[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1672194B1 - Procédé de régénération d'un filtre à particules avec dispositif à combustion catalytique et installation de filtration utilisant un tel procédé - Google Patents

Procédé de régénération d'un filtre à particules avec dispositif à combustion catalytique et installation de filtration utilisant un tel procédé Download PDF

Info

Publication number
EP1672194B1
EP1672194B1 EP05292666A EP05292666A EP1672194B1 EP 1672194 B1 EP1672194 B1 EP 1672194B1 EP 05292666 A EP05292666 A EP 05292666A EP 05292666 A EP05292666 A EP 05292666A EP 1672194 B1 EP1672194 B1 EP 1672194B1
Authority
EP
European Patent Office
Prior art keywords
catalytic
temperature
filter
fluid
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05292666A
Other languages
German (de)
English (en)
Other versions
EP1672194A1 (fr
Inventor
Jacques Lavy
Jean-Baptiste Dementhon
Daniel Biancotto
Turkay Erol
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airmeex SA
IFP Energies Nouvelles IFPEN
Original Assignee
Airmeex SA
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airmeex SA, IFP Energies Nouvelles IFPEN filed Critical Airmeex SA
Publication of EP1672194A1 publication Critical patent/EP1672194A1/fr
Application granted granted Critical
Publication of EP1672194B1 publication Critical patent/EP1672194B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • F01N3/032Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start during filter regeneration only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/002Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/08Exhaust treating devices having provisions not otherwise provided for for preventing heat loss or temperature drop, using other means than layers of heat-insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2390/00Arrangements for controlling or regulating exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2410/00By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device
    • F01N2410/04By-passing, at least partially, exhaust from inlet to outlet of apparatus, to atmosphere or to other device during regeneration period, e.g. of particle filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/04Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by adding non-fuel substances to combustion air or fuel, e.g. additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the present invention relates to a particle filter regeneration method, in particular particles present in the exhaust gas of an internal combustion engine, and to an installation using such a method.
  • Such engines generate particularly high amounts of particles and their exhaust lines are increasingly equipped with filters that retain these particles with very high filtration efficiencies, close to 100%.
  • the temperature of the exhaust gas is not sufficient to ensure the regeneration of the filter and it is then necessary to artificially trigger the combustion of the particles when the fouling of the filter has reached a certain threshold.
  • Another technique consists, as best described in the European patent EP 0 341 832 , to have a catalyst for oxidation of nitric oxide (NO) upstream of the filter.
  • This catalyst oxidizes the nitric oxide contained in the exhaust gases to nitrogen dioxide (NO 2 ) and this nitrogen dioxide is then used to allow the combustion of particles trapped on the filter at a temperature of between 280 ° C. C and 400 ° C.
  • This technique requires the use of a diesel fuel with a very low sulfur content (of the order of 50 ppm) in order to maintain a sufficient conversion efficiency of the oxidation catalyst to obtain a large amount of NO transformed into NO 2 .
  • organometallic additives such as cerium for example
  • He is also known by the document JP 59101522 to provide a catalytic combustion device upstream of particulate filters to generate hot gases necessary for the regeneration of these filters.
  • This device comprises a pipe carrying a catalytic element and a fuel injector for catalytic combustion of the fuel mixture.
  • the assembly also includes an external air preheating device which includes a double wall housing surrounding the outlet of the filter assembly and which is connected to the conduit. Thus, the outside air is introduced into this housing, heats up by capturing the calories of the exhaust gases, and is directed to the heated state towards the pipe. This hot air thus arrives upstream of the catalytic element by promoting the vaporization of the injected fuel and its mixing with this fuel.
  • This set nevertheless has the disadvantage of obtaining a hot air whose temperature can not be adjusted because it will be dependent on the temperature of the exhaust gas leaving the filters.
  • the temperature level of this heated air is insufficient to make operational the catalytic element (start temperature or light off) which will introduce unburned hydrocarbons at the entrance of the filters.
  • He is also known by the documents GB 2114913 and EP 1348838 to raise, in particular by electric heating, the temperature of the fluid to be mixed with the fuel so as to rapidly obtain a "light off" temperature of the catalytic element of the catalytic combustion device.
  • the present invention proposes to overcome the drawbacks mentioned above by means of a method and a device which makes it possible to reach regeneration temperatures very rapidly and by minimizing consumption.
  • the present invention relates to a method of regenerating a particulate filter placed in the exhaust line of an internal combustion engine, in particular of the Diesel type, in which method the filter clogging state is evaluated. This state is compared with a threshold value and then, if this threshold value is exceeded, the temperature of the fluid is raised prior to producing a mixture of a fluid and a fuel.
  • a fuel is injected to carry out said mixing, it is realized, once the fluid has reached said temperature, a catalytic combustion of this mixture upstream of said filter for generate hot gases necessary for the regeneration of the filter and the filter is regenerated by these hot gases passing through said filter and having a temperature sufficient to ensure the combustion of the filters; articules retained in this filter, characterized in that circulates the exhaust gas around the catalytic element used for catalytic combustion to raise the temperature of said element.
  • air and / or engine exhaust gases may be used.
  • An additive to the fuel can be added to lower the combustion temperature of the particles.
  • the invention also relates to an exhaust gas filtration installation of an internal combustion engine, in particular of Diesel type, with a filtration assembly comprising at least one filtration zone comprising a filtration cartridge through which the exhaust gas passes through.
  • engine exhaust a catalytic combustion device disposed upstream of said filtration assembly and for generating hot gases necessary for the regeneration of at least one of said cartridges, said device comprising a pipe connected to the upstream of the assembly of filtration and carrying a catalytic element and a fuel injection device, and an electrical resistance for raising the temperature of the fluid up to the ignition temperature of said catalytic element, characterized in that it comprises a heating pipe around the catalytic element so that the exhaust gas surrounds by sweeping the part of a pipe (30) in which the catalytic element (36) is located in order to raise the temperature of said element.
  • the catalytic combustion device may comprise a fluid pumping means provided for passing through the catalytic element.
  • the filtration installation may comprise a distribution compartment placed upstream of the cartridge and carrying an engine exhaust gas inlet and a hot gas inlet from the catalytic combustion device.
  • the distribution compartment may include valve closure means to control the flow of engine exhaust and the admission of hot gases.
  • the filtration installation may comprise a heating pipe for the catalytic element.
  • the catalytic element may comprise a catalyst element for catalytic combustion and a catalytic exhaust oxidation catalyst element.
  • the catalytic element may be impregnated with a catalytic formulation to reduce the nitrogen oxides of the exhaust gas.
  • the installation comprises a filtration assembly 10, in particular a particulate filter, placed on an exhaust line 12 of an internal combustion engine, more particularly a Diesel type engine.
  • This set is crossed by the exhaust gas whose path is symbolized by the arrows 14 (gas inlet) and 16 (gas outlet) of the figure 1 and is divided into at least two filtration zones, here three zones 18, 20, 22 preferably substantially equal.
  • the installation also comprises a catalytic combustion device 26 which makes it possible to generate hot gases which are sent via a pipe 24 to this filtration assembly.
  • This catalytic combustion device comprises an external air supply pump 28, and in the direction of circulation of this air along a pipe 30 connected to the connecting pipe 24, a device 32 for preheating the air circulating in the pipe 30, a fuel injection device 34 in the pipe and a catalytic element 36, hereinafter referred to as the catalyst description.
  • the preheating device is preferably an electrical resistance placed in the pipe, between the pump and the fuel injection device 34, powered by a battery or supercapacitor, and swept by the air flowing through it. under the effect of the pump.
  • the fuel injection device may be a pump injector connected to the fuel circuit that this engine usually comprises.
  • the catalyst is of the oxidation catalyst type of the fuel contained in the fuel mixture which passes through it and makes it possible to heat the air contained in this mixture which passes through it very rapidly and thus to distribute hot gases to the pipe 24.
  • This catalyst can be in the form of a monolith consisting of a corrugated metal strip wound on itself forming a cylindrical assembly called "honeycomb".
