polyvinyl pyrrolidone.
- the polymeric products according to the invention can also be mixed with conventional polymers if special properties are to be set.
- anionic, cationic, amphoteric and neutral polymers are suitable as conventional polymers.
- anionic polymers are homopolymers and copolymers of acrylic acid and methacrylic acid or their salts, copolymers of acrylic acid and acrylamide and their salts; Sodium salts of polyhydroxycarboxylic acids, water-soluble or water-dispersible polyesters, polyurethanes and polyureas.
- Particularly suitable polymers are copolymers of t-butyl acrylate, ethyl acrylate, methacrylic acid (for example Luvimer TM 100P), copolymers of ethyl acrylate and methacrylic acid (for example Luvimer TM MAE), copolymers of N-tert-butyl-acrylamide, ethyl acrylate, acrylic acid (ultrahold TM 8, strong), copolymers of vinyl acetate, crotonic acid and optionally other vinyl esters (eg Luviset TM brands), maleic anhydride copolymers, optionally reacted with alcohols, anionic polysiloxanes, eg carboxy-functional, copolymers of vinylpyrrolidone, t-butyl acrylate, methacrylic acid (eg Luviskol TM VBM), copolymers of acrylic acid and methacrylic acid with hydrophobic monomers, such as C 4 -C 30 alkyl esters of
- Suitable polymers are cationic polymers with the name Polyquaternium according to INCI, for example copolymers of vinylpyrrolidone / N-vinylimidazolium salts (Luviquat TM FC, Luviquat TM HM, Luviquat TM MS, Luviquat TM Care, Luviquat TM Hold, INCI Polyquaternium-16, -44, -46), copolymers of acrylamide and dimethyldiallylammonium chloride (Polyquaternium-7), cationic cellulose derivatives (Polyquaternium-4, -10), cationic starch derivatives (INCI: Starch Hydroxypropytrimonium Chloride, Com Starch Modified), cationic Guar derivatives (INCI: hydroxypropyl guar hydroxypropyltrimonium chloride), cationic sunflower oil derivatives (INCI: Sunflowerseedamidopropyl Hydroxyethyldimonium Chloride), copolymers made of
- Neutral polymers such as polyvinylpyrrolidones, copolymers of N-vinylpyrrolidone and vinyl acetate and / or vinyl propionate, copolymers of N-vinypyrrolidone / dimethylaminopropylacrylamide or methacrylamide, copolymers of N-vinylpyrrolidone and alkyl acrylate or alkyl methacrylate monomers are also suitable as further polymers C1 to C18, graft copolymers of polyvinyl alcohol on polyalkylene glycols such as Kollicoat IR (BASF), graft copolymers of other vinyl monomers on polyalkylene glycols, polysiloxanes, polyvinylcaprolactam and copolymers with N-vinylpyrrolidone, polyethyleneimines and their salts, polyvinylamines and their salts, cellulose derivatives, chitosan, polyaspartic acid salts and derivatives.
- the preparations can also contain conditioning substances based on silicone compounds.
- Suitable silicone compounds are, for example, polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyether siloxanes, silicone resins, dimethicones, dimethicone derivatives or dimethicone copolyols (CTFA) and amino-functional silicone compounds such as amodimethicones (CTFA).
- polymeric products according to the invention are used in cosmetic preparations, the preparation of which is carried out according to the usual rules familiar to the person skilled in the art.
- Such formulations are advantageously in the form of emulsions, preferably in the form of water-in-oil (W / O) or oil-in-water (O / W) emulsions.
- W / O water-in-oil
- O / W oil-in-water
- Emulsions which can be used according to the invention are prepared by known methods.
- the emulsions contain customary constituents, such as fatty alcohols, fatty acid esters and in particular fatty acid triglycerides, fatty acids, lanolin and derivatives thereof, natural or synthetic oils or waxes and emulsifiers in the presence of water.
- a skin cream which can be used according to the invention may e.g. present as a W / O emulsion.
- Such an emulsion contains an aqueous phase which is emulsified in an oil or fat phase by means of a suitable emulsifier system.
- the concentration of the emulsifier system in this type of emulsion is about 4 and 35% by weight, based on the total weight of the emulsion; the fat phase makes up about 20 and 60% by weight and the aqueous phases about 20 and 70% by weight, each based on the total weight of the emulsion.
- the emulsifiers are those which are usually used in this type of emulsion.
- C 12 -C 18 sorbitan fatty acid esters are selected, for example, from: C 12 -C 18 sorbitan fatty acid esters; Esters of hydroxystearic acid and Ci 2 -C 3 o-fatty alcohols; Mono- and diesters of C 2 -C 8 fatty acids and glycerol or polyglycerol; Condensates of ethylene oxide and propylene glycols; o- xypropylene / oxyethylenated C 2 -C 20 fatty alcohols; polycyclic alcohols such as sterols; high molecular weight aliphatic alcohols such as lanolin; Mixtures of oxypropylene / polyglycerolated alcohols and magnesium isostate; Succinic esters of polyoxyethylenated or polyoxypropylenated fatty alcohols; and mixtures of magnesium, calcium, lithium, zinc or aluminum lanolate and hydrogenated lanolin or lanolin alcohol.
- Suitable fat components which can be contained in the fat phase of the emulsions include hydrocarbon oils such as paraffin oil, purcellin oil, perhydrosqualene and solutions of microcrystalline waxes in these oils; animal or vegetable oils, such as sweet almond oil, avocado oil, calophylum oil, lanolin and derivatives thereof, castor oil, sesame oil, olive oil, jojoba oil, karite oil, hoplostethus oil; mineral oils whose distillation begins at atmospheric pressure at approximately 250 ° C.
- hydrocarbon oils such as paraffin oil, purcellin oil, perhydrosqualene and solutions of microcrystalline waxes in these oils
- animal or vegetable oils such as sweet almond oil, avocado oil, calophylum oil, lanolin and derivatives thereof, castor oil, sesame oil, olive oil, jojoba oil, karite oil, hoplostethus oil
- mineral oils whose distillation begins at atmospheric pressure at approximately 250 ° C.
- esters of saturated or unsaturated fatty acids such as alkyl myristates, for example i-propyl, butyl or cetyl myristate, hexadecyl stearate, ethyl or i-propyl palmitate, octane or decanoic acid triglycerides and cetyl ricinoleate.
- the fat phase can also contain silicone oils soluble in other oils, such as dimethylpolysiloxane, methylphenylpolysiloxane and the silicone glycol copolymer, fatty acids and fatty alcohols.
- waxes can also be used, e.g. Carnauba wax, candellila wax, beeswax, microcrystalline wax, oocerite wax and Ca, Mg and Al oleates, myristates, linoleates and stearates.
- These water-in-oil emulsions are generally prepared in such a way that the fat phase and the emulsifier are added to the batch container. It is heated at a temperature of 70 to 75 ° C., then the oil-soluble ingredients are added and, with stirring, water is added which has previously been heated to the same temperature and in which the water-soluble ingredients have been dissolved beforehand; the mixture is stirred until an emulsion of the desired fineness is obtained and then allowed to cool to room temperature, stirring less if necessary.
- a care emulsion according to the invention can be present as an O / W emulsion.
- Such an emulsion usually contains an oil phase, emulsifiers which stabilize the oil phase in the water phase and an aqueous phase which is usually present in a thickened state.
- aqueous phase of the O / W emulsion of the preparations according to the invention optionally contains
- - Alcohols, diols or polyols and their ethers preferably ethanol, isopropanol, propylene glycol, glycerin, ethylene glycol monoethyl ether; usual thickeners or gelling agents, e.g. cross-linked polyacrylic acids and their derivatives, polysaccharides such as xanthan gum or alginates, carboxymethyl cellulose or hydroxycarboxymethyl cellulose, fatty alcohols, polyvinyl alcohol and polyvinyl pyrrolidone.
- thickeners or gelling agents e.g. cross-linked polyacrylic acids and their derivatives, polysaccharides such as xanthan gum or alginates, carboxymethyl cellulose or hydroxycarboxymethyl cellulose, fatty alcohols, polyvinyl alcohol and polyvinyl pyrrolidone.
- the oil phase contains common oil components in cosmetics, such as:
- Silicone oils such as cyclomethicone, dimethylpolysiloxane, diethylpolysiloxane, octa-methylcyclotetrasiloxane and mixtures thereof;
- Triglycerides of saturated and / or unsaturated, branched and / or unbranched C 8 -C 24 alkane carboxylic acids can be selected from synthetic, semi-synthetic or natural oils, such as olive oil, palm oil, almond oil or mixtures.
- Preferred emulsifiers are O / W emulsifiers, such as polyglycerol esters, sorbitan esters or partially esterified glycerides.
- the polymeric products according to the invention are also suitable for use in washing and shower gel formulations and bath preparations.
- such formulations usually contain anionic surfactants as base surfactants and amphoteric and nonionic surfactants as cosurfactants, as well as lipids, perfume oils, dyes, organic acids, preservatives and antioxidants, and also thickeners / gelling agents, skin conditioners and humectants.
- All anionic, neutral, amphoteric or cationic surfactants commonly used in personal cleansing agents can be used in the washing, showering and bathing preparations.
- the formulations contain 2 to 50% by weight of surfactants, preferably 5 to 40% by weight, particularly preferably 8 to 30% by weight.
- Suitable anionic surfactants include for example alkyl sulfates, alkylsulfonates, alkylarylsulfonates, alkyl succinates, alkyl sulphosuccinates, N-Alkoyl- sarcosinates, Alkylgiykolalkoxylate, acyl taurates, acyl isethionates, alkyl phosphates, alkylene letherphosphate, alkyl ether carboxylates, alpha-olefin sulfonates, especially the alkali metal and alkaline earth metal salts, for example sodium , Potassium, magnesium, calcium, and ammonium and triethanolamine salts.
- the alkyl ether sulfates, alkyl ether phosphates and alkyl Ether carboxylates can have between 1 and 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units, in the molecule.
- sodium lauryl sulfate, ammonium lauryl sulfate, sodium lauryl ether sulfate, ammonium lauryl ether sulfate, sodium lauryl sarcosinate, sodium oleyl succinate, ammonium lauryl sulfosuccinate, sodium dodecylbenzenesulfonate, triethanolamine dodecyl benzene sulfonate are suitable.
- Suitable amphoteric surfactants are, for example, alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycinates, alkylcarboxyglycinates, alkylamphoacetates or propionates, alkylamphodiacetates or dipropionates.
- cocodimethylsulfopropylbetaine laurylbetaine, cocamidopropylbetaine or sodium cocamphopropionate can be used.
- Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkyl phenols having 6 to 20 carbon atoms in the alkyl chain, which can be linear or branched, with ethylene oxide and / or propylene oxide.
- the amount of alkylene oxide is about 6 to 60 moles per mole of alcohol.
- Alkylamine oxides, mono- or dialkylalkanolamides, fatty acid esters of polyethylene glycols, ethoxylated fatty acid amides, alkylpolyglycosides or sorbitan ether esters are also suitable.
- washing, showering and bathing preparations can contain customary cationic surfactants, e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride or bromide (INCI cetrimonium chloride or bromide), hydroxyethylcetyldimonium phosphate (INCI Quaternium-44), INCI cocotrimonium methosulfate, INCI Quaternium-52.
- customary cationic surfactants e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride or bromide (INCI cetrimonium chloride or bromide), hydroxyethylcetyldimonium phosphate (INCI Quaternium-44), INCI cocotrimonium methosulfate, INCI Quaternium-52.
- customary cationic surfactants e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride or bromide
- cationic polymers can also be used, for example copolymers of acrylamide and dimethyldiallylammonium chloride (Polyquaternium-7), cationic cellulose derivatives (Polyquaternium-4, -10), cationic starch derivatives (INCI: Starch Hydroxypropytrimonium Chloride, Com Starch Modified), cationic guar derivatives (INCI: Hydroxypropyl Guar Hydroxypropyltrimonium Chloride), cationic sunflower oil derivatives (INCI: Sunflowerseedamidopropyl Hydroxyethyldimonium Chloride), copolymers of N-vinylpyrrolidone and quaternized N-vinylimidazole (Polyquaternium-16, -44, -46-vinypyrrolidone from N / Dimethylaminoethyl methacrylate, quaternized with diethyl sulfate (polyquaternium-11), copolymers
- washing and shower gel formulations and bath preparations can contain thickeners such as, for example, table salt, PEG-55, propylene glycol oleates, PEG-120 methyl glucose dioleates and others, and also preservatives, other active ingredients and auxiliaries and water.
- thickeners such as, for example, table salt, PEG-55, propylene glycol oleates, PEG-120 methyl glucose dioleates and others, and also preservatives, other active ingredients and auxiliaries and water.
- the polymeric products are used in hair cosmetic preparations.
- Hair cosmetic preparations include in particular styling agents and / or conditioning agents in hair cosmetic preparations such as hair treatments, hair foams (English Mousses), (hair) gels or hair sprays, hair lotions, hair rinses, hair shampoo, hair emulsions, tip fluids, leveling agents for perms, hair coloring and bleaching agents, "hot oii treatment” preparations, conditioners, setting lotions or hair sprays.
- the hair cosmetic preparations can be applied as (aerosol) spray, (aerosol) foam, gel, gel spray, cream, lotion or wax.
- the hair cosmetic formulations according to the invention contain
- Alcohol is to be understood to mean all alcohols customary in cosmetics, e.g. Ethanol, isopropanol, n-propanol.
- additives customary in cosmetics, for example blowing agents, defoamers, surface-active compounds, ie surfactants, emulsifiers, foaming agents and solubilizers.
- the surface-active compounds used can be anionic, cationic, amphoteric or neutral.
- Other common ingredients can also be, for example, preservatives, perfume oils, plasticizers, effect substances, opacifiers, active substances, antioxidants, peroxide decomposers, UV filters, care substances such as panthenol, collagen, vitamins, protein hydrolyzates, alpha and beta hydroxycarboxylic acids, protein hydrolyzates, stabilizers, pH Value regulators, dyes, pigments, viscosity regulators, gelling agents, salts, humectants, moisturizers, complexing agents and other common additives.
- this includes all styling and conditioner polymers known in cosmetics, which can be used in combination with the polymers according to the invention if very special properties are to be set.
- Anionic polymers are suitable as conventional hair cosmetic polymers.
- Such anionic polymers are homopolymers and copolymers of acrylic acid and methacrylic acid or their salts, copolymers of acrylic acid and acrylamide and their salts; Sodium salts of polyhydroxycarboxylic acids, water-soluble or water-dispersible polyesters, polyurethanes (Luviset TM P.U.R.) and polyureas.
- Particularly suitable polymers are copolymers of t-butyl acrylate, ethyl acrylate, methacrylic acid (for example Luvimer TM 100P), copolymers of N-tert-butyl acrylamide, ethyl acrylate, acrylic acid (for example Ultrahold TM 8, strand), copolymers of vinyl acetate, crotonic acid and, if appropriate, other vinyl esters (eg Luviset TM brands, INCI: VA / Crotonates Copolymer), maleic anhydride copolymers, possibly reacted with alcohols, anionic polysiloxanes, eg carboxy-functional, copolymers of vinyl pyrrolidone, t-butyl acrylate, methacrylic acid (e.g. Luviskol TM VBM).
- Luvimer TM 100P copolymers of N-tert-butyl acrylamide, ethyl acrylate, acrylic acid (for example Ultrahold
- the group of polymers suitable for combination with the polymeric products according to the invention also includes, for example, Balance CR or 0/55 (National Starch; acrylate copolymer), Balance 47 (National Starch; octylacrylamide / acrylate / butylaminoethyl methacrylate copolymer), Aquaflex TM FX 64 ( ISP; isobutylene / ethylmaleimide / hydroxyethylmaleimide copolymer), Aquaflex TM SF-40 (ISP / National Starch; VP / Vinyl Caprolactam / DM APA acrylate copolymer), Allianz TM LT-120 (ISP / Rohm &Haas; AcryIat / C1- 2 succinate / hydroxyacrylate copolymer), Aquarez TM HS (Eastman; Polyester-1), Diaformer TM Z-400 (Clariant; methacryloylethylbetaine / methacryl
- Diaformer TM Z-711 or Z-712 (Clariant; methacryloylethyl N-oxide / methacrylate copolymer),, Omnirez TM 2000 (ISP; monoethyl ester of poly (methyl vinyl ether / maleic acid in ethanol), Amphomer TM HC or Resyn XP or Resyn 28-4961 (National Starch; acrylate / octylacrylamide copolymer), Amphomer TM 28-4910 (National Starch; octylacrylamide / acrylate / butylaminoethyl methacrylate copolymer), Advantage TM HC 37 (ISP; terpolymer of vinylcaprolactam / vinylpyrrolidone / dimethylaminoethyl - methacrylate), Advantage brands (ISP), Acudyne 258 (Rohm &Haas; acrylate / hydroxy ester)
- Suitable hair cosmetic polymers are cationic polymers with the name Polyquaternium according to INCI, e.g. Copolymers of vinylpyrrolidone / N-vinylimidazolium salts (Luviquat TM FC, Luviquat TM HM, Luviquat TM MS, Luviquat TM Care, INCI: Polyquaternium-16, Polyquaternium-44), copolymers of N-vinylpyrrolidone / dimethylaminoethyl methacrylate, quaternized (Luviquat TM PQ 11, INCI: Polyquaternium-11), copolymers of N-vinylcaprolactam N-vinylpyrrolidone / N-vinylimidazolium salts (Luviquat TM Hold, INCI: Polyquaternium-46); Copolymers of acrylamide and dimethyldiallylammonium chloride (Polyquaternium-7), cationic cellulose derivatives (Pol
- Neutral polymers such as polyvinylpyrrolidones, copolymers of N-vinylpyrrolidone and vinyl acetate and / or vinyl propionate, copolymers of N-vinypyrrolidone / dimethylaminopropylacrylamide or methacrylamide, copolymers of N-vinylpyrrolidone and alkylacrylate are also suitable as further hair cosmetic polymers.
- meth-crylate monomers with alkyl chains from C1 to C18 graft copolymers of polyvinyl alcohol on polyalkylene glycols such as Kollicoat IR (BASF), graft copolymers of other vinyl monomers on polyalkylene glycols, polysiloxanes, polyvinylcaprolactam and copolymers with N-vinylpyrrolidone, polyethyleneimines and their salts, polyvinylamines and their salts, cellulose derivatives, chitosan, polyaspartic acid salts and derivatives.
- graft copolymers of polyvinyl alcohol on polyalkylene glycols such as Kollicoat IR (BASF)
- graft copolymers of other vinyl monomers on polyalkylene glycols polysiloxanes
- polyvinylcaprolactam and copolymers with N-vinylpyrrolidone polyethyleneimines and their salts
- the preparations can also contain conditioning substances based on silicone compounds.
- Suitable silicone compounds are, for example, polyalkylsiloxanes, polyarylsiloxanes, polyaryl-ikylsiloxanes, polyether siloxanes, silicone resins, fluorinated alkyl silicones, dimethicones, dimethicone derivatives or dimethicone copolyols (CTFA) and amino-functional silicone compounds such as amodimethicones (CTFA).
- the polymers according to the invention are particularly suitable as setting agents in hair styling preparations, in particular hair sprays (aerosol sprays and pump sprays without propellant gas) and hair foams (aerosol foams and pump foams without propellant gas).
- these preparations contain
- Blowing agents are the blowing agents commonly used for hair sprays or aerosol foams. Mixtures of propane / butane, pentane, dimethyl ether, 1,1-di-fluoroethane (HFC-152 a), carbon dioxide, nitrogen or compressed air are preferred.
- a formulation according to the invention for aerosol hair foams contains
- emulsifiers customarily used in hair foams can be used as emulsifiers.
- Suitable emulsifiers can be nonionic, cationic or anionic or amphoteric.
- nonionic emulsifiers are Laurethe, e.g. Laureth-4; Celethe, e.g. Cetheth-1, polyethylene glycol cetyl ether; Cetearethe, e.g. Cetheareth-25, polyglycol fatty acid glycerides, hydroxylated lecithin, lactyl esters of fatty acids, alkyl polyglycosides.
- cationic emulsifiers are or bromide (INCI cetrimonium chlorides or bromides), hydroxyethyl cetyldimonium phosphate (INCI Quaternium-44), INCI cocotrimonium methosulfates, INCI Quaternium-52, Quaternium-1 to x (INCI).
- Anionic emulsifiers may for example be selected from the group of alkyl sulfates, alkyl ether sulfates, alkylsulfonates, alkylarylsulfonates, alkyl succinates, alkyl sulphosuccinates, N-Alkoylsarkosinate, use alkyl, acyl taurates, acyl isethionates, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha-olefin sulfonates, especially the alkali metal and alkaline earth metal salts , for example sodium, potassium, magnesium, calcium, and ammonium and triethanolamine salts.
