[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1602425B1 - Isolierende Granulate für Metallstranggiessen und deren Herstellungsverfahren - Google Patents

Isolierende Granulate für Metallstranggiessen und deren Herstellungsverfahren Download PDF

Info

Publication number
EP1602425B1
EP1602425B1 EP05011589A EP05011589A EP1602425B1 EP 1602425 B1 EP1602425 B1 EP 1602425B1 EP 05011589 A EP05011589 A EP 05011589A EP 05011589 A EP05011589 A EP 05011589A EP 1602425 B1 EP1602425 B1 EP 1602425B1
Authority
EP
European Patent Office
Prior art keywords
silicon dioxide
granulated materials
water
granules
dioxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05011589A
Other languages
English (en)
French (fr)
Other versions
EP1602425A1 (de
Inventor
Stefanie Heller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1602425A1 publication Critical patent/EP1602425A1/de
Application granted granted Critical
Publication of EP1602425B1 publication Critical patent/EP1602425B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders

Definitions

  • the present invention relates to insulating granules which are suitable as insulating and / or separating agents for high-temperature applications, and to their production.
  • the granules are to be used in different particle sizes and are produced by spray or pelletizing pelletizing with sometimes considerable technical effort.
  • a low carbon content is required in addition to the temperature and transport stability, since the carbon content in the additive changes the properties of iron and steel in an undesirable manner.
  • a constant volume of the aggregate over the entire temperature range is desirable in foundry technology, since a change in volume of the fillers and release agents used leads to an unwanted change in the casting geometry.
  • the sound-insulating properties are of outstanding importance.
  • amorphous silica powder can be processed with the addition of water to give granules which have the desired properties.
  • the object of the present invention is therefore achieved by isolating granules which are obtainable from an amorphous silica powder by pelleting with the addition of water in a ratio of solids: water of 1: 0.25 to 1: 1.5.
  • the granules according to the invention offer the advantage of good environmental compatibility in the case of production-controllable grain size or bulk density.
  • an automated task is possible. Experiments have shown that a temperature stability up to 1600 ° C is guaranteed.
  • the granules behave inert in terms of reaction and thus offer the certainty that they do not react as inserted filling material with the substances to be processed.
  • Suitable SiO 2 suppliers are all silicon powders which contain high proportions of amorphous SiO 2 or silica. Particularly suitable are microsilica, silica filter dust and mixtures of microsilica or silica filter dust and rice husk ash in different proportions by weight. The addition of further additives for defined bulk density or particle size control is possible. The composition of the starting materials and the mixing ratio of the components involved allows the control of the grain size. At the same time, these parameters also influence the carbon content that is important for the iron and foundry industry.
  • the silicon dioxide used is preferably silica filter dust, which is obtained without carbon in the silicon or silicon-producing industry and has a consistently high SiO 2 content of at least 90%. Particularly preferred is a filter dust is used, which is obtained from the flue gas scrubbing the residue combustion in the silicone production. It is irrelevant whether the silicon powder is already in the dried state or in wet chunk form as a filter cake. The silicon dioxide can be used without further drying in the form of the resulting filter cake. The already existing moisture is often enough to cause a direct granulation by stirring.
  • pretreat a caked filter cake by digestion for example by comminution / milling / sieving, in particular by pressing the puffy SiO 2 through a perforated screen, so that an open-pored structure important for granulation is obtained.
  • the granulation must be carried out from a defined moisture, which may be based on the used SiO 2 at a water content of up to 150% based on the total mass.
  • Useful water contents are 25 to 150%; Typically, proportions of 30 to 80%, in particular 30 to 70% are particularly suitable.
  • This slightly empirically determined moisture content must be met quite accurately for a given presented mixture, since too little water does not give rise to granules, only local lumps form in the powder. Further addition of water causes the granules to germinate and grow more and more. This happens until, in a moist granulation equilibrium, the added water combines to form an earth-entrained mass with the germs.
  • the granulation equilibrium is again shifted to an unfavorable range: the granules lose their structure and, depending on the amount of water, a viscous to light-bodied pasty pulp, which can be moved back into the granulation only by re-addition of solids.
  • the stirring time the granules can be further increased, which, if necessary, reach their final spherical shape after transfer into the granulating. If the quality of the resulting granules in the stirrer is already sufficient, pelletizing in the plate can be dispensed with.
