EP1661970B1 - Compositions d'huiles lubrifiantes - Google Patents
Compositions d'huiles lubrifiantes Download PDFInfo
- Publication number
- EP1661970B1 EP1661970B1 EP05110265A EP05110265A EP1661970B1 EP 1661970 B1 EP1661970 B1 EP 1661970B1 EP 05110265 A EP05110265 A EP 05110265A EP 05110265 A EP05110265 A EP 05110265A EP 1661970 B1 EP1661970 B1 EP 1661970B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lubricating oil
- oil composition
- mass
- nitrogen
- ppm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000203 mixture Substances 0.000 title claims description 147
- 239000010687 lubricating oil Substances 0.000 title claims description 93
- 239000003599 detergent Substances 0.000 claims description 77
- 239000002270 dispersing agent Substances 0.000 claims description 74
- 239000003921 oil Substances 0.000 claims description 52
- 229910052717 sulfur Inorganic materials 0.000 claims description 45
- 239000011593 sulfur Substances 0.000 claims description 44
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 42
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 38
- 125000000217 alkyl group Chemical group 0.000 claims description 31
- 239000005078 molybdenum compound Substances 0.000 claims description 31
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 30
- 239000011777 magnesium Substances 0.000 claims description 29
- 229910052749 magnesium Inorganic materials 0.000 claims description 28
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 27
- AVVIDTZRJBSXML-UHFFFAOYSA-L calcium;2-carboxyphenolate;dihydrate Chemical compound O.O.[Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O AVVIDTZRJBSXML-UHFFFAOYSA-L 0.000 claims description 27
- 150000002752 molybdenum compounds Chemical class 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 23
- 229910052757 nitrogen Inorganic materials 0.000 claims description 19
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 18
- 229910052750 molybdenum Inorganic materials 0.000 claims description 18
- 239000011733 molybdenum Substances 0.000 claims description 18
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 16
- 229910052698 phosphorus Inorganic materials 0.000 claims description 16
- 239000011574 phosphorus Substances 0.000 claims description 16
- 230000007935 neutral effect Effects 0.000 claims description 15
- KHYKFSXXGRUKRE-UHFFFAOYSA-J molybdenum(4+) tetracarbamodithioate Chemical class C(N)([S-])=S.[Mo+4].C(N)([S-])=S.C(N)([S-])=S.C(N)([S-])=S KHYKFSXXGRUKRE-UHFFFAOYSA-J 0.000 claims description 14
- 239000011575 calcium Substances 0.000 claims description 12
- 230000001050 lubricating effect Effects 0.000 claims description 12
- 229910052791 calcium Inorganic materials 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 11
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 9
- 238000012360 testing method Methods 0.000 claims description 9
- 229910052725 zinc Inorganic materials 0.000 claims description 9
- 239000011701 zinc Substances 0.000 claims description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 8
- 239000012991 xanthate Substances 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 3
- 230000004580 weight loss Effects 0.000 claims description 2
- 150000004763 sulfides Chemical class 0.000 claims 1
- 229920000642 polymer Polymers 0.000 description 89
- -1 alkyl salicylate Chemical compound 0.000 description 75
- 235000019198 oils Nutrition 0.000 description 49
- 125000004432 carbon atom Chemical group C* 0.000 description 39
- 150000001412 amines Chemical class 0.000 description 30
- 239000000654 additive Substances 0.000 description 27
- 239000002585 base Substances 0.000 description 26
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000002184 metal Substances 0.000 description 25
- 239000002253 acid Substances 0.000 description 24
- 150000001875 compounds Chemical class 0.000 description 23
- 239000003446 ligand Substances 0.000 description 23
- 239000000314 lubricant Substances 0.000 description 23
- 125000003118 aryl group Chemical group 0.000 description 22
- 239000000178 monomer Substances 0.000 description 22
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 21
- 239000005977 Ethylene Substances 0.000 description 21
- 150000002148 esters Chemical class 0.000 description 21
- 229930195733 hydrocarbon Natural products 0.000 description 21
- 150000002430 hydrocarbons Chemical class 0.000 description 21
- 150000001993 dienes Chemical class 0.000 description 19
- 239000000463 material Substances 0.000 description 19
- 229920001577 copolymer Polymers 0.000 description 18
- 125000001183 hydrocarbyl group Chemical group 0.000 description 17
- 239000000376 reactant Substances 0.000 description 16
- 239000004034 viscosity adjusting agent Substances 0.000 description 16
- 239000002956 ash Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000003795 chemical substances by application Substances 0.000 description 15
- 229920000768 polyamine Polymers 0.000 description 15
- 239000004711 α-olefin Substances 0.000 description 14
- 235000019441 ethanol Nutrition 0.000 description 13
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 12
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 12
- 239000004215 Carbon black (E152) Substances 0.000 description 11
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 11
- 150000008064 anhydrides Chemical class 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 150000007513 acids Chemical class 0.000 description 9
- 230000000996 additive effect Effects 0.000 description 9
- 239000003963 antioxidant agent Substances 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- 125000000962 organic group Chemical group 0.000 description 9
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 8
- 229920002367 Polyisobutene Polymers 0.000 description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 8
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 150000001408 amides Chemical class 0.000 description 7
- 150000004982 aromatic amines Chemical class 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229960001860 salicylate Drugs 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 7
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical class COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical class [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 6
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 6
- 230000003078 antioxidant effect Effects 0.000 description 6
- 239000002199 base oil Substances 0.000 description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 229920001400 block copolymer Polymers 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 150000002989 phenols Chemical class 0.000 description 6
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 6
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 6
- 150000003254 radicals Chemical class 0.000 description 6
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 239000007795 chemical reaction product Substances 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 125000000524 functional group Chemical group 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000003607 modifier Substances 0.000 description 5
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 150000003902 salicylic acid esters Chemical class 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 125000001273 sulfonato group Chemical class [O-]S(*)(=O)=O 0.000 description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 5
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical compound CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 4
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical class ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 4
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 4
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 125000003368 amide group Chemical group 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 230000000269 nucleophilic effect Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229920000098 polyolefin Polymers 0.000 description 4
- 150000003870 salicylic acids Chemical class 0.000 description 4
- 229940014800 succinic anhydride Drugs 0.000 description 4
- 239000010689 synthetic lubricating oil Substances 0.000 description 4
- 238000010998 test method Methods 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 125000002723 alicyclic group Chemical group 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 125000005250 alkyl acrylate group Chemical group 0.000 description 3
- 125000002947 alkylene group Chemical group 0.000 description 3
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 3
- SCJNCDSAIRBRIA-DOFZRALJSA-N arachidonyl-2'-chloroethylamide Chemical compound CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(=O)NCCCl SCJNCDSAIRBRIA-DOFZRALJSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 3
- 229910052794 bromium Inorganic materials 0.000 description 3
- 150000007942 carboxylates Chemical class 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 150000001735 carboxylic acids Chemical class 0.000 description 3
- 238000005660 chlorination reaction Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 239000007859 condensation product Substances 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- 150000001991 dicarboxylic acids Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 3
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 3
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 229920006158 high molecular weight polymer Polymers 0.000 description 3
- 229920001519 homopolymer Polymers 0.000 description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 3
- 238000005984 hydrogenation reaction Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 229920000058 polyacrylate Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000193 polymethacrylate Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 150000003440 styrenes Chemical class 0.000 description 3
- 150000003751 zinc Chemical class 0.000 description 3
- 150000003752 zinc compounds Chemical class 0.000 description 3
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical class C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 2
- FUDNBFMOXDUIIE-UHFFFAOYSA-N 3,7-dimethylocta-1,6-diene Chemical compound C=CC(C)CCC=C(C)C FUDNBFMOXDUIIE-UHFFFAOYSA-N 0.000 description 2
- WTQBISBWKRKLIJ-UHFFFAOYSA-N 5-methylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C)CC1C=C2 WTQBISBWKRKLIJ-UHFFFAOYSA-N 0.000 description 2
- VVJKKWFAADXIJK-UHFFFAOYSA-N Allylamine Chemical compound NCC=C VVJKKWFAADXIJK-UHFFFAOYSA-N 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229920000800 acrylic rubber Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 238000010538 cationic polymerization reaction Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- 125000000753 cycloalkyl group Chemical group 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 2
- 150000005690 diesters Chemical class 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000010688 mineral lubricating oil Substances 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 150000002918 oxazolines Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- REIUXOLGHVXAEO-UHFFFAOYSA-N pentadecan-1-ol Chemical compound CCCCCCCCCCCCCCCO REIUXOLGHVXAEO-UHFFFAOYSA-N 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 239000002530 phenolic antioxidant Substances 0.000 description 2
- 150000003003 phosphines Chemical class 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920001281 polyalkylene Polymers 0.000 description 2
- 229920013639 polyalphaolefin Polymers 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 229920005652 polyisobutylene succinic anhydride Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical class OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 235000011044 succinic acid Nutrition 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000003760 tallow Substances 0.000 description 2
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- DLYUQMMRRRQYAE-UHFFFAOYSA-N tetraphosphorus decaoxide Chemical compound O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical group OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 2
- KEMUGHMYINTXKW-NQOXHWNZSA-N (1z,5z)-cyclododeca-1,5-diene Chemical compound C1CCC\C=C/CC\C=C/CC1 KEMUGHMYINTXKW-NQOXHWNZSA-N 0.000 description 1
