EP1601413B1 - Programmation de neurostimulateur implantable comportant une indication de la duree de vie de l'accumulateur - Google Patents
Programmation de neurostimulateur implantable comportant une indication de la duree de vie de l'accumulateur Download PDFInfo
- Publication number
- EP1601413B1 EP1601413B1 EP03781452A EP03781452A EP1601413B1 EP 1601413 B1 EP1601413 B1 EP 1601413B1 EP 03781452 A EP03781452 A EP 03781452A EP 03781452 A EP03781452 A EP 03781452A EP 1601413 B1 EP1601413 B1 EP 1601413B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- programs
- battery
- program
- information
- list
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/372—Arrangements in connection with the implantation of stimulators
- A61N1/37211—Means for communicating with stimulators
- A61N1/37235—Aspects of the external programmer
- A61N1/37241—Aspects of the external programmer providing test stimulations
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/37—Monitoring; Protecting
- A61N1/3706—Pacemaker parameters
- A61N1/3708—Pacemaker parameters for power depletion
Definitions
- the invention relates to implantable neurostimulators, and more particularly to programming of implantable neurostimulators.
- Implantable neurostimulators are used to deliver neurostimulation therapy to patients to treat a variety of symptoms or conditions such as chronic pain, tremor, Parkinson's disease, epilepsy, incontinence, or gastroparesis.
- implantable neurostimulators deliver neurostimulation therapy in the form of electrical pulses via leads that include electrodes.
- the electrodes may be located proximate to the spinal cord, pelvic nerves, or stomach, or within the brain of a patient.
- a clinician may select values for a number of programmable parameters in order to define the neurostimulation therapy to be delivered to a patient. For example, the clinician may select a voltage or current amplitude and pulse width for a stimulation waveform to be delivered to the patient, as well as a rate at which the pulses are to be delivered to the patient and a duty cycle. The clinician may also select as parameters particular electrodes within the electrode set carried by the leads to be used to deliver the pulses, and the polarities of the selected electrodes. A group of parameter values may be referred to as a program in the sense that they drive the neurostimulation therapy to be delivered to the patient.
- a clinician selects parameter values for a number of programs to be tested on a patient during a programming session using a programming device.
- the programming device directs the implantable neurostimulator implanted in the patient to deliver neurostimulation according to each program, and the clinician collects feedback from the patient, e.g., rating information, for each program tested on the patient.
- the clinician selects one or more programs for long-term use by the implantable neurostimulator based on the rating information.
- Some programming devices automatically present programs defined by the clinician to the INS, and collect feedback from the patient.
- One such programming device is described in U.S. Patent No. 6,308,102, issued to Sieracki et al.
- Implantable neurostimulators typically include a nonrechargeable battery that provides power for delivery of neurostimulation.
- the longevity of the battery depends on the parameters of the program selected by the clinician for long-term delivery of neurostimulation. In particular, the battery longevity is inversely proportional to the pulse amplitude, pulse rate, pulse width, and duty cycle specified by the program, and to the load presented to the battery. Generally speaking, the load presented to the battery depends on the number of electrodes specified by the program for delivery of neurostimulation.
- an implantable neurostimulator When the battery of an implantable neurostimulator is depleted, the implantable neurostimulator must be explanted from the patient and replaced. Replacement of an implantable neurostimulator is costly, and because it requires a surgical procedure the patient incurs risks associated with surgery. Nonetheless, clinicians typically do not consider battery longevity, e.g., the amount of time an implantable neurostimulator will be able to deliver neurostimulation according to a program before its battery expires, when selecting programs from among those tested during a programming session. This is despite the fact that battery longevities can vary greatly among the programs tested, e.g., from on the order of months up to two or more years.
- the invention is directed toward techniques for presenting battery longevity information to a user during a programming session for programming an implantable neurostimulator (INS).
- a programming device directs the INS to deliver neurostimulation therapy according to a plurality of programs during the programming session.
- the programming device estimates a battery drain rate for each of the tested programs.
- the programming device estimates a battery longevity for each of the tested programs based on the estimated drain rate, e.g., estimates a length of time that the INS will be able to deliver neurostimulation according to the program before the INS must be explanted and replaced due to battery depletion.
- Each of the programs includes parameters that define the neurostimulation delivered according to that program.
- each program may include as parameters a voltage or current pulse amplitude, a pulse width, a pulse rate, and a duty cycle.
- the program may also identify as parameters the electrodes selected from a set coupled to the INS and their polarities, e.g., anode or cathode, for delivery of neurostimulation according to that program.
- the programming device estimates battery drain rates for each of the programs tested during the programming session based on the parameters for that program.
- the programming device estimates the battery drain for a program based on the program parameters that define the neurostimulation waveform, and an estimate of the load presented to the battery during delivery of the neurostimulation waveform.
- the programming device estimates the load based on the number of anodes and cathodes for the program, and an assumed per-electrode impedance.
- the programming device alternatively or additionally estimates the load based on device configuration information, such as an INS type, lead type, and/or electrode locations.
- the programming device may receive the device configuration information from the user, and identify components of the total load presented to the battery from look-up tables based on the received device configuration information.
- the programming device may direct the INS to measure the impedance presented by each electrode coupled thereto, receive the measured impedance values, and determine the load for a particular program based on the impedances for the anodes and cathodes selected for that program.
- the estimated battery drain rates are presented to the user within a listing of the programs.
- a listing of battery longevities is presented instead of or in addition to the drain rates.
- the programming device may estimate battery longevities based on the estimated drain rates and the capacity of the battery, which may be determined from a look-up table based on device type information received from the user. Alternatively, the programming device may calculate battery longevities given the estimated drain rates, the capacity of the battery and one or more equations that determine battery longevity.
- the battery longevities may be presented to the user as, for example, an estimated number of years or months until explant.
- the listing may be ordered according to the battery drain rates and/or battery longevities to allow a user to select a program that provides a low drain rate and high longevity.
- the programming device additionally receives rating information for each of the programs tested during the programming session.
- the rating information may include, for example, an effectiveness score and/or an estimation of the overlap of a pain area of the patient with a paresthesia area resulting from delivery of neurostimulation according to the program.
- the rating information is presented alongside the battery drain rates and/or longevities within the list, and the user may select to order the list according to either the rating information or the battery longevity information.
- the invention is directed to a method in which an implantable neurostimulator is directed to deliver neurostimulation according to a plurality of programs during a programming session, each of the programs including a plurality of parameters that define delivery of neurostimulation according to that program.
- a battery drain rate is estimated for each of the programs based on the parameters for that program, and battery longevity information is presented to a user based on the estimated battery drain rates.
- the invention is directed to a programming device that includes a telemetry circuit, a user interface, and a processor.
- the processor directs an implantable neurostimulator to deliver neurostimulation according to a plurality of programs during a programming session via the telemetry circuit, each of the programs including a plurality of parameters that define delivery of neurostimulation according to that program.
- the processor estimates a battery drain rate for each of the programs based on the parameters for that program, and presents battery longevity information to the user based on the estimated battery drain rates.
- the invention is directed to a computer-readable medium containing instructions.
- the instructions cause a programmable processor to direct an implantable neurostimulator to deliver neurostimulation according to a plurality of programs during a programming session, each of the programs including a plurality of parameters that define delivery of neurostimulation according to that program, estimate a battery drain rate for each of the programs based on the parameters for that program, and present battery longevity information to a user based on the estimated battery drain rates.
- a programming device may allow a clinician to select a program for long-term use from among programs tested that provides greater battery longevity than a program selected based on efficacy alone. Battery longevity may vary widely among tested programs that provide similar efficacy. Consequently, a programming device according to the invention may allow a clinician to identify a program that strikes a desirable balance between battery longevity and efficacy. By presenting the battery drain rates and/or longevities and the rating information in a single sortable list, the programming device may allow the clinician to more easily identify such a program.
- the programming device may allow explanation and replacement of an implantable neurostimulator to be delayed relative to the time at which they would have occurred if a program had been selected without regard to battery longevity.
- FIG. 1 is a conceptual diagram illustrating an exemplary environment in which battery longevity information is presented to a user during a programming session according to the invention.
- FIG. 2 is a block diagram illustrating an example implantable neurostimulator.
- FIG. 3 is a block diagram illustrating an example programming device that presents battery longevity information during a programming session according to the invention.