  • the components used in a targeted manner by pasting with water to form granules are used in a targeted manner by pasting with water to form granules.
  • the silicon dioxide and optionally present additives expediently have a particle size which is below, preferably significantly below, the desired granule size.
  • a particle size of the starting materials of not more than 0.1 mm is well suited. A finer grind operated with higher technical effort remains without appreciable effect with this granule size.
  • substances which are used as thickening agents in food chemistry are used as additives.
  • these are first prepared in a low-percentage solution in order to influence the size of the granules after already done ate Trent of the components to be used with water and an incipient granulation.
  • the addition of dilute thickening agent solution allows the granules to be enlarged as required so that, depending on the area of application, granules of up to several centimeters in diameter can be produced in a targeted manner. Due to the agglomerating property of the additive at the same time an increase in the bulk density is observed, which in turn depends on the used and percentage composition of the SiO 2 component (s) is. It should be noted that this addition is not required for granule formation.
  • High-melting oxides or carbonates of the alkali and alkaline earth metals can also be used as additives.
  • the pH of the granules produced changes, and the formation of eutectics lowers the melting point of the mixtures in comparison to pure SiO 2 .
  • To control the pH it is also possible, if this is not to be achieved by adding an additive, to influence the silicic acid to be used in the aftertreatment by aqueous solutions of acidic or basic precipitation additions so that the granule preparation is already preceded by a filter dust with a defined pH Value takes place.
  • the effects of the precipitants used in filter dust precipitation which lead to accelerated formation of solids, must be taken into account.
  • the granules according to the invention are preferably prepared from silicon dioxide powder with the addition of water and optionally additives in a stirrer. As far as e.g. for optimal flow behavior as uniform as possible spherical shape is desired, followed by further processing in a pelletizing.
  • a SiO 2 for example, a silica filter slurry is introduced. This can be immediately pasted while stirring with water; Alternatively, rice husk ash in variable proportions can be added to the filter slurry before the addition of water, which is then mixed with water in the next step as a homogeneous mixture.
  • the already formed granules can be treated with the described additives; also by adding Reisschalenasche a granule enlargement is possible. Since the granules already formed during stirring, a subsequent treatment of the same in the granulating is not absolutely necessary, but leads to a regular spherical shape, which is desirable for certain applications.
  • the increase in size can be terminated by spraying with rice husk ash or filter dust, wherein it has been shown that the rice husk ash is particularly well suited for this process.
  • a rice husk ash addition of about 0.5% based on the total mixture is sufficient. It produces dull black granules with a size of 0.5 - 5mm, depending on the stirring time and Reisschalenaschezugabe.
  • Spraying the granules formed with weakly concentrated thickener liquid as an additive further increases the size, so that the granules can be built up to spheres with a diameter of several centimeters.
  • black-gloss granules are produced, which can be powdered again using filler or rice husk ash.
  • the process of enlarging the resulting granules can be carried out in the same way in the granulating; the granules differ only in the rounder form.
  • An alternative in the granulator is a final spraying of the granules with water, which softens the surface of the granules and leads to a perfect spherical shape due to the rotation in the plate.
  • the rice husk ash can be added as required in any weight ratios; In practice, shares of up to 30% ash have led to a good result. At the same time, however, the addition of the rice husk ash increases the bulk density.
  • pH neutrality of the granules which are at pH 8.
  • An aggregate should be pH-neutral as changes in pH may have a negative impact on the substance being processed or the forms in which the substance is processed and transported.
  • the granule size can also be influenced by the residence time in the stirrer or later in the pelletizing plate. In both cases, an extension leads to an enlargement of the granules, whereby the evaporation of the water at the granule surface dries them increasingly and the granulation comes to a standstill. An enlargement of the granules is only possible as long as the outside of the granules has a residual moisture, which allows by their pasty surface, an addition of further material.
  • the previously used powdered materials have the disadvantage of lack of flow properties and are therefore less favorable to handle and dosage. Especially the production of granules with a defined grain size leads to a possibility of customer and application-specific adaptation for the particular application.