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- PRBHEGAFLDMLAL-GQCTYLIASA-N (4e)-hexa-1,4-diene Chemical compound C\C=C\CC=C PRBHEGAFLDMLAL-GQCTYLIASA-N 0.000 description 1
- RJUCIROUEDJQIB-GQCTYLIASA-N (6e)-octa-1,6-diene Chemical compound C\C=C\CCCC=C RJUCIROUEDJQIB-GQCTYLIASA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical group C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- ZQHJVIHCDHJVII-OWOJBTEDSA-N (e)-2-chlorobut-2-enedioic acid Chemical compound OC(=O)\C=C(\Cl)C(O)=O ZQHJVIHCDHJVII-OWOJBTEDSA-N 0.000 description 1
- XLYMOEINVGRTEX-ONEGZZNKSA-N (e)-4-ethoxy-4-oxobut-2-enoic acid Chemical compound CCOC(=O)\C=C\C(O)=O XLYMOEINVGRTEX-ONEGZZNKSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- RDAGYWUMBWNXIC-UHFFFAOYSA-N 1,2-bis(2-ethylhexyl)benzene Chemical class CCCCC(CC)CC1=CC=CC=C1CC(CC)CCCC RDAGYWUMBWNXIC-UHFFFAOYSA-N 0.000 description 1
- YEYQUBZGSWAPGE-UHFFFAOYSA-N 1,2-di(nonyl)benzene Chemical class CCCCCCCCCC1=CC=CC=C1CCCCCCCCC YEYQUBZGSWAPGE-UHFFFAOYSA-N 0.000 description 1
- VYXHVRARDIDEHS-UHFFFAOYSA-N 1,5-cyclooctadiene Chemical compound C1CC=CCCC=C1 VYXHVRARDIDEHS-UHFFFAOYSA-N 0.000 description 1
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 1
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 1
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- PPWUTZVGSFPZOC-UHFFFAOYSA-N 1-methyl-2,3,3a,4-tetrahydro-1h-indene Chemical compound C1C=CC=C2C(C)CCC21 PPWUTZVGSFPZOC-UHFFFAOYSA-N 0.000 description 1
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- YXRZFCBXBJIBAP-UHFFFAOYSA-N 2,6-dimethylocta-1,7-diene Chemical compound C=CC(C)CCCC(C)=C YXRZFCBXBJIBAP-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- BIOCRZSYHQYVSG-UHFFFAOYSA-N 2-(4-ethenylphenyl)-n,n-diethylethanamine Chemical compound CCN(CC)CCC1=CC=C(C=C)C=C1 BIOCRZSYHQYVSG-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- MWFMGBPGAXYFAR-UHFFFAOYSA-N 2-hydroxy-2-methylpropanenitrile Chemical compound CC(C)(O)C#N MWFMGBPGAXYFAR-UHFFFAOYSA-N 0.000 description 1
- BWLBGMIXKSTLSX-UHFFFAOYSA-N 2-hydroxyisobutyric acid Chemical compound CC(C)(O)C(O)=O BWLBGMIXKSTLSX-UHFFFAOYSA-N 0.000 description 1
- ROGIWVXWXZRRMZ-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical class CC(=C)C=C.C=CC1=CC=CC=C1 ROGIWVXWXZRRMZ-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical class C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- QTTAWIGVQMSWMV-UHFFFAOYSA-N 3,4-dimethylhexa-1,3-diene Chemical compound CCC(C)=C(C)C=C QTTAWIGVQMSWMV-UHFFFAOYSA-N 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- CXJAFLQWMOMYOW-UHFFFAOYSA-N 3-chlorofuran-2,5-dione Chemical compound ClC1=CC(=O)OC1=O CXJAFLQWMOMYOW-UHFFFAOYSA-N 0.000 description 1
- WSGYTJNNHPZFKR-UHFFFAOYSA-N 3-hydroxypropanenitrile Chemical compound OCCC#N WSGYTJNNHPZFKR-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- UFERIGCCDYCZLN-UHFFFAOYSA-N 3a,4,7,7a-tetrahydro-1h-indene Chemical compound C1C=CCC2CC=CC21 UFERIGCCDYCZLN-UHFFFAOYSA-N 0.000 description 1
- OCTVDLUSQOJZEK-UHFFFAOYSA-N 4,5-diethylocta-1,3-diene Chemical compound CCCC(CC)C(CC)=CC=C OCTVDLUSQOJZEK-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- CJSBUWDGPXGFGA-UHFFFAOYSA-N 4-methylpenta-1,3-diene Chemical compound CC(C)=CC=C CJSBUWDGPXGFGA-UHFFFAOYSA-N 0.000 description 1
- IZLXZVWFPZWXMZ-UHFFFAOYSA-N 5-cyclohexylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1=CC2CC1CC2=C1CCCCC1 IZLXZVWFPZWXMZ-UHFFFAOYSA-N 0.000 description 1
- VSQLAQKFRFTMNS-UHFFFAOYSA-N 5-methylhexa-1,4-diene Chemical compound CC(C)=CCC=C VSQLAQKFRFTMNS-UHFFFAOYSA-N 0.000 description 1
- UGJBFMMPNVKBPX-UHFFFAOYSA-N 5-propan-2-ylidenebicyclo[2.2.1]hept-2-ene Chemical compound C1C2C(=C(C)C)CC1C=C2 UGJBFMMPNVKBPX-UHFFFAOYSA-N 0.000 description 1
- BWDBEAQIHAEVLV-UHFFFAOYSA-N 6-methylheptan-1-ol Chemical compound CC(C)CCCCCO BWDBEAQIHAEVLV-UHFFFAOYSA-N 0.000 description 1
- PLLBRTOLHQQAQQ-UHFFFAOYSA-N 8-methylnonan-1-ol Chemical compound CC(C)CCCCCCCO PLLBRTOLHQQAQQ-UHFFFAOYSA-N 0.000 description 1
- 238000006596 Alder-ene reaction Methods 0.000 description 1
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 0 CC(C)*CN(*)* Chemical compound CC(C)*CN(*)* 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 239000004440 Isodecyl alcohol Substances 0.000 description 1
- 238000007065 Kolbe-Schmitt synthesis reaction Methods 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical class C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- XYRMLECORMNZEY-UHFFFAOYSA-B [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S Chemical compound [Mo+4].[Mo+4].[Mo+4].[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S.[O-]P([O-])([S-])=S XYRMLECORMNZEY-UHFFFAOYSA-B 0.000 description 1
- XWKKZTDYIZDRQS-UHFFFAOYSA-J [Mo+4].[S-][PH2]=S.[S-][PH2]=S.[S-][PH2]=S.[S-][PH2]=S Chemical compound [Mo+4].[S-][PH2]=S.[S-][PH2]=S.[S-][PH2]=S.[S-][PH2]=S XWKKZTDYIZDRQS-UHFFFAOYSA-J 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000002152 alkylating effect Effects 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229940051879 analgesics and antipyretics salicylic acid and derivative Drugs 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 238000010539 anionic addition polymerization reaction Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- VEZXCJBBBCKRPI-UHFFFAOYSA-N beta-propiolactone Chemical compound O=C1CCO1 VEZXCJBBBCKRPI-UHFFFAOYSA-N 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- WLLCYXDFVBWGBU-UHFFFAOYSA-N bis(8-methylnonyl) nonanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC(C)C WLLCYXDFVBWGBU-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005885 boration reaction Methods 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 150000001639 boron compounds Chemical class 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- IMJGQTCMUZMLRZ-UHFFFAOYSA-N buta-1,3-dien-2-ylbenzene Chemical compound C=CC(=C)C1=CC=CC=C1 IMJGQTCMUZMLRZ-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- OSMZVRQRVPLKTN-UHFFFAOYSA-N calcium;1-nonyl-7-thiabicyclo[4.1.0]hepta-2,4-dien-6-ol Chemical compound [Ca].C1=CC=CC2(CCCCCCCCC)C1(O)S2 OSMZVRQRVPLKTN-UHFFFAOYSA-N 0.000 description 1
- VBIGULIJWJPALH-UHFFFAOYSA-L calcium;2-carboxyphenolate Chemical class [Ca+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O VBIGULIJWJPALH-UHFFFAOYSA-L 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 230000021523 carboxylation Effects 0.000 description 1
- 238000006473 carboxylation reaction Methods 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 108010011222 cyclo(Arg-Pro) Proteins 0.000 description 1
- UVJHQYIOXKWHFD-UHFFFAOYSA-N cyclohexa-1,4-diene Chemical compound C1C=CCC=C1 UVJHQYIOXKWHFD-UHFFFAOYSA-N 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- ZOOODBUHSVUZEM-UHFFFAOYSA-N ethoxymethanedithioic acid Chemical compound CCOC(S)=S ZOOODBUHSVUZEM-UHFFFAOYSA-N 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000010711 gasoline engine oil Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 229910021473 hassium Inorganic materials 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical class Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 description 1
- 150000002462 imidazolines Chemical class 0.000 description 1
- 125000002636 imidazolinyl group Chemical group 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000011968 lewis acid catalyst Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- WGOPGODQLGJZGL-UHFFFAOYSA-N lithium;butane Chemical compound [Li+].CC[CH-]C WGOPGODQLGJZGL-UHFFFAOYSA-N 0.000 description 1
- 239000005267 main chain polymer Substances 0.000 description 1
- 150000002690 malonic acid derivatives Chemical class 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 229940043348 myristyl alcohol Drugs 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 1
- 150000002848 norbornenes Chemical class 0.000 description 1
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- PJLHTVIBELQURV-UHFFFAOYSA-N pentadecene Natural products CCCCCCCCCCCCCC=C PJLHTVIBELQURV-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000333 poly(propyleneimine) Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- PDEDQSAFHNADLV-UHFFFAOYSA-M potassium;disodium;dinitrate;nitrite Chemical compound [Na+].[Na+].[K+].[O-]N=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PDEDQSAFHNADLV-UHFFFAOYSA-M 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003141 primary amines Chemical group 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 229960000380 propiolactone Drugs 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical class O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 238000007342 radical addition reaction Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- CQRYARSYNCAZFO-UHFFFAOYSA-N salicyl alcohol Chemical compound OCC1=CC=CC=C1O CQRYARSYNCAZFO-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000003107 substituted aryl group Chemical group 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- 125000002730 succinyl group Chemical group C(CCC(=O)*)(=O)* 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical class S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical class CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 1
- MQHSFMJHURNQIE-UHFFFAOYSA-N tetrakis(2-ethylhexyl) silicate Chemical compound CCCCC(CC)CO[Si](OCC(CC)CCCC)(OCC(CC)CCCC)OCC(CC)CCCC MQHSFMJHURNQIE-UHFFFAOYSA-N 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 description 1
- 125000003396 thiol group Chemical class [H]S* 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229940087291 tridecyl alcohol Drugs 0.000 description 1
- 229960001124 trientine Drugs 0.000 description 1
- ZAGXLQIHXTXRFW-UHFFFAOYSA-N tris(2-ethyl-4-methylhexyl)-tris(2-ethyl-4-methylhexyl)silyloxysilane Chemical compound CCC(C)CC(CC)C[Si](CC(CC)CC(C)CC)(CC(CC)CC(C)CC)O[Si](CC(CC)CC(C)CC)(CC(CC)CC(C)CC)CC(CC)CC(C)CC ZAGXLQIHXTXRFW-UHFFFAOYSA-N 0.000 description 1
- 229940057402 undecyl alcohol Drugs 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 238000000214 vapour pressure osmometry Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M163/00—Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M167/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound, a non-macromolecular compound and a compound of unknown or incompletely defined constitution, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/14—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/144—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/26—Overbased carboxylic acid salts
- C10M2207/262—Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbased sulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/06—Thio-acids; Thiocyanates; Derivatives thereof
- C10M2219/062—Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
- C10M2219/066—Thiocarbamic type compounds
- C10M2219/068—Thiocarbamate metal salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/12—Groups 6 or 16
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/42—Phosphor free or low phosphor content compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/43—Sulfur free or low sulfur content compositions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/40—Low content or no content compositions
- C10N2030/45—Ash-less or low ash content
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
- C10N2040/252—Diesel engines
Definitions
- the present invention relates to lubricating oil compositions. More specifically, the present invention is directed to lubricating oil compositions that provide improved lubricant performance in diesel engines provided with exhaust gas recirculation (EGR) systems that have reduced levels of sulfated ash, phosphorus and sulfur (low “SAPS").
- EGR exhaust gas recirculation
- EGR exhaust gas recirculation
- EP 1203804 describes lubricating oils for use with diesel engines that may comprise an EGR system to reduce wear in high soot conditions.
- the lubricating oil compositions comprise 0.03 - 0.50 wt % molybdenum from an oxymolybdenum dethiocarbamate, 0.04 - 0.50 wt % phosphorus from a zinc dialkyldithiophosphate and at least one calcium, magnesium or zinc salt of an alkyl salicylate providing 0.004 to 1.0 wt % Ca, 0.002 to 0.60 wt % Mg or 0.006 to 1.60 wt % Zn respectively.