  • This catalyst may also consist of a cordierite monolith or even a filter element, made of silicon carbide for example, impregnated with a catalytic oxidation formulation.
  • the filter assembly 10 comprises an exhaust gas inlet manifold 38 connected to the exhaust line 12 and into which the exhaust gas is introduced.
  • this manifold are placed several sensors and more precisely a pressure sensor 40 (upstream pressure sensor) and a temperature sensor 42 (upstream temperature sensor).
  • This manifold opens via inputs 44, 46, 48 in the filtration zones 18, 20, 22 which each comprise, downstream of these inlets, a distribution compartment 50, 52, 54 provided upstream of a filter cartridge 56, 58, 60 and in which leads, by branches of the pipe 24, an inlet 62, 64, 66 of hot gases.
  • the outputs of the cartridges result in an outlet manifold 68 connected to the exhaust line 12 and which also comprises several sensors, such as a pressure sensor 70 (downstream pressure sensor) and a temperature sensor 72 (downstream temperature sensor). .
  • Each distribution compartment comprises a valve closing means 74, 76, 78 for controlling the exhaust gas inlet and / or the inlet 62, 64, 66 of hot gases.
  • Valve or valve closing means are controlled by one or more actuators (not shown) independently of each other but never simultaneously closing all the inlets 44, 46, 48 of compartments 50, 52, 54.
  • the valves each comprise two closure means connected to one another, a first means, said plate 80, adapted to open or close the exhaust gas inlet and a second means, said slide 82, allowing to open and close the hot gas inlet.
  • the plate and the slide are arranged in such a way that the exhaust gas inlet and the hot gas inlet of the same compartment can not be closed simultaneously.
  • the inlet and the inlet are arranged orthogonally with each other and, as a result, the plate and the slide are also orthogonally arranged.
  • These closure means are controlled on the move by a rod 84 subjected to displacement in translation under the action of any known means, such as a jack, an electromagnet, etc.
  • partitions 86 are provided to isolate the zones 18, 20, 22 between them and delimit the compartments 50, 52, 54 from each other.
  • upstream and downstream mean, for the filtration assembly, the flow of the exhaust gas from the inlet manifold 38 to the outlet manifold 68 while in the case of the catalytic combustion device, the flow of air is considered pump 28 to the admissions 62, 64, 66.
  • a control unit such as a motor-calculator which the engine usually comprises, determines the position of the valves 74, 76, 78 as a function of the various operating parameters of the engine.
  • valves 74 and 76 are controlled by the control unit such that they open the entry of the exhaust gas 44 and 46 by closing the admissions 62 and 64 by the slides 82 while the valve 78 closes the inlet 48 of exhaust gas by The plate 80.
  • the installation is in a state of loading, that is to say that the cartridges 56, 58 and 60 are not saturated by the particles or soot contained in the exhaust gas.
  • all the exhaust gas passes through the inlets 44 and 46, the manifold 38 to the compartments 50, 52, then through the cartridges 56 and 58 so that the particles contained in these gases are , in large part, retained by these cartridges and finally end up in the outlet manifold 68 to be rejected by the exhaust line 12.
  • the resistor 32 is not supplied with fuel, no fuel is introduced into the pipe 30 by the injector 34 and the catalyst 36 is at ambient temperature.
  • the control unit controls the valves so that only one exhaust gas inlet is open. So from the example shown in the figure 2 , the valve 76 will be actuated to close off the exhaust gas inlet 46 and only the inlet 44 will be open. The exhaust gas thus completely passes through this inlet 44 and then flows into the cartridge 56 and leaves the line 12 via the outlet manifold 68. Thanks to the upstream pressure sensor 40 and the downstream pressure sensor 70, a pressure drop is calculated by the control unit and then compared to a table of values contained in this unit.
  • this pressure drop If the value of this pressure drop is lower than a threshold value of this table, the unit controls the valves so as to repeat this examination of the level of clogging on the next cartridge 58 by opening the inlet 46 and closing the door. In the same way, if the pressure drop of the cartridge 58 is lower than the threshold value, the operation will continue on the cartridge 60.
  • the valve 74 closes the inlet 44 of exhaust gas through the plate 80 and releases the inlet 62 of hot gases to proceed with the regeneration of this cartridge.
  • the control unit will make it possible to better adapt the volume of the exhaust gases to be treated by the other cartridges by controlling the valves associated therewith so that at least one of the arrivals 46 and 48 be open.
  • the unit controls the start of the pump 28 which circulates air in the pipe 30 and sends an electric current through the electrical resistance 32. In so doing, this resistance heats the air in this pipe so that it reaches a temperature of about 250 ° C, the boot temperature of the catalyst called start temperature or light off.
  • This air temperature is constantly monitored by a temperature sensor 88 provided in the pipe 30 downstream of the catalyst 36. As soon as this temperature is reached, introduction of fuel into the pipe 30 and upstream of the catalyst 36 is achieved by the injector 34.
  • the speed of regeneration of the cartridge will be controlled by the control unit which will control not only the amount of fuel introduced into the pipe 30 but also the flow of air circulating there through the pump 28. Similarly, this unit will interrupt if necessary the supply of the resistor 32.
  • control unit actuates the valves so that the regeneration plant is in the configuration that preceded this regeneration and as illustrated in FIG. figure 2 . If necessary, the control unit will control the valves in a manner similar to that described above to regenerate another cartridge.
  • it may be provided to mix an additive to the fuel before its injection into the pipe 30 by the injector 34 and this in order to lower the reaction temperature of the catalyst.
  • this control unit controls the valve 74 to temporarily open the admission 44 by leaving the tray 80 of its seat while leaving the admission 62 open. This has the effect of introducing exhaust gas through this cartridge and thus avoid excessive heat exchange for this cartridge during its regeneration.
  • figure 6 is a side sectional view of the figure 2 and for this includes the same references for the parts common to both figures.
  • the catalytic combustion device 26 has the same elements as those described in connection with the figure 1 (pump, heating resistor, fuel injector and catalyst).
  • the catalyst 36 is placed as close as possible to the cartridges so that the path of the hot gases between this catalyst and the cartridges is minimized and thus to limit the thermal losses of these gases.
  • the catalyst is bathed by the exhaust gas so that the latter transmit a portion of their heat energy to the catalyst and thus minimizes the power supply power of the resistance while decreasing the time required for the catalyst to reach its temperature. light off. More precisely, from the inlet manifold 38 part a pipe 90 whose mouth 92 originates at this manifold and whose outlet 94 of this pipe arrives in one of the compartments, here in the compartment 50 and upstream of the cartridge 56. This heating pipe 90 is traversed substantially orthogonally through the pipe 30 and has a transverse dimension such that the transverse dimension of the pipe 30 is included. The catalyst is placed in the region of the pipe 30 which crosses the heating pipe 90 so that the exhaust gases coming from the collector 38 surround by sweeping it the part of the pipe 30 in which the catalyst 36 is located and transmit their calories to this catalyst.
  • the outlet 94 of the pipe 90 is not closed by the slide 82 of the valve 74 so that the exhaust flow continuously from the inlet manifold to the compartment by constantly bathing the section of the pipe carrying the catalyst.
  • this catalyst so as to limit the thermal inertia of this catalyst, it can be expected to separate it into several elements, a first element instead of the catalyst 36 to ensure the catalytic combustion of the fuel mixture circulating in the pipe 30 and a second catalytic element 36b placed upstream of the cartridge 56 and downstream of the hot gas inlet 62 and whose role will be to oxidize the unburned hydrocarbons (HC) and the carbon oxides (CO) present in the gases of exhaust and / or in hot gases resulting from catalytic combustion.
  • HC unburned hydrocarbons
  • CO carbon oxides
  • figure 7 The realization illustrated in figure 7 is a variant of the figure 6 and for this has the same references as this figure.
  • the pipe 130 carrying the resistor 32, the injector 34 and the catalyst 36 starts at the inlet manifold 38 and results in the admission of hot gases 62 as previously described in relation to the Figures 1 to 5 .
  • the resistor 32 is energized (in the case where the temperature of the exhaust gas is not sufficient to bring the catalyst 36 to its start-up or light-off temperature) and heats the exhaust gases flowing through it.
  • the fuel injector introduces fuel into the pipe 130, downstream of the resistance and upstream of the catalyst, and interrupts the power supply of the resistor, if necessary.
  • the exhaust gases circulating in this pipe contain enough oxygen for the fuel mixture passing through the catalyst 36 to be oxidized and provides hot catalyst gases at the catalyst outlet, which will then be introduced through the inlet 62 into the compartment 50 and then pass through the cartridge 56.
  • either the catalyst 36 or the cartridges 56, 58, 60 are impregnated with a catalytic formulation to reduce the NOx present in the hot gases or in the exhaust gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Description