- FIG. 4 is a conceptual diagram illustrating an example graphical user interface that the programming device of FIG. 3 may present to a user.
- FIG. 5 is a flow diagram illustrating an example operation of the programming device of FIG. 3 to present battery longevity information to a user during a programming session.
- FIG. 6 is a flow diagram illustrating another example operation of the programming device of FIG. 3 during a programming session.
- FIG. 1 is a conceptual diagram illustrating an exemplary environment 10 in which battery longevity information is presented to a user during a programming session according to the invention.
- Environment 10 includes an implantable neurostimulator (INS) 12, which is shown in FIG. 1 implanted within a patient 14.
- INS 12 delivers neurostimulation therapy to patient 14 via leads 16A and 16B (hereinafter “leads 16").
- leads 16 are implanted proximate to the spinal cord 18 of patient 14, and INS 12 delivers spinal cord stimulation (SCS) therapy to patient 14 in order to, for example, reduce pain experienced by patient 14.
- Leads 16 include electrodes (not shown in FIG. 1), and INS 12 delivers neurostimulation to spinal cord 18 via the electrodes.
- INS 12 may be an implantable pulse generator, and may deliver neurostimulation to spinal cord 18 in the form of electrical pulses.
- INS 12 delivers neurostimulation according to a program.
- the program may include values for a number of parameters, and the parameter values define the neurostimulation therapy delivered according to that program.
- the parameters include voltage or current pulse amplitudes, pulse widths, pulse rates, duty cycles, and the like.
- the parameters for a program include information identifying which electrodes have been selected for delivery of pulses according to the program, and the polarities of the selected electrodes, e.g., anode or cathode.
- Programming device 20 may, as shown in FIG. 1, be a handheld computing device.
- Programming device 20 includes a display 22, such as a LCD or LED display, to display information to a user.
- Programming device 20 may also include a keypad 24, which may be used by a user to interact with programming device 20.
- display 22 may be a touch screen display, and a user may interact with programming device 20 via display 22.
- a user may additionally or alternatively interact with clinician programmer 20 using peripheral pointing devices, such as a stylus or mouse.
- Keypad 24 may take the form of an alphanumeric keypad or a reduced set of keys associated with particular functions.
- a clinician may use programming device 20 to program neurostimulation therapy for patient 12.
- the clinician specifies programs by selecting program parameter values, tests the specified programs on patient 12, and receives feedback, e.g., rating information, for each of the tested programs from the patient. The clinician enters the feedback into programming device 20.
- programming device 20 provides an automated or semi-automated programming routine in which programming device 20 automatically tests clinician specified programs or programs automatically generated by programming device 20 on patient 14. In such embodiments, either or both of the clinician and patient 14 may interact with programming device 20 during testing of the generated programs to, for example, enter rating information for each of the programs.
- An exemplary programming device that provides a semi-automated programming routine is described in U.S. Patent No. 6,308,102, issued to Sieracki et al.
- programming device 20 sends each of the programs to be tested to IMD 12 using radio-frequency (RF) telemetry techniques known in the art.
- programming device 20 may send program parameters as commands, and may send other commands necessary to effect reprogramming of IMD 12 via device telemetry.
- IMD 12 receives and decodes the commands, and stores the program parameters in registers, or the like, for use in defining the neurostimulation delivered to patient 14 according to that program.
- INS 12 includes a battery (not shown in FIG. 1) that provides power for delivery of neurostimulation energy and other functions performed by INS 12, e.g., processing, memory and telemetry functions. Delivery of neurostimulation energy, however, accounts for by far the most significant drain on the battery of INS 12.
- the drain on the battery of INS 12 caused by delivery of neurostimulation according to a program depends on the parameters of that program, e.g., the pulse amplitude, width and rate, duty cycle, and the combination of electrodes selected for delivery neurostimulation according to the program.
- programming device 20 estimates a battery drain rate for each of the programs tested based on the program parameters. In some embodiments, programming device 20 presents the estimated battery drain rates for programs tested during the programming session. In other embodiments, programming device 20 further estimates a battery longevity for each of the tested programs, e.g., estimates a length of time that INS 12 will be able to deliver neurostimulation according to the program before INS 12 must be explanted and replaced due to battery depletion. The estimated battery longevity may be based on the estimated battery drain rates. Programming device 20 may present the battery longevities to the clinician in addition to or instead of presenting the battery drain rates.
- programming device 20 allows the clinician to consider battery longevity when selecting one or more programs, and to select programs from among those tested that provide favorable drain rates and longevities. In this manner, the clinician may take into account not only the efficacy and side effects associated with a particular neurostimulation program, but also power consumption.
- FIG. 2 is a block diagram illustrating an example configuration of INS 12.
- INS 12 may deliver neurostimulation therapy via electrodes 30A-D of lead 16A and electrodes 30E-H of lead 16B (collectively "electrodes 30").
- Electrodes 30 may be ring electrodes.
- the configuration, type, and number of electrodes 30 illustrated in FIG. 2 are merely exemplary.
- IMD 16 includes a therapy delivery circuit 32. Electrodes 30 are electrically coupled to therapy delivery circuit 32 via leads 16. Therapy delivery circuit 32 may, for example, include an output pulse generator. Therapy delivery circuit 32 delivers electrical pulses to patient 14 via at least some of electrodes 30 under the control of a processor 34.
- Processor 34 controls therapy delivery circuit 32 to deliver stimulation according to program stored with a memory 38. Specifically, processor 34 controls therapy delivery circuit 32 to deliver electrical stimulation pulses with an amplitude, width, and rate specified by the program, and may activate therapy delivery circuit 32 to deliver stimulation pulses according to a duty cycle specified by the program. Processor 34 also controls circuit 32 to deliver the pulses via a selected subset of electrodes 30 with selected polarities, as specified by the program.
- INS 12 may be reprogrammed a number of times during a programming session to test a number of programs. For each program tested, INS 12 receives a number of commands, including the program parameters, from programming device 20 via a telemetry circuit 36 that allow processor 34 to communicate with programming device 20 via wireless telemetry techniques known in the art.
- the program parameters are stored within a memory 38 as the program used by processor 34 to control delivery of neurostimulation.
- Processor 34 may include a microprocessor, a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), discrete logic circuitry, or the like.
- Memory 38 may include any volatile, non-volatile, magnetic, optical, or electrical media, such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), flash memory, and the like.
- RAM random access memory
- ROM read-only memory
- NVRAM non-volatile RAM
- EEPROM electrically-erasable programmable ROM
- INS 12 includes a battery 40.
- Battery 40 may be a non-rechargeable, e.g., primary, battery.
- Battery 40 may take the form of any of a variety of lithium-ion batteries well known in the implantable medical device arts.
- Battery 40 is illustrated in FIG. 2 as providing power to therapy delivery circuit 32 for generation of stimulation pulses.
- battery 40 may provide power to each of components 32-38 of INS 12.
- delivery of energy necessary to support neurostimulation therapy by therapy delivery circuit 32 represents by far the most significant drain on battery 40.
- INS 12 may also, as shown, include an impedance measurement circuit 42 to measure the impedance at each of electrode 30.
- Impedance measurement circuit 42 may include any circuits and apply any techniques known in the implantable medical device arts for measuring impedances, such as measuring the change in voltage across a capacitor during delivery of a pulse, to determine the impedance for each of electrodes 30.
- Processor 34 may control impedance measurement circuit 42 to measure impedances for electrodes 30 upon receiving a command from programming device 20, and may provide the measured impedances to programming device 20 via telemetry circuit 36 for calculation of battery drain rates, as will be described in greater detail below with reference to FIG. 3
- FIG. 3 is a block diagram illustrating an example configuration of programming device 20.
- Programming device 20 includes a processor 50 and a user interface 52 that allows a user, such as the clinician or patient 14, to interact with processor 50.
- User interface 52 may include display 22 and keypad 24 (FIG. 1), and allow the clinician or patient 14 to, for example, specify parameters for a number of programs 54 to test during a programming session, provide rating information 56 for tested programs, and view rating information 56 and battery longevity information 58 for each of the tested programs.
- Processor 50 provides programs 54 to INS 12 for testing via a telemetry circuit 60, which allows processor 50 to communicate with INS 12 according to wireless telemetry techniques known in the art.
