[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1699582B1 - Method for the generation of hot strips of light gauge steel - Google Patents

Method for the generation of hot strips of light gauge steel Download PDF

Info

Publication number
EP1699582B1
EP1699582B1 EP04802997.9A EP04802997A EP1699582B1 EP 1699582 B1 EP1699582 B1 EP 1699582B1 EP 04802997 A EP04802997 A EP 04802997A EP 1699582 B1 EP1699582 B1 EP 1699582B1
Authority
EP
European Patent Office
Prior art keywords
content
conveyor belt
strip
melt
further treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04802997.9A
Other languages
German (de)
French (fr)
Other versions
EP1699582A1 (en
Inventor
Joachim Kroos
Karl-Heinz Spitzer
Georg Frommeyer
Volker Flaxa
Udo BRÜX
Klaus Brokmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Planck Institut fuer Eisenforschung
Salzgitter Flachstahl GmbH
Original Assignee
Max Planck Institut fuer Eisenforschung
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102004061284A external-priority patent/DE102004061284A1/en
Application filed by Max Planck Institut fuer Eisenforschung, Salzgitter Flachstahl GmbH filed Critical Max Planck Institut fuer Eisenforschung
Publication of EP1699582A1 publication Critical patent/EP1699582A1/en
Application granted granted Critical
Publication of EP1699582B1 publication Critical patent/EP1699582B1/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/041Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular fabrication or treatment of ingot or slab
    • C21D8/0415Rapid solidification; Thin strip casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling

Definitions

  • the invention relates to a method for producing hot strips of a deformable, especially good cold deep drawable lightweight structural steel according to the preamble of claim 1.
  • TRIP Transformation Induced Plasticity
  • TWIP winning Induced Plasticity
  • the resulting macrosegregation which can also lead to intermetallic phases, leads to serious belt defects during hot rolling.
  • High-alloyed steels basically also tend to form internal cracks, which ultimately represent marrow defect defects. These result z. B. from bending stresses during the manufacturing process.
  • the invention has for its object to provide a method for producing hot strips of a formable, especially good cold thermoformable Textilbaustah, I consisting of the main elements Si, Al and Mn, which has a high tensile strength and TRIP and / or TWIP properties, which avoids the disadvantages described above.
  • the steel of the invention is geglagemig pronounced either as a stabilized ⁇ -crystal or as a partially stabilized ⁇ -mixed crystal with a defined stacking fault energy, the z. T. multiple TRIP effect shows.
  • the advantage of the proposed lightweight steel number is the fact that a wide range of strength and ductility requirements can be met by targeted alloy composition and choice of process parameters such as degree of deformation and heat treatment, with tensile strengths up to 1400 MPa are possible.
  • the carbon addition plays a key role.
  • the hydrogen content in the steel plays an important role.
  • the phenomenon manifests itself in that z. B. on deep-drawn cups after some time in the edge area cracks occur.
  • the cracking process can last for several days.
  • the lightweight steel mainly with TRIP or with TWIP properties it may be necessary to equip the lightweight steel mainly with TRIP or with TWIP properties. This can be achieved most easily by controlling the Mn content. If the lower range of about 9 - 18% is selected, then an end product with predominantly TRIP properties is to be expected, whereas if the upper range is preferred with about 22-30%, the TWIP properties predominate. As already mentioned, this control is also possible by targeted addition of other elements, in particular carbon. In this connection, it should be mentioned that, from the viewpoint of sufficient corrosion resistance, a higher Cr content is advantageous for the lower Mn range specified and a lower Cr content is advantageous for the upper Mn range.
  • the considered disadvantageous bending during solidification is avoided in that the underside of the casting tape receiving the melt is supported on a plurality of juxtaposed rollers.
  • the support is reinforced in such a way that in the region of the casting belt, a negative pressure is generated, so that the casting belt is pressed firmly on the rollers.
  • the length of the conveyor belt is selected so that at the end of the conveyor belt before its deflection, the Vorband is largely solidified.
  • a homogenization zone which is used for temperature compensation and possible stress relief.
  • a further treatment which may be a direct Aufcoilen the Vorbandes or consists of an upstream rolling process to apply the required deformation of at least 50%, preferably of> 70%.
  • the direct Aufcoilen the Vorbandes has the advantage that you can choose the casting speed in terms of optimal solidification conditions, regardless of the cycle of the subsequent rolling process.
  • the strand shell In the formation of the strand shell at the beginning of solidification, it may locally come to lifting the strand shell from the circulating belt of the strip casting. Under certain circumstances, this leads to unacceptable unevenness of the underside of the produced pre-strip. To avoid this, it is necessary for all surface elements of the forming strand shell of a strip extending over the width of the conveyor belt to ensure the same cooling conditions as possible. This can be achieved by conditioning the top of the rotating belt, z. B. by a targeted structuring or by applying a thermally insulating release layer.
  • One of the aforementioned structuring measures is z. B. sandblasting or brushing the top of the rotating belt.
  • An example of the thermally insulating release layer is the coating by plasma spraying with, for example, aluminum oxide or zirconium oxide.
  • Another embodiment of a structuring is the imprinting of a nub structure, for. B. with upward pimples of some 100 microns in height and a few millimeters in diameter and a distance of the pimples of a few millimeters.
  • the rolled tensile specimen gave a tensile strength of 1046 MPa and an elongation (A80) of 35%. Depending on the degree of deformation and heat treatment, the tensile strength can be increased to over 1100 MPa and the elongation (A80) over 40%.
  • a second example shows the possibility of increasing the strength and ductility properties by increasing the carbon content at nearly the same Mn content.
  • the three examples show the range of variation in strength and elongation, with the Mn and C content playing a key role.
  • the influence of the analysis is superimposed by treatments of the hot strip in the form of annealing and / or by combined cold forming (eg rolling, drawing, deep drawing) and intermediate annealing or final annealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Erzeugen von Warmbändern aus einem umformbaren, insbesondere gut kalt tiefziehfähigen Leichtbaustahl gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to a method for producing hot strips of a deformable, especially good cold deep drawable lightweight structural steel according to the preamble of claim 1.