  • La présente invention se rapporte à un procédé de régénération de filtre à particules, notamment de particules présentes dans les gaz d'échappement de moteur à combustion interne, et à une installation utilisant un tel procédé.
  • Elle vise notamment le domaine de la gestion de l'encrassement d'un filtre placé dans la ligne d'échappement d'un moteur à combustion interne, notamment de type Diesel, et traversé par des gaz d'échappement transportant des particules, telles que des particules carbonées ou des suies.
  • De tels moteurs génèrent des quantités de particules particulièrement élevées et leurs lignes d'échappement sont de plus en plus souvent équipées de filtres qui retiennent ces particules avec des efficacités de filtration très importantes, voisine de 100%.
  • Cependant de tels filtres doivent être périodiquement régénérés afin d'éviter leur colmatage par encrassement. En effet, le colmatage entraîne une augmentation de la contre-pression à l'échappement, ce qui a pour effet d'accroître la consommation en carburant du moteur. Dans le cas extrême d'un colmatage total de ce filtre, cela peut entraîner un grave dysfonctionnement du moteur, voire un arrêt complet du fonctionnement de ce moteur, et/ou la destruction du filtre.
  • La régénération d'un filtre à particules se produit parfois naturellement, lorsque la température des gaz d'échappement a atteint le niveau nécessaire pour brûler les particules présentes sur ce filtre.
  • Toutefois, dans certaines conditions de fonctionnement du moteur, la température des gaz d'échappement n'est pas suffisante pour assurer la régénération du filtre et il est alors nécessaire de déclencher artificiellement la combustion des particules lorsque l'encrassement du filtre a atteint un certain seuil.
  • Cela peut consister à augmenter la température du filtre au-dessus de 550° C, généralement en augmentant temporairement la richesse des gaz d'échappement qui le traversent sans qu'elle n'atteigne la richesse 1, et à obtenir une composition oxydante de ces mêmes gaz pour réaliser la combustion des particules retenues dans ce filtre.
  • Ceci a pour inconvénient majeur d'augmenter la consommation de carburant.
  • Une autre technique consiste, comme mieux décrit dans le brevet européen EP 0 341 832 , à disposer un catalyseur d'oxydation du monoxyde d'azote (NO) en amont du filtre. Ce catalyseur oxyde le monoxyde d'azote contenu dans les gaz d'échappement en dioxyde d'azote (NO2) et ce dioxyde d'azote est ensuite utilisé pour permettre la combustion des particules piégées sur le filtre à une température comprise entre 280° C et 400° C.
  • Cette technique nécessite d'utiliser un carburant Diesel en teneur en soufre très bas (de l'ordre de 50 ppm) pour pouvoir maintenir une efficacité de conversion suffisante du catalyseur d'oxydation visant à obtenir une grande quantité de NO transformée en NO2.
  • D'autres techniques font appel à un procédé chimique pour lequel des additifs organométalliques, tel que le cérium par exemple, sont ajoutés au carburant Diesel de manière à obtenir une combustion des particules présentes sur le filtre à une température voisine de 400° C à 450° C.
  • L'utilisation de tels additifs est d'un coût non négligeable et nécessite un dispositif particulier d'introduction de ces additifs, notamment dans le réservoir de carburant Diesel.
  • Il est également connu de chauffer ces gaz d'échappement par des dispositifs rapportés placés dans la ligne d'échappement et en amont du filtre comme des brûleurs ou comme des résistances électriques telles que mieux décrites dans les brevets FR 2 753 393 et FR 2 755 623 du demandeur.
  • Dans cette configuration, il est nécessaire d'apporter une grande quantité d'énergie calorifique aux gaz d'échappement soit en brûlant une quantité importante de carburant, dans le cas d'une utilisation de brûleur, soit en utilisant une forte puissance électrique pour les résistances électriques.
    Ceci a pour inconvénient majeur d'augmenter, de façon non négligeable, la consommation en carburant du moteur et de nuire au confort de conduite.
  • Il est également connu par le document JP 59101522 de prévoir un dispositif à combustion catalytique en amont de filtres à particules pour générer des gaz chauds nécessaires à la régénération de ces filtres. Ce dispositif comprend une conduite portant un élément catalytique ainsi qu'un injecteur de carburant permettant de réaliser une combustion catalytique du mélange carburé. L'ensemble comprend également un dispositif de préchauffage d'un air extérieur qui comprend un carter à double paroi entourant la sortie de l'ensemble de filtres et qui est raccordé à la conduite. Ainsi, l'air extérieur est introduit dans ce carter, se réchauffe en captant par échange les calories des gaz d'échappement, et est dirigé à l'état réchauffé vers la conduite. Cet air chaud arrive ainsi en amont de l'élément catalytique en favorisant la vaporisation du carburant injecté et son mélange avec ce carburant.
  • Cet ensemble présente néanmoins l'inconvénient d'obtenir un air chaud dont la température ne pourra pas être réglé car celle-ci sera tributaire de la température des gaz d'échappement sortant des filtres. En outre, le niveau de température de cet air réchauffé est insuffisant pour rendre opérationnel l'élément catalytique (température de démarrage ou de light off) ce qui va introduire des hydrocarbures imbrûlés à l'entré des filtres.
  • Il est également connu par les documents GB 2114913 et EP 1348838 d'élever, notamment par un chauffage électrique, la température du fluide à mélanger avec le carburant de façon à obtenir rapidement une température de "light off de l'élément catalytique du dispositif à combustion catalytique..
  • Ceci a pour inconvénient d'être une solution qui est fortement consommatrice de puissance électrique.
  • La présente invention se propose de remédier aux inconvénients mentionnés ci-dessus grâce à un procédé et à un dispositif qui permette d'atteindre des températures de régénération très rapidement et en minimisant la consommation.
  • A cet effet, la présente invention concerne un procédé de régénération d'un filtre à particules placé dans la ligne d'échappement d'un moteur à combustion interne, notamment de type Diesel, procédé dans lequel on évalue l'état de colmatage du filtre, on compare cet état à une valeur-seuil puis, en cas de dépassement de cette valeur-seuil, on élève, au préalable de la réalisation d'un mélange d'un fluide et d'un carburant, la température du fluide jusqu'à la température d'amorçage d'un élément catalytique utilisé pour une combustion catalytique, on injecte un carburant pour réaliser ledit mélange, on réalise, une fois que le fluide a atteint ladite température, une combustion catalytique de ce mélange en amont dudit filtre pour générer des gaz chauds nécessaires à la régénération du filtre et on procède à la régénération du filtre par ces gaz chauds traversant ledit filtre et ayant une température suffisante pour assurer la combustion des particules retenues dans ce filtre, caractérisé en ce qu'on fait circuler les gaz d'échappement autour de l'élément catalytique utilisé pour la combustion catalytique afin d'élever la température dudit élément.
  • On peut utiliser, comme fluide, de l'air et/ou les gaz d'échappement du moteur.
  • On peut ajouter un additif au carburant pour abaisser la température de combustion des particules.
  • L'invention concerne également une installation de filtration de gaz d'échappement d'un moteur à combustion interne, notamment de type Diesel, avec un ensemble de filtration comprenant au moins une zone de filtration comportant une cartouche de filtration traversée par les gaz d'échappement du moteur, un dispositif à combustion catalytique disposé en amont dudit ensemble de filtration et permettant de générer des gaz chauds nécessaires à la régénération d'au moins une desdites cartouches, ledit dispositif comprenant une conduite raccordée à l'amont de l'ensemble de filtration et portant un élément catalytique ainsi qu'un dispositif d'injection de carburant, et une résistance électrique pour élever la température du fluide jusqu'à la température d'amorçage dudit élément catalytique, caractérisée en ce qu'elle comprend une conduite de chauffage autour de l'élément catalytique de manière à ce que les gaz d'échappement entourent en la balayant la partie d'une conduite (30) dans laquelle se trouve l'élément catalytique (36) afin d'élever la température dudit élément.
  • Le dispositif à combustion catalytique peut comprendre un moyen de pompage du fluide prévu pour traverser l'élément catalytique.
  • L'installation de filtration peut comprendre un compartiment de répartition placé en amont de la cartouche et portant une arrivée de gaz d'échappement du moteur et une admission de gaz chauds provenant du dispositif à combustion catalytique.