- Diesel fuel contains sulfur. Even “low-sulfur” diesel fuel contains 300 to 400 ppm of sulfur. When the fuel is burned in the engine, this sulfur is converted to SO x . In addition, one of the major by-products of the combustion of a hydrocarbon fuel is water vapor. Therefore, the exhaust stream contains some level of NO x , SO x and water vapor.
- US 2004/0102335 A1 describes a lubricant having reduced phosphorus and sulfur content whilst maintaining acceptable performance; comprising a metal sulfonate detergent, a metal salixarate detergent, a metal saligenin detergent and optionally an additional other metal detergent.
- EP 1310549 relates to lubricating oil compositions containing reduced phosphorus content with acceptable wear performance.
- the reduction of phosphorus is offset by the inclusion or boron.
- the lubricant may optionally include additional molybdenum to provide improved friction performance and antioxidancy performance.
- WO 2005/021693 discloses a lubricant that is substantially free of zinc and phosphorus comprising a metal detergent, an ashless dispersant at least one of which is borated, an ashless aminic antioxidant and a phosphorus free tri-nuclear molybdenum compound, comprising at least 120 ppm boron and at least 80 ppm molybdenum.
- Salicylate detergents are known to provide detergency that is superior to that of phenate and sulfonate-based detergents. Because of this improved detergency, the use of a salicylate detergent allows for a reduction in treat rate, and corresponding reduction in the metal content of the lubricant contributed by detergent. Thus, salicylate detergents have been favored in the formulation of low SAPS lubricating oil compositions. It has been known to use a combination of a low base number (neutral) salicylate detergent and a high base number salicylate detergent (overbased) to allow the formulators to precisely balance detergency and acid neutralization capacity, at minimum ash levels. Calcium salicylate detergents are used most commonly due to a perception that magnesium-based detergents may be the cause of certain performance debits, particularly increased bore polishing, in various industry standard tests to which lubricants are subjected.
- a lubricating oil composition having a sulfated ash content of no more than 1.0 mass % and containing from 300 to less than 800 ppm of phosphorus, which comprises a major amount of oil of lubricating viscosity, a minor amount of calcium salicylate detergent, an amount of a magnesium-based detergent providing the lubricating oil composition with at least 200 ppm of magnesium, an amount of a sulfur-containing molybdenum compound providing the lubricating oil composition with at least 20 ppm of molybdenum, at least one nitrogen-containing dispersant, the nitrogen-containing dispersant providing the lubricating oil composition with at least 0.09 mass% of nitrogen to the lubricating oil composition and a zinc dihydrocarbyl dithiophate.
- the calcium salicylate detergent is one or more overbased calcium salicylate detergents, or a combination of one or more overbased calcium salicylate detergents and one or more neutral calcium salicylate detergents.
- the lubricating oil composition is a heavy duty diesel lubricating oil composition.
- the lubricating oil composition has a sulfur content of no more than 0.4 mass %, preferably no more than 0.3 mass %.
- the oil of lubricating viscosity useful in the practice of the invention may range in viscosity from light distillate mineral oils to heavy lubricating oils such as gasoline engine oils, mineral lubricating oils and heavy duty diesel oils.
- the viscosity of the oil ranges from about 2 mm 2 /sec (centistokes) to about 40 mm 2 /sec, especially from about 3 mm 2 /sec to about 20 mm 9 /sec, most preferably from about 4 mm 2 /sec to about 10 mm 2 /sec, as measured at 100°C.
- Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil); liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale also serve as useful base oils.
- Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and derivative, analogs and homologs thereof.
- Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, and the alkyl and aryl ethers of polyoxyalkylene polymers (e.g., methyl-polyiso-glycol ether having a molecular weight of 1000 or diphenyl ether of poly-ethylene glycol having a molecular weight of 1000 to 1500); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C 3 -C 8 fatty acid esters and C 13 Oxo acid diester of tetraethylene glycol.
- polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide
- alkyl and aryl ethers of polyoxyalkylene polymers e.g.,
- Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
- dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linole
- esters includes dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
- Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol esters such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
- Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxysilicone oils and silicate oils comprise another useful class of synthetic lubricants; such oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexyl)silicate, tetra-(p-tert-butyl-phenyl) silicate, hexa-(4-methyl-2-ethylhexyl)disiloxane, poly(methyl)siloxanes and poly(methylphenyl)siloxanes.
- oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexy
- Other synthetic lubricating oils include liquid esters of phosphorous-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
- the oil of lubricating viscosity may comprise a Group I, Group II, Group III, Group IV or Group V base stocks or base oil blends of the aforementioned base stocks.
- the oil of lubricating viscosity is a Group II, Group III, Group IV or Group V base stock, or a mixture thereof, or a mixture of a Group I base stock and one or more a Group II, Group III, Group IV or Group V base stock.
- the base stock, or base stock blend preferably has a saturate content of at least 65%, more preferably at least 75%, such as at least 85%.
- the basestock or basestock blend is a Group III or higher basestock or mixture thereof, or a mixture of a Group II basestock and a Group III or higher basestock or mixture thereof.
- the base stock, or base stock blend has a saturate content of greater than 90%.
- the oil or oil blend will have a sulfur content of less than 1 mass %, preferably less than 0.6 mass %, most preferably less than 0.4 mass %, such as less than 0.3 mass %.
- the volatility of the oil or oil blend is less than or equal to 30 mass %, preferably less than or equal to 25 mass %, more preferably less than or equal to 20 mass %, most preferably less than or equal 16 mass %.
- the viscosity index (VI) of the oil or oil blend is at least 85, preferably at least 100, most preferably from about 105 to 140.
- base stocks and base oils in this invention are the same as those found in the American Petroleum Institute (API) publication "Engine Oil Licensing and Certification System", Industry Services Department, Fourteenth Edition, December 1996, Addendum 1, December 1998. Said publication categorizes base stocks as follows:
- Metal-containing or ash-forming detergents function as both detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life.
- Detergents generally comprise a polar head with a long hydrophobic tail.
- the polar head comprises a metal salt of an acidic organic compound.
- the salts may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as can be measured by ASTM D2896) of from 0 to 80.
- a large amount of a metal base may be incorporated by reacting excess metal compound (e.g., an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide).
- the resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g. carbonate) micelle.
- Such overbased detergents may have a TBN of 150 or greater, and typically will have
- Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., barium, sodium, potassium, lithium, calcium, and magnesium.
- a metal particularly the alkali or alkaline earth metals, e.g., barium, sodium, potassium, lithium, calcium, and magnesium.
- the most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium.
- Particularly convenient metal detergents are neutral and overbased calcium sulfonates having TBN of from 20 to 450, neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450 and neutral and overbased magnesium or calcium salicylates having a TBN of from 20 to 450. Combinations of detergents, whether overbased or neutral or both, may be used.
- Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
- the alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms.
- the alkaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.
- the oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal.
- the amount of metal compound is chosen having regard to the desired TBN of the fmal product but typically ranges from about 100 to 220 mass % (preferably at least 125 mass %) of that stoichiometrically required.
- Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art.
- Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
- Carboxylate detergents e.g., salicylates
- an aromatic carboxylic acid can contain heteroatoms, such as nitrogen and oxygen.
- the moiety contains only carbon atoms; more preferably the moiety contains six or more carbon atoms; for example benzene is a preferred moiety.
- the aromatic carboxylic acid may contain one or more aromatic moieties, such as one or more benzene rings, either fused or connected via alkylene bridges.
- the carboxylic moiety may be attached directly or indirectly to the aromatic moiety.
- the carboxylic acid group is attached directly to a carbon atom on the aromatic moiety, such as a carbon atom on the benzene ring. More preferably, the aromatic moiety also contains a second functional group, such as a hydroxy group or a sulfonate group, which can be attached directly or indirectly to a carbon atom on the aromatic moiety.
- a second functional group such as a hydroxy group or a sulfonate group
- aromatic carboxylic acids are salicylic acids and sulfurized derivatives thereof, such as hydrocarbyl substituted salicylic acid and derivatives thereof.
- Processes for sulfurizing, for example a hydrocarbyl - substituted salicylic acid are known to those skilled in the art.
- Salicylic acids are typically prepared by carboxylation, for example, by the Kolbe - Schmitt process, of phenoxides, and in that case, will generally be obtained, normally in a diluent, in admixture with uncarboxylated phenol.
- Preferred substituents in oil - soluble salicylic acids are alkyl substituents.
- the alkyl groups advantageously contain 5 to 100, preferably 9 to 30, especially 14 to 20, carbon atoms. Where there is more than one alkyl group, the average number of carbon atoms in all of the alkyl groups is preferably at least 9 to ensure adequate oil solubility.
- Detergents generally useful in the formulation of lubricating oil compositions also include "hybrid" detergents formed with mixed surfactant systems, e.g., phenate/salicylates, sulfonate/phenates, sulfonate/salicylates, sulfonates/phenates/salicylates, as described, for example, in pending U.S. Patent Nos. 6,429,178 and 6,429,179 and U.S. Patent Nos. 6,153,565 and 6,281,179 .
- Lubricating oil compositions of the present invention comprise calcium salicylate detergent including at least one overbased calcium salicylate detergent or a combination of at least one calcium salicylate detergent and at least one neutral (TBN below 100) calcium salicylate detergent.
- calcium salicylate detergent is used in an amount providing the lubricating oil composition with at least about 0.10, preferably at least 1.15 and more preferably at least 0.16 mass % calcium, measured as sulfated ash content.
- calcium salicylate detergent is used in an amount providing the lubricating oil composition with less than about 0.20 mass %, more preferably less than 0.18 mass % of calcium, measured as sulfated ash (SASH) content.
- calcium salicylate detergent contributes from about 5 to about 90 % of the total TBN, such as from about 5 to about 70 % of the total TBN, particularly from about 25 to about 55 % of the total TBN, such as from about 30 to 50 % more preferably from about 35 to about 45% of the total TBN of the lubricating oil composition.
- Lubricating oil compositions of the present invention further comprise at least one magnesium-based detergent, which may be a salicylate detergent, a sulfonate detergent, a phenate detergent, a hybrid mixed surfactant detergent, or a combination thereof.
- magnesium detergent is present in an amount providing the lubricating oil composition with greater than 0.02 mass % (200 ppm), such as greater than 0.04 mass % (400 ppm) of magnesium, measured as sulfated ash (SASH) content.
- magnesium detergent is present in an amount providing the lubricating oil composition with no more than 0.125 mass % (1250 ppm) of magnesium, such as from 200 to 1250 ppm, preferably from about 500 to about 750 ppm of magnesium, measured as sulfated ash (SASH) content.
- the magnesium detergent has, or magnesium detergents have on average, a TBN of at least 300, such as from about 300 to 500, more preferably at least 400, such as from about 400 to 500.
- magnesium detergent contributes from about 5 to about 40 % of the total TBN, such as from about 15 to about 35 % of the total TBN, more preferably from about 20 to about 30 % of the total TBN of the lubricating oil composition.
- detergent in total is used in an amount providing the lubricating oil composition with from about 0.35 to about 1.0 mass %, such as from about 0.6 to about 0.9 mass %, more preferably from about 0.6 to about 0.8 mass % of sulfated ash (SASH).
- the lubricating oil composition has a TBN of from about 10 to about 15, such as from about 11.5 to about 13.5, more preferably from about 12 to about 13.