Der heiß umkämpfte Automobilmarkt zwingt die Hersteller ständig nach Lösungen zur Senkung des Flottenverbrauches unter Beibehaltung eines höchstmöglichen Komforts zu suchen. Dabei spielt die Gewichtsersparnis eine entscheidende Rolle. Diesem Wunsch versuchen die Lieferanten insbesondere für den Karosseriebereich dadurch Rechnung zu tragen, dass durch den Einsatz höherfester Stähle die Wanddicken reduziert werden können, ohne Einbußen der Beulsteifigkeit sowie der Umformung durch Tief- und/oder Streckziehen und der Beschichtung in Kauf nehmen zu müssen.The hotly contested automotive market is forcing manufacturers to constantly seek solutions to reduce fleet consumption while maintaining maximum comfort. The weight saving plays a decisive role here. Suppliers are trying to meet this desire, especially for the bodywork sector, by reducing wall thicknesses through the use of higher-strength steels without having to accept losses in buckling rigidity and forming by deep drawing and / or stretch drawing and coating.

Ein Lösungsansatz dazu ist in der EP 0 889 144 A1 veröffentlicht. In dieser Schrift wird ein kaltumformbarer, insbesondere gut tiefziehfähiger, austenitischer Leichtbaustahl vorgeschlagen, der eine Zugfestigkeit bis 1100 MPa aufweist. Die Hauptelemente dieses Stahles sind Si, Al und Mn im Bereich 1 - 6 % Si, 1 bis 8 % Al und 10 bis 30 % Mn, Rest Eisen einschließlich üblicher Stahlbegleitelemente.An approach to this is in the EP 0 889 144 A1 released. This document proposes a cold-formable, in particular readily deep-drawable, austenitic lightweight structural steel which has a tensile strength of up to 1100 MPa. The main elements of this steel are Si, Al and Mn in the range 1 - 6% Si, 1 to 8% Al and 10 to 30% Mn, balance iron including common steel elements.

Der hohe Umformgrad wird durch TRIP- (Transformation Induced Plasticity) und TWIP-(Twinning Induced Plasticity) Eigenschaften des Stahles erreicht. Stähle mit hohen Mn-Gehalten neigen zu Seigerungen, wie sie beim konventionellen Stranggießen durch Biegung, Ausbauchung des Stranges, Sedimentation und Saugseigerung im Sumpfspitzenbereich vorkommen.The high degree of deformation is achieved by TRIP (Transformation Induced Plasticity) and TWIP (Twinning Induced Plasticity) properties of the steel. High Mn steels tend to segregate as found in conventional continuous casting by bend, bulge of the strand, sedimentation, and suction segregation in the sump tip region.

Die auf diese Weise entstehende Makroseigerung, die auch zu intermetallischen Phasen führen kann, führt zu schwerwiegenden Bandfehlern beim Warmwalzen.The resulting macrosegregation, which can also lead to intermetallic phases, leads to serious belt defects during hot rolling.

Hochlegierte Stähle neigen grundsätzlich auch zu Innenrissen, die letztlich Markroseigerungsfehler darstellen. Diese resultieren z. B. aus Biegebeanspruchungen während des Herstellungsprozesses.High-alloyed steels basically also tend to form internal cracks, which ultimately represent marrow defect defects. These result z. B. from bending stresses during the manufacturing process.

Stähle mit hohen Al-Gehalten lassen sich mit konventionellen Gießpulvern nicht vergießen, da Al im besonderen Maße das SiO2 im Gießpulver reduziert und somit zu einer verschlechterten Reibung zwischen Strangschale und Kokille führt.Steels with high Al contents can not be cast with conventional casting powders, since Al in particular reduces the SiO 2 in the casting powder and thus leads to a reduced friction between the strand shell and mold.

Karl-Heinz Spitzer, et al. "Direct Strip Casting (DSC) - an Option for the Production of New Steel Grades", Steel Research vol. 74, 2003, No. 11/12, 724-730 , XP 00 902 8744 offenbart ein Verfahren zur Herstellung von Warmbänder aus TRiP/TWiP stahl in einer horizontalen Bandgießanlage. Karl-Heinz Spitzer, et al. "Direct Strip Casting (DSC) - Option for the Production of New Steel Grades", Steel Research vol. 74, 2003, no. 11/12, 724-730 , XP 00 902 8744 discloses a method for producing hot strips of TRiP / TWiP steel in a horizontal strip caster.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Erzeugen von Warmbändern aus einem umformbaren, insbesondere gut kalt tiefziehfähigem Leichtbaustah,I bestehend aus den Hauptelementen Si, Al und Mn, der eine hohe Zugfestigkeit und TRIP- und/oder TWIP-Eigenschaften aufweist anzugeben, das die zuvor geschilderten Nachteile vermeidet.The invention has for its object to provide a method for producing hot strips of a formable, especially good cold thermoformable Leichtbaustah, I consisting of the main elements Si, Al and Mn, which has a high tensile strength and TRIP and / or TWIP properties, which avoids the disadvantages described above.