  • Le compartiment de répartition peut comprendre un moyen d'obturation par vanne pour contrôler l'arrivée des gaz d'échappement du moteur et l'admission des gaz chauds.
  • L'installation de filtration peut comprendre une conduite de chauffage de l'élément catalytique.
  • L'élément catalytique peut comprendre un élément catalyseur pour la combustion catalytique et un élément catalytique d'oxydation des gaz d'échappement.
  • L'élément catalytique peut être imprégné d'une formulation catalytique permettant de réduire les oxydes d'azote des gaz d'échappement.
  • Les autres caractéristiques et avantages de l'invention vont apparaître à la lecture de la description qui va suivre, donnée à titre uniquement illustratif et non limitatif, et à laquelle sont annexées :
    • la figure 1 qui est un schéma montrant l'installation de régénération de filtre à particules selon l'invention ;
    • la figure 2 qui illustre un exemple de réalisation de l'ensemble de filtration de l'installation de la figure 1 ;
    • la figure 3 qui est une vue en coupe latérale selon la ligne 3-3 de la figure 2 n'étant pas l'objet de l'invention;
    • la figure 4 qui est une vue semblable à la figure 3 et montrant en mode régénération n'étant pas l'objet de l'invention;
    • la figure 5 qui illustre une variante de l'élément de l'installation de la figure 4 n'étant pas l'objet de l'invention;
    • la figure 6 qui montre une vue en coupe latérale de l'exemple de réalisation de la figure 2 et
    • la figure 7 qui présente une vue en coupe latérale d'une variante de l'exemple de réalisation de la figure 2.
  • Sur la figure 1, l'installation comprend un ensemble de filtration 10, notamment un filtre à particules, placé sur une ligne d'échappement 12 d'un moteur à combustion interne, plus particulièrement d'un moteur de type Diesel.
  • Cet ensemble est traversé par les gaz d'échappement dont le trajet est symbolisé par les flèches 14 (entrée de gaz) et 16 (sortie de gaz) de la figure 1 et est divisé en au moins deux zones de filtration, ici trois zones 18, 20, 22 de préférence sensiblement égales. L'installation comprend également un dispositif à combustion catalytique 26 qui permet de générer des gaz chauds qui sont envoyés par une conduite 24 à cet ensemble de filtration.
  • Ce dispositif à combustion catalytique, comprend une pompe d'alimentation en air extérieur 28, et dans le sens de circulation de cet air le long d'une conduite 30 raccordée à la conduite de raccordement 24, un dispositif de préchauffage 32 de l'air circulant dans la conduite 30, un dispositif d'injection de carburant 34 dans la conduite et un élément catalytique 36, dénommé dans la suite de la description catalyseur.
  • Le dispositif de préchauffage est préférentiellement une résistance électrique placée au sein de la conduite, entre la pompe et le dispositif d'injection de carburant 34, alimentée en courant électrique par une batterie ou par une supercapacité, et balayée par l'air qui y circule sous l'effet de la pompe. Le dispositif d'injection de carburant peut être un injecteur-pompe connecté au circuit de carburant que comprend habituellement ce moteur. Le catalyseur est du type catalyseur d'oxydation du carburant contenu dans le mélange carburé qui le traverse et permet de chauffer très rapidement l'air contenu dans ce mélange qui le traverse et de distribuer ainsi des gaz chauds à la conduite 24. Ce catalyseur peut être sous la forme d'un monolithe constitué d'un feuillard métallique ondulé enroulé sur lui-même en formant un ensemble cylindrique appelé "nid d'abeille". La taille de cet ensemble cylindrique est fonction du volume des gaz d'échappement qui le traverse et cela afin de limiter la contre-pression. Ce catalyseur peut également être constitué d'un monolithe en cordiérite voire d'un élément filtrant, en carbure de silicium par exemple, imprégné d'une formulation catalytique d'oxydation.
  • En se rapportant à la figure 2, l'ensemble de filtration 10 comprend un collecteur d'arrivée de gaz d'échappement 38 raccordé à la ligne d'échappement 12 et dans lequel sont introduits les gaz d'échappement. Dans ce collecteur sont placés plusieurs capteurs et plus précisément un capteur de pression 40 (capteur de pression amont) et un capteur de température 42 (capteur de température amont). Ce collecteur débouche par des entrées 44, 46, 48 dans les zones de filtration 18, 20, 22 qui comprennent chacune, en aval de ces entrées, un compartiment de répartition 50, 52, 54 prévu en amont d'une cartouche filtrante 56, 58, 60 et dans lequel aboutit, par des dérivations de la conduite 24, une admission 62, 64, 66 de gaz chauds. Les sorties des cartouches aboutissent à un collecteur de sortie 68 raccordé à la ligne d'échappement 12 et qui comprend également plusieurs capteurs, comme un capteur de pression 70 (capteur de pression aval) et un capteur de température 72 (capteur de température aval).
  • Chaque compartiment de répartition comprend un moyen de d'obturation par vanne 74, 76, 78 permettant de contrôler l'entrée de gaz d'échappement et/ou l'admission 62, 64, 66 de gaz chauds.
  • Les moyens d'obturation par vanne ou vannes sont commandés par un ou plusieurs actionneurs (non représentés) et ce de façon indépendante les uns des autres mais en n'obturant jamais de manière simultanée toutes les entrées 44, 46, 48 des compartiments 50, 52, 54.
  • A titre d'exemple et comme mieux illustré sur les figures 3 à 7, les vannes comprennent chacune deux moyens d'obturation liés l'un à l'autre, un premier moyen, dit plateau 80, apte à ouvrir ou fermer l'arrivée de gaz d'échappement et un deuxième moyen, dit coulisse 82, permettant d'ouvrir et de fermer l'admission de gaz chauds. Le plateau et la coulisse sont disposés d'une manière telle que l'arrivée de gaz d'échappement et l'admission de gaz chauds d'un même compartiment ne peuvent pas être fermées simultanément. De préférence, l'arrivée et l'admission sont disposées orthogonalement l'une avec l'autre et de ce fait, le plateau et la coulisse sont également disposés orthogonalement. Ces moyens d'obturation sont commandés en déplacement par une tige 84 soumise à un déplacement en translation sous l'action de tout moyen connu, comme un vérin, un électroaimant,...
  • En outre, des cloisons 86 sont prévues pour isoler les zones 18, 20, 22 entre elles et délimiter les compartiments 50, 52, 54 les uns des autres.
  • Dans le cas de la présente description, les termes « amont » et « aval » s'entendent, pour l'ensemble de filtration, comme la circulation des gaz d'échappement du collecteur d'arrivée 38 vers le collecteur de sortie 68 alors que, dans le cas du dispositif à combustion catalytique, la circulation de l'air est considérée de la pompe 28 vers les admissions 62, 64, 66.
  • En fonctionnement, une unité de contrôle (non représentée), tel qu'un calculateur-moteur que comporte habituellement le moteur, détermine la position des vannes 74, 76, 78 en fonction des différents paramètres de fonctionnement du moteur.
  • Comme illustré à la figure 2 à titre d'exemple, il peut être prévu que, pour des charges moyennes du moteur ou pour des débits moyens de gaz d'échappement (de l'ordre de 200 à 400m3/h), les vannes 74 et 76 soient commandées par l'unité de contrôle de telle manière qu'elles ouvrent l'entrée des gaz d'échappement 44 et 46 en fermant les admissions 62 et 64 par les coulisses 82 alors que la vanne 78 obture l'entrée 48 de gaz d'échappement par le plateau 80. Ceci permet avantageusement d'adapter le volume de filtration au volume des gaz qui traverse l'ensemble de filtration.
  • A titre d'exemple, il est considéré que l'installation, comme montré aux figures 2 et 3, est en état de chargement, c'est-à-dire que les cartouches 56, 58 et 60 ne sont pas saturées par les particules ou suies contenues dans les gaz d'échappement. Dans ce cas, la totalité des gaz d'échappement passe, au travers des entrées 44 et 46, du collecteur 38 vers les compartiments 50, 52, puis traversent les cartouches 56 et 58 de manière à ce que les particules contenues dans ces gaz soient, en très grande partie, retenues par ces cartouches et enfin aboutissent dans le collecteur de sortie 68 pour être rejetés par la ligne d'échappement 12. Dans cette configuration, la résistance 32 n'est pas alimenté en carburant, aucun carburant n'est introduit dans la conduite 30 par l'injecteur 34 et le catalyseur 36 est à température ambiante.
  • Périodiquement, généralement tous les 200 km ou toutes les deux heures de fonctionnement, période qui peut être modifiée en fonction des conditions d'utilisation, il est réalisé une estimation du niveau de colmatage de l'ensemble de filtration. Plus particulièrement, il va être examiné l'état de colmatage par les particules de chaque cartouche 56, 58, 60.