- the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can be between 1 to Have 10 ethylene oxide or propylene oxide units, preferably 1 to 3 ethylene oxide units in the molecule.
- a preparation suitable according to the invention for styling gels can be composed, for example, as follows:
- gel formers customary in cosmetics can be used as gel formers. These include slightly cross-linked polyacrylic acid, e.g. carbomer (INCI), cellulose derivatives, e.g. Hydroxypropyl cellulose, hydroxyethyl cellulose, cationically modified celluloses, polysaccharides, e.g.
- slightly cross-linked polyacrylic acid e.g. carbomer (INCI)
- cellulose derivatives e.g. Hydroxypropyl cellulose, hydroxyethyl cellulose, cationically modified celluloses
- polysaccharides e.g.
- the polymeric products according to the invention can be used in cosmetic preparations as conditioning agents. Examples are rinse-off and leave-on conditioner preparations.
- the polymeric products according to the invention can also be used in shampoo formulations as setting and / or conditioning agents.
- Polymers with a cationic charge are particularly suitable as conditioning agents.
- anionic, neutral, amphoteric or cationic surfactants commonly used in shampoos can be used in the shampoo formulations.
- Suitable anionic surfactants include for example alkyl sulfates, alkyl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl, Alkylsuifosuccinate, N-Alkoylsarkosinate, acyl taurates, acyl isethionates, alkyl glycol, alkyl phosphates, alkyl ether phosphates, alkyl ether carboxylates, alpha-olefin sulfonates, especially the alkali metal and alkaline earth metal salts, for example sodium, potassium, magnesium , Calcium, as well as ammonium and triethanolamine salts.
- the alkyl ether sulfates, alkyl ether phosphates and alkyl ether carboxylates can have between 1 and 10
- sodium lauryl sulfate, ammonium lauryl sulfate, sodium lauryl ether sulfate, ammonium lauryl ether sulfate, sodium lauroyl sarcosinate, sodium oleyl succinate, ammonium lauryl sulfosuccinate, sodium dodecylbenzenesulfonate, triethanolamine dodecylbenzene sulfate are suitable.
- Suitable amphoteric surfactants are, for example, alkylbetaines, alkylamidopropylbetaines, alkylsulfobetaines, alkylglycinates, alkylcarboxyglycinates, alkylamphoacetates or propionates, alkylamphodiacetates or dipropionates.
- cocodimethylsulfopropylbetaine laurylbetaine, cocamidopropylbetaine or sodium cocamphopropionate can be used.
- Suitable nonionic surfactants are, for example, the reaction products of aliphatic alcohols or alkylphenols with 6 to 20 carbon atoms in the alkyl chain, which can be linear or branched, with ethylene oxide and / or propylene oxide.
- the amount of alkylene oxide is about 6 to 60 moles per mole of alcohol.
- Alkylamine oxides, mono- or dialkylalkanolamide ⁇ , fatty acid esters of polyethylene glycols, alkyl polyglycosides or sorbitan ether esters are also suitable.
- the shampoo formulations can contain conventional cationic surfactants such as e.g. quaternary ammonium compounds, for example cetyltrimethylammonium chloride or bromide (INCI cetrimonium chloride or bromide), hydroxyethylcetyl dimonium phosphate (INCI Quatemium-44), INCI cocotrimonium methosulfate, INCI Quaternium-52.
- quaternary ammonium compounds for example cetyltrimethylammonium chloride or bromide (INCI cetrimonium chloride or bromide), hydroxyethylcetyl dimonium phosphate (INCI Quatemium-44), INCI cocotrimonium methosulfate, INCI Quaternium-52.
- customary conditioning agents can be used in combination with the polymers according to the invention in the shampoo formulations.
- These include, for example, cationic polymers with the designation Polyquaternium according to INCI, for example copolymers of vinylpyrrolidone / N-vinylimidazolium salts (Luviquat TM FC, Luviquat TM HM, Luviquat TM MS, Luviquat TM Care, INCI: Polyquatemium-16, Polyquatemium-44 ), Copolymers of N-vinylpyrrolidone / dimethyl aminoethyl methacrylate, quaternized with diethyl sulfate (Luviquat TM PQ 11, INCI: polyquaternium-11), copolymers of N-vinylcaprolactam N-vinylpyrrolidone / N-vinylimidazolium salts (Luviquat TM Hold, INCI: polyquaternium-46); Copo
- cationic starch derivatives (INCI: Starch Hydroxypropytrimonium Chloride, Com Starch Modified), cationic guar derivatives (INCI: Hydroxypropyl Guar Hydroxypropyltrimonium Chloride), cationic sunflower oil derivatives (INCI: Sunflowerseedamidopropyl Hydroxyethyldimonium Chloride), copolymers and methacrylate-acrylamide-chloroamidamide, acrylamide (INCI: Polyquatemium-53), Polyquatemium-32, Polyquatemium-28 and others.
- Protein hydrolyzates can also be used, as well as conditioning substances based on silicone compounds, for example polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyether siloxanes or silicone resins.
- silicone compounds for example polyalkylsiloxanes, polyarylsiloxanes, polyarylalkylsiloxanes, polyether siloxanes or silicone resins.
- Other suitable silicone compounds are dimethicones, dimethicone derivatives or dimethicone copolyols (CTFA) and amino-functional silicone compounds such as amodimethicones (CTFA).
- the template was heated to 78 ° C. under nitrogen gas and left at 78 ° C. for 15 minutes. Feed 1 was then metered in within 2 hours, and feed 2 was metered in over 2.5 hours. Polymerization was then continued for 2 hours and feed 3 was then metered in over 15 minutes.
- the polymer A thus obtained had a solids content of 51.3%, a K value (1% in ethanol) of 39.1 and an acid number (mg KOH / g) of 80.1.
- the product thus obtained had a solids content of 55.9%, a K value (1% in ethanol) of 37.1 and an acid number (mg KOH / g) of 81.6.
- Comparative Example 1 The procedure for Comparative Example 1 was analogous to Example 1 (polymer A and silicone B). However, the two components were stirred at room temperature (20 ° C) for one hour.
- the tests were carried out in a climate room at 20 ° C and 65% rel. Moisture carried out using a tension / pressure tester. The lock of hair was placed symmetrically on two cylindrical rollers of the sample holder. Exactly in the middle, the strand was bent 40 mm from above with a rounded stamp (breaking the polymer film). The force required for this was measured with a load cell (50 N) and given in Newtons.
- the curl was hung at one end and the curl length (Lo) was measured.
- the curl was placed in a climatic chamber (25 ° C, 90% relative humidity) and its length (Lt) measured after 15, 30, 60 and 90 minutes, as well as after 2, 3, 4, 5 and 24 hours.
- the test was carried out on at least 5 strands of hair.
- Lt length of hair after climatic treatment
- Table 1 shows the values of the flexural strength and curl retention of Example 1 and Comparative Example 1.
- the bending stiffness of the polymeric product according to the invention is significantly higher than that of the comparative example while maintaining the curl retention properties.
- Prapellant 152a e.g. Dymel 152a from DuPont
- Hydrolized Wheat Protein e.g. Cropesol WT from Croda, Inc.
- stearic acid e.g. Emersol 120 TM from Henkel
- Phase C 0.50% phenoxyethanol (e.g. Phenoxetol TM from Nipa-Hardwicke)
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Dispersion Chemistry (AREA)
- Dermatology (AREA)
- Cosmetics (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Paints Or Removers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Die vorliegenden Erfindung betrifft polymere Produkte erhältlich durch Mischen von (A) Polymerisaten, die erhältlich sind durch radikalische Polymerisation von (A-1) ethylenisch ungesättigten Monomeren in Gegenwart von (A-2) ungesättigten Polyalkylenglykole mit (B) Silikonen bei einer Temperatur größer gleich 30°C. Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung dieser polymeren Produkte sowie die Verwendung in kosmetischen Zubereitungen, insbesondere in haarkosmetischen Zubereitungen.
Description
Polymere Produkte und ihre Verwendung in kosmetischen Zubereitungen
Beschreibung
Die vorliegende Erfindung betrifft polymere Produkte, ein Verfahren zu ihrer Herstellung sowie die Verwendung der polymeren Produkte in kosmetischen, insbesondere haarkosmetischen Zubereitungen.
Polymere mit filmbildenden Eigenschaften werden für kosmetische und/oder pharma- zeutische Zubereitungen verwendet und eignen sich insbesondere als Zusatzstoffe für Haar- und Hautkosmetika.
In kosmetischen Zubereitungen für die Haut können Polymere besondere Wirkung entfalten. Die Polymere können unter anderem zur Feuchthaltung und Konditionierung der Haut und zur Verbesserung des Hautgefühls beitragen. Die Haut wird glatter und geschmeidiger.
In kosmetischen Zubereitungen für das Haar werden Polymere zur Festigung, Strukturverbesserung und Formgebung der Haare verwendet. Sie erhöhen die Kämmbarkeit und verbessern den Griff des Haares. Diese Haarbehandlungsmittel enthalten im Allgemeinen eine Lösung des Filmbildners in einem Alkohol oder einem Gemisch aus Alkohol und Wasser.
Eine Anforderung an Haarbehandlungsmittel ist es, dem Haar unter anderem Glanz, Flexibilität und natürlichen, angenehmen Griff zu verleihen. Das gewünschte Eigenschaftsprofil umfasst starke Festigung bei hoher Luftfeuchtigkeit, Elastizität, Auswaschbarkeit vom Haar und Verträglichkeit mit den übrigen Formulierungskomponenten.
DE 4240 108 beschreibt polysiloxanhaltige Bindemittel, die sich als schmutzabweisende Überzüge, insbesondere als anti-Graffiti-Überzüge, eignen. Diese Bindemittel sind jedoch lackartig und eignen sich nicht für kosmetische Zwecke.
DE 1645569 beschreibt ein Verfahren zur Herstellung von siliconorganischen Pfropf- mischpolymeren und deren Verwendung als Schaummassen.
EP 0 953 015 beschreibt amphiphile Polymere in Kombination mit alkoxylierten Silikonen.
JP 06-192048 beschreibt Copolymere aus (Meth)acrylamid basierten Monomeren in Kombination mit polyoxyalkylierten Siloxanen.
JP 10-226627 beschreibt amphotere Polymere in Kombination mit polyoxyalkylierten Siloxanen.
EP 0 852 488 B1 beschreibt kosmetische Zusammensetzungen, welche eine Silikon- haltiges Propfpolymer in Kombination mit mindestens einem weiteren Silikon enthalten.
Aufgabe der vorliegenden Erfindung war die Bereitstellung von polymeren Produkten, welche sich insbesondere für haarkosmetische Zubereitungen eigene. Von besondere Bedeutung war die Kombination verschiedener vorteilhafter Eigenschaften wie starke Festigung bei hoher Luftfeuchtigkeit, Elastizität, Auswaschbarkeit vom Haar und Verträglichkeit mit den übrigen Formulierungskomponenten. Weiterhin sollen die Produkte dem Haar Glanz, Flexibilität und natürlichen, angenehmen Griff verleihen.
Die erfindungsgemäße Aufgabe wird gelöst durch polymere Produkte, die erhältlich sind durch Mischen von
(A) Polymerisaten, die erhältlich sind durch radikalische Polymerisation von (A-1) ethylenisch ungesättigten Monomeren in Gegenwart von (A-2) unge- sättigten Polyalkylenglykolen mit
(B) Silikonen
bei einer Temperatur größer gleich 30°C.
In einer besonders bevorzugten Ausführungsform werden als Silikone (B) Verbindungen eingesetzt, die ausgewählt sind aus der Gruppe bestehend aus (B-1) Siliconen mit mindestens einer quaternisierten oder nicht-quaternisierten Aminfunktion, (B-2) Silikonharzen, (B-3) Silicongummis, (B-4) polyalkoxylierten Silikonen und/oder (B-5) silikon- haltigen Polyurethanen (B-5).
Alle im folgenden genannten Indices und Substituenten beziehen sich jeweils auf die Formeln, die im Text direkt voran stehen.
Ethylenisch ungesättigte Monomere (A-1)
Als geeignete polymerisierbare Monomere (A-1) werden ethylenisch ungesättigte Monomere verwendet. Dabei können entweder einzelne Monomere oder Kombinationen von zwei oder mehr Monomeren verwendet werden.
Monomere, die mit einer durch freie Radikale initiierten Reaktion polymerisiert werden können sind bevorzugt. Der Begriff ethylenisch ungesättigt bedeutet, dass die Monomere zumindest eine polymerisierbare Kohlenstoff-Kohlenstoff Doppelbindung besitzen, die mono-, di-, tri-, oder tetrasubstituiert sein kann.
Mit polymerisierbar ist gemeint, dass die verwendeten Monomere unter Verwendung irgendeiner konventionellen synthetischen Methode polymerisiert werden können.
Die ethylenisch ungesättigten Monomere (A-1) können durch die folgende allgemeine Formel A- 1 a besch rieben werden :
X-C(O)CR7=CHR6 (A-1a)
wobei
X ausgewählt ist aus der Gruppe der Reste -OH, -OM, -OR8, NH2, -NHR8, N(R8)2 ;
M ist ein Kation ausgewählt aus der Gruppe bestehend aus: Na+, K+, Mg++, Ca++, Zn++, NH +, Alkylammonium, Dialkylammonium, Trialkylammonium und Tetraalkyl- ammonium;
die Reste R8 können identisch oder verschieden ausgewählt werden aus der Gruppe bestehend „aus -H, C1-C40 linear- oder verzweigtkettige Alkylreste, N,N-Dimethyl- aminoethyl, 2-Hydroxyethyl, 2-Methoxyethyl, 2-Ethoxyethyl, Hydroxypropyl, Methoxy- propyl oder Ethoxypropyl.
R7 und R6 sind unabhängig voneinander ausgewählt aus der Gruppe bestehend aus: -H, C C8 linear- oder verzweigtkettige Alkylketten, Melhoxy, Ethoxy, 2-Hydroxyethoxy, 2-Methoxyethoxy und 2-Ethoxyethyl.
Repräsentative aber nicht limitierende Beispiele von geeigneten Monomeren (A-1) sind zum Beispiel Acrylsäure und deren Salze, Ester und Amide. Die Salze können von jedem beliebigen nicht toxischen Metall, Ammonium oder substituierten Ammoniumgegenionen abgeleitet sein.
Die Ester können abgeleitet sein von CrC40 linearen, C3-C40 verzweigtkettigen, oder C3-C40 carbocyclischen Alkoholen, von mehrfachfunktionellen Alkoholen mit 2 bis etwa 8 Hydroxylgruppen wie Ethylenglycol, Hexylenglycol, Glycerin, and 1,2,6-Hexantriol, von Aminoalkoholen oder von Alkoholethern wie Methoxyethanol und Ethoxyethanol oder Polyethylenglykolen.
Ferner eignen sich N,N-Dialkylaminoalkylacrylate- und methacrylate und N-Dialkylaminoalkylacryl- und -methacrylamide der allgemeinen Formel A-1b
mit R9 = H, Alkyl mit 1 bis 8 C-Atomen,
R10 = H, Methyl,
R = Alkylen mit 1 bis 24 C-Atomen, optional substituiert durch Alkyl,
R12, R13 = C C40 Alkylrest,
Z = Stickstoff für x = 1 oder Sauerstoff für x = 0
Die Amide können unsubstituiert, N-Alkyl oder N-alkylamino monosubstituiert, oder N,N-dialkylsubstituiert oder N,N-dialkyIamino disubstituiert, worin die Alkyl- oder Alkyl- aminogruppen von Cι-C 0 linearen, C3-C40 verzweigtkettigen, oder C3-C 0 carbocyclischen Einheiten abgeleitet sind. Zusätzlich können die Alkylaminogruppen quar- ternisiert werden.
Bevorzugte Monomere der Formel A-1 b sind N,N-Dimethylaminomethyl- (meth)acrylat, N,N-Diethylaminomethyl(meth)acrylat, N,N-Dimethylamino- ethyl(meth)acrylat, N,N-Diethylaminoethyl(meth)acrylat.
Ebenfalls verwendbare Monomere (A-1) sind substituierte Acrylsäuren sowie Salze, Ester und Amide davon, wobei die Substituenten an den Kohlenstoffatomen in der zwei oder drei Position der Acrylsäure stehen, und unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus C C Alkyl, -CN, COOH besonders bevorzugt Methacrylsäure, Ethacrylsäure und 3-Cyanoacrylsäure. Diese Salze, Ester und Amide dieser substituierten Acrylsäuren können wie oben für die Salze, Ester und Amide der Acrylsäure beschrieben ausgewählt werden.
Andere geeignete Monomere (A-1) sind Vinyl- und Allylester von C C40 linearen, C3-C 0 verzweigtkettigen oder C3-C40 carbocyclische Carbonsäuren (z.B.: Vinylacetat, Vinylpropionat, Vinylneononanoat, Vinylneoundekansäure oder t-Butyl-benzoesäure- vinylester); Vinyl- oder Allylhalogenide, bevorzugt Vinylchlorid und Allylchlorid, Vinyl- ether, bevorzugt Methyl-, Ethyl-, Butyl-, oder Dodecylvinylether, Vinylformamid, Vinyl- methyläcetamid, Vinylamin; Vinyllactame, bevorzugt Vinylpyrrolidon und Vinylcapro-
lactam, Vinyl- oder Allyl-substituierte heterocyclische Verbindungen, bevorzugt Vinyl- pyridin, Vinyloxazolin und Allylpyridin.
Weiterhin sind N-Vinylimidazole der allgemeinen Formel A-1c geeignet, worin R14 bis R16 unabhängig voneinander für Wasserstoff, C C4-Alkyl oder Phenyl steht:
Weitere geeignete Monomere (A-1) sind Diallylamine der allgemeinen Formel A-1d
mit R"= C -C2 Alkyl
Weitere geeignete Monomere (A-1) sind Vinylidenchlorid; und Kohlenwasserstoffe mit mindestens einer Kohlenstoff-Kohlenstoff Doppelbindung, bevorzugt Styrol, alpha- Methylstyrol, tert.-Butylstyrol, Butadien, Isopren, Cyclohexadien, Ethylen, Propylen, 1 -Buten, 2-Buten, Isobutylen, Vinyltoluol, sowie Mischungen dieser Monomere.
Besonders geeignete Monomere (A-1) sind Acrylsäure, Methacrylsäure, Ethylacryl- säure, Methylacrylat, Ethylacrylat, Propylacrylat, n-Butylacrylat, iso-Butylacrylat, t-Butylacrylat, 2-Ethylhexylacrylat, Decylacrylat, Methylmethacrylat, Ethylmethacrylat, Propylmethacrylat, n-Butylmethacrylat, iso-Butylmethacrylat, t-Butylmethacrylat, 2-Ethylhexylmethacrylat, Decylmethacrylat, Methylethacrylat, Ethylethacrylat, n-Butylethacrylat, iso-Butylethacrylat, t-Butyl-ethacrylat, 2-Ethylhexylethacrylat, Decyl- ethacrylat, 2,3-Dihydroxypropylacrylat, 2,3-Dihydroxypropylmethacrylat, 2-Hydroxy- ethylacrylat, Hydroxypropylacrylate, 2-Hydroxyethylmethacrylat, 2-Hydroxyethyl- ethacrylat, 2-Methoxyethylacrylat, 2-Methoxyethylmethacrylat, 2-Methoxyethyleth- acrylat, 2-Ethoxyethylmethacrylat, 2-Ethoxyethylethacrylat, Hydroxypropylmethacrylate, Glycerylmonoacrylat, Glycerylmonomethacrylat, Polyalkylenglykol(meth)acrylate, ungesättigte Sulfonsäuren wie zum Beispiel Acrylamidopropansulfonsäure;
Acrylamid, Methacrylamid, Ethacrylamid, N-Methylacrylamid, N,N-Dimethylacrylamid, N-Ethylacrylamid, N-Isopropylacrylamid, N-Butylacrylamid, N-t-Butylacrylamid, N-Octylacrylamid, N-t-Octylacrylamid, N-Octadecylacrylamid, N-Phenylacrylamid, N-Methylmethacrylamid, N-Ethylmethacrylamid, N-Dodecylmethacrylamid,
1-Vinylimidazol, 1-Vinyl-2-methylimidazol, N,N-Dimethylaminomethyl(meth)acrylat, N,N-Diethylaminomethyl(meth)acrylat, N,N-Dimethylaminoethyl(meth)acrylat, N,N-Diethylaminoethyl(meth)acrylat, N,N-Dimethylaminobutyl(meth)acrylat, N,N-Diethylaminobutyl(meth)acrylat, N,N-Dimethylaminohexyl(meth)acrylat, N,N-Dimethylaminooctyl(meth)acrylat, N,N-Dimethylaminododecyl(meth)acrylat, N-[3-(dimethylamino)propyl]methacrylamid, N-[3-(dimethylamino)propyl]acrylamid, N-[3-(dimethylamino)butyl]methacrylamid, N-[8-(dimethylamino)octyl]methacrylamid, N-[12-(dimethylamino)dodecyl]methacrylamid, N-[3-(diethylamino)propyl]methacryl- amid, N-[3-(diethylamino)propyl]acrylamid;
Maleinsäure, Fumarsäure, Maleinsäureanhydrid und seine Halbester, Crotonsäure, Itaconsäure, Diallyldimethylammoniumchlorid, Vinylether (zum Beispiel: Methyl-, Ethyl-, Butyl-, oder Dodecylvinylether), Vinylformamid, Vinylmethylacetamid, Vinylamin; Meth- ylvinylketon, Maleimid, Vinylpyridin, Vinylimidazol, Vinylfuran, Styrol, Styrolsulfonat, Allylalkohol, und Mischungen daraus.