  • the granules according to the invention have a bulk density of 0.2 to 0.7 kg / l, e.g. of 0.5 kg / l and thus meet the demand for a lightweight granules with a low bulk density.
  • the finished product can be transported and deposited in sacks or BigBags of different sizes, in troughs or silos.
  • microsilica (Elcem, Norway) having the following composition: SiO 2 : 91.1%, Fe 2 O 3 : 2.5%, Al 2 O 3 : 0.9%, MgO: 1.1%, K 2 O. : 1.7%, Na 2 O: 0.4%, SO 3 : 0.4%, residual moisture 0.5% and total carbon content. 1.65% was mixed with 30 g of water. The mass was thoroughly mixed in the stirrer, it formed granule nuclei, which increased in size with lasting stirring time. To achieve a smooth surface, the granules were powdered with 5g rice husk ash. The granules had a particle size of 0.5-3 mm and a bulk density of 0.6 kg / l.
  • the conglomerate is fed to a granulating and dried in a belt dryer.
  • the pellets in the plate can be influenced in size. Screening in the dryer returns dust and large chunks to the Eirich mixer.
  • the pellets had a bulk density of 0.5 kg / l and a softening temperature of 1,600 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Silicon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)
  • Glanulating (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft isolierende Granulate, die sich als Isolier- und/oder Trennmittel für Hochtemperaturanwendungen eignen, sowie ihre Herstellung.
  • In den derzeitigen Anwendungsbereichen von hochtemperaturbeständigen Füllstoffen, beispielsweise in der Eisen-, Gießerei- und Bauindustrie, kommen Sande und Aschen bzw. deren Mischungen zum Einsatz, die sich durch Temperaturstabilität und Reaktionspassivität auszeichnen. Diese Zusatzstoffe werden teilweise in ihrer staubförmig anfallenden Form, zum Teil in Form von Granulaten zugesetzt. Die pulverförmigen Stoffe gelten wegen der auftretenden Staubwirkung als gesundheitsschädlich und sollen daher sukzessive durch Granulate vergleichbarer Funktionalität ersetzt werden.
  • Die Granulate sollen in unterschiedlichen Korngrößen zum Einsatz kommen und werden durch Sprüh- oder Pelletiertellergranulierung mit teilweise erheblichem technischem Aufwand hergestellt. Für die Anwendungsbereiche in der eisen- und stahlverarbeitenden Industrie ist neben der Temperatur- und Transportstabilität ein geringer Kohlenstoffanteil gefordert, da der Kohlenstoffanteil im Zusatzstoff die Eigenschaft von Eisen und Stahl in ungewünschter Art verändert. Zusätzlich zu den erwähnten Eigenschaften ist in der Gießereitechnik ein konstantes Volumen des Zuschlagstoffes über den gesamten Temperaturbereich erwünscht, da eine Volumenänderung der eingesetzten Füll- und Trennstoffe zu einer ungewollten Änderung der Gussformgeometrie führt. Im Baubereich sind hingegen neben thermischer Stabilität die schallisolierenden Eigenschaften von herausragender Bedeutung.
  • Aus DE 197 28 368 ist es bekannt, dass feinpulvrige saure oder basische Isoliermittel in einer Matrix aus gelbildenden Materialien zu Granulaten vereinigt werden können, die sich als isolierende Abdeckmittel in der Stahlgießerei eignen. Die Granulate weisen gegenüber den pulvrigen Isoliermitteln ein verringertes Schüttgewicht auf. Als gelbildende Materialien sind Guarmehl und Hydroxyethylcellulose genannt. Nachteilig an diesen Granulaten ist, dass aus dem gelbildenden Material somit noch erhebliche Mengen an Kohlenstoff enthalten sein können, die zu einer Verunreinigung des Stahls führen können.
  • Es besteht daher weiter ein Bedarf an Trenn- und Isoliermitteln auf Basis granulierter Pellets mit definierten chemischen und physikalischen Eigenschaften in verfahrenstechnisch steuerbaren, reproduzierbaren Korngrößen, die sich durch hohe Temperatur- und Stoffstabilität auszeichnen und sich daher für Anwendungsbereiche in unterschiedlichen Industriezweigen eignen, in denen pulvrige Stoffe bzw. Mischungen derselben oder Granulate mit isolierenden, volumenkonstanten Füll- bzw. Trennmitteln/Zuschlagstoffen zur Anwendung kommen sowie zugehörigem Herstellungsverfahren.
  • Überraschend wurde nun gefunden, dass sich amorphes Siliziumdioxidpulver unter Zugabe von Wasser zu Granulaten verarbeiten lässt, die die gewünschten Eigenschaften aufweisen.
  • Die Aufgabe der vorliegenden Erfindung wird daher gelöst durch isolierende Granulate, welche aus einem amorphen Siliziumdioxidpulver durch Pelletierung unter Zugabe von Wasser in einem Verhältnis von Feststoff:Wasser von 1:0,25 bis 1:1,5 erhältlich sind.
  • Die erfindungsgemäßen Granulate bieten den Vorteil guter Umweltverträglichkeit bei herstellungstechnisch steuerbarer Korngröße bzw. Schüttgewicht. Neben einer konventionellen Materialdosierung von Hand ist so eine automatisierte Aufgabe möglich. In Versuchen hat sich gezeigt, dass eine Temperaturstabilität bis 1600 °C gewährleistet ist. Gleichzeitig verhalten sich die Granulate reaktionstechnisch inert und bieten damit die Gewissheit, dass sie als eingesetztes Füllmaterial nicht mit den zu verarbeitenden Substanzen reagieren.
  • Als SiO2-Lieferant kommen alle Siliziumpulver in Frage, die hohe Anteile amophes SiO2 bzw. Kieselsäure enthalten. Besonders geeignet sind Mikrosilika, Siliziumdioxidfilterstaub sowie Mischungen aus Mikrosilika oder Siliziumdioxidfilterstaub und Reisschalenasche in unterschiedlichen Gewichtsanteilen. Die Zugabe weiterer Additive zur definierten Schüttdichten- bzw. Korngrößensteuerung ist möglich. Die Zusammensetzung der Ausgangsstoffe und das Mischungsverhältnis der beteiligten Komponenten ermöglicht die Steuerung der Korngröße. Gleichzeitig beeinflussen diese Parameter auch den für die Eisen- und Gießereiindustrie wichtigen Kohlenstoffanteil.