  • Pour ce faire et en partant de la configuration de la figure 2, l'unité de contrôle commande les vannes de façon à ce qu'une seule entrée de gaz d'échappement soit ouverte. Ainsi à partir de l'exemple montré à la figure 2, la vanne 76 sera actionnée pour obturer l'entrée 46 de gaz d'échappement et seule l'entrée 44 sera ouverte. Les gaz d'échappement traversent donc, dans leur totalité, cette entrée 44 puis circulent dans la cartouche 56 et ressortent dans la ligne 12 par le collecteur de sortie 68. Grâce aux capteur de pression amont 40 et aval 70, une perte de charge est calculée par l'unité de contrôle puis comparée à une table de valeurs contenue dans cette unité. Si la valeur de cette perte de charge est inférieure à une valeur-seuil de cette table, l'unité commande les vannes de façon à répéter cet examen du niveau de colmatage sur la cartouche suivante 58 en ouvrant l'entrée 46 et en fermant l'entrée 44. De même, si la perte de charge de la cartouche 58 est inférieure à la valeur-seuil, l'opération se poursuivra sur la cartouche 60.
  • Si la valeur-seuil de la perte de charge de l'une des cartouches est atteinte, par exemple la cartouche 56 comme illustré sur la figure 4, alors la vanne 74 ferme l'entrée 44 de gaz d'échappement par le plateau 80 et libère l'admission 62 de gaz chauds pour procéder à la régénération de cette cartouche. Bien entendu, l'unité de contrôle fera en sorte d'adapter au mieux le volume des gaz d'échappement à traiter par les autres cartouches en commandant les vannes qui y sont associées de façon à ce qu'au moins une des arrivées 46 et 48 soient ouvertes.
  • Simultanément à la fermeture de l'arrivée 44, l'unité commande la mise en marche de la pompe 28 qui fait circuler de l'air dans la conduite 30 et envoie un courant électrique au travers de la résistance électrique 32. Ce faisant, cette résistance chauffe l'air dans cette conduite pour qu'il atteigne une température voisine de 250°C, température d'amorçage du catalyseur dite température de démarrage ou de light off. Cette température de l'air est constamment surveillée par un capteur de température 88 prévu dans la conduite 30 en aval du catalyseur 36. Dès que cette température est atteinte, une introduction de carburant dans la conduite 30 et en amont du catalyseur 36 est réalisée par l'injecteur 34. Par réaction catalytique, le mélange air/carburant traversant ce catalyseur se consume et les gaz chauds sortant de ce catalyseur atteignent une température supérieure à 550°C, température nécessaire et suffisante pour assurer la combustion des particules présentes dans la cartouche à régénérer. Ces gaz chauds pénètrent ensuite dans le compartiment 50 par l'admission 62, traversent la cartouche 56 pour y brûler les particules retenues dans celle-ci et ressortent par le collecteur 68 pour être évacués dans la ligne d'échappement 12.
  • La vitesse de régénération de la cartouche sera contrôlée par l'unité de contrôle qui pilotera non seulement la quantité de carburant introduite dans la conduite 30 mais aussi le débit d'air qui y circule grâce à la pompe 28. De même, cette unité interrompra si nécessaire l'alimentation de la résistance 32.
  • Une fois que la régénération de la cartouche 56 est terminée, l'unité de contrôle actionne les vannes de façon à ce que l'installation de régénération se retrouve dans la configuration ayant précédé cette régénération et comme illustré à la figure 2. Si cela s'avère nécessaire, l'unité de contrôle commandera les vannes d'une manière semblable à celle décrite ci-dessus pour procéder à la régénération d'une autre cartouche.
  • Avantageusement, il peut être prévu de mélanger un additif au carburant avant son injection dans la conduite 30 par l'injecteur 34 et ce afin de baisser la température de réaction du catalyseur.
  • Préférentiellement et comme visible sur la figure 5, pendant la régénération de la cartouche 56 et en fonction des températures amont et aval relevés par les capteurs 42 et 72 et communiquées à l'unité de contrôle, il peut être prévu que cette unité de contrôle commande la vanne 74 pour ouvrir temporairement l'admission 44 en faisant quitter le plateau 80 de son siège tout en laissant l'admission 62 ouverte. Ceci a pour effet d'introduire des gaz d'échappement au travers de cette cartouche et d'éviter ainsi un échange de chaleur trop important pour cette cartouche lors de sa régénération.
  • L'exemple montré à la figure 6 est une vue en coupe latérale de la figure 2 et pour cela comporte les mêmes références pour les parties communes aux deux figures.
  • Dans cette vue, le dispositif à combustion catalytique 26 comporte les mêmes éléments que ceux décrits en relation avec la figure 1 (pompe, résistance chauffante, injecteur de carburant et catalyseur). Dans cet exemple le catalyseur 36 est placé au plus près des cartouches de manière à ce que le cheminement des gaz chauds entre ce catalyseur et les cartouches soit minimisé et ainsi à limiter les pertes thermiques de ces gaz.
  • Le catalyseur est baigné par les gaz d'échappement afin que ces derniers transmettent une partie de leur énergie calorifique à ce catalyseur et ainsi minimise la puissance électrique d'alimentation de la résistance tout en diminuant le temps nécessaire pour que le catalyseur atteigne sa température de light off. Plus précisément, à partir du collecteur d'arrivée 38 part une conduite 90 dont l'embouchure 92 prend naissance à ce collecteur et dont le débouché 94 de cette conduite arrive dans un des compartiments, ici dans le compartiment 50 et en amont de la cartouche 56. Cette conduite de chauffage 90 est traversée sensiblement orthogonalement par la conduite 30 et a une dimension transversale telle que la dimension transversale de la conduite 30 y soit comprise. Le catalyseur est placé dans la région de la conduite 30 qui croise la conduite de chauffage 90 de manière à ce que les gaz d'échappement venant du collecteur 38 entourent en la balayant la partie de la conduite 30 dans laquelle se trouve le catalyseur 36 et transmettent leurs calories à ce catalyseur.
  • Préférentiellement, le débouché 94 de la conduite 90 n'est pas obturé par la coulisse 82 de la vanne 74 de façon à ce que les gaz d'échappement circulent en permanence du collecteur d'arrivée vers le compartiment en baignant constamment la section de la conduite qui porte le catalyseur.
  • Avantageusement, de façon à limiter l'inertie thermique de ce catalyseur, il peut être prévu de le séparer en plusieurs éléments, un premier élément en lieu et place du catalyseur 36 pour assurer la combustion catalytique du mélange carburé circulant dans la conduite 30 et un deuxième élément catalytique 36b placé en amont de la cartouche 56 et en aval de l'admission de gaz chauds 62 et dont le rôle sera d'oxyder les hydrocarbures imbrûlés (HC) et les oxydes de carbones (CO) présent dans les gaz d'échappement et/ou dans les gaz chauds résultant de la combustion catalytique.
  • Le fonctionnement de l'ensemble de filtration comportant les éléments décrits en relation avec la figure 6 sera identique à celui décrit en relation avec les figures 1 à 5 avec l'avantage supplémentaire que le catalyseur 36 sera à une température sensiblement voisine de celle des gaz d'échappement. Ceci permet de rendre opérationnel plus rapidement le catalyseur 36 grâce à la conduite de chauffage 90 et de limiter la puissance électrique à envoyer à la résistance pour chauffer l'air circulant dans la conduite 30.
  • La réalisation illustrée à la figure 7 est une variante de la figure 6 et pour cela comporte les mêmes références que cette figure.
  • Cette variante se distingue de la figure 6 dans le sens que le dispositif à combustion catalytique est dépourvu de pompe de circulation de l'air.
  • Dans ce cas, la conduite 130 portant la résistance 32, l'injecteur 34 et le catalyseur 36 débute au niveau du collecteur d'arrivée 38 et aboutit à l'admission de gaz chauds 62 comme précédemment décrite en relation avec les figures 1 à 5.
  • Ainsi, pendant le fonctionnement des opérations de régénération des cartouches, la résistance 32 est alimentée (dans le cas où la température des gaz d'échappement n'est pas suffisante pour porter le catalyseur 36 à sa température de démarrage ou de light off) et chauffe les gaz d'échappement qui la parcourent. Dès que cette température est atteinte grâce à la mesure effectuée par le capteur 88, l'injecteur de carburant introduit du carburant dans la conduite 130, en aval de la résistance et en amont du catalyseur, et interrompt l'alimentation de la résistance, si nécessaire. Les gaz d'échappement circulant dans cette conduite contiennent suffisamment d'oxygène pour que le mélange carburé qui traverse le catalyseur 36 soit oxydé et procure en sortie de catalyseur des gaz chauds qui seront ensuite introduits par l'admission 62 dans le compartiment 50 puis traverseront la cartouche 56.
  • Il peut être envisagé que soit le catalyseur 36 soit les cartouches 56, 58, 60 soient imprégnés d'une formulation catalytique permettant de réduire les NOx présents dans les gaz chauds ou dans les gaz d'échappement.