Von diesen sind besonders bevorzugt Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Crotonsäure, Maleinsäureanhydrid sowie dessen Halbester, Methyl- acrylat, Methylmethacrylat, Ethylacrylat, Ethylmethacrylat, n-Butylacrylat, n-Butyl- methacrylal, t-Butylacrylat, t-Butylmethacrylat, Isobutylacrylal, Isobutylmethacrylat, 2- Ethylhexylacrylat, N-t-Butylacrylamid, N-Octylacrylamid, 2-Hydroxyethylacrylat, Hydroxypropylacrylat, 2-Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, Alkylenglykol(meth)-acrylate, ungesättigte Sulfonsäuren wie zum Beispiel Acryl- amidopropansulfonsäure, Vinylpyrrolidon, Vinylcaprolactam, Vinylether (z.B.: Methyl-, Ethyl-, Butyl-, oder Dodecylvinylether), Vinylformamid, Vinylmethylacetamid, Vinylamin, 1 -Vinylimidazol, 1-Vinyl-2-melhylimidazol, N,f\!-Dimethylaminomethylrnethacrylat und N-[3-(dimethylamino)propyl]melhacrylamid ; 3-Methyl-1-vinylimidazoliumchlorid, 3-Methyl-1-vinylimidazoliummethylsulfat, N,N-Dimethylaminoethylmethacrylat, N-[3-(dimethylamino)propyl]-methacrylamid quaternisiert mit Methylchlorid, Methyl- sulfat oder Diethylsulfat.
In einer ganz besonders bevorzugten Ausführungsform werden als Monomere (A-1) t-Butylacrylat und Methacrylsäure eingesetzt.
Monomere, mit einem basischen Stickstoff atom, können dabei auf folgende Weise quartemisiert werden:
Zur Quaternisierung der Amine eignen sich beispielsweise Alkylhalogenide mit 1 bis 24 C-Atomen in der Alkylgruppe, z.B. Methylchlorid, Methylbromid, Methyliodid, Ethyl- chlorid, Ethylbromid, Propylchlorid, Hexylchlorid, Dodecylchlorid, Laurylchlorid und Benzylhalogenide, insbesondere Benzylchlorid und Benzylbromid. Weitere geeignete Quatemierungsmittel sind Dialkylsulfate, insbesondere Dimethylsuifat oder Diethyl- sulfat. Die Quaternierung der basischen Amine kann auch mit Alkylenoxiden wie Ethylenoxid oder Propylenoxid in Gegenwart von Säuren durchgeführt werden. Bevorzugte Quatemierungsmittel sind: Methylchlorid, Dimethylsuifat oder Diethylsuifat.
In einer bevorzugten Ausführungsform werden als Monomere (A-1) (Meth)acrylate eingesetzt.
Die Quaternisierung kann vor der Polymerisation oder nach der Polymerisation durchgeführt werden.
Außerdem können die Umsetzungsprodukte von ungesättigten Säuren, wie z.B. Acryl- säure oder Methacrylsäure, mit einem quatemisierten Epichlorhydrin der allgemeinen Formel A-1e eingesetzt werden (R18 = C bis C40 Alkyl).
Beispiele hierfür sind zum Beispiel:
(Meth)acryloyloxyhydroxypropyltrimethylammoniumchlorid und (Meth)acryloyloxyhydroxypropyltriethylammoniumchlorid.
Die basischen Monomere können auch kationisiert werden, indem sie mit Mineralsäuren, wie z.B. Schwefelsäure, Chlorwasserstoffsäure, Bromwasserstoffsäure, lodwasserstoffsäure, Phosphorsäure oder Salpetersäure, oder mit organischen Säuren, wie z.B. Ameisensäure, Essigsäure, Milchsäure, oder Citronensäure, neutralisiert werden.
Zusätzlich zu den oben genannten Monomeren können als Monomere (A-1) sogenannte Makromonomere wie zum Beispiel silikonhaltige Makromonomere mit ein oder
mehreren radikalisch polymerisierbaren Gruppen oder Alkyloxazolinmakromonomere eingesetzt werden wie sie zum Beispiel in der EP 408 311 beschrieben sind.
Des weiteren können fluorhaltige Monomere wie sie beispielsweise in der EP 558 423 beschrieben sind, vernetzend wirkende oder das Molekulargewicht regelnde Verbindungen in Kombination oder alleine eingesetzt werden.
Ungesättigte Polyalkylenglykole (A-2)
Geeignet als Verbindungen (A-2) sind ungesättigte Polyalkylenglykole der allgemeinen Formel
H2C=CH-CCH2— O-(C2H4O)a(C3H6O)b-R5 (A-2a) und/oder
H2C=CH-CCH2— O-(C4H8O)a-R5 (A-2b)
worin
R )5b b| edeutet -H, -CH=CH2, -(CH2)s-CH=CH-(CH2)t-H, eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 12 Kohlenstoff atomen, eine geradkettige oder verzweigte Alkoxygruppe mit 1 bis 6 Kohlenstoffatomen, eine geradkettige oder verzeigte Acyl- gruppe mit 2 bis 40 Kohlenstoffatomen, -SO3M, einer gegebenenfalls an der Aminogruppe substituierten C-i-e-Aminoacylgruppe, -NHCH2CH2COOM, -N(CH2CH2COOM)2, eine gegebenenfalls an der Aminogruppe und an der Alkylgruppe substituierten Amino- alkylgruppe, eine C2-30-Carboxyacylgruppe, eine gegebenenfalls mit einer oder zwei substituierten Aminoalkylgruppen substituierten Phosphonogruppe, -CO(CH2)dCOOM, -COCHR7(CH2)dCOOM, -NHCO(CH2) OH, -NH2Y oder eine Phosphatgruppe
die Gruppen M, die identisch oder voneinander verschieden sind, Wasserstoff, Na, K, Li, NH oder ein organisches Amin bedeuten,
- R7 Wasserstoff oder SO3M ist, - d im Bereich von 1 bis 10 liegt,
- s 0, 1 bis 10 sein kann
- t 0, 1 bis 10 sein kann
- a im Bereich von 0 bis 50 liegt,
- b im Bereich von 0 bis 50 liegt, - a + b größer 0 ist,
- c 0, 1 , 2, 3 oder 4 ist,
- Y ein einwertiges anorganisches oder organisches Anion bedeutet.
Besonders bevorzugt sind Verbindungen (A-2) mit R5=H und/oder einer geradkettigen oder verzweigten Alkylgruppe mit 1 bis 12 Kohlenstoffatomen, insbesondere -CH3 und
— C2H5.
Besonders bevorzugt sind Verbindungen (A-2) mit c =1.
Insbesondere bevorzugt sind Verbindungen (A-2) mit R5=H und R5= -CH3.
Insbesondere bevorzugt sind Verbindungen (A-2) mit R5=H und c =1
Insbesondere bevorzugt sind Verbindungen (A-2) mit R5= -CH3 und c =1
Verbindung (A-2) sind kommerziell beispielsweise unter den Handelsnamen Pluriol der Fa. BASF AG erhältlich. Beispielsweise seien genannt die Produkte Pluriol® A 10 R, Pluriol® A 11 R.
Ebenso geeignet sind die Verbindungen, die unter der CAS-Nr. 27274-31-3 als Poly- alkylene glykol monoallyl ether oder unter der CAS Nr. 126682-74-4 als Polyalkylene glykol monovinylether der Fa. Clariant erhältlich sind (Bezeichnung A-and V-type poly- glycols der Fa. Clariant).
Silikone (B.
Als Silikone (B) sind prinzipiell alle Silikonverbindungen geeignet. Insbesondere geeig- net sind nicht-flüchtige Silikone. Nicht-flüchtige Silikone sind solche Verbindungen mit einem Siedepunkt über 90°C, insbesondere über 100°C. Insbesondere geeignet sind wasserlösliche bzw. wasserdispergierbare Silikone.
Mit "wasserdispergierbar" im Sinne der Erfindung sind Silikone gemeint, die im Kontakt mit Wasser innerhalb von 24 Stunden ein Fluid bilden, das ohne optische Hilfsmittel mit dem Auge keine festen Partikel erkennen lässt. Zur Überprüfung, ob ein Silikon wasserdispergierbar ist, werden 100 mg des Silikons in Form eines 100 mm dicken Films in 100 ml Wasser (20°C) gegeben und auf einem handelsüblichen Schütteltisch für 24 Stunden geschüttelt. Wenn nach dem Schütteln keine festen Partikel mehr erkenn- bar sind, das Fluid aber eine Trübung besitzt, ist das Silikon wasserdispergierbar; ohne Trübung wird es als wasserlöslich bezeichnet.
In einer bevorzugten Ausführungsform werden als Silikone Verbindungen eingesetzt, die ausgewählt sind aus der Gruppe bestehend aus (B-1) Siliconen mit mindestens einer quaternisierten oder nicht-quaternisierten Aminfunktion, (B-2) Siliconharzen, (B-
3) Silicongummis, (B-4) polyalkoxylierten Silikonen und/oder (B-5) silikonhaltigen Polyurethanen. Selbstverständlich können sowohl Mischungen von Verbindungen innerhalb einzelner Gruppen (z.B. 2 Verbindungen aus B-4) als auch Mischungen von Verbindungen verschiedene Gruppen eingesetzt werden (eine Verbindung aus B-1 und eine oder mehrere Verbindungen aus z.B. B-4).
(B-1) Silicone mit mindestens einer quaternisierten oder nicht-quaternisierten Aminfunktion
Unter den Silikonen, die wenigstens eine Aminogruppe, quaternisiert oder nicht, enthalten, können genannt werden:
(a) die Silikonpolymere, die der folgenden Formel B-1a entsprechen:
R1 aG1 3-a-Si(OSiG2 2)n-(OSiG3 bR2 2-b)m-O-SiG 3.a-R3a- (B-1a)
in der:
G1, G2, G3 und G4, die identisch oder verschieden sind, ein Wasserstoffatom, eine
Phenylgruppe, OH, C Cι8-Alkyl, beispielsweise Methyl, C2-C 8-Alkenyl oder C C^- Alkoxy bedeuten; a, a', die identisch oder verschieden sind, 0 oder eine ganze Zahl von 1 bis 3, insbesondere 0 bedeuten; b 0 oder 1 und insbesondere 1 bedeutet; m und n Zahlen bedeuten, deren Summe (n + m) besonders zwischen 1 und 2000 und insbesondere zwischen 50 und 150 variieren kann, wobei n eine Zahl von 0 bis 1999 und besonders von 49 bis 149 und m eine Zahl von 1 bis 2000, besonders von 1 bis 10 bedeuten kann;
R\ R2, R3, R4, die identisch oder verschieden sind, ein einwertiges Radikal der Formel
CqH2qOsR5 tL bedeuten, in der q eine Zahl von 1 bis 8 ist, s und t, die identisch oder verschieden sind, gleich 0 oder 1 sind, R5 eine gegebenenfalls hydroxylierte Alkly- engruppe und L eine gegebenenfalls quaternisierte aminierte Gruppe ist, die aus den folgenden Gruppen gewählt wird:
. NR"-CH2-CH2-N'(R")2 . N(R")2
- N'fFOaA-
- N;H(R")2A-
- N/H2(R")A
- N(R")-CH2-CH2-N/R"H2A-,
in denen R" Wasserstoff, Phenyl, Benzyl oder ein einwertiges gesättigtes Kohlenwasserstoffradikal bedeuten kann, z. B. ein Alkylradikal mit 1 bis 20 Kohlenstoffatomen, und A'ein Halogenid-Ion, wie z.B. Fluorid, Chlorid, Bromid oder lodid.
(b) die Verbindungen der Formel B-1b:
NH-[(CH2)3-Si[OSi(CH3)3]]3 (B-1b)
Diese Verbindung entspricht der CTFA-Benennung "Amino-bis-propyldimethicone". Die der Formel B-1a entsprechenden Produkte sind z.B. die Polysiloxane, die in der CTFA-Nomenklatur als „Amodimethicone" bezeichnet werden und der folgenden Formel B-1b entsprechen:
in der x'und y' ganze Zahlen sind, die vom Molekulargewicht abhängen und im allgemeinen solche, deren Molekulargewicht zwischen 5000 und ungefähr 20000 liegt. Ein Produkt, das der Formel B-1a entspricht, ist das in der CTFA-Nomenklatur als „Trimethylsilylamodimethicone" benannte Polymer, das der Formel B-1d entspricht:
in der n und m die oben angegebenen Bedeutungen haben (vgl. Formel B-1a). Ein Handelsprodukt, das dieser Definition entspricht, ist eine Mischung (90/10 Gew.-%) eines Polydimethylsiloxans mit Aminoethyl-Aminoisobutyl-Gruppen und eines Polydi- methylsiloxans, das unter der Bezeichnung Q2-8220 von der Gesellschaft DOW CORNING vertrieben wird. Solche Polymere werden zum Beispiel in der Patentanmeldung EP-A-95238 beschrieben.
Andere Polymere, die der Formel B-1a entsprechen, sind Silikonpolymere der Formel:
in der.
R7 für ein einwertiges Kohlenwasserstoffradikal mit 1 bis 18 Kohlenstoffatomen und insbesondere einem C C18-Alkylradikal oder C2-C18-Alkenylradikal, z.B. Methyl, steht;
R8 für ein zweiwertiges Kohlenwasserstoffradikal, besonders ein Cι-C.8- Alkylenradikal oder ein zweiwertiges Cι-Cι8-Alkenoxyradikal, z. B. CrC8, steht;
-. Q" ein Halogenid-Ion, insbesondere Chlorid ist;
r für einen statistischen Mittelwert von 2 bis 20 und insbesondere von 2 bis 8 steht; s für einen statistischen Mittelwert von 20 bis 200 und insbesondere von 20 bis
50 steht.
Solche Polymere werden besonders in dem Patent US 4 185 087 beschrieben.
Ein Polymer, das der Formel B 1b entspricht, ist das Polymer, das von der Gesellschaft Union Carbide unter der Bezeichnung „Ucar Silicone ALE 56" vertrieben wird. Wenn diese Silikonpolymere eingesetzt werden, ist eine besonders interessante Ausführungsform ihre Verwendung zusammen mit kationischen und/oder nicht ionischen Ten- siden. Zum Beispiel kann das unter der Bezeichnung „Emulsion Cationique DC 929" durch die Gesellschaft DOW CORNING vertriebene Produkt verwendet werden, das außer dem Amodimethicon ein kationisches Tensid enthält, das eine Mischung von Produkten enthält gemäß der folgenden Formel:
in der R9 Alkenyl- und/oder Alkylradikale mit 14 bis 22 Kohlenstoffatomen, Derivate der Taigfettsäuren, bedeuten, gemeinsam mit einem nicht ionischen Tensid der Formel: C9H19-C6H4-(OC2H4)ιo-OH, bekannt unter der CTFA-Nomenklatur "Nonoxynol 10".
Ein anderes erfindungsgemäß verwendbares Handelsprodukt ist das Produkt, das unter der Bezeichnung „Dow Corning Q2 7224" durch die Gesellschaft Dow Corning vertrieben wird, das zusammen mit dem Trimethylsilylamodimethicon der Formel B-1d ein nicht ionisches Tensid der Formel: C8H17-C6H4-(OCH2CH2)n-OH, worin n = 40 ist, sonst bezeichnet als Octoxynol-40, ein weiteres nicht ionisches Tensid der Formel: C12H25- (OCH2-CH2)n-OH, worin n = 6 ist, sonst bezeichnet als lsolaureth-6, und Glykol enthält.
(B-2) Silikonharze
Die erfindungsgemäß verwendbaren Silikonharze sind vernetzte Siloxansysteme, die die Einheiten: R2Siθ2/2, RSiO32, und SiO4/2 enthalten, in denen R eine Kohlenwasser-
Stoffgruppe, die 1 bis 6 Kohlenstoffatome besitzt, oder eine Phenylgruppe bedeutet. Unter diesen Produkten werden insbesondere die bevorzugt, in denen R ein niedriges Alkylradikal (C C6) oder ein Phenylradikal bedeutet.
Unter diesen Harzen kann das Produkt, das unter der Bezeichnung „DOW CORNING 593" vertrieben wird, oder jene Produkte genannt werden, die unter den Bezeichnungen „SILICONE FLUID SS 4230" und SS 4267" von der Gesellschaft GENERAL E- LECTRIC vertrieben werden und die „Dimethyl/Trimethylpolysiloxane" sind.
(B-3) Siliconqummis
Die erfindungsgemäßen Silikongummis (B-3) sind Polydiorganosiloxane von hohen Molekularmassen zwischen 200 000 und 2 000 000, die allein oder im Gemisch in einem Lösungsmittel verwendet werden, das aus den flüchtigen Silikonen, den Polydi- methylsiloxan-Ölen, den Polymethylphenylsiloxan- oder den Polydiphenyldimethylsilo- xan-Ölen, den Isoparaffinen, dem Methylenchlorid, dem Pentan, den Kohlenwasserstoffen oder ihren Mischungen ausgewählt wird.
Man verwendet vorzugsweise einen Silikongummi mit einem Molekulargewicht unter 1 500 000. Die Silikongummi sind z.B. ein Polydimethylsiloxan, ein Polyphenylmethyl- siloxan, ein Poly(diphenylsiloxan-dimethylsiloxan), ein Polydimethylsiloxan- methylvi- nylsiloxan), ein Poly-(dimethylsiloxan-phenylmethylsiloxan), ein Poly-(diphenylsiloxan- dimethylsiloxan-methylvinylsiloxan). Diese Silikongummi können am Ende der Kette abschließen mit Trimethylsilyl- oder Dimethylhydroxysilylgruppen.
Insbesondere kann ein Silikongummi verwendet werden, der der Formel B-3a entspricht:
(B-3a)
in der:
R1, R2, R5 und R6 gemeinsam oder getrennt ein Alkylradikal mit 1 bis 6 Kohlenstoffatomen sind,
R3 und R4 gemeinsam oder getrennt ein Alkylradikal mit 1 bis 6 Kohlenstoffatomen oder ein Arylrest sind,
X ein Alkylrest mit 1 bis 6 Kohlenstoffatomen, ein Hydroxylrest oder ein Vinylradi- kal ist, wobei n und p derart ausgewählt werden, dass der Silikongummi eine Viskosität höher als 100 000 mPa.s, vorzugsweise höher als 500 000 mPa.s, aufweist.
Im Allgemeinen können n und p Werte von 0 bis 5000, vorzugsweise von 0 bis 3000, aufweisen. Der Silikongummi kann in die Zusammensetzung so wie er ist eingebracht werden oder in einer in Silikonöl aufgelösten Form, wie einem flüchtigen oder nicht flüchtigen PDMS (Polydimethylsiloxan).
Als erfindungsgemäß verwendbarer Silikongummi können jene genannt werden, bei denen:
- die Substituenten R1 bis R6 und X eine Methylgruppe bedeuten, p = 0 und n = 2700 ist, wie jener, der unter der Bezeichnung SE30 durch die Gesellschaft General Electric vertrieben wird, - die Substituenten R1 bis R6 und X eine Methylgruppe bedeuten, p = 0 und n
= 2300 ist, wie jener, der unter der Bezeichnung AK 500000 durch die Gesellschaft Waker vertrieben wird,
- die Substituenten R1 bis R6 eine Methylgruppe bedeuten, der Substituent X eine Hydroxylgruppe bedeutet, p = 0 und n = 2700 ist, in einer 13%igen Lö- sung in Cyclopentasiloxan, wie jener, der unter der Bezeichnung Q2-1401 durch die Gesellschaft DOW CORNING vertrieben wird,
- die Substituenten R1 bis R6 eine Methylgruppe bedeuten, der Substituent X eine Hydroxylgruppe bedeutet, p = 0 und n = 2700 ist, in einer 13%igen Lösung in Dimethicon , wie jener, der unter der Bezeichnung Q2-1403 durch die Gesellschaft DOW CORNING vertrieben wird,
- die Substituenten R-t, R2, R5, Rβ und X eine Methylgruppe bedeuten, die Substituenten R3 und R4 eine Arylgruppe bedeuten, so wie das Molekulargewicht der Verbindung 600 000 ist, wie jener, der unter der Bezeichnung 761 durch die Gesellschaft RHONE-POULENC vertrieben wird.