Diese Aufgabe wird ausgehend vom Oberbegriff in Verbindung mit den kennzeichnenden Merkmalen des Anspruches 1 gelöst.This object is achieved starting from the preamble in conjunction with the characterizing features of claim 1.

Nach der Lehre der Erfindung weist der Stahl Gehalte in Masse % für
für

  • C 0,04 bis ≤ 1,0
  • Al 0,05 bis < 4,0
  • Si 0,05 bis ≤ 6,0
  • Mn 9,0 bis ≤ 30,0
und optional die Gehalte in Masse-% für
  • Cr bis ≤ 6,5
  • Cu bis ≤ 4,0
  • Ti, Zr, in Summe bis ≤ 0,7 und Nb, V in Summe bis ≤ 0,06 und für H2 ≤ 5 bis 20 ppm betragen, und Rest Eisen und unvermeidliche Verunreinigungen,
und bei dem eine Schmelze in einer horizontalen Bandgießanlage endabmessungsnah sowie strömungsberuhigt und biegefrei zu einem Vorband im Bereich zwischen 6 und 15 mm vergossen wird,
wobei durch Konditionierung der Oberseite des umlaufenden Förderbandes durch Sandstrahlen oder Bürsten oder Aufprägen einer Noppenstruktur oder durch Aufbringen einer thermisch isolierenden Trennschicht, für alle Flächenelemente der mit Beginn der Erstarrung sich bildenden Strangschale eines sich über die Breite des Förderbandes erstreckenden Streifens gleiche Abkühlbedingungen gegeben sind, und anschließend einer Weiterbehandlung zugeführt wird.According to the teachings of the invention, the steel has contents in% by mass
For
  • C 0.04 to ≤ 1.0
  • Al 0.05 to <4.0
  • Si is 0.05 to ≤ 6.0
  • Mn 9.0 to ≤ 30.0
and optionally the contents in% by mass for
  • Cr to ≤ 6.5
  • Cu to ≤ 4.0
  • Ti, Zr, in total up to ≤ 0.7 and Nb, V in total up to ≤ 0.06 and for H 2 ≤ 5 to 20 ppm, and balance iron and unavoidable impurities,
and in which a melt in a horizontal strip casting plant close to the final dimensions and flow-smoothed and bend-free is poured into a preliminary strip in the range between 6 and 15 mm,
wherein by conditioning the top of the circulating conveyor belt by sandblasting or brushing or imprinting a knobbly structure or by applying a thermally insulating release layer, for all surface elements of forming at the beginning of solidification strand shell of a extending over the width of the conveyor belt strip same cooling conditions are given, and subsequently fed to a further treatment.

Der erfindungsgemäße Stahl ist gefügemäßig entweder als stabilisierter γ-Kristall oder als teilstabilisierter γ-Mischkristall mit definierter Stapelfehlerenergie ausgeprägt, der einen z. T. multiplen TRIP-Effekt zeigt.The steel of the invention is gefügemig pronounced either as a stabilized γ-crystal or as a partially stabilized γ-mixed crystal with a defined stacking fault energy, the z. T. multiple TRIP effect shows.

Der letztgenannte Effekt ist die spannungs- oder dehnungsinduzierte Umwandlung eines flächenzentrierten γ-Mischkristalls in ein martensitisches ε-Gefüge mit hexagonaler dichtester Kugelpackung, der dann zum Teil in einen raumzentrierten α-Martensit und Restaustenit transformiert. γ fcc ε Ms hcp α Ms bcc

Figure imgb0001

fcc
= face centred cubic
bcc
= body centred cubic
hcp
= hexogonal closed packed
The latter effect is the stress- or strain-induced transformation of a surface-centered γ-mixed crystal into a martensitic ε-structure with hexagonal close-packed spherical packing, which then partially transforms into a body-centered α-martensite and retained austenite. γ fcc ε ms hcp α ms bcc
Figure imgb0001
fcc
= face centric cubic
bcc
= body centric cubic
hcp
= hexagonally closed packed

Zahlreiche Versuche haben zur Erkenntnis geführt, dass im komplexen Zusammenspiel zwischen Al, Si und Mn dem Kohlenstoffgehalt eine überragende Bedeutung zukommt. Es erhöht zum Einen die Stapelfehlerenergie und erweitert zum Anderen den metastabilen Austenitbereich. Dadurch wird die verformungsinduzierte Martensitbildung und die damit verbundene Verfestigung gehemmt und auch die Duktilität gesteigert.Numerous experiments have led to the realization that in the complex interaction between Al, Si and Mn, the carbon content is of paramount importance. On the one hand it increases the stacking fault energy and on the other hand it widens the metastable austenite area. This inhibits the deformation-induced martensite formation and the associated solidification and also increases the ductility.