- TBN may be contributed to the lubricating oil composition by additives other than detergents. Dispersants, antioxidants and antiwear agents may in some cases contribute 40 % or more of the total amount of lubricant TBN.
- detergents comprise from about 0.5 to about 10 mass %, preferably from about 2.5 to about 7.5 mass %, most preferably from about 4 to about 6.5 mass % of a lubricating oil composition formulated for use in a heavy duty diesel engine.
- Lubricating oil compositions of the present invention further comprise a sulfur-containing molybdenum compound.
- Certain, sulfur-containing, organo-molybdenum compounds are known to function as friction modifiers in lubricating oil compositions, and further provide antioxidant and antiwear credits to a lubricating oil composition.
- Such sulfur-containing organo-molybdenum compounds are particularly well suited for use as the sulfur-containing molybdenum compounds of the present invention.
- Sulfur containing molybdenum compounds suitable for the present invention are compounds selected from the group consisting of oil soluble molybdenum dithiocarbamates, dithiophosphates, dithiophosphinates, xanthates, thioxanthates, sulfides, and the like, and mixtures thereof. Particularly preferred are molybdenum dithiocarbamates, dialkyldithiophosphates, alkyl xanthates and alkylthioxanthates and mixtures thereof. Most preferred are dimeric and trimeric molybdenum dithiocarbamate and mixtures thereof.
- molybdenum compounds useful in the compositions of this invention are organo-molybdenum compounds of the formula Mo(ROCS 2 ) 4 and Mo(RSCS 2 ) 4 wherein R is an organo group selected from the group consisting of alkyl, aryl, aralkyl and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and most preferably alkyl of 2 to 12 carbon atoms.
- R is an organo group selected from the group consisting of alkyl, aryl, aralkyl and alkoxyalkyl, generally of from 1 to 30 carbon atoms, and preferably 2 to 12 carbon atoms and most preferably alkyl of 2 to 12 carbon atoms.
- dialkyldithiocarbamates of molybdenum are especially preferred.
- organo-molybdenum compounds useful in the lubricating compositions of this invention are trinuclear molybdenum compounds, especially those of the formula Mo 3 S k L n Q z and mixtures thereof wherein the L are independently selected ligands having organo groups with a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil, n is from 1 to 4, k varies from 4 through 7, Q is selected from the group of neutral electron donating compounds such as water, amines, alcohols, phosphines, and ethers, and z ranges from 0 to 5 and includes non-stoichiometric values. At least 21 total carbon atoms should be present among all the ligands' organo groups, such as at least 25, at least 30, or at least 35 carbon atoms.
- the ligands are independently selected from the group of -X- R 1, and and mixtures thereof, wherein X, X 1 , X 2 , and Y are independently selected from the group of oxygen and sulfur, and wherein R 1 , R 2 , and R are independently selected from hydrogen and organo groups that may be the same or different.
- the organo groups are hydrocarbyl groups such as alkyl (e.g., in which the carbon atom attached to the remainder of the ligand is primary or secondary), aryl, substituted aryl and ether groups. More preferably, each ligand has the same hydrocarbyl group.
- hydrocarbyl denotes a substituent having carbon atoms directly attached to the remainder of the ligand and is predominantly hydrocarbyl in character within the context of this invention.
- substituents include the following:
- the organo groups of the ligands have a sufficient number of carbon atoms to render the compound soluble or dispersible in the oil.
- the number of carbon atoms in each group will generally range between about 1 to about 100, preferably from about 1 to about 30, and more preferably between about 4 to about 20.
- Preferred ligands include dialkyldithiophosphate, alkylxanthate, and dialkyldithiocarbamate, and of these dialkyldithiocarbamate is more preferred.
- Organic ligands containing two or more of the above functionalities are also capable of serving as ligands and binding to one or more of the cores. Those skilled in the art will realize that formation of the compounds of the present invention requires selection of ligands having the appropriate charge to balance the core's charge.
- Oil-soluble or dispersible trinuclear molybdenum compounds can be prepared by reacting in the appropriate liquid(s)/solvent(s) a molybdenum source such as (NH 4 ) 2 Mo 3 S 13 ⁇ n(H 2 O), where n varies between 0 and 2 and includes non-stoichiometric values, with a suitable ligand source such as a tetralkylthiuram disulfide.
- a molybdenum source such as (NH 4 ) 2 Mo 3 S 13 ⁇ n(H 2 O), where n varies between 0 and 2 and includes non-stoichiometric values
- oil-soluble or dispersible trinuclear molybdenum compounds can be formed during a reaction in the appropriate solvent(s) of a molybdenum source such as of (NH 4 ) 2 Mo 3 S 13 ⁇ n(H 2 O), a ligand source such as tetralkylthiuram disulfide, dialkyldithiocarbamate, or dialkyldithiophosphate, and a sulfur abstracting agent such cyanide ions, sulfite ions, or substituted phosphines.
- a molybdenum source such as of (NH 4 ) 2 Mo 3 S 13 ⁇ n(H 2 O)
- a ligand source such as tetralkylthiuram disulfide, dialkyldithiocarbamate, or dialkyldithiophosphate
- a sulfur abstracting agent such cyanide ions, sulfite ions, or substituted phosphines.
- a trinuclear molybdenum-sulfur halide salt such as [M'] 2 [Mo 3 S 7 A 6 ], where M' is a counter ion, and A is a halogen such as Cl, Br, or I, may be reacted with a ligand source such as a dialkyldithiocarbamate or dialkyldithiophosphate in the appropriate liquid(s)/solvent(s) to form an oil-soluble or dispersible trinuclear molybdenum compound.
- the appropriate liquid/solvent may be, for example, aqueous or organic.
- a compound's oil solubility or dispersibility may be influenced by the number of carbon atoms in the ligand's organo groups. In the compounds of the present invention, at least 21 total carbon atoms should be present among all the ligand's organo groups.
- the ligand source chosen has a sufficient number of carbon atoms in its organo groups to render the compound soluble or dispersible in the lubricating composition.
- oil-soluble or “dispersible” used herein do not necessarily indicate that the compounds or additives are soluble, dissolvable, miscible, or capable of being suspended in the oil in all proportions. These do mean, however, that they are, for instance, soluble or stably dispersible in oil to an extent sufficient to exert their intended effect in the environment in which the oil is employed. Moreover, the additional incorporation of other additives may also permit incorporation of higher levels of a particular additive, if desired.
- the sulfur-containing molybdenum compound is preferably an organo-molybdenum compound.
- the molybdenum compound is preferably selected from the group consisting of a molybdenum dithiocarbamate (MoDTC), molybdenum dithiophosphate, molybdenum dithiophosphinate, molybdenum xanthate, molybdenum thioxanthate, molybdenum sulfide and mixtures thereof.
- MoDTC molybdenum dithiocarbamate
- the molybdenum compound is present as molybdenum dithiocarbamate.
- the molybdenum compound may also be a trinuclear molybdenum compound.
- the sulfur-containing molybdenum compound is a dimeric or trimeric molybdenum dithiocarbamates and mixtures thereof.
- the sulfur-containing molybdenum compound is present in the lubricating oil composition in an amount providing the lubricating oil composition with at least 20 ppm of elemental molybdenum.
- lubricating oil compositions of the present invention contain no more than 500 ppm of molybdenum, more preferably no more than 200 ppm, such as from about 40 to about 200 ppm of molybdenum, still more preferably, no more than 100 ppm, such as from about 50 to 100 ppm of molybdenum.
- the sulfur-containing molybdenum compound contributes from about 0.004 to about 0.090 mass %, such as from about 0.006 to about 0.05 mass %, more preferably, from about 0.008 to about 0.02 mass % of sulfur into the lubricating oil composition.
- Dispersants maintain in suspension materials resulting from oxidation during use that are insoluble in oil, thus preventing sludge flocculation and precipitation, or deposition on metal parts.
- the lubricating oil composition of the present invention comprises at least one dispersant, and may comprise a plurality of dispersants.
- the dispersant or dispersants preferably contribute, in total, from about 0.09 to about 0.19 mass %, such as from about 0.09 to about 0.18 mass %, most preferably from about 0.10 to about 0.17 mass % of nitrogen to the lubricating oil composition.
- Dispersants useful in the context of the present invention include the range of nitrogen-containing, ashless (metal-free) dispersants known to be effective to reduce formation of deposits upon use in gasoline and diesel engines, when added to lubricating oils and comprise an oil soluble polymeric long chain backbone having functional groups capable of associating with particles to be dispersed.
- such dispersants typically have amine, amine-alcohol or amide polar moieties attached to the polymer backbone, often via a bridging group.
- the ashless dispersant may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides and oxazolines of long chain hydrocarbon-substituted mono- and polycarboxylic acids or anhydrides thereof; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having polyamine moieties attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and polyalkylene polyamine.
- each mono- or dicarboxylic acid-producing moiety will react with a nucleophilic group (amine or amide) and the number of functional groups in the polyalkenyl-substituted carboxylic acylating agent will determine the number of nucleophilic groups in the finished dispersant.
- the polyalkenyl moiety of the dispersant of the present invention has a number average molecular weight of from about 700 to about 3000, preferably between 950 and 3000, such as between 950 and 2800, more preferably from about 950 to 2500, and most preferably from about 950 to about 2400.
- the dispersant comprises a combination of a lower molecular weight dispersant (e.g., having a number average molecular weight of from about 700 to 1100) and a high molecular weight dispersant having a number average molecular weight of from about at least about 1500, preferably between 1800 and 3000, such as between 2000 and 2800, more preferably from about 2100 to 2500, and most preferably from about 2150 to about 2400.
- a lower molecular weight dispersant e.g., having a number average molecular weight of from about 700 to 1100
- a high molecular weight dispersant having a number average molecular weight of from about at least about 1500, preferably between 1800 and 3000, such as between 2000 and 2800, more preferably from about 2100 to 2500, and most preferably from about 2150 to about 2400.
- the molecular weight of a dispersant is generally expressed in terms of the molecular weight of the polyalkenyl moiety as the precise molecular weight range of the dispersant depends on numerous parameters including the type of polymer used to derive the dispersant, the number of functional groups, and the type of nucleophilic group employed.
- the polyalkenyl moiety from which the high molecular weight dispersants are derived preferably have a narrow molecular weight distribution (MWD), also referred to as polydispersity, as determined by the ratio of weight average molecular weight (M w ) to number average molecular weight (M n ).
- MWD molecular weight distribution
- polymers from which the dispersants of the present invention are derived have a M w /M n of from about 1.5 to about 2.0, preferably from about 1.5 to about 1.9, most preferably from about 1.6 to about 1.8.
- Suitable hydrocarbons or polymers employed in the formation of the dispersants of the present invention include homopolymers, interpolymers or lower molecular weight hydrocarbons.
- such polymers comprise interpolymers of ethylene and at least one alpha-olefin of the above formula, wherein R 1 is alkyl of from 1 to 18 carbon atoms, and more preferably is alkyl of from 1 to 8 carbon atoms, and more preferably still of from 1 to 2 carbon atoms.
- useful alpha-olefin monomers and comonomers include, for example, propylene, butene-1, hexene-1, octene-1, 4-methylpentene-1, decene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nonadecene-1, and mixtures thereof (e.g., mixtures of propylene and butene-1, and the like).