(B-4. polvalkoxylierten Silikonen
Polyalkoxylierte Silikone (B-4) sind Verbindungen die ausgewählt sind unter den Verbindungen der allgemeinen Formeln:
B-4a)
B-4b)
B-4c)
(B-
wobei in den Formeln B-4a, B-4b, B-4c und B-4d
die Gruppen R1, die identisch oder voneinander verschieden sind, eine geradkettige oder verzweigte C bis C30-Alkylgruppe oder eine Phenylgruppe, insbesondere -CH3 bedeuten die Gruppen R2, die identisch oder voneinander verschieden sind, R1 oder eine Gruppe -C0H2c-O-(C2H4O)a(C3H6O)b-R5 oder eine Gruppe CcH2c-O-(C H8O)a-R5 bedeuten mit der Maßgabe, dass mindestens einer der Reste R2 eine Gruppe -
CcH2C-O-(C2H4O)a(C3H6O)b-R5 oder eine Gruppe CcH2c-O-(C4H8O)a-R5 bedeuten,
- die Gruppen R3 und R4, die identisch oder voneinander verschieden sind, eine geradkettige oder verzweigte Cr bis C12-Alkylgruppe und vorzugsweise Methyl bedeuten,
- die Gruppen R5, die identisch oder voneinander verschieden sind, ausgewählt unter einem Wasserstoffatom, einer geradkettigen oder verzweigten Alkylgruppe mit 1 bis 12 Kohlenstoffatomen, einer geradkettigen oder verzweigten Alko- xygruppe mit 1 bis 6 Kohlenstoffatomen, einer geradkettigen oder verzweigten Acylgruppe mit 2 bis 40 Kohlenstoffatomen, -SO3M, einer gegebenenfalls an der Aminogruppe substituierten Cι.6-Aminoalkoxygruppe, einer gegebenenfalls an der Aminogruppe substituierten C2-6-Aminoacylgruppe, -NHCH2CH2COOM, - N(CH2CH2COOM)2, einer gegebenenfalls an der Aminogruppe und an der Alkylgruppe substituierten Aminoalkylgruppe, einer C2-3o-Carboxyacylgruppe, ei- ner gegebenenfalls mit einer oder zwei substituierten Aminoalkylgruppen substituierten Phosphonogruppe, -CO(CH2)dCOOM, -COCHR7(CH2)dCOOM, - NHCO(CH2)dOH, -NH3Y oder einer Phosphatgruppe ausgewählt sind,
- die Gruppen M, die identisch oder voneinander verschieden sind, Wasserstoff, Na, K, Li, NH4 oder ein organisches Amin bedeuten, - R7 Wasserstoff oder SO3M ist,
- d im Bereich von 1 bis 10 liegt,
- m im Bereich von 0 bis 20 liegt, n im Bereich von 0 bis 500 liegt,
- o im Bereich von 0 bis 20 liegt, - p im Bereich von 1 bis 50 liegt, a im Bereich von 0 bis 50 liegt, b im Bereich von 0 bis 50 liegt,
- a + b mindestens 2 bedeutet, c im Bereich von 0 bis 4 liegt, - x im Bereich von 1 bis 100 liegt, und
- Y ein einwertiges anorganisches oder organisches Anion bedeutet,
mit der Maßgabe, dass n über 12 liegt, wenn das Silikon der Formel B-4b mit R5 = Wasserstoff entspricht.
Die polyalkoxylierten Silicone nach der Erfindung können ebenfalls unter den Siliconen der folgenden Formel B-4e ausgewählt werden:
([Z(R2SiO)qR'2SiZO][(CπH2nO)r])s (B-4e)
in der :
- R2 und R'2, die identisch oder unterschiedlich sind, ein einwertiges kohlenwas- serstoffhaltiges Radikal darstellen,
- n eine ganze Zahl von 2 bis 4 ist, - q eine Zahl von mindestens 4 ist, vorzugsweise zwischen 4 und 200 und insbesondere zwischen 4 und 100,
- r eine Zahl von mindestens 4 ist, vorzugsweise zwischen 4 und 200 und insbesondere zwischen 5 und 100,
- s eine Zahl von mindestens 4 ist, vorzugsweise zwischen 4 und 1000 und ins- besondere zwischen 5 und 300,
- Z eine zweiwertige organische Gruppe darstellt, die über eine Kohlenstoff- Silicium-Bindung an das benachbarte Siliciumatom und über ein Sauerstoff- atom an einen Polyoxyalkylenblock gebunden ist,
- das mittlere Molekulargewicht jedes Siloxanblocks zwischen 400 und ca. 10.000 liegt, das jedes Polyoxyalkylenblocks zwischen ca. 300 und ca. 10.000 liegt,
- die Siloxanblöcke ca. 10 bis ca. 95 Gew.-% des Blockcopolymers darstellen,
- das zahlenmittlere Molekulargewicht des Blockcopolymers zwischen 2.500 bis 1.000.000 und vorzugsweise zwischen 3.000 und 200.000 und insbesondere zwischen 6.000 und 100.000 liegen kann.
R2 und R'2 werden vorzugsweise aus der Gruppe ausgewählt, die die geradkettigen oder verzweigten Alkylradikale enthält, wie zum Beispiel die Methyl-, Ethyl-, Propyl-, Butyl-, Pentyl-, Hexyl-, Octyl-, Decyl-, Dodecylradikale, die Arylradikale, wie zum Bei- spiel die Phenyl-, Naphthylradikale, die Aralkylradikale oder Alkylarylradikale, wie zum Beispiel die Benzyl-, die Phenylethylradikale, die Tolyl-, Xylylradikale.
Z ist vorzugsweise -R"-, -R"-CO-, -R"-NHCO-, -R"-NH-CO-NH-R"-, -R'"-OCONH-R'"- NHCO-, wobei R" eine zweiwertige, geradkettige oder verzweigte Alkylengruppe mit 1 bis 6 C-Atomen ist, wie zum Beispiel Ethylen, Propylen oder Butylen, geradkettig oder verzweigt, und R'" eine zweiwertige Alkylengruppe oder eine zweiwertige Arylengruppe wie — C8H4-, — C8H4— CeH4-, — CΘH4 CH2— CβH4-, — C8H4 C(CH3)2C6H4- ist.
In noch bevorzugterer Weise stellt Z ein zweiwertiges Alkylenradikal dar, insbesondere das Radikal -C3H6 oder das Radikal C H8, geradkettig oder verzweigt.
Die Herstellung der im Rahmen dieser Erfindung eingesetzten Blockcopolymere wird in der europäischen Anmeldung EP 0 492 657 A1 beschrieben, deren Lehre in dieser Beschreibung enthalten ist.
Derartige Produkte werden beispielsweise unter der Bezeichnung SILICONFLUID FZ- 2172 von der Gesellschaft OSI vermarktet.
Die Silicone nach der Erfindung können in Form wässriger Lösungen oder gegebenenfalls in Form wässriger Dispersionen oder Emulsionen vorliegen.
Silikonhaltige Polyurethane (B-5)
Als Silikone einsetzbar sind weiterhin silikonhaltige Polyurethane. Besonders geeignet sind wasserlösliche oder wasserdispergierbare Polyurethane aus
a) mindestens einem Polysiloxan, b) mindestens einem Polyesterdiol, c) mindestens einer Verbindung mit einem Molekulargewicht im Bereich von 56 bis 300, die zwei aktive Wasserstoffatome pro Molekül enthält, d) mindestens einer Verbindung, die zwei aktive Wasserstoffatome und mindestens eine anionogene bzw. anionische Gruppe pro Molekül aufweist, e) mindestens einem Diisocyanat,
oder die Salze davon, wobei das Polyurethan keine von einem primären oder sekundären Amin, welches eine ionogene bzw. ionische Gruppe aufweist, stammende Einheit enthält.
Bei der Komponente a) handelt es sich bevorzugt um ein Polymerisat mit einem zahlenmittleren Molekulargewicht im Bereich von etwa 400 bis 4 000, bevorzugt 500 bis 4 000, insbesondere 600 bis 3 000.
Bei den Polysiloxanen a) handelt es sich vorzugsweise um eine Verbindung der Formel B-5a
worin R ,1 n unnd-. D R2 unabhängig voneinander für d- bis C4-Alkyl, Benzyl oder Phenyl stehen,
X und Y unabhängig voneinander für OH oder NHR3 stehen, wobei R3 für Wasserstoff, Cr bis C6-Alkyl oder C5- bis C8-Cycloalkyl steht,
m und n unabhängig voneinander für 2 bis 8 stehen,
p für 3 bis 50 steht.
Geeignete Alkylreste sind z. B. Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, t.-Butyl, n-Pentyl, n-Hexyl etc. Geeignete Cycloalkylreste sind z. B. Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyclooctyl etc.
Vorzugsweise stehen R1 und R2 beide für Methyl.
Brauchbare Polyesterdiole b) weisen ein zahlenmittleres Molekulargewicht im Bereich von etwa 400 bis 5 000, bevorzugt 500 bis 3 000, insbesondere 600 bis 2 000, auf.
Als Polyesterdiole kommen alle diejenigen in Betracht, die üblicherweise zur Herstellung von Polyurethanen eingesetzt werden, insbesondere solche auf Basis aromati- scher Dicarbonsäuren, wie Terephthalsäure, Isophthalsäure, Phthalsäure, Na- oder K-Sulfoisophthalsäure etc., aliphatischer Dicarbonsäuren, wie Adipinsäure oder Bernsteinsäure etc., und cycloaliphatischer Dicarbonsäuren, wie 1 ,2-, 1 ,3- oder 1,4-Cyclo- hexandicarbonsäure. Als Diole kommen insbesondere aliphatische Diole in Betracht, wie Ethylenglykol, Propylenglykol, 1 ,6-Hexandiol, Neopentylglykol, Diethylenglykol, Polyethylenglykole, Polypropylenglykole, 1,4-Dimethylolcyclohexan, sowie Poly(meth)- acrylatdiole der Formel B-5b
worin R10 für H oder CH3 steht und R11 für Cι-C18-Alkyl (insbesondere C C12- oder C C8-Alkyl) steht, die eine Molmasse von bis zu etwa 3000 aufweisen. Derartige Diole sind auf übliche Weise herstellbar und im Handel erhältlich (Tegomer™ -Typen MD, BD und OD der Fa. Goldschmidt).
Bevorzugt sind Polyesterdiole auf Basis von aromatischen und aliphatischen Dicarbonsäuren und aliphatischen Diolen, insbesondere solche, bei denen die aromatische Di- carbonsäure 10 bis 95 Mol-%, insbesondere 40 bis 90 Mol-% und bevorzugt 50 bis 85 Mol-%, des gesamten Dicarbonsäureanteils (Rest aliphatische Dicarbonsäuren) aus- macht.
Besonders bevorzugte Polyesterdiole sind die Umsetzungsprodukte aus Phthalsäu- re/Diethylenglykol, lsophthalsäure/1 ,4-Butandiol, lsophthalsäure/Adipinsäure/1 ,6- Hexandiol, 5-NaSO3-lsophthalsäure/Phthalsäure/Adipinsäure/1 ,6-Hexandiol, Adipin- säure/Ethylenglykol, Isophthalsäure/Adipinsäure/Neopentylglykol, Isophthalsäu- re/Adipinsäure/Neopentylglykol/Diethylenglykol/Dimethylolcyclohexan und 5-NaSO3-
Isophthalsäure/Isophthalsäure/Adipinsäure/Neopentylglykol /Diethylenglykol
/Dimethylolcyclohexan.
Bei der Komponente c) handelt es sich bevorzugt um Diole, Diamine, Aminoalkohole, und Mischungen davon. Das Molekulargewicht dieser Verbindungen liegt vorzugsweise in einem Bereich von etwa 56 bis 280. Gewünschtenfalls können bis zu 3 Mol-% der genannten Verbindungen durch Triole oder Triamine ersetzt sein. Die resultierenden Polyurethane sind dabei im Wesentlichen unvernetzt.
Bevorzugt werden als Komponente c) Diole eingesetzt. Brauchbare Diole sind z. B. Ethylenglykol, Propylenglykol, Butylenglykol, Neopentylglykol, Cyclohexandimethylol, Di-, Tri-, Tetra-, Penta- oder Hexaethylenglykol und Mischungen davon. Bevorzugt werden Neopentylglykol und/oder Cyclohexandimethylol eingesetzt.
Geeignete Aminoalkohole sind z. B. 2-Aminoethanol, 2-(N-Methylamino)ethanol, 3- Aminopropanol, 4-Aminobutanol, 1-Ethylaminobutan-2-ol, 2-Amino-2-methyl-1- propanol, 4-Methyl-4-aminopentan-2-ol etc.
Geeignete Diamine sind z. B. Ethylendiamin, Propylendiamin, 1 ,4-Diaminobutan, 1,5- Diaminopentan und 1 ,6-Diaminohexan sowie ,ω-Diaminopolyether, die durch Aminie- rung von Polyalkylenoxiden mit Ammoniak herstellbar sind.
Geeignete Verbindungen d), die zwei aktive Wasserstoffatome und mindestens eine aniohogene oder anionische Gruppe pro Molekül aufweisen, sind z. B. Verbindungen mit Carboxylat- und/oder Sulfonatgruppen. Als Komponente d) sind Dimethylolpropan- säure und Mischungen, die Dimethylolpropansäure enthalten, besonders bevorzugt.
Als Komponente d) brauchbar sind auch Verbindungen der Formeln
H2N(CH2)n-NH-(CH2)m-COO-M+
H2N(CH2)n-NH-(CH2)πι-SO3- M+
worin m und n unabhängig voneinander für eine ganze Zahl von 1 bis 8, insbesondere 1 bis 6, stehen und M für Li, Na oder K steht. Bevorzugt werden als Komponente d) Mischungen eingesetzt, die Dimethylolpropansäure und bis zu 3 Gew.-%, bezogen auf die Gesamtmenge der Komponenten a) bis e), mindestens einer Verbindung der zuvor genannten Formeln aufweisen.
Bei der Komponente e) handelt es sich um übliche aliphatische, cycloaliphatische und/oder aromatische Diisocyanate, wie Tetramethylendiisocyanat, Hexamethylendii- socyanat, Methylendiphenyldiisocyanat, 2,4- und 2,6-Toluylendiisocyanat und deren Isomerengemische, 1 ,5-Naphthylendiisocyanat, 1 ,4-Cyclohexylendiisocyanat, Dicyclo- hexylmethandiisocyanat und Mischungen davon, insbesondere Isophorondiisocyanat und/oder Dicyclohexylmethandiisocyanat. Gewünschtenfalls können bis zu 3 Mol-% der genannten Verbindungen durch Triisocyanate ersetzt sein.
Vorzugsweise werden als silikonhaltige Polyurethane (B-5) Verbindungen eingesetzt aus
0,5 bis 40 Gew%, bevorzugt 2 bis 30 Gew%, wenigstens eines Polysiloxans a),
1 bis 45 Gew%, bevorzugt 2 bis 35 Gew%, wenigstens eines Polyesterdiols b),
0,3 bis 15 Gew%, bevorzugt 0,5 bis 12 Gew%, wenigstens einer Komponente c),
5 bis 25 Gew%, bevorzugt 8 bis 20 Gew%, wenigstens einer Komponente d),
- 25 bis 60 Gew%, bevorzugt 35 bis 53 Gew%, wenigstens einer Komponente e).
Vorzugsweise handelt es sich dabei um ein silikonhaltiges Polyurethan aus
0,2 bis 20 Gew.-%, bevorzugt 0,5 bis 15 Gew.-%, insbesondere 1 bis 10 Gew.-%, wenigstens eines Polysiloxans a),
10 bis 45 Gew.-%, bevorzugt 15 bis 40 Gew.-%, wenigstens eines Polyesterdiols b),
0,3 bis 15 Gew.-%, bevorzugt 0,5 bis 12 Gew.-%, wenigstens einer Komponente c),
5 bis 25 Gew.-%, bevorzugt 8 bis 20 Gew.-%, wenigstens einer Komponente d),
25 bis 60 Gew.-%, bevorzugt 35 bis 53 Gew.-%, wenigstens einer Komponente e).
Die Herstellung der silikonhaltigen Polyurethane erfolgt durch Umsetzung der Verbin- düngen der Komponenten a), b), c) und d) mit der Komponente e). Die Temperatur liegt dabei in einem Bereich von etwa 60 bis 140 °C, bevorzugt etwa 70 bis 100 °C. Die Reaktion kann ohne Lösungsmittel oder in einem geeigneten inerten Lösungsmittel oder Lösungsmittelgemisch erfolgen. Geeignete Lösungsmittel sind aprotisch polare Lösungsmittel, z. B. Tetrahydrofuran, Essigsäureethylester, N-Methylpyrrolidon, Di- methylformamid und bevorzugt Ketone, wie Aceton und Methylethylketon. Vorzugsweise erfolgt die Reaktion unter einer Inertgasatmosphäre, wie z. B. unter Stickstoff. Die Komponenten werden in solchen Mengen eingesetzt, dass das Verhältnis von NCO- Äquivalent der Verbindungen der Komponente e) zu Äquivalent aktives Wasserstoff- atom der Komponenten a), b), c) und d) in einem Bereich von etwa 0,8:1 bis 1,25:1, bevorzugt 0,85:1 bis 1,2:1, insbesondere 1,05:1 bis 1,15:1, liegt. Weisen die resultierenden Polyurethane noch freie Isocyanatgruppen auf, so werden diese abschließend durch Zusatz von Aminen, vorzugsweise Aminoalkoholen inaktiviert. Geeignete Aminoalkohole sind die zuvor als Komponente c) beschriebenen, bevorzugt 2-Amino-2- methyl-1-propanol.
Die Säuregruppen enthaltenden Polyurethane können durch teilweise oder vollständige Neutralisation mit einer Base in eine wasserlösliche bzw. wasserdispergierbare Form überführt werden.
In aller Regel weisen die erhaltenen Salze der Polyurethane eine bessere Wasserlöslichkeit oder Dispergierbarkeit in Wasser auf als die nicht neutralisierten Polyurethane. Als Base für die Neutralisation der Polyurethane können Alkalimetallbasen wie Natronlauge, Kalilauge, Soda, Natriumhydrogencarbonat, Kaliumcarbonat oder Kaliumhydro- gencarbonat und Erdalkalimetallbasen wie Calciumhydroxyd, Calciumoxid, Magnesi- umhydroxyd oder Magnesiumcarbonat sowie Ammoniak und Amine verwendet werden. Geeignete Amine sind z. B. C C6-Alkylamine, bevorzugt n-Propylamin und n- Butylamin, Dialkylamine, bevorzugt Diethylpropylamin und Dipropylmethylamin, Trialky- lamine, bevorzugt Triethylamin und Triisopropylamin, CrC6-Alkyldiethyanolamine, bevorzugt Methyl- oder Ethyldiethanol-amin und Di-C C6-Alkylethanolamine. Besonders für den Einsatz in Haarbehandlungsmitteln haben sich zur Neutralisation der Säure-
gruppen enthaltenden Polyurethane 2-Amino-2-methyl-1-propanol, Diethylaminopropy- lamin und Triisopropanolamin bewährt. Die Neutralisation der Säuregruppen enthaltenden Polyurethane kann auch mit Hilfe von Mischungen mehrerer Basen vorgenommen werden, z. B. Mischungen aus Natronlauge und Triisopropanolamin. Die Neutrali- sation kann je nach Anwendungszweck partiell z. B. zu 20 bis 40 % oder vollständig, d. h. zu 100 % erfolgen.
Wird bei der Herstellung der Polyurethane ein wassermischbares organisches Lösungsmittel eingesetzt, so kann dieses im Anschluss durch übliche, dem Fachmann bekannte Verfahren, z. B. durch Destillation bei vermindertem Druck, entfernt werden. Vor dem Abtrennen des Lösungsmittels kann dem Polyurethan zusätzlich Wasser zugegeben werden. Nach Ersatz des Lösungsmittels durch Wasser erhält man eine Lösung oder Dispersion des Polymers, aus der, falls gewünscht, das Polymer in üblicher Weise gewonnen werden kann, z. B. durch Sprühtrocknung.