Claims (10)

  1. Procédé de régénération d'un filtre à particules (10) placé dans la ligne d'échappement (12) d'un moteur à combustion interne, notamment de type Diesel, procédé dans lequel on évalue l'état de colmatage du filtre, on compare cet état à une valeur-seuil puis, en cas de dépassement de cette valeur-seuil, on élève, au préalable de la réalisation d'un mélange d'un fluide et d'un carburant, la température du fluide jusqu'à la température d'amorçage d'un élément catalytique (36) utilisé pour une combustion catalytique, on injecte un carburant pour réaliser ledit mélange, on réalise, une fois que le fluide a atteint ladite température, une combustion catalytique de ce mélange en amont dudit filtre pour générer des gaz chauds nécessaires à la régénération du filtre et on procède à la régénération du filtre par ces gaz chauds traversant ledit filtre et ayant une température suffisante pour assurer la combustion des particules retenues dans ce filtre, caractérisé en ce qu'on fait circuler les gaz d'échappement autour de l'élément catalytique (36) utilisé pour la combustion catalytique afin d'élever la température dudit élément.
  2. Procédé de régénération selon la revendication 1, caractérisé en ce qu'on utilise, comme fluide, de l'air.
  3. Procédé de régénération selon la revendication 1 , caractérisé en ce qu'on utilise, comme fluide, les gaz d'échappement du moteur.
  4. Procédé de régénération selon l'une des revendications précédentes, caractérisé en ce qu'on ajoute un additif au carburant pour abaisser la température de combustion des particules.
  5. Installation de filtration de gaz d'échappement d'un moteur à combustion interne, notamment de type Diesel, avec un ensemble de filtration (10) comprenant au moins une zone de filtration (18, 20, 22) comportant une cartouche de filtration (56, 58, 60) traversée par les gaz d'échappement du moteur, un dispositif à combustion catalytique (26) disposé en amont dudit ensemble de filtration et permettant de générer des gaz chauds nécessaires à la régénération d'au moins une desdites cartouches (56, 58, 60), ledit dispositif comprenant une conduite raccordée à l'amont de l'ensemble de filtration (10) et portant un élément catalytique (36) ainsi qu'un dispositif d'injection de carburant (34), et une résistance électrique (32) pour élever la température du fluide jusqu'à la température d'amorçage dudit élément catalytique, caractérisée en ce qu'elle comprend une conduite de chauffage (90) autour de l'élément catalytique (36) de manière à ce que les gaz d'échappement entourent en la balayant la partie d'une conduite (30) dans laquelle se trouve l'élément catalytique (36) afin d'élever la température dudit élément.
  6. Installation de filtration selon la revendication 5, caractérisée en ce que le dispositif à combustion catalytique comprend un moyen de pompage (28) du fluide prévu pour traverser l'élément catalytique (36).
  7. Installation de filtration selon l'une des revendications 5 ou 6, caractérisée en ce qu'elle comprend un compartiment de répartition (50, 52, 54) placé en amont de la cartouche (56, 58, 60) et portant une arrivée (44, 46, 48) de gaz d'échappement du moteur et une admission (62, 64, 66) de gaz chauds provenant du dispositif à combustion catalytique (26).
  8. Installation de filtration selon la revendication 7, caractérisée en ce que le compartiment de répartition (50, 52, 54) comprend un moyen d'obturation par vanne (74, 76, 78) pour contrôler l'arrivée des gaz d'échappement du moteur et l'admission des gaz chauds.
  9. Installation de filtration selon l'une des revendications 5 à 8, caractérisée en ce que l'élément catalytique comprend un élément catalyseur (36) pour la combustion catalytique et un élément catalytique d'oxydation (36b) des gaz d'échappement.
  10. Installation de filtration selon l'une des revendications 5 à 9, caractérisée en ce que l'élément catalytique (36) est imprégné d'une formulation catalytique permettant de réduire les oxydes d'azote (NOx) des gaz d'échappement.
EP05292666A 2004-12-20 2005-12-09 Procédé de régénération d'un filtre à particules avec dispositif à combustion catalytique et installation de filtration utilisant un tel procédé Not-in-force EP1672194B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0413622A FR2879654B1 (fr) 2004-12-20 2004-12-20 Procede de regeneration de filtre a particules avec dispositif a combustion catalytique et installation de filtration utilisant un tel procede