Weitere Verbesserungen lassen sich erreichen durch gezielte Zugaben von Kupfer und/oder Chrom. Mit der Zugabe von Kupfer wird der ε-Martensit stabilisiert und die Verzinkbarkeit verbessert. Zudem erhöht Kupfer die Korrosionsbeständigkeit des Stahles. Auch Chrom stabilisiert den ε-Martensit und verbessert die Korrosionsbeständigkeit.Further improvements can be achieved by targeted additions of copper and / or chromium. With the addition of copper, the ε-martensite is stabilized and the galvanic nature is improved. In addition, copper increases the corrosion resistance of the steel. Chromium also stabilizes ε-martensite and improves corrosion resistance.

Der Vorteil des vorgeschlagenen Leichtbaustahles ist darin zu sehen, dass durch gezielte Legierungszusammensetzung und Wahl der Prozessparameter wie Umformgrad und Wärmebehandlung ein breites Spektrum von Festigkeits- und Duktilitätsanforderungen abgedeckt werden kann, wobei Zugfestigkeiten bis 1400 MPa möglich sind. Dabei spielt die Kohlenstoffzugabe eine Schlüsselrolle.The advantage of the proposed lightweight steel number is the fact that a wide range of strength and ductility requirements can be met by targeted alloy composition and choice of process parameters such as degree of deformation and heat treatment, with tensile strengths up to 1400 MPa are possible. The carbon addition plays a key role.

Bislang wurde in der Fachwelt die Meinung vertreten, den Kohlenstoffgehalt möglichst auf Null zu setzen, um die Bildung von κ-Karbiden zu vermeiden. Die Erfindung überwindet dieses Vorurteil durch den Vorschlag eines ausgewogenen Verhältnisses der Zugabe von Aluminium und Mangan, das auch eine gezielte Zugabe von Kohlenstoff gestattet.So far, experts have argued that it is best to zero the carbon content to avoid the formation of κ carbides. The invention overcomes this prejudice by proposing a balanced ratio of the addition of aluminum and manganese, which also allows for a targeted addition of carbon.

Für das Phänomen "delayed fracture", das bei Stählen mit überwiegend TRIP-Eigenschaften auftreten kann, spielt der Wasserstoffgehalt im Stahl eine wichtige Rolle. Das Phänomen äußert sich darin, dass z. B. an tiefgezogenen Näpfen nach einiger Zeit im Kantenbereich Risse auftreten. Der Rissbildungsvorgang kann sich über mehrere Tage hinziehen.For the phenomenon "delayed fracture", which can occur in steels with predominantly TRIP properties, the hydrogen content in the steel plays an important role. The phenomenon manifests itself in that z. B. on deep-drawn cups after some time in the edge area cracks occur. The cracking process can last for several days.

Aus diesem Grunde wird vorgeschlagen, den Wasserstoffgehalt auf < 20 ppm vorzugsweise auf < 5 ppm zu begrenzen. Dieses lässt sich durch eine sorgfältige Behandlung während der Erschmelzung erreichen, z. B. durch eine spezielle Spül- und Vakuumbehandlung.For this reason, it is proposed to limit the hydrogen content to <20 ppm, preferably to <5 ppm. This can be achieved by a careful treatment during the melting, z. B. by a special rinsing and vacuum treatment.

Je nach Anforderung kann es erforderlich sein, den Leichtbaustahl überwiegend mit TRIP oder mit TWIP-Eigenschaften auszustatten. Dies kann man am einfachsten durch Steuerung des Mn-Gehaltes erreichen. Wird der untere Bereich von etwa 9 - 18 % gewählt, dann ist ein Endprodukt mit überwiegend TRIP-Eigenschaften zu erwarten, wird hingegen der obere Bereich mit etwa 22 - 30 % bevorzugt, überwiegen die TWIP-Eigenschaften. Wie schon zuvor erwähnt, ist diese Steuerung auch durch gezielte Zugabe anderer Elemente, insbesondere Kohlenstoff, möglich. In diesem Zusammenhang sei erwähnt, dass unter dem Blickwinkel einer ausreichenden Korrosionsbeständigkeit für den unteren angegebenen Mn-Bereich ein höherer Cr-Gehalt und für den oberen Mn-Bereich ein niedrigerer Cr-Gehalt vorteilhaft ist.Depending on the requirements, it may be necessary to equip the lightweight steel mainly with TRIP or with TWIP properties. This can be achieved most easily by controlling the Mn content. If the lower range of about 9 - 18% is selected, then an end product with predominantly TRIP properties is to be expected, whereas if the upper range is preferred with about 22-30%, the TWIP properties predominate. As already mentioned, this control is also possible by targeted addition of other elements, in particular carbon. In this connection, it should be mentioned that, from the viewpoint of sufficient corrosion resistance, a higher Cr content is advantageous for the lower Mn range specified and a lower Cr content is advantageous for the upper Mn range.

Verfahrenstechnisch wird vorgeschlagen, die Strömungsberuhigung dadurch zu erreichen, dass eine mitlaufende elektromagnetische Bremse eingesetzt wird, die dafür sorgt, dass im Idealfall die Geschwindigkeit des Schmelzenzulaufs gleich der Geschwindigkeit des umlaufenden Förderbandes ist.In terms of process technology, it is proposed to achieve flow calming by using a follower electromagnetic brake, which ensures that in the ideal case the speed of the melt feed is equal to the speed of the circulating conveyor belt.