Die silikonhaltigen Polyurethane (B-5) weisen K-Werte (gemessen nach E. Fikentscher, Cellulose-Chemie 13 (1932), S. 58-64, an einer 1 %igen Lösung in N-Methylpyrrolidon) in einem Bereich von 15 bis 90, bevorzugt 20 bis 60, auf. Ihre Glasübergangstemperatur beträgt im Allgemeinen mindestens 0°C, bevorzugt mindes- tens 20°C, insbesondere bevorzugt mindestens 25°C und speziell mindestens 30°C.
Werden als silikonhaltige Polyurethane (B-5) Polyurethane mit Polysiloxanen der Formel B-5a abgeleiteten Einheiten eingesetzt, so beträgt der auf den Feststoffgehalt der silikonhaltigen Polyurethane bezogene Anteil an Siloxangruppen im Allgemeinen etwa 0,05 bis 20 Gew.-%, bevorzugt etwa 0,05 bis 15 Gew.-%, insbesondere 0,05 bis
10 Gew.-%.
Besonders bevorzugt als Silikone sind polyalkoxylierte Silikone (B-4).
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein Verfahren zur Herstellung von polymeren Produkten, dadurch gekennzeichnet, dass man
i) ethylenisch ungesättige Monomere (A-1) in Gegenwart von ungesättigten
Polyalkylenglykolvinylethern (A-2) polymerisiert ii) das so erhaltene Polymerisat mit Silikonen bei einer Temperatur von größer gleich 30°C mischt.
i) Herstellung von Polymerisaten (A)
Die Herstellung der Polymerisate (A) kann nach üblichen konventionellen synthetischen Methoden der Polymerisation erfolgen. Beispielsweise können dies Lösungs- polymerisation, Emulsionspolymerisation, umgekehrte Emulsionspolymerisation, Suspensionspolymerisation, umgekehrte Suspensionspolymerisation oder Fällungspolymerisation sein, ohne dass die verwendbaren Methoden darauf beschränkt sind. Bei der Lösungspolymerisation können Wasser, übliche organische Lösungsmittel oder die ungesättigten Polyalkylenglykolvinylether (A-2) selbst als Lösungsmittel verwendet werden.
Als Regler können die üblichen dem Fachmann bekannten Verbindungen wie zum Beispiel Schwefelverbindungen (z.B.: Mercaptoethanol, 2-Ethylhexylthioglykolat, Thio- glykolsäure oder Dodecylmercaptan) sowie Tribromchlormethan oder andere Ver- bindungen die regelnd auf das Molekulargewicht der erhaltenen Polymerisate wirken, verwendet werden. Es können gegebenenfalls auch thiolgruppenhaltige Silikonverbindungen eingesetzt werden. Bevorzugt werden silikonfreie Regler eingesetzt.
In einer Ausführungsform der Erfindung werden bei der Herstellung der Polymerisate (A) zusätzliche vernetzende Monomere eingesetzt. Als vernetzende Monomere können Verbindungen mit mindestens zwei ethylenisch ungesättigten Doppelbindungen eingesetzt werden wie zum Beispiel Ester von ethylenisch ungesättigten Carbonsäuren, wie Acrylsäure oder Methacrylsäure und mehrwertigen Alkoholen, Ether von mindestens zweiwertigen Alkoholen wie zum Beispiel Vinylether oder Allylether. Außerdem geeig- net sind geradkettige oder verzweigte, lineare oder cyclische aliphatische oder aromatische Kohlenwasserstoffe, die über mindestens zwei Doppelbindungen verfügen, welche bei den aliphatischen Kohlenwasserstoffen nicht konjugiert sein dürfen. Ferner geeignet sind Amide der Acryl- und Methacrylsäure und N-Allylamine von mindestens zweiwertigen Aminen wie zum Beispiel (1 ,2-Diaminoethan, 1 ,3-Diaminopropan). Fer- ner sind Triallylamin oder entsprechende Ammoniumsalze, N-Vinylverbindungen von Harnstoffderivaten, mindestens zweiwertigen Amiden, Cyanuraten oder Urethanen. Weitere geeignete Vernetzer sind Divinyldioxan, Tetraallylsilan oder Tetravinylsilan.
Besonders bevorzugte Vernetzer sind beispielsweise Methylenbisacrylamid, Triallyla- min und Triallylammoniumsalze, Divinylimidazol, N,N'-DivinylethyIenharnstoff, Umsetzungsprodukte mehrwertiger Alkohole mit Acrylsäure oder Methacrylsäure, Methacryl- säureester und Acrylsäureester von Polyalkylenoxiden oder mehrwertigen Alkoholen die mit Ethylenoxid und/oder Propylenoxid und/oder Epichlorhydrin umgesetzt worden sind.
Die erfindungsgemäßen Monomere (A-1) können, sofern sie ionisierbare Gruppen enthalten, vor oder nach der Polymerisation, zum Teil oder vollständig mit Säuren oder Basen neutralisiert werden um so zum Beispiel die Wasserlöslichkeit oder - dispergierbarkeit auf ein gewünschtes Maß einzustellen.
Als Neutralisationsmittel für Säuregruppen tragende Monomere können zum Beispiel Mineralbasen wie Natriumcarbonat, Alkalihydroxide sowie Ammoniak, organische Basen wie Aminoalkohole speziell 2-Amino-2-Methyl-1-Propanol, Monoethanolamin, Diethanolamin, Triethanolamin, Triisopropanolamin, Tri[(2-hydroxy)1- Propyl] amin, 2-Amino-2-Methyl-1 ,3-Propandiol, 2-Amino-2-hydroxymethyl-1 ,3- Propandiol sowie Diamine wie zum Beispiel Lysin verwendet werden.
Als Neutralisationsmittel für kationisierbare Gruppen tragende Monomere können zum Beispiel Mineralsäuren wie Salzsäure, Schwefelsäure oder Phosphorsäure, sowie organische Säuren wie Carbonsäuren, Milchsäure, Zitronensäure oder andere eingesetzt werden.
Die Monomere (A-1) der Polymerisate (A) können von 50 bis 99,9 Gew.-% , bevorzugt 70 bis 99 Gew.-%, besonders bevorzugt 85 bis 98 Gew.-%, insbesondere 80 bis 97 Gew.-% ausmachen.
Die Monomere (A-2, ungesättigte Polyalkylenglykolvinylether) sind in der Regel in Mengen von 0,1 bis 50, bevorzugt von 0,5 bis 20, besonders bevorzugt von 2 bis 15 Gew.-% in dem Polymerisat (A) enthalten.
In einer bevorzugten Ausführungsform der Erfindung, werden als Monomere (A-1) mindestens 2 Monomere (a1 und a2) eingesetzt. Besonders bevorzugt sind Polymerisate (A), welche durch Polymerisation von Monomer (a1) tert.-Butylacrylat und Monomer (a2) Methacrylsäure erhältlich sind. Werden die ethylenisch ungesättigten Mono- mere (A-1) als Kombination von zwei Monomeren (a1 und a2) eingesetzt, hat es sich als vorteilhaft erwiesen, 49,5 bis 99 Gew.-% (a1) und 0,5 bis 40 Gew.-% (a2) einzusetzen.
In einer besonders bevorzugten Ausführungsform wird als Polymerisat (A) ein Polyme- risat eingesetzt, welches durch radikalische Polymerisation eines Monomerengemi- sches erhältlich ist aus
(a1) 49,5 bis 99 Gew.-% (Meth)acrylat, insbesondere tert.-Butylacrylat (a2) 0,5 bis 40 Gew.-% eines weiteren (Meth)acrylats, insbesondere Methacrylsäure (b) 0,5 bis 20 Gew.-% eines ungesättigten Polyalkylenglykolethers (A-2)
In einer besonders bevorzugten Ausführungsform wird als Polymerisat (A) ein Polymerisat eingesetzt, welches durch radikalische Polymerisation eines Monomeren- gemisches erhältlich ist aus
(a1) 49,5 bis 99 Gew.-% (Meth)acrylat, insbesondere tert.-Butylacrylat (a2) 0,5 bis 40 Gew.-% eines weiteren (Meth)acrylats, insbesondere Methacrylsäure (c) 0,5 bis 20 Gew.-% eines ungesättigten Polyalkylenglykolethers (A-2) der folgenden Formel
H2C=CH-CCH2— O-(C2H4O)a(C3H6O)b-R5
- wobei R5 = H, CH3, - a im Bereich von 0 bis 50 liegt,
- b im Bereich von 0 bis 50 liegt,
- a + b größer 0 ist,
- c 0, 1 , 2, 3 oder 4 ist
Die Polymerisate (A) weisen bevorzugt einen K-Wert (nach Fickentscher, Cellulose- chemie, Bd. 13, S. 58-64 (1932) bei 250°C 0,1 5%ig in 0,5 molarer Kochsalzlösung gemessen) von 30 bis 50 auf, bevorzugt 37 bis 41.
Besonders geeignete Polymerisate (A) sind solche, die wasserlöslich sind oder deren Wasserdispergierbarkeit so groß ist, dass sie in einem Lösungsmittelgemisch Was- ser:Ethanol = 20:80 (Vol.-%:Vol.-%) in einer Menge von mehr als 0,1 g/l, bevorzugt mehr als 0,2 g/l, löslich sind.
Mit "wasserdispergierbar" im Sinne der Erfindung sind Polymerisate gemeint, die im Kontakt im Wasser innerhalb von 24 Stunden ein Fluid bilden, das ohne optische
Hilfsmittel mit dem Auge keine festen Partikel erkennen läßt. Zur Überprüfung, ob ein Polymerisat wasserdispergierbar ist, werden 100 mg des Polymerisats in Form eines 100 mm dicken Films in 100 ml Wasser (20°C) gegeben und auf einem handelsüblichen Schütteltisch für 24 Stunden geschüttelt. Wenn nach dem Schütteln keine festen Partikel mehr erkennbar sind, das Fluid aber eine Trübung besitzt, ist das Polymerisat wasserdispergierbar; ohne Trübung wird es als wasserlöslich bezeichnet.
Bei der Polymerisation der Monomeren (A-1) und (A-2) können gegebenenfalls auch andere Polymere wie zum Beispiel Homo- und Copolymere von ethylenisch un- gesättigten Monomeren sowie Polyamide, Polyurethane oder Polyester zugegen sein.
Die Polyamide, Polyurethane, Polyester sind vorzugsweise ionisch modifiziert, z.B. mit Carboxylat- oder Sulfonatgruppen.
ii) Mischen von Polymerisaten (A) mit Silikonen (B)
Die erfindungsgemäßen polymeren Produkte sind im einfachsten Fall durch Mischen der Komponenten (A) und (B) erhältlich. Erfindungswesentlich ist, dass die Temperatur beim Mischen größer gleich 30 °C, insbesondere größer gleich 40 °C ist.
In einer besonders bevorzugten Ausführungsform der Erfindung werden die erfindungsgemäßen polymeren Produkte hergestellt, indem man (A) und (B) bei Temperaturen von größer gleich 50 °C, insbesondere größer gleich 60 °C, besonders bevorzugt größer gleich 70 °C mischt.
Es hat sich als vorteilhaft erwiesen das Mischen für mindestens 30 Minuten, insbesondere mindestens 60 Minuten durchzuführen.
Zum Mischen eignen sich alle dem Fachmann bekannten Apparaturen. Das Mischen kann unter Inertgasbegasung, z.B. Stickstoffbegasung durchgeführt werden.
In einer bevorzugten Ausführungsform werden 99.5 bis 70 Gew. -%, insbesondere 99 bis 85 Gew. -% (A) und 0.5 bis 30 Gew. -%, insbesondere 1 bis 15 Gew. -% (B) eingesetzt.
Die erfindungsgemäßen polymerer Produkte eignen sich insbesondere zur Verwendung in kosmetischen Zubereitungen, besonders in haarkosmetischen Zubereitungen.
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft daher die Verwendung der polymeren Produkte in kosmetischen Zubereitungen.
Beispielsweise werden die erfindungsgemäßen polymeren Produkte in kosmetischen Mitteln zur Reinigung der Haut verwendet. Solche kosmetischen Reinigungsmittel sind ausgewählt aus Stückseifen, wie Toilettenseifen, Kernseifen, Transparentseifen, Luxusseifen, Deoseifen, Cremeseifen, Babyseifen, Hautschutzseifen, Abrasiveseifen und Syndets, flüssigen Seifen, wie pastöse Seifen, Schmierseifen und Waschpasten, und flüssigen Wasch-, Dusch- und Badepräparaten, wie Waschlotionen, Duschbädern und -gelen, Schaumbädern, Ölbädern und Scrub-Präparaten.
Bevorzugt werden die erfindungsgemäßen polymeren Produkte in kosmetischen Mitteln zur Pflege und zum Schutz der Haut, in Nagelpflegemitteln sowie in Zubereitungen für die dekorative Kosmetik angewendet.
Besonders bevorzugt ist die Verwendung in Hautpflegemitteln, Intimpflegemitteln, Fußpflegemitteln, Deodorantien, Lichtschutzmitteln, Repellents, Rasiermitteln, Haarentfernungsmitteln, Antiaknemitteln, Make-up, Maskara, Lippenstifte, Lidschatten, Kajalstif- ten, Eyelinern, Rouges, Pudern und Augenbrauenstiften.
Die Hautpflegemittel liegen insbesondere als W/O- oder O/W-Hautcremes, Tag- und Nachtcremes, Augencremes, Gesichtscremes, Antifaltencremes, Feuchthaltecremes, Bleichcremes, Vitamincremes, Hautlotionen, Pflegelotionen und Feuchthaltelotionen vor.
In den kosmetischen Zubereitungen können die erfindungsgemäßen polymeren Poro- dukte besondere Wirkungen entfalten. Sie können unter anderem zur Feuchthaltung und Konditionierung der Haut und zur Verbesserung des Hautgefühls beitragen. Durch Zusatz der erfindungsgemäßen polymeren Produkte kann in bestimmten Formulierungen eine erhebliche Verbesserung der Hautverträglichkeit erreicht werden.
Die erfindungsgemäßen polymeren Produkte sind in den hautkosmetischen Zubereitungen in einem Anteil von etwa 0,001 bis 20 Gew.-%, vorzugsweise 0,01 bis 10 Gew.- %, ganz besonders bevorzugt 0,1 bis 5 Gew.-%, bezogen auf das Gesamtgewicht des Mittels, enthalten.
Je nach Anwendungsgebiet können die erfindungsgemäßen Mittel in einer zur Hautpflege geeigneten Form, wie z.B. als Creme, Schaum, Gel, Stift, Pulver, Mousse, Milch oder Lotion appliziert werden. -
Die hautkosmetischen Zubereitungen können neben den erfindungsgemäßen Dispersionen und geeigneten Lösungsmitteln noch in der Kosmetik übliche Zusätze, wie E- mulgatoren, Konservierungsmittel, Parfümöle, kosmetische Wirkstoffe wie Phytantriol, Vitamin A, E und C, Retinol, Bisabolol, Panthenol, Lichtschutzmittel, Bleichmittel, Färbemittel, Tönungsmittel, Bräunungsmittel (z.B. Dihydroxyaceton), Collagen, Eiweiß- hydrolysate, Stabilisatoren, pH-Wert-Regulatoren, Farbstoffe, Salze, Verdicker, Gelbildner, Konsistenzgeber, Silikone, Feuchthaltemittel, Rückfetter und weitere übliche Additive enthalten.
Als geeignete Lösungsmittel sind insbesondere zu nennen Wasser und niedrige Mono- alkohole oder Polyole mit 1 bis 6 Kohlenstoffatomen oder Mischungen davon; bevor-
zugte Monoalkohole oder Polyole sind Ethanol, i-Propanol, Propylenglycol, Glycerin und Sorbit.
Als weitere übliche Zusätze können enthalten sein Fettkörper, wie mineralische und synthetische Öle, wie z.B. Paraffine, Siliconöle und aliphatische Kohlenwasserstoffe mit mehr als 8 Kohlenstoff-atomen, tierische und pflanzliche Öle, wie z.B. Sonnenblumenöl, Kokosöl, Avocadoöl, Olivenöl, Lanolin, oder Wachse, Fettsäuren, Fettsäureester, wie z.B. Triglyceride von C6-C30-Fettsäuren, Wachsester, wie z.B. Jojobaöl, Fettalkohole, Vaseline, hydriertes Lanolin und azetyliertes Lanolin. Selbstverständlich kön- nen auch Mischungen derselben verwendet werden.
Übliche Verdickungsmittel in derartigen Formulierungen sind vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide wie Xanthan-Gum, Agar-Agar, Alginate oder Tylosen, Carboxymethylceliulose oder Hydroxycarboxymethylcellulose, Fettalkohole, Monoglyceride und Fettsäuren, Polyvinylakolhol und Polyvinylpyrrolidon.
Man kann die erfindungsgemäßen polymeren Produkte auch mit herkömmlichen Polymeren abmischen, falls spezielle Eigenschaften eingestellt werden sollen.
Als herkömmliche Polymere eignen sich beispielsweise anionische, kationische, amphotere und neutrale Polymere.
Beispiele für anionische Polymere sind Homo- und Copolymerisate von Acrylsäure und Methacrylsäure oder deren Salze, Copolymere von Acrylsäure und Acrylamid und deren Salze; Natriumsalze von Polyhydroxycarbonsäuren, wasserlösliche oder was- serdispergierbare Polyester, Polyurethane und Polyharnstoffe. Besonders geeignete Polymere sind Copolymere aus t-Butylacrylat, Elhylacrylat, Methacrylsäure (z.B. Luvi- mer™ 100P), Copolymere aus Ethylacrylat und Methacrylsäure (z.B. Luvimer™ MAE), Copolymere aus N-tert.-Butyl-acrylamid, Ethylacrylat, Acrylsäure (Ultrahold™ 8, strong), Copolymere aus Vinylacetat, Crotonsäure und gegebenenfalls weitere Vinylester (z.B. Luviset™ Marken), Maleinsäureanhydridcopolymere, ggf. mit Alkoholen umgesetzt, anionische Polysiloxane, z.B. carboxyfunktionelle, Copolymere aus Vinyl- pyrrolidon, t-Butylacrylat, Methacrylsäure (z.B Luviskol™ VBM), Copolymere von Acrylsäure und Methacrylsäure mit hydrophoben Monomeren, wie z.B. C4-C30-Alkylester der Meth(acrylsäure), C4-C30-Alkylvinylester, C4-C30-Alkylvinylether und Hyaluronsäure. Luviset P.U.R., Luviflex™ Silk.
Weitere geeignete Polymere sind kationische Polymere mit der Bezeichnung Polyqua- ternium nach INCI, z.B. Copolymere aus Vinylpyrrolidon/N-Vinylimidazoliumsalzen (Lu- viquat™ FC, Luviquat™ HM, Luviquat™ MS, Luviquat™ Care, Luviquat™ Hold, INCI
Polyquatemium-16, -44, -46), Copolymere aus Acrylamid und Dimethyldiallylammoni- umchlorid (Polyquaternium-7), kationische Cellulosederivate (Polyquatemium-4, -10), kationische Stärkederivate (INCI: Starch Hydroxypropytrimonium Chloride, Com Starch Modified), kationische Guarderivate (INCI: Hydroxypropyl Guar Hydroxypropyltrimoni- um Chloride), kationische Sonnenblumenöl-Derivate (INCI: Sunflowerseedamidopropyl Hydroxyethyldimonium Chloride), Copolymere aus N-Vinypyrrolidon/ Dimethylamino- ethylmethacrylat, quaternisiert mit Diethylsulfat (Polyquaternium-11), Copolymere aus Acrylsäure, Acrylamid und Methacrylamidopropyltrimoniumchlorid (Polyquaternium-53), Polyquatemium-32, Polyquatemium-28 und andere.
Als weitere Polymere sind auch neutrale Polymere geeignet wie Polyvinylpyrrolidone, Copolymere aus N-Vinylpyrrolidon und Vinylacetat und/oder Vinylpropionat, Copolymere aus N-Vinypyrrolidon/Dimethylaminopropylacrylamid oder -methacrylamid, Copolymere aus N-Vinylpyrrolidon und Alkylacrylat- oder -methacrylatmonomeren mit Alkyl- ketten von C1 bis C18, Pfropfcopolymere von Polyvinylalkohol auf Polyalkylenglykole wie z.B. Kollicoat IR (BASF), Pfropfcopolymere von anderen Vinylmonomeren auf Polyalkylenglykole, Polysiloxane, Polyvinylcaprolactam und Copolymere mit N- Vinylpyrrolidon, Polyethylenimine und deren Salze, Polyvinylamine und deren Salze, Cellulosederivate, Chitosan, Polyasparaginsäuresalze und Derivate.