Publications (2)

Publication Number Publication Date
EP1672194A1 EP1672194A1 (fr) 2006-06-21
EP1672194B1 true EP1672194B1 (fr) 2010-03-10

Family

ID=34953594

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05292666A Not-in-force EP1672194B1 (fr) 2004-12-20 2005-12-09 Procédé de régénération d'un filtre à particules avec dispositif à combustion catalytique et installation de filtration utilisant un tel procédé

Country Status (5)

Country Link
US (1) US7650748B2 (fr)
EP (1) EP1672194B1 (fr)
AT (1) ATE460575T1 (fr)
DE (1) DE602005019837D1 (fr)
FR (1) FR2879654B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013032486A1 (fr) * 2011-09-02 2013-03-07 International Engine Intellectual Property Company, Llc Système de brûleur catalytique pour régénération dpf
US9010098B2 (en) * 2012-10-24 2015-04-21 Electro-Motive Diesel, Inc. After-treatment device
GB2511772B (en) * 2013-03-12 2019-01-30 Ceramex Ltd Testing catalytic efficiency of an exhaust component
DE102019006494B4 (de) * 2019-09-13 2024-03-28 Daimler Truck AG Abgasanlage für eine Verbrennungskraftmaschine eines Kraftfahrzeugs, Antriebseinrichtung für ein Kraftfahrzeug sowie Kraftfahrzeug
KR102144271B1 (ko) * 2020-06-19 2020-08-13 주식회사 스마트파워 반복사용이 가능한 비파열 디스크 밸브를 갖는 발전기용 엔진의 매연저감장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2114913A (en) * 1982-02-10 1983-09-01 Texaco Development Corp Exhaust gas treatment apparatus and method
EP1348838A1 (fr) * 2002-03-26 2003-10-01 Siemens Aktiengesellschaft Dispositif de purification de gaz d'échappement et procédé de régénération d'un filtre à particules