- Exemplary of such polymers are propylene homopolymers, butene-1 homopolymers, ethylene-propylene copolymers, ethylene-butene-1 copolymers, propylene-butene copolymers and the like, wherein the polymer contains at least some terminal and/or internal unsaturation.
- Preferred polymers are unsaturated copolymers of ethylene and propylene and ethylene and butene-1.
- the interpolymers of this invention may contain a minor amount, e.g. 0.5 to 5 mole % of a C 4 to C 18 non-conjugated diolefin comonomer.
- the polymers of this invention comprise only alpha-olefin homopolymers, interpolymers of alpha-olefin comonomers and interpolymers of ethylene and alpha-olefin comonomers.
- the molar ethylene content of the polymers employed in this invention is preferably in the range of 0 to 80 %, and more preferably 0 to 60 %.
- the ethylene content of such copolymers is most preferably between 15 and 50 %, although higher or lower ethylene contents may be present.
- These polymers may be prepared by polymerizing alpha-olefin monomer, or mixtures of alpha-olefin monomers, or mixtures comprising ethylene and at least one C 3 to C 28 alpha-olefin monomer, in the presence of a catalyst system comprising at least one metallocene (e.g., a cyclopentadienyl-transition metal compound) and an alumoxane compound.
- a catalyst system comprising at least one metallocene (e.g., a cyclopentadienyl-transition metal compound) and an alumoxane compound.
- the percentage of polymer chains exhibiting terminal ethenylidene unsaturation may be determined by FTIR spectroscopic analysis, titration, or C 13 NMR.
- the chain length of the R 1 alkyl group will vary depending on the comonomer(s) selected for use in the polymerization.
- These terminally unsaturated interpolymers may be prepared by known metallocene chemistry and may also be prepared as described in U.S. Patent Nos. 5,498,809 ; 5,663,130 ; 5,705,577 ; 5,814,715 ; 6,022,929 and 6,030,930 .
- polymers prepared by cationic polymerization of isobutene, styrene, and the like are polymers prepared by cationic polymerization of isobutene, styrene, and the like.
- Common polymers from this class include polyisobutenes obtained by polymerization of a C 4 refinery stream having a butene content of about 35 to about 75 mass %, and an isobutene content of about 30 to about 60 mass %, in the presence of a Lewis acid catalyst, such as aluminum trichloride or boron trifluoride.
- a preferred source of monomer for making poly-n-butenes is petroleum feedstreams such as Raffinate II. These feedstocks are disclosed in the art such as in U.S. Patent No. 4,952,739 .
- Polyisobutylene is a most preferred backbone of the present invention because it is readily available by cationic polymerization from butene streams (e.g., using AlCl 3 or BF 3 catalysts). Such polyisobutylenes generally contain residual unsaturation in amounts of about one ethylenic double bond per polymer chain, positioned along the chain.
- a preferred embodiment utilizes polyisobutylene prepared from a pure isobutylene stream or a Raffinate I stream to prepare reactive isobutylene polymers with terminal vinylidene olefins.
- these polymers referred to as highly reactive polyisobutylene (HR-PIB)
- HR-PIB highly reactive polyisobutylene
- these polymers have a terminal vinylidene content of at least 65%, e.g., 70%, more preferably at least 80%, most preferably, at least 85%.
- the preparation of such polymers is described, for example, in U.S. Patent No. 4,152,499 .
- HR-PIB is known and HR-PIB is commercially available under the tradenames GlissopalTM (from BASF) and UltravisTM (from BP-Amoco).
- Polyisobutylene polymers that may be employed are generally based on a hydrocarbon chain of from about 700 to 3000. Methods for making polyisobutylene are known. Polyisobutylene can be functionalized by halogenation (e.g. chlorination), the thermal "ene” reaction, or by free radical grafting using a catalyst (e.g. peroxide), as described below.
- halogenation e.g. chlorination
- the thermal "ene” reaction e.g. peroxide
- a catalyst e.g. peroxide
- the hydrocarbon or polymer backbone can be functionalized, e.g., with carboxylic acid producing moieties (preferably acid or anhydride moieties) selectively at sites of carbon-to-carbon unsaturation on the polymer or hydrocarbon chains, or randomly along chains using any of the three processes mentioned above or combinations thereof, in any sequence.
- carboxylic acid producing moieties preferably acid or anhydride moieties
- the polymer or hydrocarbon may be functionalized, for example, with carboxylic acid producing moieties (preferably acid or anhydride) by reacting the polymer or hydrocarbon under conditions that result in the addition of functional moieties or agents, i.e., acid, anhydride, ester moieties, etc., onto the polymer or hydrocarbon chains primarily at sites of carbon-to-carbon unsaturation (also referred to as ethylenic or olefmic unsaturation) using the halogen assisted functionalization (e.g. chlorination) process or the thermal "ene" reaction.
- carboxylic acid producing moieties preferably acid or anhydride
- Selective functionalization can be accomplished by halogenating, e.g., chlorinating or brominating the unsaturated ⁇ -olefin polymer to about 1 to 8 mass %, preferably 3 to 7 mass % chlorine, or bromine, based on the weight of polymer or hydrocarbon, by passing the chlorine or bromine through the polymer at a temperature of 60 to 250°C, preferably 110 to 160°C, e.g., 120 to 140°C, for about 0.5 to 10, preferably 1 to 7 hours.
- halogenating e.g., chlorinating or brominating the unsaturated ⁇ -olefin polymer to about 1 to 8 mass %, preferably 3 to 7 mass % chlorine, or bromine, based on the weight of polymer or hydrocarbon
- the halogenated polymer or hydrocarbon (hereinafter backbone) is then reacted with sufficient monounsaturated reactant capable of adding the required number of functional moieties to the backbone, e.g., monounsaturated carboxylic reactant, at 100 to 250°C, usually about 180°C to 235°C, for about 0.5 to 10, e.g., 3 to 8 hours, such that the product obtained will contain the desired number of moles of the monounsaturated carboxylic reactant per mole of the halogenated backbones.
- the backbone and the monounsaturated carboxylic reactant are mixed and heated while adding chlorine to the hot material.
- chlorination normally helps increase the reactivity of starting olefin polymers with monounsaturated functionalizing reactant, it is not necessary with some of the polymers or hydrocarbons contemplated for use in the present invention, particularly those preferred polymers or hydrocarbons which possess a high terminal bond content and reactivity.
- the backbone and the monounsaturated functionality reactant e.g., carboxylic reactant, are contacted at elevated temperature to cause an initial thermal "ene" reaction to take place. Ene reactions are known.
- the hydrocarbon or polymer backbone can be functionalized by random attachment of functional moieties along the polymer chains by a variety of methods.
- the polymer in solution or in solid form, may be grafted with the monounsaturated carboxylic reactant, as described above, in the presence of a free-radical initiator.
- the grafting takes place at an elevated temperature in the range of about 100 to 260°C, preferably 120 to 240°C.
- free-radical initiated grafting would be accomplished in a mineral lubricating oil solution containing, e.g., 1 to 50 mass %, preferably 5 to 30 mass % polymer based on the initial total oil solution.
- the free-radical initiators that may be used are peroxides, hydroperoxides, and azo compounds, preferably those that have a boiling point greater than about 100°C and decompose thermally within the grafting temperature range to provide free-radicals.
- Representative of these free-radical initiators are azobutyronitrile, 2,5-dimethylhex-3-ene-2, 5-bis-tertiary-butyl peroxide and dicumene peroxide.
- the initiator when used, typically is used in an amount of between 0.005% and 1% by weight based on the weight of the reaction mixture solution.
- the aforesaid monounsaturated carboxylic reactant material and free-radical initiator are used in a weight ratio range of from about 1.0:1 to 30:1, preferably 3:1 to 6:1.
- the grafting is preferably carried out in an inert atmosphere, such as under nitrogen blanketing.
- the resulting grafted polymer is characterized by having carboxylic acid (or ester or anhydride) moieties randomly attached along the polymer chains: it being understood, of course, that some of the polymer chains remain ungrafted.
- the free radical grafting described above can be used for the other polymers and hydrocarbons of the present invention.
- Mixtures of monounsaturated carboxylic materials (i) - (iv) also may be used.
- the monounsaturation of the monounsaturated carboxylic reactant becomes saturated.
- maleic anhydride becomes backbone-substituted succinic anhydride
- acrylic acid becomes backbone-substituted propionic acid.
- Such monounsaturated carboxylic reactants are fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic acid, chloromaleic anhydride, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and lower alkyl (e.g., C 1 to C 4 alkyl) acid esters of the foregoing, e.g., methyl maleate, ethyl fumarate, and methyl fumarate.
- lower alkyl e.g., C 1 to C 4 alkyl
- the monounsaturated carboxylic reactant typically will be used in an amount ranging from about equimolar amount to about 100 mass % excess, preferably 5 to 50 mass % excess, based on the moles of polymer or hydrocarbon. Unreacted excess monounsaturated carboxylic reactant can be removed from the final dispersant product by, for example, stripping, usually under vacuum, if required.
- the functionalized oil-soluble polymeric hydrocarbon backbone is then derivatized with a nitrogen-containing nucleophilic reactant, such as an amine, aminoalcohol, amide, or mixture thereof, to form a corresponding derivative.
- a nitrogen-containing nucleophilic reactant such as an amine, aminoalcohol, amide, or mixture thereof.
- Amine compounds are preferred.
- Useful amine compounds for derivatizing functionalized polymers comprise at least one amine and can comprise one or more additional amine or other reactive or polar groups. These amines may be hydrocarbyl amines or may be predominantly hydrocarbyl amines in which the hydrocarbyl group includes other groups, e.g., hydroxy groups, alkoxy groups, amide groups, nitriles, imidazoline groups, and the like.
- Particularly useful amine compounds include mono- and polyamines, e.g., polyalkene and polyoxyalkylene polyamines of about 2 to 60, such as 2 to 40 (e.g., 3 to 20) total carbon atoms having about 1 to 12, such as 3 to 12, preferably 3 to 9, most preferably form about 6 to about 7 nitrogen atoms per molecule.
- Mixtures of amine compounds may advantageously be used, such as those prepared by reaction of alkylene dihalide with ammonia.
- Preferred amines are aliphatic saturated amines, including, for example, 1,2-diaminoethane; 1,3-diaminopropane; 1,4-diaminobutane; 1,6-diaminohexane; polyethylene amines such as diethylene triamine; triethylene tetramine; tetraethylene pentamine; and polypropyleneamines such as 1,2-propylene diamine; and di-(1,2-propylene)triamine.
- Such polyamine mixtures known as PAM
- Particularly preferred polyamine mixtures are mixtures derived by distilling the light ends from PAM products. The resulting mixtures, known as "heavy" PAM, or HPAM, are also commercially available.
- amine compounds include: alicyclic diamines such as 1,4-di(aminomethyl) cyclohexane and heterocyclic nitrogen compounds such as imidazolines.
- Another useful class of amines is the polyamido and related amido-amines as disclosed in U.S. Patent Nos. 4,857,217 ; 4,956,107 ; 4,963,275 ; and 5,229,022 .
- TAM tris(hydroxymethyl)amino methane
- Dendrimers, star-like amines, and comb-structured amines may also be used.
- condensed amines as described in U.S. Patent No. 5,053,152 .
- the functionalized polymer is reacted with the amine compound using conventional techniques as described, for example, in U.S. Patent Nos. 4,234,435 and 5,229,022 , as well as in EP-A-208,560 .