Zur Einstellung bestimmter Eigenschaften können die Zubereitungen zusätzlich auch konditionierende Substanzen auf Basis von Silikonverbindungen enthalten. Geeignete Silikonverbindungen sind beispielsweise Polyalkylsiloxane, Polyarylsiloxane, Polyary- lalkylsiloxane, Polyethersiloxane, Silikonharze, Dimethicone, Dimethicone-Derivate oder Dimethicon Copolyole (CTFA) und aminofunktionelle Silikonverbindungen wie Amodimethicone (CTFA).
Die erfindungsgemäßen polymeren Produkte werden in kosmetischen Zubereitungen eingesetzt, deren Herstellung nach den üblichen dem Fachmann geläufigen Regeln erfolgt.
Solche Formulierungen liegen vorteilhafterweise in Form von Emulsionen bevorzugt als Wasser-in-ÖI-(W/O)- oder ÖI-in-Wasser-(O/W)-Emulsionen vor. Es ist aber auch erfindungsgemäß möglich und gegebenenfalls vorteilhaft andere Formulierungsarten zu wählen, beispielsweise Hydrodispersionen, Gele, Öle, Oleogele, multiple Emulsionen, beispielsweise in Form von W/O/W- oder O/W/O-Emulsionen, wasserfreie Salben bzw. Salbengrundlagen usw.
Die Herstellung erfindungsgemäß brauchbarer Emulsionen erfolgt nach bekannten Methoden.
Die Emulsionen enthalten neben der erfindungsgemäßen polymeren Produkten übliche Bestandteile, wie Fettalkohole, Fettsäureester und insbesondere Fettsäuretriglyceride, Fettsäuren, Lanolin und Derivate davon, natürliche oder synthetische Öle oder Wachse und Emulgatoren in Anwesenheit von Wasser.
Die Auswahl der Emulsionstyp-spezifischen Zusätze und die Herstellung geeigneter Emulsionen ist beispielsweise beschrieben in Schrader, Grundlagen und Rezepturen der Kosmetika, Hüthig Buch Verlag, Heidelberg, 2. Auflage, 1989, Dritter Teil, worauf hiermit ausdrücklich Bezug genommen wird.
So kann eine erfindungsgemäß brauchbare Hautcreme z.B. als W/O-Emulsion vorliegen. Eine derartige Emulsion enthält eine wässrige Phase, die mittels eines geeigneten Emulgatorsystems in einer Öl- oder Fettphase emulgiert ist.
Die Konzentration des Emulgatorsystems beträgt in diesem Emulsions-Typ etwa 4 und 35 Gew.-%, bezogen auf das Gesamtgewicht der Emulsion; die Fettphase macht etwa 20 und 60 Gew.-% aus und die wässrige Phasen etwa 20 und 70 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Emulsion. Bei den Emulgatoren handelt es sich um diejenigen, welche in diesem Emulsionstyp üblicherweise verwendet werden. Sie werden z.B. ausgewählt unter: C12-C18-Sorbitan-Fettsäureestern; Estern von Hydroxystea- rinsäure und Ci2-C3o-Fettalkoholen; Mono- und Diestern von Cι2-Cι8-Fettsäuren und Glyzerin oder Polyglyzerin; Kondensaten von Ethylenoxid und Propylenglycolen; o- xypropylenierten/oxyethylenierten Cι2-C20-Fettalkoholen; polycyclischen Alkoholen, wie Sterolen; aliphatischen Alkoholen mit einem hohen Molekulargewicht, wie Lanolin; Mischungen von oxypropylenierten/polyglycerinierten Alkoholen und Magnesiumisostea- rat; Succinestern von polyoxyethylenierten oder polyoxypropylenierten Fettalkoholen; und Mischungen von Magnesium-, Calcium-, Lithium-, Zink- oder Aluminiumlanolat und hydriertem Lanolin oder Lanolin-alkohol.
Zu geeigneten Fettkomponenten, welche in der Fettphase der Emulsionen enthalten sein können, zählen Kohlenwasserstofföle, wie Paraffinöl, Purcellinöl, Perhydrosqualen und Lösungen mikrokristalliner Wachse in diesen Ölen; tierische oder pflanzliche Öle, wie Süßmandelöl, Avocadoöl, Calophylumöl, Lanolin und Derivate davon, Ricinusöl, Sesamöl, Olivenöl, Jojobaöl, Karite-Öl, Hoplostethus-Öl; mineralische Öle, deren Destillationsbeginn unter Atmosphärendruck bei ca. 250°C und deren Destillationsendpunkt bei 410°C liegt, wie z.B. Vaselinöl; Ester gesättigter oder ungesättigter Fettsäuren, wie Alkylmyristate, z.B. i-Propyl-, Butyl- oder Cetylmyristat, Hexadecylstearat, E- thyl- oder i-Propylpalmitat, Octan- oder Decansäuretriglyceride und Cetylricinoleat.
Die Fettphase kann auch in anderen Ölen lösliche Siliconöle, wie Dimethylpolysiloxan, Methylphenylpolysiloxan und das Silikonglycol-Copolymer, Fettsäuren und Fettalkohole enthalten.
Um die Retention von Ölen zu begünstigen, kann man auch Wachse verwenden, wie z.B. Carnauba-Wachs, Candellilawachs, Bienenwachs, mikrokristallines Wachs, Ozo- keritwachs und Ca-, Mg- und Al-Oleate, -Myristate, -Linoleate und -Stearate.
Im allgemeinen werden diese Wasser-in-ÖI-Emulsionen so hergestellt, dass die Fett- phase und der Emulgator in den Ansatzbehälter gegeben werden. Man erwärmt diesen bei einer Temperatur von 70 bis 75°C, gibt dann die in Öl löslichen Ingredienzen zu und fügt unter Rühren Wasser hinzu, welches vorher auf die gleiche Temperatur erwärmt wurde und worin man die wasserlöslichen Ingredienzen vorher gelöst hat; man rührt, bis man eine Emulsion der gewünschten Feinheit hat, lässt sie dann auf Raumtemperatur abkühlen, wobei gegebenenfalls weniger gerührt wird.
Weiterhin kann eine erfindungsgemäße Pflegeemulsion als O/W-Emulsion vorliegen. Eine derartige Emulsion enthält üblicherweise eine Ölphase, Emulgatoren, die die Öl- phase in der Wasserphase stabilisieren, und eine wässrige Phase, die üblicherweise verdickt vorliegt.
Die wässrige Phase der O/W-Emulsion der erfindungsgemäßen Zubereitungen enthält gegebenenfalls
- Alkohole, Diole oder Polyole sowie deren Ether, vorzugsweise Ethanol, Iso- propanol, Propylenglycol, Glycerin, Ethylenglycolmonoethylether; übliche Verdickungsmittel bzw. Gelbildner, wie z.B. vernetzte Polyacrylsäuren und deren Derivate, Polysaccharide wie Xanthan Gum oder Alginate, Carboxy- methylcellulose oder Hydroxycarboxymethylcellulose, Fettalkohole, Polyvinyl- alkohol und Polyvinylpyrrolidon.
Die Ölphase enthält in der Kosmetik übliche Ölkomponenten, wie beispielsweise:
Ester aus gesättigten und/oder ungesättigten, verzweigten und/oder unver- zweigten C3-C30-Alkancarbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten C3-C30-Alkoholen, aus aromatischen Carbonsäuren und gesättigten und/oder ungesättigten, verzweigten und/oder unverzweigten C3-C30-Alkoholen, beispielhaft Isopropylmyristat, Isopropylstearat, Hexyldecylstearat, Oleyloleat; außerdem synthetische, halbsynthetische und natürliche Gemische solcher Ester, wie Jojobaöl;
- verzweigte und/oder unverzweigte Kohlenwasserstoffe und -wachse;
- Silikonöle wie Cyclomethicon, Dimethylpolysiloxan, Diethylpolysiloxan, Octa- methylcyclotetrasiloxan sowie Mischungen daraus;
- Dialkylether;
- Mineralöle und Mineralwachse;
- Triglyceride gesättigter und/oder ungesättigter, verzweigter und/oder unverzweigter C8-C24-Alkancarbonsäuren; sie können ausgewählt werden aus synthetischen, halbsynthetischen oder natürlichen Ölen, wie Olivenöl, Palmöl, Mandelöl oder Mischungen.
Als Emulgatoren kommen vorzugsweise O/W-Emulgatoren, wie Polyglycerinester, Sorbitanester oder teilveresterte Glyceride, in Betracht.
Die Herstellung kann durch Aufschmelzen der Ölphase bei ca. 80°C erfolgen; die was- serlöslichen Bestandteile werden in heißem Wasser gelöst, langsam und unter Rühren zur Ölphase zugegeben; homogenisiert und kaltgerührt.
Die erfindungsgemäßen polymeren Produkte eignen sich auch zur Verwendung in Wasch- und Duschgel-Formulierungen sowie Badepräparaten.
Solche Formulierungen enthalten neben den erfindungsgemäßen polymeren Produkten üblicherweise anionische Tenside als Basistenside und amphotere und nichtionische Tenside als Cotenside, sowie Lipide, Parfümöle, Farbstoffe, organische Säuren, Konservierungsstoffe und Antioxidantien sowie Verdicker/Gelbildner, Hautkonditio- niermittel und Feuchthaltemittel.
In den Wasch, Dusch- und Badepräparaten können alle in Körperreinigungsmitteln üblicherweise eingesetzte anionische, neutrale, amphotere oder kationische Tenside verwendet werden.
Die Formulierungen enthalten 2 bis 50 Gew.-% Tenside, bevorzugt 5 bis 40 Gew.-%, besonders bevorzugt 8 bis 30 Gew-%.
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-Alkoyl- sarkosinate, Alkylgiykolalkoxylate, Acyltaurate, Acylisethionate, Alkylphosphate, Alky- letherphosphate, Alkylethercarboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alky-
lethercarboxylate können zwischen 1 bis 10 Ethylenoxid oder Propylenoxid-Einheiten, bevorzugt 1 bis 3 Ethylenoxideinheiten im Molekül aufweisen.
Geeignet sind zum Beispiel Natriumlaurylsulfat, Ammoniumlaurylsulfat, Natriumlauryl- ethersulfat, Ammoniumlaurylethersulfat, Natriumlaurylsarkosinat, Natriumoleylsuccinat, Ammoniumlaurylsulfosuccinat, Natriumdodecylbenzolsuffonat, Triethanolamindodecyl- benzolsulfonat.
Geeignete amphotere Tenside sind zum Beispiel Alkylbetaine, Alkylamidopropyl- betaine, Alkylsulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate- oder -propionate, Alkylamphodiacetate, oder -dipropionate.
Beispielsweise können Cocodimethylsulfopropylbetain, Laurylbetain, Cocamidopropyl- betain oder Natriumcocamphopropionat eingesetzt werden.
Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphatischen Alkoholen oder Alkyl phenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono- oder Dialkylalkanolamide, Fettsäure-ester von Polyethylenglykolen, ethoxylierte Fettsäureamide, Alkylpolyglykoside oder Sorbitanetherester geeignet.
Außerdem können die Wasch, Dusch- und Badepräparate übliche kationische Tenside enthalten, wie z.B. quaternäre Ammoniumverbindungen, beispielsweise Cetyltrimethyl- ammoniumchlorid oder -bromid (INCI Cetrimoniumchloride oder -bromide), Hydroxy- ethylcetyldimoniumphosphat (INCI Quaternium-44), INCI Cocotrimoniummethosulfate, INCI Quaternium-52.
Zusätzlich können auch weitere übliche kationische Polymere eingesetzt werden, so z.B. Copolymere aus Acrylamid und Dimethyldiallylammoniumchlorid (Polyquaternium- 7), kationische Cellulosederivate (Polyquatemium-4, -10), kationische Stärkederivate (INCI: Starch Hydroxypropytrimonium Chloride, Com Starch Modified), kationische Guarderivate (INCI: Hydroxypropyl Guar Hydroxypropyltrimonium Chloride), kationische Sonnenblumenöl-Derivate (INCI: Sunflowerseedamidopropyl Hydroxyethyldimo- nium Chloride), Copolymere aus N-Vinylpyrrolidon und quaternisiertem N-Vinylimidazol (Polyquaternium-16, -44, -46), Copolymere aus N-Vinypyrrolidon/Dimethylaminoethyl- methacrylat, quaternisiert mit Diethylsulfat (Polyquaternium-11), Copolymere aus Acrylsäure, Acrylamid und Methacrylamidopropyltrimoniumchlorid (Polyquatemium-53), Po- lyquaternium-32, Polyquaternium-28 und andere.
Weiterhin können die Wasch- und Duschgel-Formulierungen und Badepräparate Verdicker, wie z.B. Kochsalz, PEG-55, Propylene Glycol Oleate, PEG-120 Methyl Glucose Dioleate und andere, sowie Konservierungsmittel, weitere Wirk- und Hilfsstoffe und Wasser enthalten.
In einer bevorzugten Ausführungsform der Erfindung werden die polymeren Produkte in haarkosmetischen Zubereitungen eingesetzt.
Haarkosmetische Zubereitungen umfassen insbesondere Stylingmittel und/oder Kondi- tioniermittel in haarkosmetischen Zubereitungen wie Haarkuren, Haarschäume (engl. Mousses), (Haar)gelen oder Haarsprays, Haarlotionen, Haarspülungen, Haarsham- poos, Haaremulsionen, Spitzenfluids, Egalisierungsmittel für Dauerwellen, Haarfärbe- und -bleichmittel, "Hot-Oii-Treatment"-Präparate, Conditioner, Festigerlotionen oder Haarsprays. Je nach Anwendungsgebiet können die haarkosmetischen Zubereitungen als (Aerosol-)Spray, (Aerosol-)Schaum, Gel, Gelspray, Creme, Lotion oder Wachs appliziert werden.
Die erfindungsgemäßen haarkosmetischen Formulierungen enthalten in einer bevorzugten Ausführungsform
a) 0,05 bis 20 Gew.-% des polymeren Produkts b) 20 bis 99,95 Gew.-% Wasser und/oder Alkohol c) 0 bis 79,5 Gew.-% weitere Bestandteile
Unter Alkohol sind alle in der Kosmetik üblichen Alkohole zu verstehen, z.B. Ethanol, Isopropanol, n-Propanol.
Unter weiteren Bestandteilen sind die in der Kosmetik üblichen Zusätze zu verstehen, beispielsweise Treibmittel, Entschäumer, grenzflächenaktive Verbindungen, d.h. Ten- side, Emulgatoren, Schaumbildner und Solubilisatoren. Die eingesetzten grenzflächenaktiven Verbindungen können anionisch, kationisch, amphoter oder neutral sein. Weitere übliche Bestandteile können ferner sein z.B. Konservierungsmittel, Parfümöle, Weichmacher, Effektstoffe, Trübungsmittel, Wirkstoffe, Antioxidantien, Peroxidzersetzer, UV-Filter, Pflegestoffe wie Panthenol, Collagen, Vitamine, Eiweißhydrolysate, Alpha- und Beta-Hydroxycarbonsäuren, Eiweißhydrolysate, Stabilisatoren, pH-Wert- Regulatoren, Farbstoffe, Pigmente, Viskositätsregulierer, Gelbildner, Salze, Feuchthaltemittel, Rückfetter, Komplexbildner und weitere übliche Additive.
Weiterhin zählen hierzu alle in der Kosmetik bekannten Styling- und Conditionerpoly- mere, die in Kombination mit den erfindungsgemäßen Polymerisaten eingesetzt werden können, falls ganz spezielle Eigenschaften eingestellt werden sollen.
Als herkömmliche Haarkosmetik-Polymere eignen sich beispielsweise anionische Polymere. Solche anionischen Polymere sind Homo- und Copolymerisate von Acrylsäure und Methacrylsäure oder deren Salze, Copolymere von Acrylsäure und Acrylamid und deren Salze; Natriumsalze von Polyhydroxycarbonsäuren, wasserlösliche oder wasserdispergierbare Polyester, Polyurethane (Luviset™ P.U.R.) und Polyharn- Stoffe. Besonders geeignete Polymere sind Copolymere aus t-Butylacrylat, Ethylacrylat, Methacrylsäure (z.B. Luvimer™ 100P), Copolymere aus N-tert.-Butylacrylamid, Ethylacrylat, Acrylsäure (z.B. Ultrahold™ 8, Strang), Copolymere aus Vinylacetat, Crotonsäure und gegebenenfalls weiteren Vinylestern (z.B. Luviset™ Marken, INCI: VA/Crotonates Copolymer), Maleinsäureanhydridcopolymere, ggf. mit Alkoholen um- gesetzt, anionische Polysiloxane, z.B. carboxyfunktionelle, Copolymere aus Vinyl- pyrrolidon, t-Butylacrylat, Methacrylsäure (z.B Luviskol™ VBM).
Weiterhin umfasst die Gruppe der zur Kombination mit den erfindungsgemäßen polymeren Produkten geeigneten Polymere beispielhaft Balance CR oder 0/55 (National Starch; Acrylatcopolymer), Balance 47 (National Starch; Octylacrylamid/Acrylat/Butyl- aminoethylmethacrylate-Copolymer), Aquaflex™ FX 64 (ISP; Isobutylen/Ethylmale- imid/Hydroxyethylmaleimid-Copolymer), Aquaflex™ SF-40 (ISP / National Starch; VP/Vinyl Caprolactam/DM APA Acrylatcopolymer), Allianz™ LT-120 (ISP / Rohm & Haas; AcryIat/C1-2 Succinat/Hydroxyacrylat-Copolymer), Aquarez™ HS (Eastman; Polyester-1), Diaformer™ Z-400 (Clariant; Methacryloylethylbetain/Methacrylat-
Copolymer), Diaformer™ Z-711 oder Z-712 (Clariant; Methacryloylethyl N-oxid/Meth- acrylat-Copolymer), , Omnirez™ 2000 (ISP; Monoethylester von Poly(Methylvinyl- ether/Maleinsäure in Ethanol), Amphomer™ HC oder Resyn XP oder Resyn 28-4961 (National Starch; Acrylat/Octylacrylamide Copolymer), Amphomer™ 28-4910 (National Starch; Octylacrylamid/Acrylat/Butylaminoethylmethacrylat-Copolymer), Advantage™ HC 37 (ISP; Terpolymer aus Vinylcaprolactam/Vinylpyrrolidon/Dimethylaminoethyl- methacrylat), Advantage Marken (ISP), Acudyne 258 (Rohm & Haas; Acrylat/Hydroxy- esteracrylat-Copolymer), Luviset™ P.U.R. (BASF, Polyurethane-1), Luviflex™ Silk (BASF, PEG/PPG-25/25 Dimethicone/Acrylates Copolymer), Eastman™ AQ48 (East- man), Styleze 2000 (ISP; VP/Acrylates/Lauryl Methacrylate Copolymer), Styleze CC-10 (ISP; VP/DMAPA Acrylates Copolymer), Styleze W-20 (ISP), Fixomer A-30 (Ondeo Nalco; Methacrylic Acid/Sodium Acrylamidomethyl Propane Sulfonate Copolymer), Fixate G-100 (Noveon; AMP-Acrylates/Allyl Methacrylate Copolymer).
Ganz besonders bevorzugt werden als anionische Polymere Acrylate mit einer Säurezahl größer gleich 120 und Copolymere aus t-Butylacrylat, Ethylacrylat, Methacrylsäure.
Weitere geeignete Haarkosmetik-Polymere sind kationische Polymere mit der Bezeichnung Polyquaternium nach INCI, z.B. Copolymere aus Vinylpyrrolidon/N-Vinyl- imidazoliumsalzen (Luviquat™ FC, Luviquat™ HM, Luviquat™ MS, Luviquat™ Care, INCI: Polyquaternium-16, Polyquaternium-44), Copolymere aus N-Vinylpyrrolidon/Di- methylaminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat™ PQ 11 , INCI: Polyquaternium-11), Copolymere aus N-Vinylcaprolactam N-Vinylpyrrolidon/N-Vinyl- imidazoliumsalzen (Luviquat™ Hold, INCI: Polyquaternium-46); Copolymere aus Acrylamid und Dimethyldiallylammoniumchlorid (Polyquaternium-7), kationische Cellulosederivate (Polyquaternium-4, -10), kationische Stärkederivate (INCI: Starch Hydroxy- propytrimonium Chloride, Com Starch Modified), kationische Guarderivate (INCI: Hydroxypropyl Guar Hydroxypropyltrimonium Chloride), kationische Sonnenblumenöl- Derivate (INCI: Sunflowerseedamidopropyl Hydroxyethyldimonium Chloride), Copolymere aus Acrylsäure, Acrylamid und Methacrylamidopropyltrimoniumchlorid (INCI: Polyquaternium-53), Polyquaternium-32, Polyquaternium-28 und andere.