Die als nachteilig angesehene Biegung während der Erstarrung wird dadurch vermieden, dass die Unterseite des die Schmelze aufnehmenden Gießbandes sich auf einer Vielzahl von nebeneinander liegenden Rollen abstützt. Verstärkt wird die Abstützung in der Weise, dass im Bereich des Gießbandes ein Unterdruck erzeugt wird, so dass das Gießband fest auf die Rollen gedrückt wird.The considered disadvantageous bending during solidification is avoided in that the underside of the casting tape receiving the melt is supported on a plurality of juxtaposed rollers. The support is reinforced in such a way that in the region of the casting belt, a negative pressure is generated, so that the casting belt is pressed firmly on the rollers.

Um diese Bedingungen während der kritischen Phase der Erstarrung aufrecht zu erhalten, wird die Länge des Förderbandes so gewählt, dass am Ende des Förderbandes vor dessen Umlenkung das Vorband weitestgehend durcherstarrt ist.In order to maintain these conditions during the critical phase of solidification, the length of the conveyor belt is selected so that at the end of the conveyor belt before its deflection, the Vorband is largely solidified.

Am Ende des Förderbandes schließt sich eine Homogenisierungszone an, die für einen Temperaturausgleich und möglichen Spannungsabbau genutzt wird. Danach folgt eine Weiterbehandlung, die ein direktes Aufcoilen des Vorbandes sein kann oder aus einem vorgeschalteten Walzprozess besteht, um die erforderliche Umformung von mindestens 50 % vorzugsweise von > 70% aufzubringen.At the end of the conveyor belt is followed by a homogenization zone, which is used for temperature compensation and possible stress relief. This is followed by a further treatment, which may be a direct Aufcoilen the Vorbandes or consists of an upstream rolling process to apply the required deformation of at least 50%, preferably of> 70%.

Das direkte Aufcoilen des Vorbandes hat den Vorteil, dass man die Gießgeschwindigkeit hinsichtlich optimaler Erstarrungsbedingungen wählen kann, unabhängig vom Takt des nachfolgenden Walzprozesses.The direct Aufcoilen the Vorbandes has the advantage that you can choose the casting speed in terms of optimal solidification conditions, regardless of the cycle of the subsequent rolling process.

Andererseits kann es insbesondere aus wirtschaftlichen Gründen (hohe Produktivität) vorteilhaft sein, den erfindungsgemäßen Werkstoff direkt nach dem Gießen inline ganz oder teilweise bis auf seine endgültige Dicke zu walzen.On the other hand, it may be advantageous, in particular for economic reasons (high productivity), to roll the material according to the invention in-line entirely or partially directly after casting to its final thickness.

Bei der Bildung der Strangschale zu Beginn der Erstarrung kann es lokal zu Abhebungen der Strangschale vom umlaufenden Band der Bandgießanlage kommen. Dies führt unter Umständen zu unzulässigen Unebenheiten der Unterseite des erzeugten Vorbandes. Um dies zu vermeiden, ist es erforderlich für alle Flächenelemente der sich bildenden Strangschale eines sich über die Breite des Förderbandes erstreckenden Streifens möglichst gleiche Abkühlbedingungen zu gewährleisten. Dies kann man durch eine Konditionierung der Oberseite des umlaufenden Bandes erreichen, z. B. durch eine gezielte Strukturierung oder durch Aufbringen einer thermisch isolierenden Trennschicht.In the formation of the strand shell at the beginning of solidification, it may locally come to lifting the strand shell from the circulating belt of the strip casting. Under certain circumstances, this leads to unacceptable unevenness of the underside of the produced pre-strip. To avoid this, it is necessary for all surface elements of the forming strand shell of a strip extending over the width of the conveyor belt to ensure the same cooling conditions as possible. This can be achieved by conditioning the top of the rotating belt, z. B. by a targeted structuring or by applying a thermally insulating release layer.

Eine der vorgenannten Strukturierungsmaßnahmen ist z. B. ein Sandstrahlen oder Bürsten der Oberseite des umlaufenden Bandes. Ein Beispiel für die thermisch isolierende Trennschicht ist die Beschichtung durch Plasmaspritzen mit beispielsweise Aluminiumoxid oder Zirkonoxid. Ein weiteres Ausführungsbeispiel für eine Strukturierung ist das Aufprägen einer Noppenstruktur, z. B. mit nach oben gerichteten Noppen von einigen 100 µm Höhe und einigen Millimeter Durchmesser sowie einem Abstand der Noppen von einigen Millimetern.One of the aforementioned structuring measures is z. B. sandblasting or brushing the top of the rotating belt. An example of the thermally insulating release layer is the coating by plasma spraying with, for example, aluminum oxide or zirconium oxide. Another embodiment of a structuring is the imprinting of a nub structure, for. B. with upward pimples of some 100 microns in height and a few millimeters in diameter and a distance of the pimples of a few millimeters.

Anhand eines Ausführungsbeispieles werden die erreichbaren Werte demonstriert.
Ausgehend von einem Stahl mit der Analyse

  • C = 0,06 %
  • Mn = 15,5 %
  • Al = 2,0 %
  • Si = 2,6 %
  • H2 = 4 ppm
  • wurde ein Warmband mit einer Dicke von 2,5 mm erzeugt.
Based on an embodiment, the achievable values are demonstrated.
Starting from a steel with the analysis
  • C = 0.06%
  • Mn = 15.5%
  • Al = 2.0%
  • Si = 2.6%
  • H 2 = 4 ppm
  • a hot strip with a thickness of 2.5 mm was produced.