- a preferred dispersant composition is one comprising at least one polyalkenyl succinimide, which is the reaction product of a polyalkenyl substituted succinic anhydride (e.g., PIBSA) and a polyamine (PAM) that has a coupling ratio of from about 0.65 to about 1.25, preferably from about 0.8 to about 1.1, most preferably from about 0.9 to about 1.
- PIBSA polyalkenyl substituted succinic anhydride
- PAM polyamine
- “coupling ratio” may be defined as a ratio of the number of succinyl groups in the PIBSA to the number of primary amine groups in the polyamine reactant.
- Mannich base condensation products Another class of high molecular weight ashless dispersants comprises Mannich base condensation products. Generally, these products are prepared by condensing about one mole of a long chain alkyl-substituted mono- or polyhydroxy benzene with about 1 to 2.5 moles of carbonyl compound(s) (e.g., formaldehyde and paraformaldehyde) and about 0.5 to 2 moles of polyalkylene polyamine, as disclosed, for example, in U.S. Patent No. 3,442,808 .
- carbonyl compound(s) e.g., formaldehyde and paraformaldehyde
- Such Mannich base condensation products may include a polymer product of a metallocene catalyzed polymerization as a substituent on the benzene group, or may be reacted with a compound containing such a polymer substituted on a succinic anhydride in a manner similar to that described in U.S. Patent No. 3,442,808 .
- Examples of functionalized and/or derivatized olefin polymers synthesized using metallocene catalyst systems are described in the publications identified supra .
- the dispersant(s) of the present invention are preferably non-polymeric (e.g., are mono- or bis-succinimides).
- One class of preferred dispersants include low-basicity dispersants, specifically nitrogen-containing dispersants in which greater than about 50 mass %, preferably greater than about 60%, more preferably greater than about 65%, most preferably greater than about 70% of the total amount of dispersant nitrogen is non-basic.
- the normally basic nitrogen of nitrogen-containing dispersants can be rendered non-basic by reacting the nitrogen-containing dispersant with a suitable, so-called "capping agent".
- nitrogen-containing dispersants have been "capped” to reduce the adverse effect such dispersants have on the fluoroelastomer engine seals. Numerous capping agents and methods are known.
- capping agents those that convert basic dispersant amino groups to non-basic moieties (e.g., amido or imido groups) are most suitable.
- the reaction of a nitrogen-containing dispersant and alkyl acetoacetate e.g., ethyl acetoacetate (EAA)
- EAA ethyl acetoacetate
- the reaction of a nitrogen-containing dispersant and formic acid is described, for example, in U.S. Patent No. 3,185,704 .
- the reaction product of a nitrogen-containing dispersant and other suitable capping agents are described in U.S. Patent Nos.
- dispersant provides the lubricating oil composition with from about 1 to about 7 mmols of hydroxyl (from the capping agent) per 100 grams of finished oil.
- the hydroxyl moieties may come from the use of a nitrogen-containing dispersant capped by reaction with certain capping agents as described above, from a non-nitrogen-containing dispersant having hydroxyl functional groups, or from a combination thereof.
- reaction of a nitrogen-containing dispersant with alkyl acetoacetates, glycolic acid and alkylene carbonates will provide the capped dispersant with hydroxyl moieties.
- alkyl acetoacetate tautomeric hydroxyl groups will be provided in equilibrium with keto groups.
- Non-nitrogen-containing dispersants providing hydroxyl moieties include the reaction products of long chain hydrocarbon-substituted mono- and polycarboxylic acids or anhydrides and mono-, bis- and/or tris-carbonyl compounds. Such materials are described, for example, in U.S. Patent Nos. 5,057,564 ; 5,274,051 ; 5,288,811 and 6,077,915 ; and copending U.S. Patent Application Serial Nos. 09/476,924 and 09/781,004 .
- Preferred are dispersant reaction products ofbis-carbonyls, such as glyoxylic acid (see U.S. Patent Nos. 5,696,060 ; 5,696,067 ; 5,777,142 ; 5,786,490 ; 5,851,966 and 5,912,213 ); and dialkyl malonates.
- the dispersant(s) of the present invention may optionally be borated.
- Such dispersants can be borated by conventional means, as generally taught in U.S. Patent Nos. 3,087,936 , 3,254,025 and 5,430,105 .
- Boration of the dispersant is readily accomplished by treating an acyl nitrogen-containing dispersant with a boron compound such as boron oxide, boron halide boron acids, and esters of boron acids, in an amount sufficient to provide from about 0.1 to about 20 atomic proportions of boron for each mole of acylated nitrogen composition.
- lubricating oil compositions of the present invention contain less than 400 ppm of boron, such as less than 300 ppm of boron, more preferably, less than 100 ppm, such as less than 70 ppm of boron.
- Dihydrocarbyl dithiophosphate metal salts are frequently used as antiwear and antioxidant agents.
- the metal may be an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel or copper.
- the zinc salts are most commonly used in lubricating oil in amounts of 0.1 to 10, preferably 0.2 to 2 mass %, based upon the total weight of the lubricating oil composition. They may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohol or a phenol with P 2 S 5 and then neutralizing the formed DDPA with a zinc compound.
- DDPA dihydrocarbyl dithiophosphoric acid
- a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
- multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
- any basic or neutral zinc compound could be used but the oxides, hydroxides and carbonates are most generally employed.
- Commercial additives frequently contain an excess of zinc due to the use of an excess of the basic zinc compound in the neutralization reaction.
- the preferred zinc dihydrocarbyl dithiophosphates are oil soluble salts of dihydrocarbyl dithiophosphoric acids and may be represented by the following formula: wherein R and R' may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms.
- the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl.
- the total number of carbon atoms (i.e. R and R') in the dithiophosphoric acid will generally be about 5 or greater.
- the zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
- the lubricating oil compositions of the present invention are capable of providing excellent performance in the presence of amounts of ZDDP providing greater amounts of phosphorus, the improved performance of the inventive lubricating oil compositions are particularly apparent in low SAPS formulations which, by definition, have phosphorous levels of no greater than about 0.08 mass % (800 ppm). Therefore, preferably, lubricating oil compositions of the present invention contain less than 800 ppm of phosphorus, such as from about 100 to 800 ppm of phosphorus, more preferably from about 300 to about 750 ppm of phosphorus, such as from about 500 to 700 ppm of phosphorus.
- the viscosity index of the base stock is increased, or improved, by incorporating therein certain polymeric materials that function as viscosity modifiers (VM) or viscosity index improvers (VII).
- polymeric materials useful as viscosity modifiers are those having number average molecular weights (Mn) of from about 5,000 to about 250,000, preferably from about 15,000 to about 200,000, more preferably from about 20,000 to about 150,000.
- viscosity modifiers can be grafted with grafting materials such as, for example, maleic anhydride, and the grafted material can be reacted with, for example, amines, amides, nitrogen-containing heterocyclic compounds or alcohol, to form multifunctional viscosity modifiers (dispersant-viscosity modifiers).
- grafting materials such as, for example, maleic anhydride
- the grafted material can be reacted with, for example, amines, amides, nitrogen-containing heterocyclic compounds or alcohol, to form multifunctional viscosity modifiers (dispersant-viscosity modifiers).
- LOFIs Pour point depressants
- PPD lube oil flow improvers
- LOFIs Pour point depressants
- VM lube oil flow improvers
- LOFIs can be grafted with grafting materials such as, for example, maleic anhydride, and the grafted material can be reacted with, for example, amines, amides, nitrogen-containing heterocyclic compounds or alcohol, to form multifunctional additives.
- Polymer molecular weight can be determined by various known techniques.
- One convenient method is gel permeation chromatography (GPC), which additionally provides molecular weight distribution information (see W. W. Yau, J. J. Kirkland and D. D. Bly, "Modern Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979).
- GPC gel permeation chromatography
- Another useful method for determining molecular weight, particularly for lower molecular weight polymers is vapor pressure osmometry (see, e.g., ASTM D3592).
- the lubricating oil compositions of the present invention further comprise a minor amount of one or more high molecular weight polymers comprising (i) copolymers of hydrogenated poly(monovinyl aromatic hydrocarbon) and poly (conjugated diene), wherein the hydrogenated poly(monovinyl aromatic hydrocarbon) segment comprises at least about 20 mass % of the copolymer; (ii) olefm copolymers containing alkyl or aryl amine, or amide groups, nitrogen-containing heterocyclic groups or ester linkages and/or (iii) acrylate or alkylacrylate copolymer derivatives having dispersing groups.
- high molecular weight polymers comprising (i) copolymers of hydrogenated poly(monovinyl aromatic hydrocarbon) and poly (conjugated diene), wherein the hydrogenated poly(monovinyl aromatic hydrocarbon) segment comprises at least about 20 mass % of the copolymer; (ii) olefm copolymers
- One class of polymers that can be used as the "high molecular polymer” of the present invention is copolymers of hydrogenated poly(monovinyl aromatic hydrocarbon) and poly (conjugated diene), wherein the hydrogenated poly(monovinyl aromatic hydrocarbon) segment comprises at least about 20 mass % of the copolymer (hereinafter "Polymer (i)").
- Polymer (i) Such polymers can be used in lubricating oil compositions as viscosity modifiers and are commercially available as, for example, SV151 (Infineum USA L.P.).
- Preferred monovinyl aromatic hydrocarbon monomers useful in the formation of such materials include styrene, alkyl-substituted styrene, alkoxy-substituted styrene, vinyl naphthalene and alkyl-substituted vinyl naphthalene.
- the alkyl and alkoxy substituents may typically comprise from 1 to 6 carbon atoms, preferably from 1 to 4 carbon atoms.
- the number of alkyl or alkoxy substituents per molecule, if present, may range from 1 to 3, and is preferably one.
- Preferred conjugated diene monomers useful in the formation of such materials include those conjugated dienes containing from 4 to 24 carbon atoms, such as 1, 3-butadiene, isoprene, piperylene, methylpentadiene, 2-phenyl-1,3-butadiene, 3,4-dimethyl-1,3-hexadiene and 4,5-diethyl-1,3-octadiene.
- Preferred block copolymers are selected from those of the formula AB, wherein A represents a block polymer of predominantly poly(monovinyl aromatic hydrocarbon), B represents a block of predominantly poly (conjugated diene).
- the poly(conjugated diene) block is partially or fully hydrogenated.
- the monovinyl aromatic hydrocarbons are styrene and/or alkyl-substituted styrene, particularly styrene.
- Preferred conjugated dienes are those containing from 4 to 12 carbon atoms, more preferably from 4 to 6 carbon atoms. Isoprene and butadiene are the most preferred conjugated diene monomers.
- the poly(isoprene) is hydrogenated.
- Block copolymers and selectively hydrogenated block copolymers are known in the art and are commercially available. Such block copolymers can be made can be made by anionic polymerization with an alkali metal initiator such as sec-butyllithium, as described, for example, in U.S. Pat. Nos. 4,764,572 ; 3,231,635 ; 3,700,633 and 5,194,530 .
- an alkali metal initiator such as sec-butyllithium
- the poly(conjugated diene) block(s) of the block copolymer may be selectively hydrogenated, typically to a degree such that the residual ethylenic unsaturation of the block is reduced to at most 20%, more preferably at most 5%, most preferably at most 2% of the unsaturation level before hydrogenation.