- Processor 50 stores programs 54 specified by the clinician within a memory 62 of programming device 20. Rating information 56 and longevity information 58 for each of the programs is stored within memory 62 in association with the respective programs 54.
- Rating information 56 may include, for example, numeric ratings of the efficacy of each of the programs. Rating information 56 may also include a pain map that indicates regions of pain within the body of patient 14, and paresthesia maps for each program that indicate regions of paresthesia resulting from delivery of neurostimulation according to that program. Rating information 56 may include numeric calculations of overlap between the pain map and the paresthesia map for each program. Processor 50 may receive rating information 56 from either or both of the clinician and patient 14. Exemplary techniques for collecting, calculating, and displaying such rating information are described in U.S. Patent No. 6,308,102, issued to Sieracki et al.
- Longevity information 58 may include either or both of estimated drain rates and estimated longevities of battery 40 for each of programs 54.
- Processor 50 estimates a drain rate for battery 40 for each of programs 54 using well-known techniques for calculating battery drain rate based on the pulse amplitude, width and rate of a stimulation waveform, and the load presented to battery 40 during delivery of the stimulation waveform.
- processor 50 further estimates a longevity of battery 40 for each program based on a capacity of battery 40, the estimated drain rate for each program, and a duty cycle for each program.
- Processor 50 may estimate the longevities as a time to explant, e.g., expiration of battery 40, based on constant delivery of stimulation according to programs 54, or an estimation of the amount of time patient 14 will use INS 12 over the course of a day, week, month, year, or the like. Processor 50 may determine the capacity of battery 40 from a look-up table stored in memory 62 based on device type information received from the clinician.
- Processor 50 may determine the load presented to battery 40 for each of programs 54 using a variety of techniques. In some embodiments, processor 50 estimates the load based on the number of anodes and cathodes specified for the program, and an assumed per-electrode impedance, which may be stored in memory 62.
- the assumed per-electrode impedance value may be an average of impedances measured experimentally or gleaned from clinical data, and may be, for example, 700-1000 Ohms.
- the processor 50 alternatively or additionally estimates the load based on device configuration information, such as an INS type, lead type, and/or electrode locations.
- Processor 50 may receive the device configuration information from the clinician via user interface 52, and may identify components of the total load presented to the battery from look-up tables stored in memory 62 based on the received device configuration information.
- processor 50 may direct INS 12 to measure, rather than estimate, the impedance presented by each of electrodes 30 coupled thereto, and receive the measured impedance values via telemetry circuit 60.
- Processor 50 may then determine the load for a particular program based on the measured impedances for the anodes and cathodes selected for that program using the formula for parallel loads illustrated above.
- processor 50 directs INS 12 to measure impedances before testing of programs 54.
- Processor 50 may include a microprocessor, a controller, a DSP, an ASIC, an FPGA, discrete logic circuitry, or the like.
- a memory 62 may include program instructions that, when executed by processor 50, cause programming device 20 to perform the functions ascribed to programming device 20 herein.
- Memory 62 may include any volatile, non-volatile, fixed, removable, magnetic, optical, or electrical media, such as a RAM, ROM, CD-ROM, hard disk, removable magnetic disk, memory cards or sticks, NVRAM, EEPROM, flash memory, and the like.
- FIG. 4 is a diagram illustrating an example graphical user interface (GUI) 70 that programming device 20, and more particularly processor 50 of programming device 20, may present to the clinician via user interface 52, e.g., via display 22.
- GUI graphical user interface
- processor 50 presents the estimated battery drain rates to the clinician via user interface 52.
- processor 50 presents battery longevities instead of or in addition to the drain rates via user interface 52.
- processor 50 presents the drain rates and/or longevities within a listing of programs 54 tested on patient 14, which may be ordered according to the battery drain rates and/or battery longevities to allow a user to select a program that provides a low drain rate and high longevity.
- processor 50 presents a list 72 of programs 54 tested on patient 14 that includes longevities estimated for each of the programs 54. As illustrated in FIG. 4, the battery longevities may be presented to the user as an estimated number of years until explant.
- Processor 50 also presents rating information 56, which in this case is a numeric efficacy rating, for each program to the clinician within list 72.
- the clinician may order list 72 based on either or both of rating and longevity, to more easily compare programs and to, for example, select a program that provides better longevity from among those with similar ratings.
- Each item in list 72 may be selected by the clinician to obtain additional information. For example, the clinician may click on program "1" to determine the details associated with program 1, such as the electrode configuration, amplitude, frequency, and pulse width. In this manner, the clinician can readily assess not only the drain rate, battery longevity and rating associated with each program, but also the underlying details of the program itself.
- FIG. 5 is a flow chart illustrating an example operation of programming device 20 to present battery longevity information 58 to a user during a programming session.
- Processor 50 selects a program 54 to test on patient 14 from among programs 54 specified by the clinician (80), and provides the program to INS 12 via telemetry circuit 60 so that INS 12 may deliver neurostimulation to patient 14 according to the selected program (82).
- Processor 50 may select the program 54 based on input received from the clinician via user interface 52, or automatically from a listing of specified programs 54.
- Processor 50 receives rating information 56 for the program from one or both of the clinician and patient 14 via user interface 52, and stores the rating information 56 within memory 62 in association with the program 54 (84).
- Processor 50 continues to select programs 54 to test until either no more specified programs 54 remain to be tested or the clinician indicates that testing of programs is complete (86).
- processor 50 estimates battery longevities for each of the tested programs, and stores the longevities as longevity information 58 in association with the respective programs 54 (88).
- Processor 50 estimates a drain rate for each of the programs, and estimates the longevities from the drain rates, as described above. Further, processor 50 may estimate drain rates and longevities according to any of the techniques described above.
- Processor 50 presents a sortable list 72 of tested programs 54, and associated rating information 56 and estimated longevities 58 to the clinician via user interface 52 (90).
- Processor 50 may estimate drain rates and/or longevities at any time prior to, during, or following testing of programs 54. However, estimation of drain rates and/or longevities after testing of programs may allow changes made to the parameters of the programs 54 during testing, e.g., manipulation of amplitude, to be considered. Further, as indicated above, processor 50 need not estimate or display longevities. Rather processor 50 may simply display the estimated drain rates to the clinician.
- FIG. 6 is a flow diagram illustrating another example operation of programming device 20 during a programming session. Specifically, FIG. 6 illustrates operation of programming device 20 to present longevity information 58 for a subset of tested programs 54 that provide acceptable stimulation. Operation of programming device 20 in this manner allows a user, such as a clinician, to first identify a subset of acceptable programs 54 from among those tested based on rating information 56, and then select programs for long-term use from the subset based on longevity. Sequential presentation of rating information 56 and longevity information 58 may allow the user to more easily identify programs that are both efficacious and provide desirable longevity, while allowing programming device 20 to only estimate battery drains, and in some cases longevities, for a subset of the programs tested during the programming session.
- programming device 20 tests programs 54 by directing IMD 12 to deliver neurostimulation to patient 14 according to programs 54 (100).
- Programming device 20 collects rating information 56 relating to the efficacy of programs 54 from at least one of the clinician and patient 14 during testing of programs 54, as described above.
- programming device 20 displays a list of the tested programs 54 ordered according to rating information 56 (102), and receives selections made by a user, such as the clinician, from the list (104).
- Programming device 20 estimates drain rates and in some embodiments longevities, i.e., longevity information 58, for the selected programs, and displays a list of the selected programs ordered according the longevity information 58 (106).
- Programming device 20 receives one or more selections made by the clinician from the list, and provides the selected programs to IMD 12 via device telemetry for long-term use in delivery of neurostimulation therapy to patient 14 (108).
- programming device 20 may also store highly rated programs with desirable longevities from the subset list within memory 62, or some other memory, such as a memory accessed via a network, for later selection by the clinician or patient 14 during a follow-up visit.
Landscapes
- Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Electrotherapy Devices (AREA)
- Saccharide Compounds (AREA)
Claims (16)
- Procédé, comprenant les étapes consistant à :diriger un neuro-stimulateur implantable pour fournir une neuro-stimulation en accord avec une pluralité de programmes pendant une session de programmation, chacun des programmes incluant une pluralité de paramètres qui définissent la fourniture de neuro-stimulation selon ce programme ;estimer un taux de drainage d'accumulateur pour chacun des programmes en se basant sur les paramètres pour ce programme ; etprésenter des informations de longévité d'accumulateur pour chacun des programmes à un utilisateur en se basant sur les taux de drainage d'accumulateur.