Die in Walzrichtung liegende Zugprobe ergab eine Zugfestigkeit von 1046 MPa und eine Dehnung (A80) von 35 %. In Abhängigkeit vom Umformgrad und Wärmebehandlung kann die Zugfestigkeit bis über 1100 MPa und die Dehnung (A80) über 40 % gesteigert werden. Ein zweites Beispiel zeigt die Möglichkeit, wie man durch Anhebung des Kohlenstoffgehaltes bei nahezu gleichem Mn-Gehalt die Festigkeits- und Duktilitätseigenschaften gegeneinander verschieben kann.The rolled tensile specimen gave a tensile strength of 1046 MPa and an elongation (A80) of 35%. Depending on the degree of deformation and heat treatment, the tensile strength can be increased to over 1100 MPa and the elongation (A80) over 40%. A second example shows the possibility of increasing the strength and ductility properties by increasing the carbon content at nearly the same Mn content.

Der Stahl dieses Ausführungsbeispiels weist folgende Gehalte auf

  • C = 0,7 %
  • Mn = 15 %
  • Al = 2,5 %
  • Si = 2,5 %
  • H2 = 3 ppm
Das aus diesem Stahl hergestellte Kaltband von 1,0 mm wurde unter Schutzgas bei 1050 °C und einer Haltezeit von 15 Minuten rekristallisierend geglüht. Die Zugfestigkeit ist auf 817 MPa abgesunken, dafür aber die A80-Dehnung auf 60 % gestiegen. Dies bedeutet, dass trotz des niedrigen Mn-Gehaltes durch die höhere Kohlenstoffzugabe der Stahl mehr in den Bereich mit TWIP-Eigenschaften verschoben worden ist.The steel of this embodiment has the following contents
  • C = 0.7%
  • Mn = 15%
  • Al = 2.5%
  • Si = 2.5%
  • H 2 = 3 ppm
The cold rolled strip of 1.0 mm made of this steel was recrystallized under protective gas at 1050 ° C. and a holding time of 15 minutes. The tensile strength dropped to 817 MPa, but the A80 elongation increased to 60%. This means that despite the lower Mn content due to the higher carbon addition, the steel has shifted more into the TWIP properties range.

Ein weiteres Beispiel zeigt die Ergebnisse mit hohem Mn-Gehalt und niedrigem Kohlenstoffgehalt. Die Gehalte betrugen

  • C = 0,041 %
  • Mn = 25 %
  • Al = 3,4 %
  • Si = 2,54 %
  • H2 = 4 ppm
Nach einer vergleichbaren Wärmebehandlung wie zuvor beschrieben, betrug die Zugfestigkeit im Mittel 632 MPa und die A80-Dehnung 57 %. Auch dieses Beispiel zeigt deutlich, dass man mit hohen Mn-Gehalten die Dehnung stark steigern kann, dies aber immer zulasten der Festigkeit geht, solange der Kohlenstoffgehalt niedrig ist.Another example shows the results of high Mn content and low carbon content. The contents amounted
  • C = 0.041%
  • Mn = 25%
  • Al = 3.4%
  • Si = 2.54%
  • H 2 = 4 ppm
After comparable heat treatment as described above, the average tensile strength was 632 MPa and the A80 elongation was 57%. This example also clearly shows that with high Mn contents one can greatly increase the elongation, but this always comes at the expense of strength, as long as the carbon content is low.

Insgesamt zeigen die drei Beispiele die Variationsbreite hinsichtlich Festigkeit und Dehnung, wobei dem Mn- und C-Gehalt eine Schlüsselrolle zukommt. Überlagert wird der Analyseneinfluss noch durch Behandlungen des Warmbandes in Form von Glühen und/oder durch kombiniertes Kaltumformen (z. B. Walzen, Strecken, Tiefziehen) und Zwischenglühen bzw. Endglühen.Overall, the three examples show the range of variation in strength and elongation, with the Mn and C content playing a key role. The influence of the analysis is superimposed by treatments of the hot strip in the form of annealing and / or by combined cold forming (eg rolling, drawing, deep drawing) and intermediate annealing or final annealing.

Claims (15)