  • Als Siliziumdioxid wird bevorzugt Siliziumdioxidfilterstaub, der kohlenstofffrei in der Silikon bzw. Silizium herstellenden Industrie anfällt und einen gleichbleibend hohen SiO2-Anteil von mindestens 90% aufweist, eingesetzt. Besonders bevorzugt wird ein Filterstaub eingesetzt, der aus der Rauchgaswäsche der Rückstandsverbrennung in der Silikonherstellung erhalten wird. Dabei ist unerheblich, ob das Siliziumpulver in bereits getrocknetem Zustand vorliegt oder in feuchter Brockenform als Filterkuchen. Das Siliziumdioxid kann ohne weitere Trocknung in Form des anfallenden Filterkuchens eingesetzt werden. Die bereits vorhandene Feuchte reicht hierbei oft aus, um durch Rühren eine direkte Granulatbildung zu bewirken. Es ist zweckmäßig, einen zusammengebackenen Filterkuchen durch Aufschliessen, beispielsweise durch Zerkleinern / Mahlen / Sieben, insbesondere mittels Pressen des brockigen SiO2 durch ein Lochsieb, vorzubehandeln, damit eine für das Granulieren wichtige offenporige Struktur erhalten wird.
  • Es hat sich ferner gezeigt, dass ein aus der Entwässerung mit einer Kammerfilterpresse anfallender Filterkuchen mit einem Feuchtegehalt um 60% direkt ohne weitere Wasserzugabe granuliert werden kann, nachdem er zuvor aufgeschlossen worden ist und in einer aufgelockerten, offenporigen (blumenerde-artigen) Konsistenz vorliegt.
  • Bei Filterschlämmen mit geringen Feuchteanteilen muss der getrocknete und ggf. gemahlene Filterkuchen durch definierte Wasserzugabe zunächst in den Granulierungsbereich gebracht werden, wobei ein Zerkleinern bzw. Mahlen zum Erreichen der beschriebenen offenporigen Struktur gleichfalls bevorzugt ist.
  • In jedem Fall muss die Granulierung aus einer definierten Feuchte heraus erfolgen, die abhängig vom verwendeten SiO2 bei einem Wasseranteil von bis zu 150% bezogen auf die Gesamtmasse liegen kann. Brauchbare Wasseranteile sind 25 bis 150 %; typischerweise eignen sich Anteile von 30 bis 80 %, insbesondere 30 bis 70 % besonders gut. Dieser leicht empirisch zu bestimmende Feuchteanteil muss für eine bestimmte vorgelegte Mischung recht genau eingehalten werden, da zu wenig Wasser keine Granulate entstehen lässt, es bilden sich lediglich lokale Klumpen im Pulver. Weitere Wasserzugabe lässt die Granulate keimen und zunehmend ihre Größe wachsen. Dies geschieht, bis sich in einem feuchten Granulierungsgleichgewicht das zugebene Wasser zu einer erdartigaufgeschlossenen Masse mit den Keimen vereinigt. Durch weitere Wasserzugabe wird das Granulierungsgleichgewicht wieder in einen ungünstigen Bereich verschoben: die Granulate verlieren ihre Struktur und es entsteht in Abhängigkeit der Wassermenge ein dickflüssig bis leichtflüssiger pastöser Brei, der nur durch erneute Feststoffzugabe wieder in den Granulierungsbereich verschoben werden kann.
  • Durch die Rührdauer können die Granulate weiter vergrößert werden, die ggfs. nach Überführen in den Granulierteller ihre endgültige Kugelform erreichen. Ist die Qualität des entstehenden Granulats im Rührer bereits ausreichend, kann auf eine Pelletierung im Teller verzichtet werden.
  • Wird als SiO2-Lieferant zusätzlich Reisschalenasche eingesetzt, ist zu berücksichtigen, dass die Asche keine Verklumpungen bzw. Spelzen enthält, da diese bei der Granulatherstellung zu unerwünschter, unkontrollierter Brockenbildung führt. Bei Zugabe von Reisschalenasche wird eine spezielle kohlenstoffarme Asche mit ca. 5% C-Gehalt bevorzugt. Der Anteil der Reisschalenasche beträgt aus Kostengründen vorzugsweise bis zu 30%. Dies führt zu einem Gesamtkohlenstoffanteil von unter 2%, vorzugsweise unter 1 %, in den fertigen Granulaten. Solche Granulate eignen sich besonders gut zur Anwendung als Zuschlagstoff bzw. Isoliermittel in der Eisen- und Gießereiindustrie.
  • Bei der Granulatbildung sollen die eingesetzten Komponenten in gezielter Weise durch Anteigen mit Wasser zu Granulat zusammenbacken. Das Siliziumdioxid und gegebenenfalls vorhandene Additive weisen dabei zweckmäßig eine Korngröße auf, die unter, vorzugsweise deutlich unter, der gewünschten Granulatgröße liegt. Für eine Granulatgröße von z.B. 0,5 mm ist eine Teilchengröße der Ausgangsmaterialien von maximal 0,1 mm gut geeignet. Eine mit höherem technischen Aufwand betriebene feinere Mahlung bleibt bei dieser Granulatgröße ohne nennenswerte Auswirkung.
  • In einer Ausführungsform werden als Additive Substanzen eingesetzt, die in der Lebensmittelchemie als Verdickungsmittel zur Anwendung kommen. Zur Anwendung werden diese zunächst in einer geringprozentigen Lösung angesetzt, um nach bereits erfolgter Anteigung der einzusetzenden Komponenten mit Wasser und einer beginnenden Granulatbildung die Größe der Granulate zu beeinflussen. Durch die Zugabe von verdünnter Verdickungsmittellösung können die Granulate je nach Bedarf vergrößert werden, so dass je nach Einsatzbereich gezielt Granulate bis zu mehreren Zentimetern Durchmesser hergestellt werden können. Durch die agglomerierende Eigenschaft des Additivs ist gleichzeitig ein Ansteigen des Schüttgewichts festzustellen, das wiederum abhängig von der eingesetzten und prozentualen Zusammensetzung der SiO2-Komponente(n) ist. Es ist festzuhalten, dass dieser Zusatz für eine Granulatbildung nicht erforderlich ist.