- Procédé selon la revendication 1, dans lequel les paramètres pour chacun des programmes incluent un nombre d'anodes et un nombre de cathodes pour la fourniture de neuro-stimulation en accord avec ce programme, et dans lequel l'estimation d'un taux de drainage d'accumulateur pour l'un des programmes comprend :l'estimation d'une charge pour le programme en se basant sur le nombre d'anodes et le nombre de cathodes ; etl'estimation du taux de drainage d'accumulateur en se basant sur la charge estimée.
- Procédé selon la revendication 2, dans lequel l'estimation d'une charge comprend d'estimer la charge en se basant sur une impédance supposée par électrode.
- Procédé selon la revendication 1, dans lequel l'estimation d'un taux de drainage d'accumulateur pour l'un des programmes comprend :la réception d'informations de configuration d'un dispositif ;l'estimation d'une charge pour le programme en se basant sur les informations de configuration du dispositif ; etl'estimation du taux de drainage d'accumulateur en se basant sur la charge estimée.
- Procédé selon la revendication 1, dans lequel les paramètres pour chacun des programmes incluent une identification des anodes et des cathodes pour la fourniture de neuro-stimulation en accord avec ce programme, et l'estimation d'un taux de drainage d'accumulateur pour l'un des programmes comprend :la mesure d'une impédance pour chacune des anodes et des cathodes identifiées par le programme ;le calcul de une charge en se basant sur l'impédance mesurée, etl'estimation du taux de drainage d'accumulateur en se basant sur la charge.
- Procédé selon la revendication 1, dans lequel la présentation des informations de longévité d'accumulateur pour chacun des programmes à un utilisateur comprend de présenter les informations de longévité de l'accumulateur à l'intérieur d'une liste des programmes.
- Procédé selon la revendication 6, comprenant en outre de mettre en ordre la liste en accord avec les informations de longévité d'accumulateur.
- Procédé selon la revendication 6, comprenant en outre :la réception d'informations d'évaluation pour chacun des programmes ; etla présentation des informations évaluées à l'intérieur de la liste.
- Procédé selon la revendication 8, comprenant en outre de mettre en ordre la liste en accord avec un l'une au moins des informations parmi les informations de longévité d'accumulateur et les informations d'évaluation.
- Procédé selon la revendication 1, comprenant en outre :la réception d'informations d'évaluation pour chacun des programmes ;la présentation d'une première liste des programmes testés, la première liste incluant les informations d'évaluation et étant ordonnée en accord avec les informations d'évaluation ;la réception de sélections faites par l'utilisateur à partir de la première liste ;la présentation d'une seconde liste qui inclut les programmes sélectionnés depuis la première liste et les informations de longévité associées aux programmes sélectionnés, la seconde liste étant mise en ordre en accord avec les informations de longévité ;la réception de sélection faite par l'utilisateur d'au moins un programme à partir de la seconde liste ; etla programmation du neuro-stimulateur implantable avec le programme sélectionné.
- Procédé selon la revendication 10, dans lequel estimation d'un taux de drainage d'accumulateur pour chacun des programmes comprend d'estimer le taux de drainage pour chacun des programmes sélectionnés à partir de la première liste lors de la sélection à partir de la première liste.
- Procédé selon la revendication 1, dans lequel la présentation des informations de longévité d'accumulateur à un utilisateur comprend de présenter les taux de drainage d'accumulateur.
- Procédé selon la revendication 1, comprenant en outre d'estimer des longévités d'accumulateur pour chacun des programmes en se basant sur les taux de drainage d'accumulateur pour chacun des programmes, et dans lequel la présentation des informations de longévité de d'accumulateur à un utilisateur comprend de présenter les longévités d'accumulateur.
- Procédé selon la revendication 1, dans lequel la présentation des informations de longévité d'accumulateur à un utilisateur comprend de présenter une durée estimée de service de l'accumulateur.
- Dispositif de programmation pour exécuter l'un quelconque des procédés des revendications 1 à 14, comprenant :un circuit de télémétrie ;une interface utilisateur ; etun processeur pour diriger un neuro-stimulateur implantable pour fournir une neuro-stimulation en accord avec une pluralité de programmes pendant une session de programmation via le circuit de télémétrie, chacun des programmes incluant une pluralité de paramètres qui définissent la fourniture d'une neuro-stimulation en accord avec ce programme, pour estimer un taux de drainage d'accumulateur pour chacun des programmes en se basant sur les paramètres pour ce programme, et pour présenter des informations de longévité d'accumulateur à un utilisateur via l'interface utilisateur en se basant sur les taux de drainage d'accumulateur estimés.
- Support lisible à l'ordinateur comprenant des instructions qui amènent un processeur programmable à exécuter l'un quelconque des procédés des revendications 1 à 14.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44845703P | 2003-02-21 | 2003-02-21 | |
US448457P | 2003-02-21 | ||
US50320703P | 2003-09-15 | 2003-09-15 | |
US503207P | 2003-09-15 | ||
PCT/US2003/034324 WO2004075982A1 (fr) | 2003-02-21 | 2003-10-29 | Programmation de neurostimulateur implantable comportant une indication de la duree de vie de l'accumulateur |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1601413A1 EP1601413A1 (fr) | 2005-12-07 |
EP1601413B1 true EP1601413B1 (fr) | 2006-09-20 |
Family
ID=32930483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03781452A Expired - Lifetime EP1601413B1 (fr) | 2003-02-21 | 2003-10-29 | Programmation de neurostimulateur implantable comportant une indication de la duree de vie de l'accumulateur |
Country Status (6)
Country | Link |
---|---|
US (1) | US7142923B2 (fr) |
EP (1) | EP1601413B1 (fr) |
AT (1) | ATE339989T1 (fr) |
AU (1) | AU2003288960A1 (fr) |
DE (1) | DE60308555T2 (fr) |
WO (1) | WO2004075982A1 (fr) |
Families Citing this family (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE524110C2 (sv) * | 2001-06-06 | 2004-06-29 | Kvaser Consultant Ab | Anordning och förfarande vid system med lokalt utplacerade modulenheter samt kontaktenhet för anslutning av sådan modulenhet |
AU2003285078A1 (en) * | 2002-10-31 | 2004-06-07 | Medtronic, Inc. | Distributed system for neurostimulation therapy programming |
US7933655B2 (en) * | 2002-10-31 | 2011-04-26 | Medtronic, Inc. | Neurostimulation therapy manipulation |
US7742821B1 (en) | 2003-06-11 | 2010-06-22 | Boston Scientific Neutomodulation Corporation | Remote control for implantable medical device |
US7548786B2 (en) * | 2003-04-02 | 2009-06-16 | Medtronic, Inc. | Library for management of neurostimulation therapy programs |
US7894908B2 (en) * | 2003-04-02 | 2011-02-22 | Medtronic, Inc. | Neurostimulation therapy optimization based on a rated session log |
US7505815B2 (en) * | 2003-04-02 | 2009-03-17 | Medtronic, Inc. | Neurostimulation therapy usage diagnostics |
US7489970B2 (en) * | 2003-04-02 | 2009-02-10 | Medtronic, Inc. | Management of neurostimulation therapy using parameter sets |
US20050004622A1 (en) * | 2003-07-03 | 2005-01-06 | Advanced Neuromodulation Systems | System and method for implantable pulse generator with multiple treatment protocols |
US7594038B2 (en) * | 2004-01-16 | 2009-09-22 | Verizon Business Global Llc | Method and system for remotely configuring mobile telemetry devices |
US20050181341A1 (en) * | 2004-02-12 | 2005-08-18 | Ewing Donald P. | Self-contained electronic musculoskeletal stimulation apparatus and method of use |