  1. A method for producing hot strips from a deformable lightweight structural steel, in particular one which can be readily cold deep-drawn, consisting of the main elements Si, Al and Mn, which has a high tensile strength and TRIP and/or TWIP properties,
    characterised in that
    the content in % by weight for
    C is 0.04 to ≤ 1.0
    Al is 0.05 to < 4.0
    Si is 0.05 to ≤ 6.0
    Mn is 9.0 to ≤ 30.0
    and optionally the content in % by weight for
    Cr is up to ≤ 6.5
    Cu is up to ≤ 4.0
    Ti, Zr, in total is up to ≤ 0.7, and Nb, V in total is up to ≤ 0.06, and for H2 is ≤ 5 to 20 ppm, and remainder iron and unavoidable impurities,
    and in which a melt is cast to near final dimensions and with flow-calming and free from bending in a horizontal strip casting plant to produce a roughed strip in the range between 6 and 15 mm,
    wherein identical cooling conditions are provided by conditioning the upper side of the revolving conveyor belt by sandblasting or brushing or embossing a knob structure or by applying a heat-insulating separating layer, for all surface elements of the strand shell, which forms with the beginning of solidification, of a strip extending over the width of the conveyor belt, and then is sent for further treatment.
  2. A method according to Claim 1
    characterised in that
    the carbon content is 0.06 to ≤ 0.7%.
  3. A method according to Claims 1 and 2
    characterised in that
    the Mn content is 9 - 18%.
  4. A method according to Claims 1 and 2
    characterised in that
    the Mn content is 18 - 22%.
  5. A method according to Claims 1 - 4
    characterised in that
    the Cr content is 0.3 - 1.0%.
  6. A method according to Claims 1 - 2
    characterised in that
    the Mn content is 22 - 30%.
  7. A method according to Claim 1 and 6
    characterised in that
    the Cr content is 0.05 - 0.2%.
  8. A method according to Claims 1 - 7
    characterised in that
    the Si content is 2.0 - 4.0%.
  9. A method according to Claims 1 - 8
    characterised in that
    the Al content is 2.0 - 3.0%.
  10. A method according to Claims 1 - 9
    characterised in that
    the speed of the melt inflow is identical to the speed of the revolving conveyor belt.
  11. A method according to one of Claims 1 - 10
    characterised in that
    the melt which is charged onto the conveyor belt is very largely thoroughly solidified at the end of the conveyor belt.
  12. A method according to Claim 1 and 11
    characterised in that
    after the thorough solidification and before the start of the further treatment the roughed strip passes through a homogenisation zone.
  13. A method according to Claim 1 and 12
    characterised in that
    the further treatment is coiling-up of the roughed strip.
  14. A method according to Claim 1 and 12
    characterised in that
    the roughed strip is subjected to a rolling process in-line and is then coiled up.
  15. A method according to Claim 14
    characterised in that
    the degree of deformation is at least 50%, preferably > 70%.
EP04802997.9A 2003-12-23 2004-12-22 Method for the generation of hot strips of light gauge steel Active EP1699582B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10361952 2003-12-23
DE102004061284A DE102004061284A1 (en) 2003-12-23 2004-12-14 Production of a deformable hot strips made from light gauge steel used in the automobile industry comprises casting the melt in a horizontal strip casting unit close to the final measurements, and further processing
PCT/DE2004/002817 WO2005061152A1 (en) 2003-12-23 2004-12-22 Method for the generation of hot strips of light gauge steel

Publications (2)

Publication Number Publication Date
EP1699582A1 EP1699582A1 (en) 2006-09-13
EP1699582B1 true EP1699582B1 (en) 2013-12-11

Family

ID=34712343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802997.9A Active EP1699582B1 (en) 2003-12-23 2004-12-22 Method for the generation of hot strips of light gauge steel

Country Status (4)

Country Link
US (1) US7806165B2 (en)
EP (1) EP1699582B1 (en)
KR (1) KR101178775B1 (en)
WO (1) WO2005061152A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015197412A1 (en) 2014-06-25 2015-12-30 Salzgitter Flachstahl Gmbh Steel product for protecting electrical components from mechanical damage

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005024029B3 (en) * 2005-05-23 2007-01-04 Technische Universität Bergakademie Freiberg Austenitic lightweight steel and its use
US8465806B2 (en) * 2007-05-02 2013-06-18 Tata Steel Ijmuiden B.V. Method for hot dip galvanizing of AHSS or UHSS strip material, and such material
WO2010102595A1 (en) * 2009-03-11 2010-09-16 Salzgitter Flachstahl Gmbh Method for producing a hot rolled strip and hot rolled strip produced from ferritic steel
RU2492022C2 (en) * 2009-03-11 2013-09-10 Зальцгиттер Флахшталь Гмбх Method of making hot-rolled strip
CN102439188A (en) * 2009-04-28 2012-05-02 现代制铁株式会社 High manganese nitrogen-containing steel sheet having high strength and high ductility and method for manufacturing same
DE102009030324A1 (en) * 2009-06-24 2011-01-05 Voestalpine Stahl Gmbh Manganese steel and process for producing the same
EP2383353B1 (en) 2010-04-30 2019-11-06 ThyssenKrupp Steel Europe AG High tensile steel containing Mn, steel surface product made from such steel and method for producing same
DE102011117135A1 (en) 2010-11-26 2012-05-31 Salzgitter Flachstahl Gmbh Energy-saving container made of lightweight steel
US10001228B2 (en) 2011-06-17 2018-06-19 National Oilwell Varco Denmark I/S Unbonded flexible pipe
CN102925790B (en) * 2012-10-31 2014-03-26 钢铁研究总院 Method for producing high-strength and elongation product automobile steel plate by continuous annealing technology
EP2994548B1 (en) * 2013-05-06 2022-10-26 Salzgitter Flachstahl GmbH Method for producing components from lightweight steel
EP3095889A1 (en) * 2015-05-22 2016-11-23 Outokumpu Oyj Method for manufacturing a component made of austenitic steel
GB2539010B (en) * 2015-06-03 2019-12-18 Vacuumschmelze Gmbh & Co Kg Method of fabricating an article for magnetic heat exchange
SI3117922T1 (en) 2015-07-16 2018-07-31 Outokumpu Oyj Method for manufacturing a component of austenitic twip or trip/twip steel
RU2615738C1 (en) * 2016-02-08 2017-04-10 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") HIGH-STRENGTH STEELS OF Fe-Mn-Al-C SYSTEM WITH TWIP AND TRIP EFFECTS
RU2643119C2 (en) * 2016-05-04 2018-01-30 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method of deformation-thermal processing of high-manganese steel
DE102016110661A1 (en) 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Process for producing a cold-rolled steel strip from a high-strength, manganese-containing steel
DE102016117494A1 (en) 2016-09-16 2018-03-22 Salzgitter Flachstahl Gmbh Process for producing a formed component from a medium manganese steel flat product and such a component
CA3042120C (en) 2016-11-02 2022-08-09 Salzgitter Flachstahl Gmbh Medium-manganese steel product for low-temperature use and method for the production thereof
DE102018102974A1 (en) * 2018-02-09 2019-08-14 Salzgitter Flachstahl Gmbh A method of manufacturing a component by hot working a manganese steel precursor and a hot worked steel component