  • Hochschmelzende Oxide oder Carbonate der Alkali- und Erdalkalimetalle, wie beispielsweise MgO, CaO, CaCO3, Fe2O3, können ebenfalls als Additive eingesetzt werden. In diesem Fall verändert sich durch die basischen bzw. sauren Eigenschaften der Komponenten in wässriger Lösung der pH-Wert der erzeugten Granulate und durch die Bildung von Eutektika wird der Schmelzpunkt der Mischungen im Vergleich zum reinen SiO2 erniedrigt. Zur Steuerung des pH-Werts kann auch, sofern dies nicht durch eine Additivzugabe erreicht werden soll, die aus dem Filterstaub einzusetzende Kieselsäure bei der Nachbehandlung durch wässrige Lösungen saurer bzw. basischer Fällungszugaben beeinflusst werden, so dass die Granulatherstellung bereits von einem Filterstaub mit definiertem pH-Wert erfolgt. Die Auswirkungen der im Rahmen der Filterstaubfällung zum Einsatz kommenden Fällungsmittel, die zu einer beschleunigten Feststoffbildung führen, sind hierbei zu berücksichtigen.
  • Die erfindungsgemäßen Granulate werden vorzugsweise aus Siliziumdioxidpulver unter Zugabe von Wasser und gegebenenfalls Additiven in einem Rührer hergestellt. Sofern z.B. für ein optimales Fließverhalten eine möglichst gleichmäßige Kugelform erwünscht ist, schließt sich eine Weiterverarbeitung in einem Pelletierteller an.
  • Es ist auch möglich, die Granulate durch andere Agglomerations- bzw. Granulierverfahren als die Pelletierung in einem Rührer vorzunehmen. Vorzugsweise sollen keine oder nur sehr geringe Druckkräfte bei der Granulierung angewandt werden. Geeignet sind z.B. Siebgranulatoren oder Vertikalgranulatoren sowie die Wirbelschichtgranulation. Die auch bekannten Kompaktierungsverfahren sind nur geeignet, wenn ein etwas höheres Schüttgewicht akzeptabel ist.
  • Beim Herstellen des Granulats wird zunächst ein SiO2, beispielsweise ein Kieselsäure-Filterschlamm vorgelegt. Dieser kann sofort während des Rührens mit Wasser angeteigt werden; alternativ kann zum Filterschlamm noch vor der Wasserzugabe Reisschalenasche in veränderlichen Anteilen zugegeben werden, die dann im nächsten Schritt als homogene Mischung mit Wasser versetzt wird.
  • Beim Rühren der angeteigten Mischung bilden sich nach kurzer Zeit Keime, die bereits die Struktur der zu bildenden Granulate enthalten. Mit wachsender Rührdauer nimmt der Durchmesser der Keime zu, bis ein Granulat in der gewünschten Größe entsteht. Ist die zugegebene Wassermenge zu groß, verlieren die Granulate wieder ihre Konsistenz und es bildet sich ein pastöser Brei, der nur durch Zugabe von weiterem Festsoff (Filterstaub oder Reisschalenasche) wieder in das für die Granulierung notwendige SiO2-Wasser-Verhältnis gebracht werden kann.
  • Zur weiteren Steuerung der Granulatgröße können die bereits gebildeten Granulate mit den beschriebenen Additiven behandelt werden; auch durch eine Zugabe von Reisschalenasche ist eine Granulatvergrößerung möglich. Da die Granulate bereits beim Rühren entstehen, ist ein nachträgliches Behandeln derselben im Granulierteller nicht unbedingt notwendig, führt jedoch zu einer regelmäßigen Kugelform, die für bestimmte Anwendungen erwünscht ist.
  • Unabhängig von der Weiterbehandlung kann die Zunahme der Größe durch Abpulvern mit Reisschalenasche oder Filterstaub beendet werden, wobei sich gezeigt hat, dass die Reisschalenasche für diesen Vorgang besonders gut geeignet ist. Eine Reisschalenaschezugabe von ca. 0,5% bezogen auf die Gesamtmischung ist ausreichend. Es entstehen mattschwarze Granulate mit einer Grösse von 0,5 - 5mm, je nach Rührdauer und Reisschalenaschezugabe.
  • Ein Besprühen der gebildeten Granulate mit schwachkonzentrierter Verdickungsmittelflüssigkeit als Additiv lässt die Größe weiter ansteigen, so dass die Granulate bis zu Kugeln mit mehren Zentimetern Durchmesser aufgebaut werden können. Es entstehen im Unterschied zu den Verdickungsmittelfreien Granulaten schwarzglänzende Granulate, die durch Füller- oder Reisschalenasche erneut abgepudert werden können.
  • Der Vorgang der Vergrößerung der entstandenen Granulate ist in gleicher Weise im Granulierteller durchführbar; die Granulate unterscheiden sich lediglich in der runderen Form. Eine Alternative im Granulierteller ist ein abschließendes Besprühen des Granulats mit Wasser, das die Oberfläche der Granulate aufweicht und durch die Rotation im Teller zu einer perfekten Kugelform führt.
  • Es ist vorteilhaft, den Filterstaub von Anfang an in einem vorgegebenen Verhältnis mit Reisschalenasche zu mischen, hierdurch ist die Granulatgröße besser steuerbar. Dabei kann die Reisschalenasche je nach Bedarf in beliebigen Gewichtsverhältnissen zugegeben werden; in der Praxis haben Anteile bis zu 30% Asche zu einem guten Ergebnis geführt. Gleichzeitig lässt die Zugabe der Reisschalenasche aber das Schüttgewicht ansteigen.
  • Ein weiterer, für einige Einsatzgebiete wichtiger Aspekt ist die pH-Neutralität der Granulate, die bei pH-Wert 8 liegen. Ein Zuschlagstoff sollte sich pH-neutral verhalten, da Änderungen des pH-Werts negative Auswirkungen auf den zu verarbeitenden Stoff bzw. die Formen, in denen der Stoff verarbeitet und transportiert wird, nach sich ziehen können.
  • Im Gegensatz zu dem aus DE 197 28 368 bekannten Verfahren kommt der vorliegende Herstellungsprozess ohne das Vereinigen der eingesetzten Pulver zu einer Matrix unter Zuhilfenahme eines gelbildenden Materials aus. Der Einsatz des amorphen SiO2 ermöglicht eine direkte Granulierung.