US7333856B1 (en) * | 2004-05-17 | 2008-02-19 | Pacesetter, Inc. | Method and system to graphically display programming parameters for multi-chamber devices |
US7346382B2 (en) | 2004-07-07 | 2008-03-18 | The Cleveland Clinic Foundation | Brain stimulation models, systems, devices, and methods |
US7819909B2 (en) * | 2004-07-20 | 2010-10-26 | Medtronic, Inc. | Therapy programming guidance based on stored programming history |
US7751891B2 (en) | 2004-07-28 | 2010-07-06 | Cyberonics, Inc. | Power supply monitoring for an implantable device |
US8214047B2 (en) * | 2004-09-27 | 2012-07-03 | Advanced Neuromodulation Systems, Inc. | Method of using spinal cord stimulation to treat gastrointestinal and/or eating disorders or conditions |
US8565867B2 (en) | 2005-01-28 | 2013-10-22 | Cyberonics, Inc. | Changeable electrode polarity stimulation by an implantable medical device |
US8260426B2 (en) | 2008-01-25 | 2012-09-04 | Cyberonics, Inc. | Method, apparatus and system for bipolar charge utilization during stimulation by an implantable medical device |
US9314633B2 (en) | 2008-01-25 | 2016-04-19 | Cyberonics, Inc. | Contingent cardio-protection for epilepsy patients |
US9211408B2 (en) | 2005-04-13 | 2015-12-15 | The Cleveland Clinic Foundation | System and method for neuromodulation using composite patterns of stimulation or waveforms |
US8112154B2 (en) * | 2005-04-13 | 2012-02-07 | The Cleveland Clinic Foundation | Systems and methods for neuromodulation using pre-recorded waveforms |
US9339650B2 (en) | 2005-04-13 | 2016-05-17 | The Cleveland Clinic Foundation | Systems and methods for neuromodulation using pre-recorded waveforms |
US7406351B2 (en) | 2005-04-28 | 2008-07-29 | Medtronic, Inc. | Activity sensing for stimulator control |
US7720548B2 (en) | 2005-04-30 | 2010-05-18 | Medtronic | Impedance-based stimulation adjustment |
US7567840B2 (en) | 2005-10-28 | 2009-07-28 | Cyberonics, Inc. | Lead condition assessment for an implantable medical device |
US8589316B2 (en) | 2009-08-27 | 2013-11-19 | The Cleveland Clinic Foundation | System and method to estimate region of tissue activation |
US7996079B2 (en) | 2006-01-24 | 2011-08-09 | Cyberonics, Inc. | Input response override for an implantable medical device |
US7769455B2 (en) * | 2006-01-27 | 2010-08-03 | Cyberonics, Inc. | Power supply monitoring for an implantable device |
US8150508B2 (en) | 2006-03-29 | 2012-04-03 | Catholic Healthcare West | Vagus nerve stimulation method |
US8306624B2 (en) | 2006-04-28 | 2012-11-06 | Medtronic, Inc. | Patient-individualized efficacy rating |
US7715920B2 (en) | 2006-04-28 | 2010-05-11 | Medtronic, Inc. | Tree-based electrical stimulator programming |
US7869885B2 (en) | 2006-04-28 | 2011-01-11 | Cyberonics, Inc | Threshold optimization for tissue stimulation therapy |
US8380300B2 (en) * | 2006-04-28 | 2013-02-19 | Medtronic, Inc. | Efficacy visualization |
US7962220B2 (en) | 2006-04-28 | 2011-06-14 | Cyberonics, Inc. | Compensation reduction in tissue stimulation therapy |
US8103341B2 (en) * | 2006-08-25 | 2012-01-24 | Cardiac Pacemakers, Inc. | System for abating neural stimulation side effects |
US7869867B2 (en) | 2006-10-27 | 2011-01-11 | Cyberonics, Inc. | Implantable neurostimulator with refractory stimulation |
WO2008070069A1 (fr) * | 2006-12-06 | 2008-06-12 | Medtronic, Inc. | Programmation d'un dispositif médical avec un instrument universel |
WO2008069896A2 (fr) * | 2006-12-06 | 2008-06-12 | Medtronic, Inc. | Dispositif de télémétrie pour programmateur de dispositif médical |
US20080177345A1 (en) * | 2007-01-18 | 2008-07-24 | Schmidt Craig L | Methods for estimating remaining battery service life in an implantable medical device |
US8150521B2 (en) | 2007-03-15 | 2012-04-03 | Cvrx, Inc. | Methods and devices for controlling battery life in an implantable pulse generator |
US7974701B2 (en) | 2007-04-27 | 2011-07-05 | Cyberonics, Inc. | Dosing limitation for an implantable medical device |
WO2009015081A2 (fr) * | 2007-07-20 | 2009-01-29 | Cvrx, Inc. | Indicateur de service sélectif basé sur un décompte d'impulsions pour dispositif implantable |
US9037239B2 (en) * | 2007-08-07 | 2015-05-19 | Cardiac Pacemakers, Inc. | Method and apparatus to perform electrode combination selection |
US8265736B2 (en) | 2007-08-07 | 2012-09-11 | Cardiac Pacemakers, Inc. | Method and apparatus to perform electrode combination selection |
US20090157155A1 (en) * | 2007-12-18 | 2009-06-18 | Advanced Bionics Corporation | Graphical display of environmental measurements for implantable therapies |
WO2009091407A2 (fr) * | 2008-01-18 | 2009-07-23 | Medtronic, Inc | Estimation de la durée de vie restante d'une pile dans un dispositif médical implantable |
US9220889B2 (en) | 2008-02-11 | 2015-12-29 | Intelect Medical, Inc. | Directional electrode devices with locating features |
US8019440B2 (en) | 2008-02-12 | 2011-09-13 | Intelect Medical, Inc. | Directional lead assembly |
US8204603B2 (en) | 2008-04-25 | 2012-06-19 | Cyberonics, Inc. | Blocking exogenous action potentials by an implantable medical device |
US8823382B2 (en) * | 2008-04-30 | 2014-09-02 | Medtronic, Inc. | System and method for monitoring a power source of an implantable medical device |
US9272153B2 (en) | 2008-05-15 | 2016-03-01 | Boston Scientific Neuromodulation Corporation | VOA generation system and method using a fiber specific analysis |
CN102215908A (zh) * | 2008-09-19 | 2011-10-12 | 特里·威廉·伯顿·摩尔 | 通过电处理减轻肌紧张的方法和设备 |
US8457747B2 (en) | 2008-10-20 | 2013-06-04 | Cyberonics, Inc. | Neurostimulation with signal duration determined by a cardiac cycle |
US8311639B2 (en) | 2009-07-08 | 2012-11-13 | Nevro Corporation | Systems and methods for adjusting electrical therapy based on impedance changes |
EP2346567A4 (fr) | 2008-11-13 | 2012-04-25 | Proteus Biomedical Inc | Dispositifs de neurostimulation multi-électrode à multiplexage |
US8644919B2 (en) | 2008-11-13 | 2014-02-04 | Proteus Digital Health, Inc. | Shielded stimulation and sensing system and method |
US20100191304A1 (en) | 2009-01-23 | 2010-07-29 | Scott Timothy L | Implantable Medical Device for Providing Chronic Condition Therapy and Acute Condition Therapy Using Vagus Nerve Stimulation |
WO2010093720A1 (fr) | 2009-02-10 | 2010-08-19 | Nevro Corporation | Systèmes et procédés d'administration de thérapie neurale corrélée avec un état de patient |
EP2756864B1 (fr) | 2009-04-22 | 2023-03-15 | Nevro Corporation | Systèmes de modulation de la moelle épinière pour induire des effets paresthésiques |
US8498710B2 (en) | 2009-07-28 | 2013-07-30 | Nevro Corporation | Linked area parameter adjustment for spinal cord stimulation and associated systems and methods |
US10204706B2 (en) | 2009-10-29 | 2019-02-12 | Medtronic, Inc. | User interface for optimizing energy management in a neurostimulation system |
WO2011068997A1 (fr) | 2009-12-02 | 2011-06-09 | The Cleveland Clinic Foundation | Détériorations cognitives-motrices réversibles chez des patients atteints d'une maladie neuro-dégénérative à l'aide d'une approche de modélisation informatique pour une programmation de stimulation cérébrale profonde |
US8874229B2 (en) | 2010-04-28 | 2014-10-28 | Cyberonics, Inc. | Delivering scheduled and unscheduled therapy without detriment to battery life or accuracy of longevity predictions |
US8942935B2 (en) | 2010-06-14 | 2015-01-27 | Medtronic, Inc. | Charge level measurement |
WO2011159688A2 (fr) | 2010-06-14 | 2011-12-22 | Boston Scientific Neuromodulation Corporation | Interface de programmation pour la neuromodulation de la moelle épinière |
US8401646B2 (en) | 2010-10-21 | 2013-03-19 | Medtronic, Inc. | Method and apparatus to determine the relative energy expenditure for a plurality of pacing vectors |
US8577459B2 (en) | 2011-01-28 | 2013-11-05 | Cyberonics, Inc. | System and method for estimating battery capacity |