- the hydrogenation of these copolymers may be carried out using a variety of well established processes including hydrogenation in the presence of such catalysts as Raney Nickel, noble metals such as platinum and the like, soluble transition metal catalysts and titanium catalysts as described in U.S. Patent No. 5,299,464 .
- Sequential polymerization or reaction with divalent coupling agents can be used to form linear polymers. It is also known that a coupling agent can be formed in-situ by the polymerization of a monomer having two separately polymerizable vinyl groups such a divinylbenzene to provide star polymers having from about 6 to about 50 arms. Di- and multivalent coupling agents containing 2 to 8 functional groups, and methods of forming star polymers are well known and such materials are available commercially.
- a second class of "high molecular weight polymers” are olefin copolymers (OCP) containing dispersing groups such as alkyl or aryl amine, or amide groups, nitrogen-containing heterocyclic groups or ester linkages (hereinafter "Polymer (ii)").
- OCP olefin copolymers
- the olefin copolymers can comprise any combination of olefin monomers, but are most commonly ethylene and at least one other ⁇ -olefin.
- the at least one other ⁇ -olefin monomer is conventionally an ⁇ -olefin having 3 to 18 carbon atoms, and is most preferably propylene.
- copolymers of ethylene and higher ⁇ -olefins, such as propylene often include other polymerizable monomers.
- Typical of these other monomers are non-conjugated dienes such as the following, non-limiting examples:
- dienes containing at least one of the double bonds in a strained ring are preferred.
- the most preferred diene is 5-ethylidene-2-norbornene (ENB).
- ENB 5-ethylidene-2-norbornene
- the amount of diene (wt. basis) in the copolymer can be from 0% to about 20%, with 0% to about 15% being preferred, and 0% to about 10% being most preferred.
- the most preferred olefin copolymer is ethylene-propylene.
- the average ethylene content of the copolymer can be as low as 20% on a weight basis.
- the preferred minimum ethylene content is about 25%. A more preferred minimum is 30%.
- the maximum ethylene content can be as high as 90% on a weight bas, preferably the maximum ethylene content is 85%, most preferably about 80%.
- the olefin copolymers contain from about 35 to 75 mass % ethylene, more preferably from about 50 to about 70 mass % ethylene.
- the molecular weight (number average) of the olefin copolymer can be as low as 2000, but the preferred minimum is 10,000. The more preferred minimum is 15,000, with the most preferred minimum number average molecular weight being 20,000. It is believed that the maximum number average molecular weight can be as high as 12,000,000. The preferred maximum is about 1,000,000, with the most preferred maximum being about 750,000. An especially preferred range of number average molecular weight for the olefm copolymers of the present invention is from about 50,000 to about 500,000.
- Olefin copolymers can be rendered multifunctional by attaching a nitrogen-containing polar moiety (e.g., amine, amine-alcohol or amide) to the polymer backbone.
- a nitrogen-containing polar moiety e.g., amine, amine-alcohol or amide
- the nitrogen-containing moieties are conventionally of the formula R-N-R'R", wherein R, R' and R" are independently alkyl, aryl of H.
- aromatic amines of the formula R-R'-NH-R"-R, wherein R' and R" are aromatic groups and each are is alkyl.
- the most common method for forming a multifunctional OCP viscosity modifier involves the free radical addition of the nitrogen-containing polar moiety to the polymer backbone.
- the nitrogen-containing polar moiety can be attached to the polymer using a double bond within the polymer (i.e., the double bond of the diene portion of an EPDM polymer, or by reacting the polymer with a compound providing a bridging group containing a double bond (e.g., maleic anhydride as described, for example, in U.S. Patent Nos. 3,316,177 ; 3,326,804 ; and carboxylic acids and ketones as described, for example, in U.S. Patent No. 4,068,056 ), and subsequently derivatizing the functionalized polymer with the nitrogen-containing polar moiety.
- a double bond within the polymer i.e., the double bond of the diene portion of an EPDM polymer
- a compound providing a bridging group containing a double bond e.g., maleic anhydride as described, for example, in U.S. Patent Nos. 3,316,177 ; 3,326,804 ; and carboxylic acids and
- the third class of "high molecular weight” polymers are acrylate or alkylacrylate copolymer derivatives having dispersing groups (hereinafter "Polymer (iii)"). These polymers have been used as multifunctional dispersant viscosity modifiers in lubricating oil compositions, and lower molecular weight polymers of this type have been used as multifunctional dispersant/LOFIs. Such polymers are commercially available as, for example, ACRYLOID 954, (a product of RohMax USA Inc.)
- the acrylate or methacrylate monomers and alkyl acrylate or methacrylate monomers useful in the formation of Polymer (iii) can be prepared from the corresponding acrylic or methacrylic acids or their derivatives.
- acrylic acid can be prepared by acidic hydrolysis and dehydration of ethylene cyanohydrin or by the polymerization of ⁇ -propiolactone and the destructive distillation of the polymer to form acrylic acid.
- Methacrylic acid can be prepared by, for example, oxidizing a methyl ⁇ -alkyl vinyl ketone with metal hypochlorites; dehydrating hydroxyisobutyric acid with phosphorus pentoxide; or hydrolyzing acetone cyanohydrin.
- Alkyl acrylates or methacrylate monomers can be prepared by reacting the desired primary alcohol with the acrylic acid or methacrylic acid in a conventional esterification catalyzed by acid, preferably p-toluene sulfonic acid and inhibited from polymerization by MEHQ or hydroquinone.
- Suitable alkyl acrylates or alkyl methacrylates contain from about 1 to about 30 carbon atoms in the alkyl carbon chain.
- Typical examples of starting alcohols include methyl alcohol, ethyl alcohol, ethyl alcohol, butyl alcohol, octyl alcohol, iso-octyl alcohol, isodecyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, capryl alcohol, lauryl alcohol, myristyl alcohol, pentadecyl alcohol, palmityl alcohol and stearyl alcohol.
- the starting alcohol can be reacted with acrylic acid or methacrylic acid to form the desired acrylates and methacrylates, respectively.
- These acrylate polymers may have number average molecular weights (Mn) of 10,000 - 1,000,000 and preferably the molecular weight range is from about 200,000 - 600,000.
- the acrylate or methacrylate monomer is copolymerized with an amine-containing monomer or the acrylate or methacrylate main chain polymer is provided so as to contain sights suitable for grafting and then amine-containing branches are grafted onto the main chain by polymerizing amine-containing monomers.
- amine-containing monomers examples include the basic amino substituted olefins such as p-(2-diethylaminoethyl) styrene; basic nitrogen-containing heterocycles having a polymerizable ethylenically unsaturated substituent such as the vinyl pyridines or the vinyl pyrrolidones; esters of amino alcohols with unsaturated carboxylic acids such as dimethylaminoethyl methacrylate and polymerizable unsaturated basic amines such as allyl amine.
- Preferred Polymer (iii) materials include polymethacrylate copolymers made from a blend of alcohols with the average carbon number of the ester between 8 and 12 containing between 0.1-0.4% nitrogen by weight.
- polymethacrylate copolymers made from a blend of alcohols with the average carbon number of the ester between 9 and 10 containing between 0.2-0.25% nitrogen by weight provided in the form of N-N Dimethylaminoalkyl-methacrylate.
- Lubricating oil compositions useful in the practice of the present invention may contain Polymer (i), (ii), (iii), or a mixture thereof, in an amount of from about 0.10 to about 2 mass %, based on polymer weight; more preferably from about 0.2 to about 1 mass %, most preferably from about 0.3 to about 0.8 mass %.
- Polymers (ii) and (iii) said components are present providing nitrogen content to the lubricating oil composition from about 0.0001 to about 0.02 mass %, preferably from about 0.0002 to about 0.01 mass %, most preferably from about 0.0003 to about 0.008 mass % of nitrogen.
- a heavy duty diesel engine of the present invention may be lubricated with a lubricating oil composition wherein the high molecular weight polymer is a mixture comprising from about 10 to about 90 mass % of a hydrogenated styrene-isoprene block copolymer, and from about 10 to about 90 mass % non-functionalized OCP.
- additives may be incorporated into the compositions of the invention to enable particular performance requirements to be met.
- additives which may be included in the lubricating oil compositions of the present invention are metal rust inhibitors, viscosity index improvers (other than polymer i, iii and/or iii), corrosion inhibitors, oxidation inhibitors, friction modifiers (other than the sulfur-containing molybdenum compounds), anti-foaming agents, anti-wear agents and pour point depressants (other than polymer iii).
- Oxidation inhibitors or antioxidants reduce the tendency of mineral oils to deteriorate in service. Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
- Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
- Such oxidation inhibitors include hindered phenols, alkaline earth metal salts of alkylphenolthioesters having preferably C 5 to C 12 alkyl side chains, calcium nonylphenol sulfide, oil soluble phenates and sulfurized phenates, phosphosulfurized or sulfurized hydrocarbons or esters, phosphorous esters, metal thiocarbamates, oil soluble copper compounds as described in U.S. Patent No. 4,867,890 , and molybdenum-containing compounds.
- Aromatic amines having at least two aromatic groups attached directly to the nitrogen constitute another class of compounds that is frequently used for antioxidancy.
- Typical oil soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen contain from 6 to 16 carbon atoms.
- the amines may contain more than two aromatic groups.
- Compounds having a total of at least three aromatic groups in which two aromatic groups are linked by a covalent bond or by an atom or group (e.g., an oxygen or sulfur atom, or a -CO-, - SO 2 - or alkylene group) and two are directly attached to one amine nitrogen also considered aromatic amines having at least two aromatic groups attached directly to the nitrogen.
- the aromatic rings are typically substituted by one or more substituents selected from alkyl, cycloalkyl, alkoxy, aryloxy, acyl, acylamino, hydroxy, and nitro groups.
- the amount of any such oil soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen should preferably not exceed 0.4 mass % active ingredient.
- Lubricating oil compositions in accordance with the present invention may contain at least one phenolic antioxidant, aminic antioxidant, or a combination thereof.
- lubricating oil compositions in accordance with the present invention contain from about 0.05 to about 5 mass %, preferably from about 0.10 to about 3 mass %, most preferably from about 0.20 to about 2.5 mass % of phenolic antioxidant, aminic antioxidant, or a combination thereof, based on the total weight of the lubricating oil composition.
- Friction modifiers and fuel economy agents that are compatible with the other ingredients of the fmal oil may also be included.
- examples of such materials include glyceryl monoesters of higher fatty acids, for example, glyceryl mono-oleate; esters of long chain polycarboxylic acids with diols, for example, the butane diol ester of a dimerized unsaturated fatty acid; oxazoline compounds; and alkoxylated alkyl-substituted mono-amines, diamines and alkyl ether amines, for example, ethoxylated tallow amine and ethoxylated tallow ether amine.
- a preferred lubricating oil composition contains a dispersant composition of the present invention, base oil, and a nitrogen-containing friction modifier.
- a viscosity index improver-dispersant functions both as a viscosity index improver and as a dispersant.
- examples of viscosity index improver dispersants include reaction products of amines, for example polyamines, with a hydrocarbyl-substituted mono -or dicarboxylic acid in which the hydrocarbyl substituent comprises a chain of sufficient length to impart viscosity index improving properties to the compounds.