  • Durch Variation der Ausgangsstoffe, Anteigung durch definierte Wasserzugabe und Steuerung der Reaktionsbedingungen durch Verweilzeit und Neigung/Rotationsgeschwindigkeit des Pelletiertellers kann ein Granulat in definierter Korngröße von 0,5 ― 5 mm Größe hergestellt werden, das sich durch thermische und mechanische Stabilität bis in den Hochtemperaturbereich auszeichnet.
  • Die Granulatgröße kann auch durch die Verweilzeit im Rührer oder später im Pelletierteller beeinflusst werden. In beiden Fällen führt eine Verlängerung zu einem Vergrößern der Granulate, wobei durch die Verdunstung des Wassers an der Granulatoberfläche diese zunehmend abtrocknet und die Granulierung zum Stillstand kommt. Eine Vergrößerung der Granulate ist nur möglich, solange die Außenseite der Granulate eine Restfeuchte aufweist, die durch ihre pastöse Oberfläche ein Anlagern von weiterem Material ermöglicht. Gleiches gilt für das Rühren bzw. das Granulieren: Zunehmende Geschwindigkeit führt zu einer Vergrößerung der Granulate, wobei insbesondere beim Rühren ein Überschreiten einer definierten Umdrehungszahl des Rührers in Abhängigkeit von Behältergröße zerstörerische Wirkung auf die Granulate haben kann. Durch die Veränderung der Neigung des Granuliertellers ist eine weitere Möglichkeit gegeben, das Wachstum der Granulate zu steuern. Ein größerer Neigungswinkel lässt durch die Steilheit die Granulate durch die größere Gravitation bei gleichzeitig geringerer Reibung mit erhöhter Geschwindigkeit an den unteren Behälterrand fallen, wobei der Zusammenbackungsprozeß verstärkt wird. Dies führt ebenfalls zu einer Vergrößerung des Granulatdurchmessers. Durch eine nachgeschaltete Siebung kann der Korngrößenbereich dem jeweiligen Kundenwunsch entsprechend weiter eingegrenzt werden.
  • Dies ist in der füllstoffverarbeitenden Industrie von Bedeutung, da je nach Anwendungsfall eine bestimmte reproduzierbare Korngröße benötigt wird, die erfindungsgemäß durch Variation der Herstellungsparameter erreicht wird. Die Korngröße ist in Kombination mit dem Schüttgewicht von entscheidender Bedeutung, da beim Aufbringen bzw. Einleiten des Granulats in bzw. auf die Formen ein selbständiges Verlaufen für die Dosierung notwendig ist.
  • Die bisher zur Anwendung kommenden pulverförmigen Materialien haben hier den Nachteil fehlender Fließeigenschaften und sind daher ungünstiger in der Handhabung und Dosierung. Gerade die Herstellung von Granulat mit einer definierten Korngröße führt zu einer Möglichkeit der kunden- und anwendungsspezifischen Anpassung für das jeweilige Einsatzgebiet.
  • Die erfindungsgemäßen Granulate besitzen ein Schüttgewicht von 0,2 bis 0,7 kg/l, z.B. von 0,5 kg/l und erfüllen damit die Forderung nach einem leichten Granulat mit einem geringen Schüttgewicht.
  • Das fertige Produkt kann je nach Kundenwunsch in Säcken oder BigBags unterschiedlicher Größe, in Mulden oder Silos transportiert und aufgegeben werden.
  • Die folgenden Beispiele sollen die Erfindung näher erläutern, ohne sie jedoch auf die konkrete beschriebenen Ausführungsformen zu beschränken. Alle %-Angaben beziehen sich, soweit nicht anders angegeben, auf Gew.-%.
  • Beispiel 1
  • 60 g Mikrosilika (Elcem, Norwegen) mit folgender Zusammensetzung: SiO2: 91,1%, Fe2O3: 2,5%, Al2O3: 0,9%, MgO: 1,1%, K2O: 1,7%, Na2O: 0,4%, SO3: 0,4%, Restfeuchte 0,5% und Gesamt Kohlenstoff-Gehalt. 1,65% wurden mit 30 g Wasser gemischt. Die Masse wurde im Rührer intensiv durchmischt, es bildeten sich Granulat-Keime, die mit anhaltender Rührdauer an Größe zunahmen. Um eine glatte Oberfläche zu erreichen, wurden die Granulate mit 5g Reisschalenasche abgepudert. Die Granulate hatten eine Korngröße von 0,5 - 3 mm und ein Schüttgewicht von 0,6 kg/l.
  • Beispiel 2:
  • 48 g des Siliziumdioxidpulvers aus Beispiel 1 wurden mit 12 g Reisschalenasche mit folgender Zusammensetzung
    SiO2: 87%, CaO: 1 %, Al2O3: 0,2%, Na2O: 0,2%, K2O: 2%, Fe2O3: 0,15%, Cges: 6,2%, Restfeuchte 1,1 %
    und 25 g Wasser gemischt. Anschließend wurde die Masse im Rührer gerührt, wobei sich nach kurzer Zeit offenporige Pellets bilden, die bei langsam drehendem Rüher anwachsen. Weiterrühren führt zu ca. 3 mm großen Verklumpungen, die die Bildung des Granulats darstellen. Weiterbehandlung im Pelletierteller führ zu glatten Pellets, die weiter wachsen. Abpudern mit SiO2 stoppt die Vergrößerung und führt zu gleichmäßiger Oberfläche und runder Struktur. Die Granulate hatten eine Korngröße von 2 - 5 mm und ein Schüttgewicht von 0,62 kg/l.
  • Beispiel 3:
  • 160 kg Siliziumdioxidpulver mit der Zusammensetzung
    SiO2: 96,7%, CaO: 1 %, Al2O3: 0,2%, Na2O: 0,03%, K2O: 0,01 %, Fe2O3: 0,2%, Cges: 0,75%, Restfeuchte 1 %
    wurden mit 40 kg Reisschalenasche mit folgender Zusammensetzung:
    SiO2: 87%, CaO: 1 %, Al2O3: 0,2%, Na2O: 0,2%, K2O: 2%, Fe2O3: 0,15%, Cges: 6,2%, Restfeuchte 1,1%
    und 138 kg Wasser in einem Eirich-Mischer vermischt. Über einen Dosierer und eine Förderschnecke wird das Konglomerat einem Granulierteller zugeführt und in einem Bandtrockner getrocknet. Durch Abpudern mit SiO2 bzw. Besprühen mit Wasser können die Pellets im Teller in ihrer Größe beeinflußt werden. Eine Siebung im Trockner führt Staubanteile und zu große Brocken in den Eirich-Mischer zurück. Die Pellets hatten ein Schüttgewicht 0,5 kg/l und eine Erweichungstemepratur von 1.600°C.