Als weitere Haarkosmetik-Polymere sind auch neutrale Polymere geeignet wie Poly- vinylpyrrolidone, Copolymere aus N-Vinylpyrrolidon und Vinylacetat und/oder Vinyl- propionat, Copolymere aus N-Vinypyrrolidon/Dimethylaminopropylacrylamid oder -methacrylamid, Copolymere aus N-Vinylpyrrolidon und Alkylacrylat- oder-meth- crylatmonomeren mit Alkyl ketten von C1 bis C18, Pfropfcopolymere von Polyvinyl- Ikohol auf Polyalkylenglykole wie z.B. Kollicoat IR (BASF), Pfropfcopolymere von anderen Vinylmonomeren auf Polyalkylenglykole, Polysiloxane, Polyvinylcaprolactam und Copolymere mit N-Vinylpyrrolidon, Polyethylenimine und deren Salze, Polyvinylamine und deren Salze, Cellulosederivate, Chitosan, Polyasparaginsäuresalze und Derivate.
Zur Einstellung bestimmter Eigenschaften können die Zubereitungen zusätzlich auch konditionierende Substanzen auf Basis von Silikonverbindungen enthalten. Geeignete Silikonverbindungen sind beispielsweise Polyalkylsiloxane, Polyarylsiloxane, Polyaryl- Ikylsiloxane, Polyethersiloxane, Silikonharze, fluorierte Alkylsiiikone, Dimethicone, Di- methicone-Derivate oder Dimethicon Copolyole (CTFA) und aminofunktionelle Silikon- Verbindungen wie Amodimethicone (CTFA).
Die erfindungsgemäßen Polymerisate eignen sich insbesondere als Festigungsmittel in Haarstyling-Zubereitungen, insbesondere Haarsprays (Aerosolsprays und Pumpsprays ohne Treibgas) und Haarschäume (Aerosolschäume und Pumpschäume ohne Treib- gas).
In einer bevorzugten Ausführungsform enthalten diese Zubereitungen
a) 0,1 bis 10 Gew.-% des erfindungsgemäßen polymeren Produkts b) 20 bis 99,9 Gew.-% Wasser und/oder Alkohol c) 0 bis 70 Gew.-% eines Treibmittel d) 0 bis 20 Gew.-% weitere Bestandteile
Treibmittel sind die für Haarsprays oder Aerosolschäume üblich verwendeten Treib- mittel. bevorzugt sind Gemische aus Propan/Butan, Pentan, Dimethylether, 1,1-Di- fluorethan (HFC-152 a), Kohlendioxid, Stickstoff oder Druckluft.
Eine erfindungsgemäß bevorzugte Formulierung für Aerosolhaarschäume enthält
a) 0,1 bis 10 Gew.-% des erfindungsgemäßen polymeren Produkts b) 55 bis 99,8 Gew.-% Wasser und/oder Alkohol c) 5 bis 20 Gew.-% eines Treibmittel d) 0,1 bis 5 Gew.-% eines Emulgators e) 0 bis 10 Gew.-% weitere Bestandteile
Als Emulgatoren können alle in Haarschäumen üblicherweise eingesetzten Emulgatoren verwendet werden. Geeignete Emulgatoren können nichtionisch, kationisch bzw. anionisch oder amphoter sein.
Beispiele für nichtionische Emulgatoren (INCI-Nomenklatur) sind Laurethe, z.B. Laureth-4; Celethe, z.B. Cetheth-1 , Polyethylenglycolcetylether; Cetearethe, z.B. Cetheareth-25, Polyglycolfettsäureglyceride, hydroxyliertes Lecithin, Lactylester von Fettsäuren, Alkylpolyglycoside.
Beispiele für kationische Emulgatoren sind oder -bromid (INCI Cetrimoniumchloride oder -bromide), Hydroxyethylcetyldimoniumphosphat (INCI Quaternium-44), INCI Cocotrimoniummethosulfate, INCI Quaternium-52, Quaternium-1 bis x (INCI).
Anionische Emulgatoren können beispielsweise ausgewählt werden aus der Gruppe der Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsulfosuccinate, N-Alkoylsarkosinate, Alkylglykolalkoxylate, Acyltaurate, Acyl- isethionate, Alkylphosphate, Alkyletherphosphate, Alkylethercarboxylate, Alpha- Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Calcium, sowie Ammonium- und Triethanolamin-Salze. Die Alkyl- ethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis
10 Ethylenoxid oder Propylenoxid-Einheiten, bevorzugt 1 bis 3 Ethylenoxid-Einheiten im Molekül aufweisen.
Eine erfindungsgemäß für Styling-Gele geeignete Zubereitung kann beispielsweise wie folgt zusammengesetzt sein:
a) 0,1 bis 10 Gew.-% der erfindungsgemäßen polymeren Produkte b) 60 bis 99,85 Gew.-% Wasser und/oder Alkohol c) 0,05 bis 10 Gew.-% eines Gelbildners d) 0 bis 20 Gew.-% weitere Bestandteile
Als Gelbildner können alle in der Kosmetik üblichen Gelbildner eingesetzt werden. Hierzu zählen leicht vernetzte Polyacrylsäure, beispielsweise Carbomer (INCI), Cellulosederivate, z.B. Hydroxypropylcellulose, Hydroxyethylcellulose, kationisch modifizier- te Cellulosen, Polysaccharide, z.B. Xanthum Gummi, Caprylic/Capric Triglyceride, Sodium acrylates Copolymer, Polyquaternium-32 (and) Paraffinum Liquidum (INCI), Sodium Acrylates Copolymer (and) Paraffinum Liquidum (and) PPG-1 Trideceth-6, Acrylamidopropyl Trimonium Chloride/Acrylamide Copolymer, Steareth-10 Allyl Ether Acrylates Copolymer, Polyquatemium-37 (and) Paraffinum Liquidum (and) PPG-1 Trideceth-6, Polyquaternium 37 (and) Propylene Glycole Dicaprate Dicaprylate (and) PPG-1 Trideceth-6, Polyquatemium-7, Polyquatemium-44.
Die erfindungsgemäßen polymeren Produkte können in kosmetischen Zubereitungen als Konditioniermittel eingesetzt werden. Beispiele sind für Rinse-off und Leave-on Conditioner Zubereitungen..
Die erfindungsgemäßen polymeren Produkte können auch in Shampooformulierungen als Festigungs- und/oder Konditioniermittel eingesetzt werden. Als Konditioniermittel eignen sich insbesondere Polymere mit kationischer Ladung. Bevorzugte Shampoo- formulierungen enthalten
a) 0,05 bis 10 Gew.-% der erfindungsgemäßen polymeren Produkte b) 25 bis 94,95 Gew.-% Wasser c) 5 - 50 Gew.-% Tenside c) 0 - 5 Gew.-% eines weiteren Konditioniermittels d) 0 - 10 Gew.-% weitere kosmetische Bestandteile
In den Shampooformulierungen können alle in Shampoos üblicherweise eingesetzte anionische, neutrale, amphotere oder kationische Tenside verwendet werden.
Geeignete anionische Tenside sind beispielsweise Alkylsulfate, Alkylethersulfate, Alkylsulfonate, Alkylarylsulfonate, Alkylsuccinate, Alkylsuifosuccinate, N-Alkoylsarkosinate, Acyltaurate, Acylisethionate, Alkylglykolalkoxylate, Alkylphosphate, Alkyletherphosphate, Alkylethercarboxylate, Alpha-Olefinsulfonate, insbesondere die Alkali- und Erdalkalimetallsalze, z.B. Natrium, Kalium, Magnesium, Caicium, sowie Ammonium- und Triethanolamin-Salze. Die Alkylethersulfate, Alkyletherphosphate und Alkylethercarboxylate können zwischen 1 bis 10 Ethylenoxid oder Propylenoxid-Einheiten, bevorzugt 1 bis 3 Ethylenoxid-Einheiten im Molekül aufweisen.
Geeignet sind zum Beispiel Natriumlaurylsulfat, Ammoniumlaurylsulfat, Natriumlauryl- ethersulfat, Ammoniumlaurylethersulfat, Natriumlauroylsarkosinat, Natriumoleylsuccinat, Ammoniumlaurylsulfosuccinat, Natriumdodecylbenzolsulfonat, Triethanol- amindodecylbenzolsulfonat.
Geeignete amphotere Tenside sind zum Beispiel Alkylbetaine, Alkylamidopropyl- betaine, Alkylsulfobetaine, Alkylglycinate, Alkylcarboxyglycinate, Alkylamphoacetate oder -propionate, Alkylamphodiacetate oder -dipropionate.
Beispielsweise können Cocodimethylsulfopropylbetain, Laurylbetain, Cocamidopropyl- betain oder Natriumcocamphopropionat eingesetzt werden.
Als nichtionische Tenside sind beispielsweise geeignet die Umsetzungsprodukte von aliphatischen Alkoholen oder Alkylphenolen mit 6 bis 20 C-Atomen in der Alkylkette, die linear oder verzweigt sein kann, mit Ethylenoxid und/oder Propylenoxid. Die Menge Alkylenoxid beträgt ca. 6 bis 60 Mole auf ein Mol Alkohol. Ferner sind Alkylaminoxide, Mono- oder Dialkylalkanolamidβ, Fetlsäureester von Polyethylenglykolen, Alkylpoly- glykoside oder Sorbitanetherester geeignet.
Außerdem können die Shampooformulierungen übliche kationische Tenside enthalten, wie z.B. quaternäre Ammoniumverbindungen, beispielsweise Cetyltrimethylammonium- chlorid oder -bromid (INCI Cetrimoniumchloride oder -bromide), Hydroxyethylcetyl- dimoniumphosphat (INCI Quatemium-44), INCI Cocotrimoniummethosulfate, INCI Quaternium-52.
In den Shampooformulierungen können zur Erzielung bestimmter Effekte übliche Konditioniermittel in Kombination mit den erfindungsgemäßen Polymerisaten eingesetzt werden. Hierzu zählen beispielsweise kationische Polymere mit der Bezeichnung Polyquaternium nach INCI, z.B. Copolymere aus Vinylpyrrolidon/N-Vinylimidazolium- salzen (Luviquat™ FC, Luviquat™ HM, Luviquat™ MS, Luviquat™ Care, INCI: Poly- quatemium-16, Polyquatemium-44), Copolymere aus N-Vinylpyrrolidon/Dimethyl-
aminoethylmethacrylat, quaternisiert mit Diethylsulfat (Luviquat™ PQ 11, INCI: Poly- quatemium-11), Copolymere aus N-Vinylcaprolactam N-Vinylpyrrolidon/N-Vinyl- imidazoliumsalzen (Luviquat™ Hold, INCI: Polyquaternium-46); Copolymere aus Acrylamid und Dimethyldiallylammoniumchlorid (Polyquatemium-7), kationische Cellulose- derivate (Polyquaternium-4, -10). Ferner können kationische Stärkederivate (INCI: Starch Hydroxypropytrimonium Chloride, Com Starch Modified), kationische Guar- derivate (INCI: Hydroxypropyl Guar Hydroxypropyltrimonium Chloride), kationische Sonnenblumenöl-Derivate (INCI: Sunflowerseedamidopropyl Hydroxyethyldimonium Chloride), Copolymere aus Acrylsäure, Acrylamid und Methacrylamidopropyltrimonium- chlorid (INCI: Polyquatemium-53), Polyquatemium-32, Polyquatemium-28 und andere eingesetzt werden.Femer können Eiweißhydrolysate verwendet werden, sowie kon- ditionierende Substanzen auf Basis von Silikonverbindungen, beispielsweise Polyalkyl- siloxane, Polyarylsiloxane, Polyarylalkylsiloxane, Polyethersiloxane oder Silikonharze. Weitere geeignete Silikonverbindungen sind Dimethicone, Dimethicone-Derivate oder Dimethicon Copolyole (CTFA) und aminofunktionelle Silikonverbindungen wie Amodimethicone (CTFA).
Beispiele
Herstellungsbeispiel
Beispiel 1
a) Herstellung des Polymerisats (A)
Die Vorlage wurde unter Stickstoffbegasung auf 78°C aufgeheizt und 15 Minuten bei 78°C belassen. Anschließend wurde innerhalb von 2 Stunden Zulauf 1 zudosiert sowie Zulauf 2 innerhalb von 2,5 Stunden. Danach wurde 2 Stunden nachpolymerisiert und anschließend innerhalb von 15 Minuten Zulauf 3 zudosiert.
Vorlage:
250 g Ethanol, kosm. 63 g Pluriol A 11 R 100 g Zulauf 1 7,5 g Zulauf 2
Zulauf 1 :
120 g Ethanol, kosm. 562 g tert-Butylacrylat 188 g Methacrylsäure
Zulauf 2:
200 g Ethanol, kosm.
3 g tert.-Butylperpivalat (75%ig)
Zulauf 3:
240 g Ethanol, kosm.
3 g tert.-Butylperpivalat (75%ig)
Das so erhaltene Polymerisat A hatte einen Feststoffgehalt von 51 ,3 %, einen K-Wert (1% in Ethanol) von 39,1 und eine Säurezahl (mg KOH/g) von 80,1.
b) Mischen von (A) mit Silikon (B)
In einem 2-l-Vierhalskolben wurden 243,7 g des nach a) erhaltenden Polymerisates und 13,84 g polyalkoxyliertes Silikon (Belsil DMC 6031 , Fa. Wacker) unter Stickstoffbegasung bei 78°C eine Stunde lang gerührt.
Das so erhaltene Produkt hatte einen Festgehalt von 55,9 %, einen K-Wert (1 % in Ethanol) von 37,1 und eine Säurezahl (mg KOH/g) von 81,6.
Vergleichsbeispiel 1
Für das Vergleichsbeispiel 1 wurde analog zum Beispiel 1 verfahren (Polymerisat A und Silikon B). Die beiden Komponenten wurden jedoch bei Raumtemperatur (20°C) Stunde lang gerührt.
Anwendungstechnische Eigenschaften
a) Messung der Stiffness (Biegesteifigkeit)
Zur Messung der Biegesteifigkeit wurden 3,0 gew.-%ige Lösungen der polymeren Produkte nach Beispiel 1 sowie des Vergleichsbeispiels 1 hergestellt. Die Messung der Biegesteifigkeit wurde an 5 bis 10 Haarsträhnen (a ca. 3 g und 24 cm Länge) bei 20°C und 65 % rel. Feuchte durchgeführt. Die gewogenen, trockenen Haarsträhnen wurden in die 3 %ige Polymerlösung getaucht, wobei durch dreimaliges Eintauchen und Herausnehmen eine gleichmäßige Verteilung sichergestellt wurde. Die überschüssige Filmbildnerlösung wurde zwischen Daumen und Zeigefinger abgestreift und die Haarsträhnen wurden anschließend durch Ausdrücken zwischen Filterpapier sorgfältig ausgedrückt. Danach wurden die Strähnen von Hand so geformt, dass sie einen runden Querschnitt erhielten. Bei 20°C und 65 % rel. Feuchte wurde über Nacht im Klimaraum getrocknet.
Die Prüfungen wurden in einem Klimaraum bei 20°C und 65 % rel. Feuchte mittels eines Zug/Druck-Prüfgerätes durchgeführt. Die Haarsträhne wurde symmetrisch auf zwei zylindrische Rollen der Probenaufnahme gelegt. Genau in der Mitte wurde nun von oben mit einem abgerundetem Stempel die Strähne 40 mm durchgebogen (Brechen des Polymerfilms). Die dafür erforderliche Kraft wurde mit einer Wägezelle (50 N) gemessen und in Newton angegeben.
b) Messung der Curl Retention
Zur Messung der Curl Retention wurden 1 ,8 gew.-%ige Lösungen der polymeren Produkte nach Beispiel 1 sowie des Vergleichsbeispiels 1 hergestellt. Die Messung der Curl Retention wurde wie folgt durchgeführt: Die gewaschenen, trockenen Haarsträhnen wurden 15 Minuten bei ca. 40°C in 50 %iges Ethanol (Ethanol abs./Wasser dest. 1 :1) gegeben. Mit Daumen und Zeigefinger wurde die überschüssige Flüssigkeit her- ausgepresst und die Haarsträhne um ein Plexiglasrohr gewickelt. Anschließend wurden die Haarsträhnen über Nacht bei 65 bis 70°C getrocknet. Nach 15 Minuten bei Raumtemperatur wurde das Haar abgewickelt. Ca. 5 g Haarspray (aus ca. 20 cm Abstand) wurden aufgesprüht, wobei die Locke gedreht wurde. Danach wurde sie liegend 1 Stunde bei Raumtemperatur getrocknet.
Die Locke wurde an einem Ende aufgehängt und die Lockenlänge (Lo) gemessen. Die Locke wurde in eine Klimakammer (25°C, 90 % rel. Feuchte) gegeben und ihre Länge (Lt) nach 15, 30, 60 und 90 Minuten, sowie nach 2, 3, 4, 5 und 24 Stunden gemessen. Die Prüfung erfolgte an mind. 5 Haarsträhnen.
L-Lt
Curl Retention in % = 100
L-Lo
L = Länge der Haare (15,5 cm)
Lo = Länge der Haare nach dem Trocknen
Lt = Länge der Haare nach Klimabehandlung
Tabelle 1 zeigt die Werte der Biegefestigkeit und Curl Retention von Beispiel 1 und Vergleichsbeispiel 1.
Tabelle 1: Biegesteifigkeit in cN (3 Gew.-% W.S. in Ethanol abs.; 20°C und 65 % rel. Feuchte) und Curl Retention (%)
Wie aus der Tabelle ersichtlich, liegt die Biegesteifigkeit des erfindungsgemäßen polymeren Produktes deutlich über dem des Vergleichbeispiels bei gleichzeitigem Erhalt der Curl Retention Eigenschaften.
Rezepturbeispiele
Pumpsprays
Haarspray-Formulierung auf Basis Dimethylether
1,00 Gew.-% Luviskol K30™ (BASF) 2,92 Gew.-% polymeres Produkt gemäß Beispiel 1 0,92 Gew.-% 2-Amino-2-methylpropanol 0,10 Gew.-% Diisobutyladipate (Bsp. Crodanol DiBA von Croda
Oleochemicals)
0,05 Gew.-% Isodecan
0,10 Gew.-% Parfümöl 0,05 Gew.-% D-Panthenol USPT (BASF)
14,78 Gew.-% Wasser entmineralisiert
36,08 Gew.-% Ethanol
40,00 Gew.-% Dimethylether
Haarsprayformulierungen auf Basis iso-Butan und n-Pentan A) 6,80 % polymeres Produkt gemäß Beispiel 1
0,79 % 2-Amino-2-methylpropanol
14,20 % n-Pentan
2,40 % n-Butan
35,90 % iso-Butan
39,91 % Ethanol
B) 3,00 % Ultrahold Strang™ (BASF)
1 ,00 % polymeres Produkt gemäß Beispiel 1
0,48 % 2-Amino-2-methylpropanol
0,03 % DOW Corning 190™ (Dow Corning)
14,20 % n-Pentan
2,40 % n-Butan
35,90 % iso-Butan
42,99 % Ethanol
Glanzspray
2,00 % Luviset CA66™ (BASF)
2,00 % polymeres Produkt gemäß Beispiel 1
0,46 % 2-Amino-2-methylpropanol
1 ,00 % DOW Corning 556 (Dow Corning)
0,10 % Niacinamid
0,20 % D-Panthenol USP™ (BASF)
14,20 % n-Pentan
35,90 % n-Butan
44,14 % Ethanol
Haarspay VOC 80 mit HFC 152A
2,00 % Luviset CA66™ (BASF)
4,80 % Polymeres Produkt gemäß Beispiel 1
0,79 % 2-Amino-2-methylpropanol
56,60 % Ethanol
15,81 % Prapellant 152a (Bsp. Dymel 152a von DuPont)
20,00 % Dimethylether
Haarspray VOC 55 mit Vitaminen
4,80 % Polymeres Produkt gemäß Beispiel 1
3,33 % Luviset P.U.R.™
0,57 % 2-Amino-2-methylpropanol
0,10 % Niacinamid (Hoffmann-La Röche)
0,10 % Panthenol USP™ (BASF) 38,83 % Wasser entmineralisiert 12,27 % Ethanol 40,00 % Dimethylether
Sonnenschutz-Pumpspray fürs Haar 2,00 % polymeres Produkt gemäß Beispiel 1 0,23 % 2-Amino-2-methylprapanol 2,00 % Uvinul MS 40™ (BASF) (Benzophenone-4) 95,77 % Ethanol
Hair Repair
1,00 % Luviskol K30™ (BASF)
4,00 % Polymeres Produkt gemäß Beispiel 1 0,48 % 2-Amino-2-methylpropanol
0,20 % Hydrolized Wheat Protein (Bsp. Cropesol WT von Croda, Inc.)