CN102762254B (zh) | 2011-02-18 | 2015-09-23 | 麦德托尼克公司 | 模块化医疗设备编程器 |
US8352034B2 (en) | 2011-02-18 | 2013-01-08 | Medtronic, Inc. | Medical device programmer with adjustable kickstand |
AU2012236745B2 (en) | 2011-03-29 | 2017-04-13 | Boston Scientific Neuromodulation Corporation | System and method for image registration |
US8761884B2 (en) | 2011-04-14 | 2014-06-24 | Cyberonics, Inc. | Device longevity prediction for a device having variable energy consumption |
US8761885B2 (en) | 2011-04-29 | 2014-06-24 | Cyberonics, Inc. | Battery life estimation based on voltage depletion rate |
US9592389B2 (en) | 2011-05-27 | 2017-03-14 | Boston Scientific Neuromodulation Corporation | Visualization of relevant stimulation leadwire electrodes relative to selected stimulation information |
EP2742448A1 (fr) | 2011-08-09 | 2014-06-18 | Boston Scientific Neuromodulation Corporation | Commande à distance d'essais cliniques à l'aveugle de stimulation électrique |
US9814884B2 (en) | 2011-11-04 | 2017-11-14 | Nevro Corp. | Systems and methods for detecting faults and/or adjusting electrical therapy based on impedance changes |
US9227076B2 (en) | 2011-11-04 | 2016-01-05 | Nevro Corporation | Molded headers for implantable signal generators, and associated systems and methods |
US9199087B2 (en) | 2011-11-21 | 2015-12-01 | Medtronic, Inc. | Apparatus and method for selecting a preferred pacing vector in a cardiac resynchronization device |
US8996113B2 (en) * | 2011-11-30 | 2015-03-31 | Medtronic, Inc. | Recommended replacement time based on user selection |
US9604067B2 (en) | 2012-08-04 | 2017-03-28 | Boston Scientific Neuromodulation Corporation | Techniques and methods for storing and transferring registration, atlas, and lead information between medical devices |
US9002457B2 (en) | 2012-08-22 | 2015-04-07 | Cardiac Pacemakers, Inc. | Implantable medical device with control of neural stimulation based on battery status |
AU2013308906B2 (en) | 2012-08-28 | 2016-07-21 | Boston Scientific Neuromodulation Corporation | Point-and-click programming for deep brain stimulation using real-time monopolar review trendlines |
US9615788B2 (en) | 2012-08-31 | 2017-04-11 | Nuvectra Corporation | Method and system of producing 2D representations of 3D pain and stimulation maps and implant models on a clinician programmer |
US8903496B2 (en) | 2012-08-31 | 2014-12-02 | Greatbatch Ltd. | Clinician programming system and method |
US8812125B2 (en) | 2012-08-31 | 2014-08-19 | Greatbatch Ltd. | Systems and methods for the identification and association of medical devices |
US8983616B2 (en) | 2012-09-05 | 2015-03-17 | Greatbatch Ltd. | Method and system for associating patient records with pulse generators |
US8761897B2 (en) | 2012-08-31 | 2014-06-24 | Greatbatch Ltd. | Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer |
US9259577B2 (en) | 2012-08-31 | 2016-02-16 | Greatbatch Ltd. | Method and system of quick neurostimulation electrode configuration and positioning |
US9180302B2 (en) | 2012-08-31 | 2015-11-10 | Greatbatch Ltd. | Touch screen finger position indicator for a spinal cord stimulation programming device |
US9375582B2 (en) | 2012-08-31 | 2016-06-28 | Nuvectra Corporation | Touch screen safety controls for clinician programmer |
US9507912B2 (en) | 2012-08-31 | 2016-11-29 | Nuvectra Corporation | Method and system of simulating a pulse generator on a clinician programmer |
US9471753B2 (en) | 2012-08-31 | 2016-10-18 | Nuvectra Corporation | Programming and virtual reality representation of stimulation parameter Groups |
US9594877B2 (en) | 2012-08-31 | 2017-03-14 | Nuvectra Corporation | Virtual reality representation of medical devices |
US8868199B2 (en) | 2012-08-31 | 2014-10-21 | Greatbatch Ltd. | System and method of compressing medical maps for pulse generator or database storage |
US10668276B2 (en) | 2012-08-31 | 2020-06-02 | Cirtec Medical Corp. | Method and system of bracketing stimulation parameters on clinician programmers |
US8757485B2 (en) | 2012-09-05 | 2014-06-24 | Greatbatch Ltd. | System and method for using clinician programmer and clinician programming data for inventory and manufacturing prediction and control |
US9767255B2 (en) | 2012-09-05 | 2017-09-19 | Nuvectra Corporation | Predefined input for clinician programmer data entry |
WO2014070290A2 (fr) | 2012-11-01 | 2014-05-08 | Boston Scientific Neuromodulation Corporation | Systèmes et procédés de génération et d'utilisation de modèle voa |
US9295840B1 (en) | 2013-01-22 | 2016-03-29 | Nevro Corporation | Systems and methods for automatically programming patient therapy devices |
US9731133B1 (en) | 2013-01-22 | 2017-08-15 | Nevro Corp. | Systems and methods for systematically testing a plurality of therapy programs in patient therapy devices |
US9895538B1 (en) | 2013-01-22 | 2018-02-20 | Nevro Corp. | Systems and methods for deploying patient therapy devices |
US9174053B2 (en) | 2013-03-08 | 2015-11-03 | Boston Scientific Neuromodulation Corporation | Neuromodulation using modulated pulse train |
US9610449B2 (en) * | 2013-05-16 | 2017-04-04 | Nuvectra Corporation | Method and apparatus for displaying a graphical impedance history for output channels of a lead |
US9327135B2 (en) | 2013-06-04 | 2016-05-03 | Boston Scientific Neuromodulation Corporation | External device for determining an optimal implantable medical device for a patient using information determined during an external trial stimulation phase |
US9616238B2 (en) | 2013-12-05 | 2017-04-11 | Medtronic, Inc. | Method and apparatus for determining longevity |
WO2015179177A1 (fr) | 2014-05-20 | 2015-11-26 | Nevro Corporation | Générateurs d'impulsion implantés ayant une consommation d'énergie réduite par l'intermédiaire de caractéristiques de force/durée de signal, et systèmes et procédés associés |
US9959388B2 (en) | 2014-07-24 | 2018-05-01 | Boston Scientific Neuromodulation Corporation | Systems, devices, and methods for providing electrical stimulation therapy feedback |
US10265528B2 (en) | 2014-07-30 | 2019-04-23 | Boston Scientific Neuromodulation Corporation | Systems and methods for electrical stimulation-related patient population volume analysis and use |
US10272247B2 (en) | 2014-07-30 | 2019-04-30 | Boston Scientific Neuromodulation Corporation | Systems and methods for stimulation-related volume analysis, creation, and sharing with integrated surgical planning and stimulation programming |
JP2017527429A (ja) | 2014-09-15 | 2017-09-21 | ボストン サイエンティフィック ニューロモデュレイション コーポレイション | 神経刺激パルスパターンをプログラムするためのグラフィカルユーザインターフェイス |
US9974959B2 (en) | 2014-10-07 | 2018-05-22 | Boston Scientific Neuromodulation Corporation | Systems, devices, and methods for electrical stimulation using feedback to adjust stimulation parameters |
EP3191176B1 (fr) | 2014-10-22 | 2024-04-10 | Nevro Corp. | Systèmes et procédés pour prolonger la durée de vie d'une batterie de générateur d'impulsion implantée |
WO2016073271A1 (fr) | 2014-11-04 | 2016-05-12 | Boston Scientific Neuromodulation Corporation | Procédé et appareil de programmation de modèles complexes de neurostimulation |
US9656088B2 (en) | 2014-11-26 | 2017-05-23 | Medtronic, Inc. | Method and apparatus for determining longevity |
US9517344B1 (en) | 2015-03-13 | 2016-12-13 | Nevro Corporation | Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator |
WO2016191436A1 (fr) | 2015-05-26 | 2016-12-01 | Boston Scientific Neuromodulation Corporation | Systèmes et procédés d'analyse de stimulation électrique et de sélection ou de manipulation de volumes d'activation |
US10780283B2 (en) | 2015-05-26 | 2020-09-22 | Boston Scientific Neuromodulation Corporation | Systems and methods for analyzing electrical stimulation and selecting or manipulating volumes of activation |