Claims (12)

  1. Granulate mit einem Schüttgewicht von 0,2 bis 0,7 kg/l als Isolier- oder Trennmittel für Hochtemperaturanwendungen bestehend aus einem Siliziumdioxidpulver, wobei Additive enthalten sein können, ausgewählt unter hochschmelzenden Oxiden zur Veränderung des pH-Werts und/oder Schmelzpunkts der Granulate und Verdickungsmitteln zur Steuerung der Größe, dadurch gekennzeichnet, dass die Granulate aus amorphem Siliziumdioxidpulver mit einem Gehalt von mindestens 90% SiO2, ausgewählt unter Mikrosilika, Siliziumdioxidfilterstaub sowie Mischungen aus Mikrosilika und/oder Siliziumdioxidfilterstaub mit Reisschalenasche durch Granulierung unter Zugabe von Wasser und anschließende Trocknung erhältlich sind.
  2. Granulate gemäß Anspruch 1, dadurch gekennzeichnet, dass die Granulate durch Pelletierung erhältlich sind.
  3. Granulate gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass Siliziumdioxidfilterstaub als Siliziumdioxidpulver enthalten ist.
  4. Granulate gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass Mischungen aus Siliziumdioxidfilterstaub mit Reisschalenasche in unterschiedlichen Gewichtsanteilen als Siliziumdioxidpulver enthalten sind.
  5. Granulate gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass Additive zur Einstellung von Schüttdichte bzw. Korngröße enthalten sind.
  6. Granulate gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Gesamtkohlenstoffanteil unter 2 % beträgt.
  7. Granulate gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Korngröße im Bereich von 0,5 - 5 mm liegt.
  8. Verfahren zur Herstellung von Granulaten mit einem Schüttgewicht von 0,2 bis 0,7 kg/l als Isolier- oder Trennmittel für Hochtemperaturanwendungen, wobei
    a) Siliziumdioxidpulver, ausgewählt unter Mikrosilika, Siliziumdioxidfilterstaub sowie Mischungen aus Mikrosilika oder Siliziumdioxidfilterstaub mit Reisschalenasche, ggfs unter Zusatz von Verdickungsmitteln als Additiv zur Steuerung der Größe und/oder unter Zusatz von hochschmelzenden Oxiden als Additiv zur Veränderung von pH-Wert und/oder Schmelzpunkt der Granulate, mit Wasser in einem Verhältnis von Feststoff:Wasser von 1:0,25 bis 1:1,5 angeteigt wird,
    b) die Masse in an sich bekannter Weise granuliert wird und
    c) die Granulate getrocknet werden
    dadurch gekennzeichnet, dass das Siliziumdioxidpulver mindestens 90% amorphes SiO2 enthält.
  9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, dass die Masse pelletiert wird.
  10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass die Korngröße der Granulate über die Verweilzeit und/oder die Neigung und/oder die Rotationsgeschwindigkeit bei der Pelletierung auf 0,5 - 5 mm eingestellt wird.
  11. Verfahren gemäß einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Korngröße über die Menge an Wasser und/oder die Zusammensetzung des Siliziumdioxidpulvers gesteuert wird.
  12. Verfahren gemäß einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass das Schüttgewicht über die Menge an Wasser und/oder die Zusammensetzung des Siliziumdioxidpulvers gesteuert wird.
EP05011589A 2004-05-29 2005-05-30 Isolierende Granulate für Metallstranggiessen und deren Herstellungsverfahren Not-in-force EP1602425B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004026443 2004-05-29
DE102004026443A DE102004026443B3 (de) 2004-05-29 2004-05-29 Isolierende Granulate für Anwendungen im Hochtemperaturbereich