0,50 % D-Panthenol USP™ (BASF)
5,00 % 1 ,2-Propylen GlycolUSP™ (BASF)
10,00 % Ethanol 78,82 % Wasser entmineralisiert
Shining Gel für Haare mit UV-Schutz
Phase A 0,80 % Carbopol 2001 ETD™ (Goodrich)
33,84 % Wasser entmineralisiert
Phase B 5,00 % Abil 200 (Goldschmidt)
3,00 % Karion FP (Merck KGaA)
3,00 % 1 ,2-Propylenglycol USPT (BASF)
1 ,00 % Cremophor RH40T (BASF) q.s. Konservierungsmittel
Phase C 50,00 % Wasser entmineralisiert
0,50 % Uvinul P25™ (BASF) (PEG-25PABA)
2,00 % Polymeres Produkt gemäß Beispiel 1
0,23 % 2-Amino-2-methylpropanol
Phase D 0,63 % 2-Amino-2-methylpropanol
Maskara (Wimperntusche)
Phase A 1 ,50 % Cremophor A6™ (BASF)
1,50 % Cremophor A25™ (BASF)
2,00 % Stearinsäure (Bsp. Emersol 120™ vo Henkel)
3,00 % Imwitor 960 K™ (Hüls AG)
3,00 % Softisan 100™ (Hüls AG)
1 ,50 % Luvigel EM™ (BASF)
10,00 % Dow Corning 345™ (Dow Corning)
Phase B 4,00 % Polymeres Produkt gemäß Beispiel 1
0,46 % 2-Amino-2-methylpropanol
0,30 % Germal 115™ (Sutton)
72,24 % Wasser entmineralisiert
Phase C 0,50 % Phenoxyethanol (Bsp. Phenoxetol™ von Nipa-Hardwicke)
Shampoo-Formulierung
1 ,50 % Polymeres Produkt gemäß Beispiel 1
0,17 % 2-Amino-methylpropanol
0,50 % Luviskol K30™ (BASF)
10,00 % Tego-Betaine L7
40,00 % Texapone NSO
0,10 % Euxyl K100
2,00 % NaCI
45,73 % Wasser
Shampoo-Formulierung mit Luviquat Care™
1 ,80 % Polymeres Produkt gemäß Beispiel 1
0,21 % 2-Amino-methylpropanol
0,20 % Luviskol K30™ (BASF)
7,70 % Luviquat Care™ (BASF)
10,00 % Tego-Betaine L7
40,00 % Texapone NSO
0,10 % Euxyl K 100
2,00 % NaCI
37,99 % Wasser
Klarlack
15,0 % Nitrocellulose
7,0 % Polymeres Produkt gemäß Beispiel 1
2,4 % Campher
4,5 % Palatinol A
7,0 % Isopropanol
8,0 % Methylacetat
8,0 % Ethylacetat
14,0 % Essigsäureisopropylester
34,1 % Butylacetat
Klarlack ohne Nitrocellulose
23,0 % Polymeres Produkt gemäß Beispiel 1
7,0 % Ketjenflex MH
2,4 % Campher
4,5 % Palatinol A
8,0 % Methylacetat
8,0 % Ethylacetat
14,0 % Essigsäureisopropylester
33,1 % Butylacetat
VOC 55 Haarspray 21,50 % Wasser 35,00 % Alkohol SD 40-B
0,95 % Aminomethyl Propanol 8,00 % Polymeres Produkt gemäß Beispiel 1
0,20 % D,L Panthenol
0,10 % Uvinul™ MC 80 (Octyl Methoxycinnamate)
0,10 % Masil™ SF 19 (Dimethicone Copolyol) 15,00 % Dimethyl Ether 20,00 % Hydrofluorocarbon 152a
VOC 55 Haarspray
34,10 % Wasser
52,00 % Alkohol SD 40-B 0,50 % Aminomethyl Propanol
9,00 % Luviset™ P.U.R. Polyurethane-1)
4,00 % Polymeres Produkt gemäß Beispiel 1
2,00 % D,L Panthenol
0,10 % Uvinul™ MC 80 (Octyl Methoxycinnamate) 0,10 % Masil™ SF 19 (Dimethicone Copolyol)
Alle Prozentangaben in den Beispielen sind, wenn nicht ausdrücklich anders erwähnt, Gew.-%-Angaben.
Claims
Patentansprüche
1. Verfahren zur Herstellung von polymeren Produkten, dadurch gekennzeichnet, dass man
i) ethylenisch ungesättige Monomere (A-1) in Gegenwart von ungesättigten
Polyalkylenglykolen (A-2) polymerisiert ii) das so erhaltene Polymerisat mit Silikonen (B) bei einer Temperatur von größer gleich 30 °C mischt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Silikone (B) ausgewählt sind aus der Gruppe bestehend aus (B-1) Siliconen mit mindestens einer quaternisierten oder nicht-quaternisierten Aminfunktion, (B-2) Siliconharzen, (B-3) Silicongummis, (B-4) polyalkoxylierten Silikonen und/oder silikonhaltigen Polyurethanen (B-5).
3. Verfahren nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, dass man das Mischen bei einer Temperatur von größer gleich 40 °C, insbesondere größer gleich 50 °C durchführt.
4. Polymere Produkte erhältlich durch Mischen von
(A) Polymerisaten, die erhältlich sind durch radikalische Polymerisation von (A-1) ethylenisch ungesättigten Monomeren in Gegenwart von (A-2) ungesättigten Polyalkylenglykole mit
(B) Silikonen
bei einer Temperatur größer gleich 30 °C
Polymere Produkte nach Anspruch 4, dadurch gekennzeichnet, dass die ethylenisch ungesättigten Monomere (A-1) und die ungesättigten Polyalkylenglykole (A-2) in Verhältnis 50 bis 99,9 Gew.-% (A-1) und 0,1 bis 50 Gew.-% (A-2) polymerisiert werden.
6. Polymere Produkte nach Anspruch 4 und/oder 5, dadurch gekennzeichnet, dass 99.5 bis 70 Gew.% Polymerisat (A) und 0.5 bis 30 Gew.-% Silikone (B) eingesetzt werden.
7. Polymere Produkte nach mindestens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Silikone ausgewählt sind aus der Gruppe bestehend aus (B-1) Siliconen mit mindestens einer quaternisierten oder nicht- quaternisierten Aminfunktion, (B-2) Siliconharzen, (B-3) Silicongummis, (B-4) polyalkoxylierten Silikonen und/oder silikonhaltigen Polyurethanen (B-5).
8. Polymere Produkte nach mindestens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass als Monomer (A-1) mindestens eine Verbindung der folgenden Formel eingesetzt wird
X-C(O)CR7=CHR6 wobei
X ausgewählt ist aus der Gruppe der Reste -OH, -OM, -OR8, NH2, -NHR8, N(Rδ)2
M ein Kation ist ausgewählt aus der Gruppe bestehend aus: Na+, K+, Mg++, Ca++, Zn++, NH4+, Alkylammonium, Dialkylammonium, Trialkylammonium und Tetraalkylammonium;
die Reste R8 identisch oder verschieden sein können ausgewählt aus der Gruppe bestehend aus -H, C1-C40 linear- oder verzweigtkettige Alkylreste, N,N-Dimethylaminoethyl, 2-Hydroxyethyl, 2-Methoxyethyl, 2-Ethoxyethyl,
Hydroxypropyl, Methoxypropyl oder Ethoxypropyl.
R7 und R6 unabhängig voneinander ausgewählt sind aus der Gruppe bestehend aus: -H, C C8 linear- oder verzweigtkettige Alkylketten, Methoxy, Ethoxy, 2-Hydroxyethoxy, 2-Methoxyethoxy und 2-Ethoxyethyl.
9. Polymere Produkte nach mindestens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Monomere (A-1) ausgewählt sind aus der Gruppe bestehend aus Acrylsäure, Methacrylsäure, Ethylacrylsäure, Methylacrylat, Ethylacrylat, Propylacrylat, n-Butylacrylat, iso-Butylacrylat, t-
Butylacrylat, 2-Ethylhexylacrylat, Decylacrylat, Methylmethacrylat, Ethylmethacrylat, Propylmethacrylat und n-Butylmethacrylat.
10. Polymere Produkte nach mindestens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass als Monomere (A-1) mindestens 2 Verbindungen eingesetzt werden, die ausgewählt sind aus der Gruppe bestehend aus Acrylsäure, Methacrylsäure, Ethylacrylsäure, Methylacrylat, Ethylacrylat, Propylacrylat, n-Butylacrylat, iso-Butylacrylat, t-Butylacrylat, 2-
Ethylhexylacrylat, Decylacrylat, Methylmethacrylat, Ethylmethacrylat, Propylmethacrylat und n-Butylmethacrylat.
11. Polymere Produkte nach mindestens einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass als ungesättigte Polyalkylenglykole (A-2)
Verbindungen der folgenden Formel eingesetzt werden
H2C=CH-C0H2— O-(C2H4O)a(C3H6O)b-R5 und/oder H2C=CH-CCH2— O-(C4H8O)a-R5 worin
- R5 bedeutet -H, -CH=CH2, -(CH2)s-CH=CH-(CH2)t-H, eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 12 Kohlenstoffatomen, eine geradkettige oder verzweigte Alkoxygruppe mit 1 bis 6 Kohlenstoffatomen, eine geradkettige oder verzeigte Acylgruppe mit 2 bis 40 Kohlenstoffatomen, -
SO3M, einer gegebenenfalls an der Aminogruppe substituierten C1-6- Aminoacylgruppe, -NHCH2CH2COOM, -N(CH2CH2COOM)2, eine gegebenenfalls an der Am nogruppe und an der Alkylgruppe substitu- ierten Aminoalkylgruppe, ei ne C2-3o-Carboxyacylgruppe, eine gegebenenfalls mit einer oder zwei substituierten Aminoalkylgruppen substi- uierten Phosphonogruppe, -CO(CH2)c!COOM, -COCHR7(CH2)dCOOM, NHCO(CH2)dOH, -NH2Y oder eine Phosphatgruppe die Gruppen M, die identisch oder voneinander verschieden sind, Wasserstoff, Na, K, Li, NH4oder ein organisches Amin bedeuten, - R7 Wasserstoff oder SO3M ist,
- d im Bereich von 1 bis 10 liegt,
- s O, 1 bis 10 sein kann
- t 0, 1 bis 10 sein kann
- a im Bereich von 0 bis 50 liegt, - b im Bereich von 0 bis 50 liegt,
- a + b größer 0 ist,
- c 0, 1 , 2, 3 oder 4 ist,
- Y ein einwertiges anorganisches oder organisches Anion bedeutet.
12. Verwendung eines polymeren Produkts nach mindestens einem der vorgenannten Ansprüche in kosmetischen Zubereitungen, insbesondere in haarkosmetischen Zubereitungen.
13. Verwendung nach Anspruch 12 als Festigungsmittel und/oder
Konditioniermittel.
14. Kosmetische Zubereitung enthaltend
a) 0,05 bis 20 Gew. -% des polymeren Produkts b) 20 bis 99,95 Gew. -% Wasser und/oder Alkohol c) 0 bis 79,5 Gew. -% weitere Bestandteile
mit der Maßgabe, dass sich die Anteile zu 100 % addieren.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10310378 | 2003-03-07 | ||
DE10310378 | 2003-03-07 | ||
DE10311120 | 2003-03-12 | ||
DE2003111120 DE10311120A1 (de) | 2003-03-12 | 2003-03-12 | Polymere Produkte und ihre Verwendung in kosmetischen Zubereitungen |
PCT/EP2004/001672 WO2004078810A2 (de) | 2003-03-07 | 2004-02-20 | Polymere produkte |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1603960A2 true EP1603960A2 (de) | 2005-12-14 |
Family
ID=32963523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04713054A Withdrawn EP1603960A2 (de) | 2003-03-07 | 2004-02-20 | Polymere produkte |
Country Status (7)
Country | Link |
---|---|
US (1) | US20060182706A1 (de) |
EP (1) | EP1603960A2 (de) |
JP (1) | JP2006520832A (de) |
KR (1) | KR20050107783A (de) |
CN (1) | CN1784436B (de) |
CA (1) | CA2518002A1 (de) |
WO (1) | WO2004078810A2 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005007059A1 (de) * | 2005-02-15 | 2006-08-24 | Röhm GmbH & Co. KG | Teilneutralisiertes anionisches (Meth)acrylat-Copolymer |
DE102009031432A1 (de) * | 2009-07-01 | 2011-01-05 | Henkel Ag & Co. Kgaa | Kompaktes Haarspray |
DE102011086516A1 (de) * | 2011-11-17 | 2013-05-23 | Evonik Degussa Gmbh | Superabsorbierende Polymere mit schnellen Absorptionseigenschaften sowieVerfahren zu dessen Herstellung |
DE102011089168A1 (de) * | 2011-12-20 | 2013-06-20 | Henkel Ag & Co. Kgaa | Mittel zur temporären Verformung keratinischer Fasern auf Grundlage einer Kombination spezifischer filmbildender Polymere |
AU2015253030A1 (en) * | 2014-05-02 | 2016-11-03 | Arch Wood Protection, Inc. | Wood preservative composition |
US20190037838A1 (en) * | 2016-02-02 | 2019-02-07 | Evonik Degussa Gmbh | Powdery formulations with surface active substances on solid, water-soluble carriers, method for the production and use thereof |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0011806B1 (de) * | 1978-11-27 | 1983-11-23 | The Dow Chemical Company | Flüssige Emulsionspolymerisate, Verfahren zu ihrer Herstellung und mit diesen Emulsionen verdickte wässrige Zusammensetzungen |
JPH0678395B2 (ja) * | 1986-05-19 | 1994-10-05 | 日本純薬株式会社 | 水溶性アクリル系共重合体の製造方法 |
JPH06102614B2 (ja) * | 1990-07-25 | 1994-12-14 | 花王株式会社 | 毛髪化粧料 |
CA2072319C (en) * | 1991-06-28 | 2005-11-22 | Shih-Ruey T. Chen | Ampholyte terpolymers providing superior conditioning properties in skin and nail care products |
DE4424818A1 (de) * | 1994-07-14 | 1996-01-18 | Basf Ag | Niederviskose Mischungen aus amphiphilen nicht-ionischen Pfropfcopolymeren und viskositätserniedrigenden Zusätzen |
DE19646484C2 (de) * | 1995-11-21 | 2000-10-19 | Stockhausen Chem Fab Gmbh | Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung |
JP2002523582A (ja) * | 1998-08-26 | 2002-07-30 | ビーエーエスエフ アクチェンゲゼルシャフト | ラジカル重合性シロキサン含有ウレタン(メタ)アクリレートおよびこれに基づくポリマー |
DE50015912D1 (de) * | 1999-07-15 | 2010-06-10 | Clariant Produkte Deutschland | Wasserlösliche Polymere und ihre Verwendung in kosmetischen und pharmazeutischen Mitteln |
JP3996303B2 (ja) * | 1999-09-29 | 2007-10-24 | 花王株式会社 | マクロモノマー |
DE10000807A1 (de) * | 2000-01-12 | 2001-07-19 | Basf Ag | Verfahren zur Behandlung eines kosmetischen Mittels durch Bestrahlung mit NIR-Strahlung, sowie dessen Verwendung |
DE10041163A1 (de) * | 2000-08-21 | 2002-03-07 | Basf Ag | Haarkosmetische Formulierungen |
JP5202777B2 (ja) * | 2001-03-02 | 2013-06-05 | 株式会社リコー | 分散液 |
DE10163523A1 (de) * | 2001-12-21 | 2003-07-03 | Basf Ag | Verfahren zur Herstellung von Polymerisaten |
DE10163118A1 (de) * | 2001-12-21 | 2003-07-03 | Basf Ag | Verfahren zur Herstellung von Polymerisaten |
EP1325729B1 (de) * | 2002-01-04 | 2006-04-19 | L'oreal | Ein Silikon-Copolymer und entweder ein Polymer aus einem ethylenisch ungesättigten Monomer mit Sulfongruppen oder ein organisches Pulver enthaltende Zusammensetzung; deren Verwendungen, insbesondere in der Kosmetik |
-
2004
- 2004-02-20 EP EP04713054A patent/EP1603960A2/de not_active Withdrawn
- 2004-02-20 KR KR1020057016608A patent/KR20050107783A/ko not_active Application Discontinuation
- 2004-02-20 CN CN2004800122963A patent/CN1784436B/zh not_active Expired - Fee Related
- 2004-02-20 WO PCT/EP2004/001672 patent/WO2004078810A2/de active Search and Examination
- 2004-02-20 JP JP2006504442A patent/JP2006520832A/ja active Pending
- 2004-02-20 US US10/548,613 patent/US20060182706A1/en not_active Abandoned
- 2004-02-20 CA CA002518002A patent/CA2518002A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2004078810A2 * |
Also Published As
Publication number | Publication date |
---|---|
WO2004078810A3 (de) | 2005-02-17 |
KR20050107783A (ko) | 2005-11-15 |
WO2004078810B1 (de) | 2005-03-31 |
CN1784436A (zh) | 2006-06-07 |
CA2518002A1 (en) | 2004-09-16 |
JP2006520832A (ja) | 2006-09-14 |
CN1784436B (zh) | 2010-06-02 |
US20060182706A1 (en) | 2006-08-17 |
WO2004078810A2 (de) | 2004-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1912620B1 (de) | Verwendung anionisch und kationisch ampholytischer copolymere | |
EP1503722A2 (de) | Kosmetisches mittel enthaltend wenigstens ein wasserlösliches copolymer mit (meth)acrylsäureamideinheiten | |
EP1581569A2 (de) | Ampholytisches copolymer und dessen verwendung | |
EP1773906B1 (de) | Vernetzte polytetrahydrofuran-haltige polyurethane | |
JP2007514030A (ja) | 両性アニオン性コポリマー | |
EP1313432A1 (de) | Verwendung hydrophiler pfropfcopolymere mit n-vinylamin- und/oder offenkettigen n-vinylamideinheiten in kosmetischen formulierungen | |
DE19907587A1 (de) | Haarkosmetische Formulierungen | |
EP1656111A1 (de) | Kosmetische und pharmazeutische mittel auf basis von polyelektrolyt-komplexen | |
WO2005058989A1 (de) | Copolymere auf basis von tert.-butyl(meth)acrylat und deren verwendung | |
EP1576025A1 (de) | Allylgruppen-haltiges polyetherurethan | |
EP1455739B1 (de) | Kosmetisches mittel enthaltend wenigstens ein copolymer mit n-vinyllactameinheiten | |
EP1545445A1 (de) | Verwendung von polymerisaten auf basis von n-vinylcaprolactam | |
EP1490016B1 (de) | Kationische polymerisate und deren verwendung in kosmetischen formulierungen | |
EP1083184A2 (de) | Silikonhaltige Polymerisate, deren Herstellung und Verwendung | |
EP1722745A1 (de) | Verwendung von polymeren auf basis von n-vinylcaprolactam in haarkosmetika | |
EP1603960A2 (de) | Polymere produkte | |
EP1567115B1 (de) | Zusammensetzungen, die mindestens ein copolymer (a) und mindestens ein copolymer (b) enthalten, und deren verwendung in kosmetischen zubereitungen | |
DE10311120A1 (de) | Polymere Produkte und ihre Verwendung in kosmetischen Zubereitungen | |
DE19951877A1 (de) | Silikonhaltige Polymerisate, deren Herstellung und Verwendung | |
DE10163523A1 (de) | Verfahren zur Herstellung von Polymerisaten | |
DE19942565A1 (de) | Silikonhaltige Polymerisate, deren Herstellung und Verwendung | |
EP1458811A1 (de) | Verfahren zur herstellung von polymerisaten | |
WO2005002532A2 (de) | Kosmetisches mittel enthaltend wenigstens ein wasserlösliches copolymer mit (meth)acrylsäureamideinheiten | |
WO2004056896A1 (de) | Kationische makromonomere enthaltende polymere und ihre verwendung in kosmetischen zubereitungen | |
DE10219889A1 (de) | Kosmetisches Mittel enthaltend wenigstens ein wasserlösliches Copolymer mit (Meth)acrylsäureamideinheiten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051007 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BASF SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20120911 |