WO2017003946A1 (fr) | 2015-06-29 | 2017-01-05 | Boston Scientific Neuromodulation Corporation | Systèmes et procédés de sélection de paramètres de stimulation sur la base de région cible de stimulation, d'effets ou d'effets secondaires |
EP3280491B1 (fr) | 2015-06-29 | 2023-03-01 | Boston Scientific Neuromodulation Corporation | Systèmes de sélection de paramètres de stimulation par ciblage et guidage |
CN107921255B (zh) | 2015-07-30 | 2021-02-26 | 波士顿科学神经调制公司 | 用于定制模式的电刺激的用户界面 |
EP3359252B1 (fr) | 2015-10-09 | 2020-09-09 | Boston Scientific Neuromodulation Corporation | Système et procédés pour cartographier des effets cliniques de fils de stimulation directionnelle |
CN108463266B (zh) | 2015-10-15 | 2021-10-08 | 波士顿科学神经调制公司 | 用于神经刺激波形构造的用户界面 |
US10300277B1 (en) | 2015-12-14 | 2019-05-28 | Nevro Corp. | Variable amplitude signals for neurological therapy, and associated systems and methods |
US10420935B2 (en) | 2015-12-31 | 2019-09-24 | Nevro Corp. | Controller for nerve stimulation circuit and associated systems and methods |
US10716942B2 (en) | 2016-04-25 | 2020-07-21 | Boston Scientific Neuromodulation Corporation | System and methods for directional steering of electrical stimulation |
WO2017223505A2 (fr) | 2016-06-24 | 2017-12-28 | Boston Scientific Neuromodulation Corporation | Systèmes et procédés pour l'analyse visuelle d'effets cliniques |
US10350404B2 (en) | 2016-09-02 | 2019-07-16 | Boston Scientific Neuromodulation Corporation | Systems and methods for visualizing and directing stimulation of neural elements |
US10780282B2 (en) | 2016-09-20 | 2020-09-22 | Boston Scientific Neuromodulation Corporation | Systems and methods for steering electrical stimulation of patient tissue and determining stimulation parameters |
US10603498B2 (en) | 2016-10-14 | 2020-03-31 | Boston Scientific Neuromodulation Corporation | Systems and methods for closed-loop determination of stimulation parameter settings for an electrical simulation system |
US10792501B2 (en) | 2017-01-03 | 2020-10-06 | Boston Scientific Neuromodulation Corporation | Systems and methods for selecting MRI-compatible stimulation parameters |
WO2018132334A1 (fr) | 2017-01-10 | 2018-07-19 | Boston Scientific Neuromodulation Corporation | Systèmes et procédés pour créer des programmes de stimulation basés sur des zones ou des volumes définis par l'utilisateur |
US10625082B2 (en) | 2017-03-15 | 2020-04-21 | Boston Scientific Neuromodulation Corporation | Visualization of deep brain stimulation efficacy |
WO2018187090A1 (fr) | 2017-04-03 | 2018-10-11 | Boston Scientific Neuromodulation Corporation | Systèmes et procédés d'estimation d'un volume d'activation en utilisant une base de données compressées de valeurs seuils |
US10716505B2 (en) | 2017-07-14 | 2020-07-21 | Boston Scientific Neuromodulation Corporation | Systems and methods for estimating clinical effects of electrical stimulation |
US10960214B2 (en) | 2017-08-15 | 2021-03-30 | Boston Scientific Neuromodulation Corporation | Systems and methods for controlling electrical stimulation using multiple stimulation fields |
US11633604B2 (en) | 2018-01-30 | 2023-04-25 | Nevro Corp. | Efficient use of an implantable pulse generator battery, and associated systems and methods |
WO2019210214A1 (fr) | 2018-04-27 | 2019-10-31 | Boston Scientific Neuromodulation Corporation | Systèmes de visualisation et de programmation d'une stimulation électrique |
US11298553B2 (en) | 2018-04-27 | 2022-04-12 | Boston Scientific Neuromodulation Corporation | Multi-mode electrical stimulation systems and methods of making and using |
US10933238B2 (en) | 2019-01-31 | 2021-03-02 | Nevro Corp. | Power control circuit for sterilized devices, and associated systems and methods |
Family Cites Families (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4026305A (en) * | 1975-06-26 | 1977-05-31 | Research Corporation | Low current telemetry system for cardiac pacers |
US4041955A (en) * | 1976-01-29 | 1977-08-16 | Pacesetter Systems Inc. | Implantable living tissue stimulator with an improved hermetic metal container |
US4071032A (en) * | 1976-01-29 | 1978-01-31 | Pacesetter Systems Inc. | Implantable living tissue stimulators |
US4082097A (en) * | 1976-05-20 | 1978-04-04 | Pacesetter Systems Inc. | Multimode recharging system for living tissue stimulators |
US4142533A (en) * | 1976-10-28 | 1979-03-06 | Research Corporation | Monitoring system for cardiac pacers |
US4373527B1 (en) * | 1979-04-27 | 1995-06-27 | Univ Johns Hopkins | Implantable programmable medication infusion system |
US4313079A (en) * | 1980-01-16 | 1982-01-26 | Medtronic, Inc. | Battery depletion monitor |
US4448197A (en) * | 1982-07-22 | 1984-05-15 | Telectronics Pty. Ltd. | Heart pacer end-of-life detector |
US4556061A (en) * | 1982-08-18 | 1985-12-03 | Cordis Corporation | Cardiac pacer with battery consumption monitor circuit |
US4550370A (en) * | 1982-10-29 | 1985-10-29 | Medtronic, Inc. | Pacemaker programmer with telemetric functions |
US4390020A (en) * | 1983-02-17 | 1983-06-28 | Medtronic, Inc. | Implantable medical device and power source depletion control therefor |
US4542532A (en) * | 1984-03-09 | 1985-09-17 | Medtronic, Inc. | Dual-antenna transceiver |
US5354319A (en) * | 1990-01-22 | 1994-10-11 | Medtronic, Inc. | Telemetry system for an implantable medical device |
US5127404A (en) * | 1990-01-22 | 1992-07-07 | Medtronic, Inc. | Telemetry format for implanted medical device |
EP0512058A1 (fr) | 1990-01-22 | 1992-11-11 | Medtronic, Inc. | Format ameliore de telemetrie |
US5080096A (en) * | 1990-07-06 | 1992-01-14 | Medtronic, Inc. | Method and apparatus for accessing a nonvolatile memory |
US5107833A (en) * | 1990-11-02 | 1992-04-28 | Medtronic, Inc. | Telemetry gain adjustment algorithm and signal strength indication in a noisy environment |
US5117825A (en) * | 1990-11-09 | 1992-06-02 | John Grevious | Closed loop transmitter for medical implant |
US5168871A (en) * | 1990-11-09 | 1992-12-08 | Medtronic, Inc. | Method and apparatus for processing quasi-transient telemetry signals in noisy environments |
US5335657A (en) * | 1991-05-03 | 1994-08-09 | Cyberonics, Inc. | Therapeutic treatment of sleep disorder by nerve stimulation |
US5402794A (en) * | 1992-07-01 | 1995-04-04 | Medtronic, Inc. | Method and apparatus for heart transplant monitoring and analog telemetry calibration |
US5383909A (en) * | 1993-01-29 | 1995-01-24 | Medtronic, Inc. | Diagnostic telemetry system for an apparatus for detection and treatment of tachycardia and fibrillation |
US5391193A (en) * | 1993-02-05 | 1995-02-21 | Medtronic, Inc. | Method and apparatus for battery depletion monitoring |
US5369364A (en) * | 1993-04-26 | 1994-11-29 | Medtronic, Inc. | Battery state of charge determination with plural periodic measurements to determine its internal impedance and geometric capacitance |
US5370668A (en) * | 1993-06-22 | 1994-12-06 | Medtronic, Inc. | Fault-tolerant elective replacement indication for implantable medical device |
US5350411A (en) * | 1993-06-28 | 1994-09-27 | Medtronic, Inc. | Pacemaker telemetry system |
US5324315A (en) * | 1993-08-12 | 1994-06-28 | Medtronic, Inc. | Closed-loop downlink telemetry and method for implantable medical device |
US5458624A (en) * | 1993-10-06 | 1995-10-17 | Vitatron Medical, B.V. | Cardiac pacing system with improved end-of-life detector |
US5591217A (en) * | 1995-01-04 | 1997-01-07 | Plexus, Inc. | Implantable stimulator with replenishable, high value capacitive power source and method therefor |
US5620474A (en) * | 1995-04-24 | 1997-04-15 | Vitatron Medical, B.V. | System and method for determining indicated pacemaker replacement time based upon battery impedance measurement |
US5752976A (en) * | 1995-06-23 | 1998-05-19 | Medtronic, Inc. | World wide patient location and data telemetry system for implantable medical devices |
JP3200339B2 (ja) * | 1995-09-01 | 2001-08-20 | 矢崎総業株式会社 | 電池残存容量測定装置 |