Publications (2)

Publication Number Publication Date
EP1602425A1 EP1602425A1 (de) 2005-12-07
EP1602425B1 true EP1602425B1 (de) 2009-08-05

Family

ID=34982613

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05011589A Not-in-force EP1602425B1 (de) 2004-05-29 2005-05-30 Isolierende Granulate für Metallstranggiessen und deren Herstellungsverfahren

Country Status (4)

Country Link
EP (1) EP1602425B1 (de)
AT (1) ATE438471T1 (de)
DE (2) DE102004026443B3 (de)
ES (1) ES2331522T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013000527A1 (de) 2013-01-15 2014-07-17 Hans-Peter Noack Verfahren zur Abdeckung einer Metallschmelze und Abdeckmaterial

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT504328B8 (de) * 2007-05-22 2008-09-15 Kdm Engineering Gmbh Verwendung eines zusatzstoffes für einen baustoff und verfahren zur herstellung eines baustoffes
WO2012087091A1 (es) * 2010-12-21 2012-06-28 Hanhausen Mariscal Juan Luis Proceso para producir una fibra aislante, térmica y orgánica y producto resultante
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
US9140481B2 (en) 2012-04-02 2015-09-22 Whirlpool Corporation Folded vacuum insulated structure
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US11994336B2 (en) 2015-12-09 2024-05-28 Whirlpool Corporation Vacuum insulated structure with thermal bridge breaker with heat loop
EP3387351B1 (de) 2015-12-09 2021-10-13 Whirlpool Corporation Vakuumisolationskonstruktionen mit mehreren isolatoren
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
WO2017180145A1 (en) 2016-04-15 2017-10-19 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
WO2017180147A1 (en) 2016-04-15 2017-10-19 Whirlpool Corporation Vacuum insulated refrigerator cabinet
DE102016112042B4 (de) * 2016-06-30 2019-10-02 Refratechnik Holding Gmbh Wärmedämmender, feuerfester Formkörper, insbesondere Platte, und Verfahren zu dessen Herstellung und dessen Verwendung
EP3491308B1 (de) 2016-07-26 2021-03-10 Whirlpool Corporation Verkleidungsbrecher einer vakuumisolierten struktur
WO2018034665A1 (en) 2016-08-18 2018-02-22 Whirlpool Corporation Machine compartment for a vacuum insulated structure
WO2018101954A1 (en) 2016-12-02 2018-06-07 Whirlpool Corporation Hinge support assembly
US10352613B2 (en) 2016-12-05 2019-07-16 Whirlpool Corporation Pigmented monolayer liner for appliances and methods of making the same
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
US10907891B2 (en) 2019-02-18 2021-02-02 Whirlpool Corporation Trim breaker for a structural cabinet that incorporates a structural glass contact surface
DE102019131241A1 (de) 2019-08-08 2021-02-11 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechendes Granulat sowie Kit, Vorrichtungen und Verwendungen
US12070924B2 (en) 2020-07-27 2024-08-27 Whirlpool Corporation Appliance liner having natural fibers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2917763A1 (de) * 1979-05-02 1980-11-13 Wacker Chemie Gmbh Giesspulver zum stranggiessen von stahl
JPS5677060A (en) * 1979-11-30 1981-06-25 Fuji Raito Kogyo Kk Amorphous particle of pseudo spherical surface shape and its production
AT394320B (de) * 1987-02-20 1992-03-10 Tisza Bela & Co Verfahren zur herstellung von granuliertem stranggiesspulver
AT404098B (de) * 1991-03-28 1998-08-25 Tisza Bela & Co Verfahren zur herstellung von granuliertem stranggiesspulver
FR2729875A1 (fr) * 1995-01-27 1996-08-02 Lorraine Laminage Poudre de couverture de lingotiere de coulee continue de l'acier, notamment d'aciers a tres basse teneur en carbone
DE19728368C1 (de) * 1997-07-03 1999-03-04 Georg Heller Isolierende Abdeckmittel für Stahl
IT1318522B1 (it) * 2000-05-17 2003-08-27 Mario Frandino Procedimento per la preparazione di agglomerati stabilizzati da ceneredi lolla e paglia di riso.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013000527A1 (de) 2013-01-15 2014-07-17 Hans-Peter Noack Verfahren zur Abdeckung einer Metallschmelze und Abdeckmaterial
WO2014111334A2 (de) 2013-01-15 2014-07-24 Hans-Peter Noack Verfahren zur abdeckung einer metallschmelze und abdeckmaterial
DE202014011135U1 (de) 2013-01-15 2018-01-25 Hans-Peter Noack Granulat zur Abdeckung einer Metallschmelze

Also Published As

Publication number Publication date
ATE438471T1 (de) 2009-08-15
ES2331522T3 (es) 2010-01-07
DE102004026443B3 (de) 2006-02-02
DE502005007824D1 (de) 2009-09-17
EP1602425A1 (de) 2005-12-07

Similar Documents

Publication Publication Date Title
EP1602425B1 (de) Isolierende Granulate für Metallstranggiessen und deren Herstellungsverfahren
DE4207923A1 (de) Herstellung von granuliertem erdalkalimetallcarbonat
EP3704078B1 (de) Verfahren zur herstellung polyhalithaltiger düngemittelgranulate
EP1897436B1 (de) Mineralisches Granulat, Verfahren zu seiner Herstellung und Verwendung des Granulats
EP0692524B1 (de) Verfahren zur Herstellung von Kieselsäuregranulat und Verwendung des so hergestellten Granulats
DE19728368C1 (de) Isolierende Abdeckmittel für Stahl
EP3704081B1 (de) Verfahren zur herstellung kalium, magnesium und sulfat enthaltender granulate
EP3704079B1 (de) Granulate, enthaltend polyhalit
DE10361993A1 (de) Granuläre Pigmente, die zum Färben von Beton geeignet sind
DE3438654A1 (de) Verfahren zur herstellung eines koernigen wasch- und reinigungsmittels
EP2528872A1 (de) Herstellungsverfahren eines agglomerierten glasgemenges
DE3853378T2 (de) Tauzubereitungen, die alkatische erde oder alkalimetall carbonylate enthalten und verfahren zur herstellung.
DE2108656A1 (de) Verfahren zur Aufbereitung von Gemengensatzen
DE102006034621B4 (de) Verfahren zur Granulierung von Kieserit und Kieserit enthaltenden mineralischen Düngemitteln
EP1897437B2 (de) Mineralisches Granulat, Verfahren zu seiner Herstellung und Verwendung des Granulats
EP3704080B1 (de) Verfahren zur herstellung kalziniert-polyhalithaltiger düngemittelgranulate
DE4229901C2 (de) Herstellung von granuliertem Strontiumcarbonat mit strontiumhaltigem Bindemittel
EP1047736B1 (de) Pigmentgranulate
EP1756008B1 (de) Rieselfähiges, agglomeriertes eisensulfat mit trägermaterial, verfahren zu dessen herstellung und dessen verwendung
DE102008031294A1 (de) Verfahren zur Herstellung von stabilen CaCO3-Formlingen
DE202006020016U1 (de) Mineralisches Granulat
DE202006020015U1 (de) Mineralisches Granulat
EP1882679B1 (de) Verfahren zur Granulierung von Kieserit und Kieserit enthaltenden mineralischen Düngemitteln
WO2021083444A1 (de) Verfahren zur herstellung von schwefelhaltigen kali-granulaten
DE2003501B2 (de) Verfahren zur Herstellung trockener, rieselfähiger Granalien, die im wesentlichen aus Natriumcarbonat und Natriumhydroxid bestehen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060327

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005007824

Country of ref document: DE

Date of ref document: 20090917

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2331522

Country of ref document: ES

Kind code of ref document: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091205

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091105

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091106

BERE Be: lapsed

Owner name: HELLER, STEFANIE

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100530

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100206

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20140521

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180524

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180518

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005007824

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190530