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762311A (en) * 1980-10-03 1982-04-15 Nippon Soken Inc Liquid fuel combustion apparatus
US4322387A (en) * 1980-10-27 1982-03-30 Texaco Inc. Catalytic exhaust gas torch
JPS59101522A (ja) * 1982-12-02 1984-06-12 Yanmar Diesel Engine Co Ltd デイ−ゼル機関の排気ガス処理装置
US4485621A (en) * 1983-01-07 1984-12-04 Cummins Engine Company, Inc. System and method for reducing particulate emissions from internal combustion engines
US4902487A (en) 1988-05-13 1990-02-20 Johnson Matthey, Inc. Treatment of diesel exhaust gases
DE69306715T2 (de) * 1992-09-28 1997-04-30 Ford Werke Ag Vorrichtung zur Steuerung der Partikel- und der Abgasemission
JP2983429B2 (ja) * 1994-02-25 1999-11-29 本田技研工業株式会社 内燃機関の排気ガス浄化装置
DE19504183A1 (de) * 1995-02-09 1996-08-14 Eberspaecher J Brenner zur thermischen Regeneration eines Partikelfilters in einem Abgasnachbehandlungssystem eines Verbrennungsmotors, insbesondere Dieselmotors
JP3089989B2 (ja) * 1995-05-18 2000-09-18 トヨタ自動車株式会社 ディーゼル機関の排気浄化装置
JP3899534B2 (ja) * 1995-08-14 2007-03-28 トヨタ自動車株式会社 ディーゼル機関の排気浄化方法
US5771683A (en) * 1995-08-30 1998-06-30 Southwest Research Institute Active porous medium aftertreatment control system
FR2753393B1 (fr) 1996-09-13 1998-10-30 Inst Francais Du Petrole Procede et dispositif de controle d'un filtre a particules
FR2755623B1 (fr) 1996-11-12 1998-12-04 Inst Francais Du Petrole Procede et unite de filtration de gaz d'echappement, ayant un chauffage modulable
JP2000167329A (ja) * 1998-09-30 2000-06-20 Ibiden Co Ltd 排気ガス浄化装置の再生システム
AU1342200A (en) * 1998-11-06 2000-05-29 Ceryx Incorporated Integrated apparatus for removing pollutants from a fluid stream in a lean-burn environment with heat recovery
US6615580B1 (en) * 1999-06-23 2003-09-09 Southwest Research Institute Integrated system for controlling diesel engine emissions
US6233926B1 (en) * 2000-03-01 2001-05-22 Illinois Valley Holding Company Apparatus and method for filtering particulate in an exhaust trap
US6622480B2 (en) * 2001-02-21 2003-09-23 Isuzu Motors Limited Diesel particulate filter unit and regeneration control method of the same
JP4161546B2 (ja) * 2001-06-26 2008-10-08 いすゞ自動車株式会社 連続再生型ディーゼルパティキュレートフィルタ装置の再生制御方法
JP3899884B2 (ja) * 2001-10-04 2007-03-28 トヨタ自動車株式会社 内燃機関の排気浄化装置
US7021048B2 (en) * 2002-01-25 2006-04-04 Arvin Technologies, Inc. Combination emission abatement assembly and method of operating the same
US6959542B2 (en) * 2002-01-25 2005-11-01 Arvin Technologies, Inc. Apparatus and method for operating a fuel reformer to regenerate a DPNR device
DE10211565A1 (de) * 2002-03-15 2003-10-09 Eberspaecher J Gmbh & Co Abgasanlage mit Partikelfilter für Dieselmotoren
US6871489B2 (en) * 2003-04-16 2005-03-29 Arvin Technologies, Inc. Thermal management of exhaust systems
EP1479883A1 (fr) * 2003-05-10 2004-11-24 Universität Stuttgart Procédé et dispositif de purification des gaz d'échappement
FR2855218B1 (fr) * 2003-05-22 2007-03-09 Renault Sa Procede et systeme de gestion de la regeneration d'un filtre a particules et moteur a combustion interne equipe d'un tel filtres a particules
US7032376B1 (en) * 2003-08-27 2006-04-25 Southwest Research Institute Diesel fuel burner for diesel emissions control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2114913A (en) * 1982-02-10 1983-09-01 Texaco Development Corp Exhaust gas treatment apparatus and method
EP1348838A1 (fr) * 2002-03-26 2003-10-01 Siemens Aktiengesellschaft Dispositif de purification de gaz d'échappement et procédé de régénération d'un filtre à particules

Also Published As

Publication number Publication date
FR2879654A1 (fr) 2006-06-23
ATE460575T1 (de) 2010-03-15
FR2879654B1 (fr) 2010-04-30
US20070294997A1 (en) 2007-12-27
DE602005019837D1 (de) 2010-04-22
EP1672194A1 (fr) 2006-06-21
US7650748B2 (en) 2010-01-26

Similar Documents

Publication Publication Date Title
FR2540177A1 (fr) Regeneration des filtres catalytiques a particules et appareil pour sa mise en oeuvre
CA2658216A1 (fr) Bruleur et procede pour la regeneration de cartouches de filtration et dispositifs equipes d'un tel bruleur
FR2850704A1 (fr) Procede de post-injection de gazole pour la regeneration de systemes de filtration des gaz d'echappement de moteur diesel
FR2928176A1 (fr) Procede de regeneration d'un filtre a particules pour moteur a essence et ensemble d'echappement associe
EP1836380B1 (fr) Procede et dispositif de regeneration d'un filtre a particules integre dans une ligne d'echappement d'un moteur a combustion interne
FR2981983A1 (fr) Dispositif de depollution des gaz d'echappement pour un moteur a combustion interne.
EP1072764A1 (fr) Système et procédé de traitement des gaz d'échappement d'un moteur à combustion
EP1672194B1 (fr) Procédé de régénération d'un filtre à particules avec dispositif à combustion catalytique et installation de filtration utilisant un tel procédé
WO2008043932A1 (fr) Ligne d'echappement munie d'un injecteur de carburant et de moyens d'homogeneisation des gaz brules
FR2819549A1 (fr) Systeme de traitement des gaz d'echappement d'un moteur a combustion
EP1223312B1 (fr) Système de traitement des gaz d'échappement d'un moteur à combustion et procédé de pilotage d'un tel système
FR3100839A1 (fr) Ensemble comprenant un moteur à combustion interne avec un compresseur électrique et un élément chauffant
WO2001065080A1 (fr) Procede et installation de regeneration d'un filtre a particules d'un moteur diesel
FR3107729A1 (fr) Ligne d’échappement
FR2937082A1 (fr) Bruleur pour regeneration des filtres a particules de moteur a combustion interne et la mise en temperature de systeme catalytique et ligne d'echappement integrant un tel bruleur.
FR2939471A3 (fr) Ligne d'echappement comportant un module de rechauffement des gaz d'echappement suivi d'un systeme de post-traitement des gaz d'echappement
EP4089268B1 (fr) Moteur à combustion interne équipé de moyens de préchauffage d'un catalyseur de dépollution des gaz brulés
FR2827632A1 (fr) Procede et dispositif de reduction d'emission polluante
FR2948970A1 (fr) Dispositif d'injection d'air, ligne d'echappement equipee d'un tel dispositf et procede de chauffage d'un organe de depollution place dans la ligne d'echappement
FR2929328A3 (fr) Dispositif d'introduction de carburant.
FR2858022A1 (fr) Dispositif d'admission d'air pour moteur diesel catalyse
FR2900963A1 (fr) Systeme d'aide au fonctionnement d'un dispositif de traitement de gaz d'echappement d'un moteur a combustion interne de vehicule automobile et procede associe
FR3066408B1 (fr) Dispositif de post-traitement des gaz d’echappement d’un moteur thermique
FR2870566A1 (fr) Dispositif et procede de traitement des gaz d'echappement d'un moteur a combustion interne suralimente en vue de leur depollution
FR3106618A1 (fr) Ligne d’echappement de moteur thermique comprenant un systeme de depollution et un systeme de prechauffage dudit systeme de depollution

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061221

17Q First examination report despatched

Effective date: 20070126

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005019837

Country of ref document: DE

Date of ref document: 20100422

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100621

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100710

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100610

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100712

26N No opposition filed

Effective date: 20101213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005019837

Country of ref document: DE

Owner name: AIRMEEX S.A., FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, AIRMEEX S.A., , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005019837

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, AIRMEEX S.A., , FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005019837

Country of ref document: DE

Owner name: AIRMEEX S.A., FR

Free format text: FORMER OWNERS: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR; AIRMEEX S.A., VIGNEUX SUR SEINE, FR

Effective date: 20110329

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005019837

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNERS: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR; AIRMEEX S.A., VIGNEUX SUR SEINE, FR

Effective date: 20110329

BERE Be: lapsed

Owner name: AIRMEEX S.A.

Effective date: 20101231

Owner name: INSTITUT FRANCAIS DU PETROLE

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005019837

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101209

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100911

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201228

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231