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795269A (en) * 1972-03-27 1974-03-05 Alcan Res & Dev Method of and apparatus for casting on moving surfaces
AT336827B (en) * 1974-03-11 1977-05-25 Metallgesellschaft Ag METALLIC CASTING BELT FOR BELT CASTING MACHINES
US4588021A (en) * 1983-11-07 1986-05-13 Hazelett Strip-Casting Corporation Matrix coatings on endless flexible metallic belts for continuous casting machines method of forming such coatings and the coated belts
JPH07109546A (en) * 1993-10-08 1995-04-25 Sumitomo Metal Ind Ltd Steel for medium permeability steel used for reinforcing bar and its production
US6354364B1 (en) * 1994-03-30 2002-03-12 Nichols Aluminum-Golden, Inc. Apparatus for cooling and coating a mold in a continuous caster
DE19727759C2 (en) 1997-07-01 2000-05-18 Max Planck Inst Eisenforschung Use of a lightweight steel
FR2796083B1 (en) * 1999-07-07 2001-08-31 Usinor PROCESS FOR MANUFACTURING IRON-CARBON-MANGANESE ALLOY STRIPS, AND STRIPS THUS PRODUCED
US6755236B1 (en) * 2000-08-07 2004-06-29 Alcan International Limited Belt-cooling and guiding means for continuous belt casting of metal strip
DE10259230B4 (en) * 2002-12-17 2005-04-14 Thyssenkrupp Stahl Ag Method for producing a steel product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015197412A1 (en) 2014-06-25 2015-12-30 Salzgitter Flachstahl Gmbh Steel product for protecting electrical components from mechanical damage
DE102014009534A1 (en) 2014-06-25 2015-12-31 Salzgitter Flachstahl Gmbh Steel product to protect electrical components from mechanical damage

Also Published As

Publication number Publication date
KR101178775B1 (en) 2012-09-07
US7806165B2 (en) 2010-10-05
US20070289717A1 (en) 2007-12-20
KR20070007034A (en) 2007-01-12
EP1699582A1 (en) 2006-09-13
WO2005061152A1 (en) 2005-07-07

Similar Documents

Publication Publication Date Title
EP1699582B1 (en) Method for the generation of hot strips of light gauge steel
DE102004061284A1 (en) Production of a deformable hot strips made from light gauge steel used in the automobile industry comprises casting the melt in a horizontal strip casting unit close to the final measurements, and further processing
DE60116477T2 (en) WARM, COLD-ROLLED AND MELT-GALVANIZED STEEL PLATE WITH EXCELLENT RECEPTION BEHAVIOR
DE60224557T3 (en) A tensile high strength thin steel sheet having excellent shape fixing property and manufacturing method therefor
EP2547800B1 (en) Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness
CN101535519B (en) High young&#39;s modulus steel plate and process for production thereof
EP2449138B1 (en) Process of manufacturing a part from an air hardenable steel and the part manufactured by the process
EP3655560B1 (en) Flat steel product with a high degree of aging resistance, and method for producing same
DE69938265T2 (en) High strength cold rolled steel sheet and process for its production
WO2018054742A1 (en) Method for producing flat steel products, and a flat steel product
JP5350252B2 (en) Process for producing flat steel products from steel forming a martensitic microstructure
DE60207591T2 (en) METHOD FOR PRODUCING WELDED TUBES AND PIPE MADE THEREFOR
KR20100019443A (en) Low density steel with good stamping capability
EP2991783B1 (en) Method for producing a metal strip
CN107406953A (en) steel plate for heat treatment
DE10148635A1 (en) Plated steel rolled material used for reinforcing concrete consists of a bimetal cast block made from a base material, and a surface layer made from ferritic or austenitic stainless steel containing chromium and nickel alloying additions
WO2008052919A1 (en) Method for manufacturing flat steel products from a multiphase steel microalloyed with boron
EP4214347B1 (en) Sheet metal component and method for producing same
WO2015024903A1 (en) Method for producing a steel component
WO2008052921A1 (en) Method for manufacturing flat steel products from a multiphase steel alloyed with silicon
DE68923816T2 (en) Heat treatment of corrosion-resistant steels.
DE102014005662A1 (en) Material concept for a malleable lightweight steel
EP1642988B1 (en) Warm rolling method
JP5350254B2 (en) Process for producing flat steel products from aluminum alloyed multiphase steels
EP1453984A1 (en) Method for the production of hot strip or sheet from a micro-alloyed steel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE

17Q First examination report despatched

Effective date: 20071029

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FLAXA, VOLKER

Inventor name: SPITZER, KARL-HEINZ

Inventor name: BROKMEIER, KLAUS

Inventor name: KROOS, JOACHIM

Inventor name: FROMMEYER, GEORG

Inventor name: BRUEX, UDO

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014463

Country of ref document: DE

Effective date: 20140206

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014463

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014463

Country of ref document: DE

Effective date: 20140912

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231214

Year of fee payment: 20