US5693076A (en) * | 1996-01-16 | 1997-12-02 | Medtronic, Inc. | Compressed patient narrative storage in and full text reconstruction from implantable medical devices |
US6108579A (en) * | 1996-04-15 | 2000-08-22 | Pacesetter, Inc. | Battery monitoring apparatus and method for programmers of cardiac stimulating devices |
US5766232A (en) * | 1996-05-10 | 1998-06-16 | Medtronic, Inc. | Method and apparatus for altering the Q of an implantable medical device telemetry antenna |
US5938690A (en) * | 1996-06-07 | 1999-08-17 | Advanced Neuromodulation Systems, Inc. | Pain management system and method |
US5769873A (en) * | 1996-10-15 | 1998-06-23 | Pacesetter, Inc. | Meter for measuring battery charge delivered in an implantable device |
US5741307A (en) * | 1997-01-21 | 1998-04-21 | Pacesetter, Inc. | Method for determining an ICD replacement time |
US5861019A (en) * | 1997-07-25 | 1999-01-19 | Medtronic Inc. | Implantable medical device microstrip telemetry antenna |
US6167309A (en) * | 1997-09-15 | 2000-12-26 | Cardiac Pacemakers, Inc. | Method for monitoring end of life for battery |
US5904708A (en) * | 1998-03-19 | 1999-05-18 | Medtronic, Inc. | System and method for deriving relative physiologic signals |
US6185461B1 (en) * | 1998-07-01 | 2001-02-06 | Pacesetter, Inc. | System and method for verification of recommended replacement time indication in an implantable cardiac stimulation device |
US6148235A (en) * | 1998-07-17 | 2000-11-14 | Vitatron Medical, B.V. | Implantable stimulator with battery status measurement |
US6016448A (en) * | 1998-10-27 | 2000-01-18 | Medtronic, Inc. | Multilevel ERI for implantable medical devices |
US6154675A (en) * | 1998-10-27 | 2000-11-28 | Medtronic, Inc. | Resetting ERI/POR/PIR/indicators in implantable medical devices |
US6393325B1 (en) * | 1999-01-07 | 2002-05-21 | Advanced Bionics Corporation | Directional programming for implantable electrode arrays |
US6166518A (en) * | 1999-04-26 | 2000-12-26 | Exonix Corporation | Implantable power management system |
US6820019B1 (en) | 1999-07-31 | 2004-11-16 | Medtronic, Inc. | Device and method for determining and communicating the remaining life of a battery in an implantable neurological tissue stimulating device |
US6308102B1 (en) * | 1999-09-29 | 2001-10-23 | Stimsoft, Inc. | Patient interactive neurostimulation system and method |
US6400988B1 (en) * | 2000-02-18 | 2002-06-04 | Pacesetter, Inc. | Implantable cardiac device having precision RRT indication |
US6659968B1 (en) * | 2000-06-01 | 2003-12-09 | Advanced Bionics Corporation | Activity monitor for pain management efficacy measurement |
AU2002220077A1 (en) * | 2000-11-14 | 2002-05-27 | The Regents Of The University Of California | Inorganic/block copolymer-dye composites and dye doped mesoporous materials for optical and sensing applications |
SE0004772D0 (sv) | 2000-12-19 | 2000-12-19 | St Jude Medical | Method and apparatus for determining depleted capacity of a battery |
US6490484B2 (en) * | 2001-01-24 | 2002-12-03 | Cardiac Pacemakers, Inc. | Apparatus and method for estimating battery condition in implantable cardioverter/defibrillators |
US7001359B2 (en) | 2001-03-16 | 2006-02-21 | Medtronic, Inc. | Implantable therapeutic substance infusion device with active longevity projection |
US6584355B2 (en) * | 2001-04-10 | 2003-06-24 | Cardiac Pacemakers, Inc. | System and method for measuring battery current |
US6671552B2 (en) | 2001-10-02 | 2003-12-30 | Medtronic, Inc. | System and method for determining remaining battery life for an implantable medical device |
US7187978B2 (en) * | 2001-11-01 | 2007-03-06 | Medtronic, Inc. | Method and apparatus for programming an implantable medical device |
US7127296B2 (en) * | 2001-11-02 | 2006-10-24 | Advanced Bionics Corporation | Method for increasing the therapeutic ratio/usage range in a neurostimulator |
-
2003
- 2003-10-29 EP EP03781452A patent/EP1601413B1/fr not_active Expired - Lifetime
- 2003-10-29 US US10/696,501 patent/US7142923B2/en active Active
- 2003-10-29 AU AU2003288960A patent/AU2003288960A1/en not_active Abandoned
- 2003-10-29 AT AT03781452T patent/ATE339989T1/de not_active IP Right Cessation
- 2003-10-29 DE DE60308555T patent/DE60308555T2/de not_active Expired - Lifetime
- 2003-10-29 WO PCT/US2003/034324 patent/WO2004075982A1/fr not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
US20050177206A1 (en) | 2005-08-11 |
AU2003288960A1 (en) | 2004-09-17 |
WO2004075982A1 (fr) | 2004-09-10 |
DE60308555T2 (de) | 2007-09-13 |
ATE339989T1 (de) | 2006-10-15 |
DE60308555D1 (de) | 2006-11-02 |
US7142923B2 (en) | 2006-11-28 |
EP1601413A1 (fr) | 2005-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1601413B1 (fr) | Programmation de neurostimulateur implantable comportant une indication de la duree de vie de l'accumulateur | |
EP2581109B1 (fr) | Contrôle de l'alimentation pour dispositif implantable | |
US8718771B2 (en) | Dynamic battery management in an implantable device | |
US8314594B2 (en) | Capacity fade adjusted charge level or recharge interval of a rechargeable power source of an implantable medical device, system and method | |
US6671552B2 (en) | System and method for determining remaining battery life for an implantable medical device | |
US7894908B2 (en) | Neurostimulation therapy optimization based on a rated session log | |
US7463928B2 (en) | Identifying combinations of electrodes for neurostimulation therapy | |
US8095220B2 (en) | Neurostimulation therapy usage diagnostics | |
US20090125079A1 (en) | Alternative operation mode for an implantable medical device based upon lead condition | |
US20060020292A1 (en) | Therapy programming guidance based on stored programming history | |
US8868187B2 (en) | Battery depth of discharge in an implantable device | |
US20190351233A1 (en) | Systems and methods for facilitating selecting of one or more vectors in a medical device | |
US8195294B2 (en) | Multi-stage testing of electrodes of implantable medical device, system and method | |
US8838242B2 (en) | Pre-configuration of electrode measurement of an implantable medical device, system and method therefore | |
US20240009469A1 (en) | System for determining an estimate of battery capacity for an implantable device | |
EP1784240A2 (fr) | Mesure d'impedance pour dispositif implantable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050921 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060920 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061031 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061031 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60308555 Country of ref document: DE Date of ref document: 20061102 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061220 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061220 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070312 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070621 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061221 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20071029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061029 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070321 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060920 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071029 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20091009 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20110501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 60308555 Country of ref document: DE Representative=s name: DEHNSGERMANY PARTNERSCHAFT VON PATENTANWAELTEN, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210922 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210921 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60308555 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221031 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230503 |