- the viscosity index improver dispersant may be, for example, a polymer of a C 4 to C 24 unsaturated ester of vinyl alcohol or a C 3 to C 10 unsaturated mono-carboxylic acid or a C 4 to C 10 di-carboxylic acid with an unsaturated nitrogen-containing monomer having 4 to 20 carbon atoms; a polymer of a C 2 to C 20 olefin with an unsaturated C 3 to C 10 mono- or di-carboxylic acid neutralised with an amine, hydroxyamine or an alcohol; or a polymer of ethylene with a C 3 to C 20 olefin further reacted either by grafting a C 4 to C 20 unsaturated nitrogen-containing monomer thereon or by grafting an unsaturated acid onto the polymer backbone and then reacting carboxylic acid groups of the grafted acid with an amine, hydroxy amine or alcohol.
- a preferred lubricating oil composition contains a dispersant composition of the present invention, base oil
- Pour point depressants otherwise known as lube oil flow improvers (LOFI)
- LOFI lube oil flow improvers
- Such additives are well known.
- typical additives that improve the low temperature fluidity of the fluid are C 8 to C 18 dialkyl fumarate/vinyl acetate copolymers, and polymethacrylates.
- Foam control can be provided by an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
- additives can provide a multiplicity of effects; thus for example, a single additive may act as a dispersant-oxidation inhibitor. This approach is well known and need not be further elaborated herein.
- additives which maintains the stability of the viscosity of the blend may be necessary to include an additive which maintains the stability of the viscosity of the blend.
- polar group-containing additives achieve a suitably low viscosity in the pre-blending stage it has been observed that some compositions increase in viscosity when stored for prolonged periods.
- Additives which are effective in controlling this viscosity increase include the long chain hydrocarbons functionalized by reaction with mono- or dicarboxylic acids or anhydrides which are used in the preparation of the ashless dispersants as hereinbefore disclosed.
- the lubricating oil compositions of the present invention contain an effective amount of a long chain hydrocarbons functionalized by reaction with mono- or dicarboxylic acids or anhydrides.
- each additive is typically blended into the base oil in an amount that enables the additive to provide its desired function.
- Representative effective amounts of such additives, when used in crankcase lubricants, are listed below. All the values listed are stated as mass percent active ingredient.
- Fully formulated low SAPS lubricating oil compositions of the present invention preferably have a sulfur content of less than about 0.3 mass %, such as less than about 0.25 mass % (e.g., less than 0.24 mass %), more preferably less than about 0.20 mass %, most preferably less than about 0.15 mass % of sulfur; a phosphorus content of less than 800 ppm; such as 300 to 800 ppm, more preferably 500 to 750 ppm, and a sulfated ash content of less than 1.05 mass %, preferably less than 0.8 mass %.
- the Noack volatility of the fully formulated lubricating oil composition (oil of lubricating viscosity plus all additives) will be no greater than 12 mass %, such as no greater than 10 mass %, preferably no greater than 8 mass %.
- additive concentrates comprising additives (concentrates sometimes being referred to as additive packages) whereby several additives can be added simultaneously to the oil to form the lubricating oil composition.
- the final composition may employ from 5 to 25 mass %, preferably 5 to 22 mass %, typically 10 to 20 mass % of the concentrate, the remainder being oil of lubricating viscosity.
- Example 1 represents a standard "conventional SAPS", lubricating oil composition containing an all calcium salicylate detergent system and no sulfur-containing molybdenum compound.
- Examples 2 and 3 represent corresponding low SAPS formulations, again containing an all calcium salicylate detergent system and no sulfur-containing molybdenum compound.
- Examples 4 and 5 correspond to Examples 2 and 3, but substitute a minor amount of magnesium sulfonate detergent for a portion of the calcium salicylate detergent and incorporate a molybdenum dithiocarbamate (MoDTC) compound.
- Example 6 (comparative) is similar to Example 2 but contained a molybdenum dithiocarbamate component.
- Each of the exemplified lubricants was formulated in a Group III basestock and contained, as "other additives", a combination of a low molecular weight borated dispersant, a high molecular weight non-borated dispersant, antioxidant, corrosion inhibitor, viscosity modifier and lubricating oil flow improver (LOFI).
- Each of the exemplified lubricants represents a multigrade 10 W 40 heavy duty diesel (HDD) crankcase lubricant.
- “Det. A” was an overbased 168 BN calcium salicylate detergent.
- Det B was a neutral 64 BN calcium salicylate detergent.
- “Det. C” was a highly overbased 400 BN magnesium sulfonate detergent.
- compositions described as "comprising" a plurality of defined components are to be construed as including compositions formed by admixing the defined plurality of defined components.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Claims (12)
- Composition d'huile lubrifiante ayant une teneur maximale en cendres sulfatées de 1,0 % en masse et contenant 300 à moins de 800 ppm de phosphore, ladite composition d'huile lubrifiante comprenant:(a) une quantité dominante d'une huile de viscosité propre à la lubrification ;(b) une petite quantité d'un détergent du type salicylate de calcium ;(c) une quantité d'un détergent du type composé de magnésium surbasique fournissant à la composition d'huile lubrifiante au moins 200 ppm de magnésium ;(d) une quantité d'un composé de molybdène contenant du soufre, soluble dans l'huile, fournissant à la composition d'huile lubrifiante au moins 20 ppm de molybdène ; et(e) au moins un dispersant azoté, le dispersant azoté fournissant à la composition d'huile lubrifiante au moins 0,09 % en masse d'azote ; et(f) un dihydrocarbyldithiophosphate de zinc.
- Composition d'huile lubrifiante suivant la revendication 1, dans laquelle le détergent du type salicylate de calcium est une association d'au moins un détergent du type salicylate de calcium surbasique ayant un indice de basicité total (TBN) d'au moins 100 et d'au moins un détergent du type salicylate de calcium neutre ayant un TBN inférieur à 100.
- Composition d'huile lubrifiante suivant la revendication 1 ou la revendication 2, dans laquelle ladite petite quantité de détergent du type salicylate de calcium fournit à ladite composition d'huile lubrifiante au moins 0,10, avantageusement au moins 0,15 et plus avantageusement au moins 0,16 % en masse de calcium, la quantité étant mesurée par la teneur en cendres sulfatées.
- Composition d'huile lubrifiante suivant la revendication 1, 2 ou 3, dans laquelle ladite petite quantité de détergent du type salicylate de calcium fournit à ladite composition d'huile lubrifiante moins de 0,20 % en masse, plus avantageusement moins de 0,18 % en masse, de calcium, la quantité étant mesurée par la teneur en cendres sulfatées.
- Composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes, dans laquelle ladite quantité de détergent du type composé de magnésium surbasique fournit à ladite composition d'huile lubrifiante 200 à 1250 ppm, plus avantageusement 500 à 750 ppm, de magnésium.
- Composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes, dans laquelle ledit composé de molybdène contenant du soufre est choisi dans le groupe consistant en des dithiocarbamates, dithiophosphates, dithiophosphinates, xanthates, thioxanthates, sulfures de molybdène et leurs mélanges, solubles dans l'huile, avantageusement des dithiocarbamates, dialkyldithiophosphates, alkylxanthates et alkylthioxanthates de molybdène et leurs mélanges, de préférence des dithiocarbamates de molybdène dimères et trimères et leurs mélanges.
- Composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes, dans laquelle ledit composé de molybdène contenant du soufre introduit dans la composition d'huile lubrifiante 20 à 500 ppm, avantageusement 40 à 200 ppm, plus avantageusement 50 à 100 ppm de molybdène.
- Composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes, dans laquelle ledit au moins un dispersant azoté est un dispersant azoté ou une pluralité de dispersants azotés présents en une quantité fournissant à la composition d'huile lubrifiante 0,09 à 0,19 % en masse, avantageusement 0,09 à 0,18 % en masse, plus avantageusement 0,10 à 0,17 % en masse d'azote au total.
- Composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes, ayant une teneur en soufre non supérieure à 0,3 % en masse.
- Procédé pour faire fonctionner un moteur à allumage par compression muni d'un système de recirculation des gaz d'échappement, procédé qui comprend la lubrification dudit moteur avec une composition d'huile lubrifiante suivant l'une quelconque des revendications précédentes.
- Procédé suivant la revendication 10, dans lequel ledit moteur est un moteur diesel pour services extrêmes, muni d'un système de recirculation des gaz d'échappement.
- Utilisation d'une composition d'huile lubrifiante suivant l'une quelconque des revendications 1 à 9, dans un moteur à allumage par compression pour passer avec le succès le test Mack T10 de perte de poids de segment supérieur de piston.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05110265A EP1661970B1 (fr) | 2004-11-30 | 2005-11-02 | Compositions d'huiles lubrifiantes |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04257416 | 2004-11-30 | ||
EP05110265A EP1661970B1 (fr) | 2004-11-30 | 2005-11-02 | Compositions d'huiles lubrifiantes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1661970A1 EP1661970A1 (fr) | 2006-05-31 |
EP1661970B1 true EP1661970B1 (fr) | 2012-04-04 |
Family
ID=36204580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05110265A Active EP1661970B1 (fr) | 2004-11-30 | 2005-11-02 | Compositions d'huiles lubrifiantes |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1661970B1 (fr) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070142239A1 (en) * | 2005-12-20 | 2007-06-21 | Chevron Oronite Company Llc | Lubricating oil composition |
US8513169B2 (en) | 2006-07-18 | 2013-08-20 | Infineum International Limited | Lubricating oil compositions |
EP1884557B1 (fr) * | 2006-07-20 | 2021-03-31 | Infineum International Limited | Composition d'huile lubrifiante |
US8586516B2 (en) * | 2007-01-19 | 2013-11-19 | Afton Chemical Corporation | High TBN / low phosphorus economic STUO lubricants |
US20100152073A1 (en) | 2008-12-17 | 2010-06-17 | Chevron Oronite Company Llc | Lubricating oil compositions |
US20100152074A1 (en) | 2008-12-17 | 2010-06-17 | Chevron Oronite Company Llc | Lubricating oil compositions |
US20100152072A1 (en) | 2008-12-17 | 2010-06-17 | Chevron Oronite Company Llc | Lubricating oil compositions |
CA3083250A1 (fr) * | 2017-11-28 | 2019-06-06 | The Lubrizol Corporation | Compositions lubrifiantes pour moteurs a haut rendement |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000290677A (ja) * | 1999-04-08 | 2000-10-17 | Tonen Corp | ディーゼルエンジン用潤滑油組成物 |
US6569818B2 (en) * | 2000-06-02 | 2003-05-27 | Chevron Oronite Company, Llc | Lubricating oil composition |
EP1310549B1 (fr) * | 2001-11-09 | 2006-05-31 | Infineum International Limited | Composition d'huile lubrifiante contenant du bore et une faible concentration de soufre et de phosphore |
US7285516B2 (en) * | 2002-11-25 | 2007-10-23 | The Lubrizol Corporation | Additive formulation for lubricating oils |
US20050043191A1 (en) * | 2003-08-22 | 2005-02-24 | Farng L. Oscar | High performance non-zinc, zero phosphorus engine oils for internal combustion engines |
-
2005
- 2005-11-02 EP EP05110265A patent/EP1661970B1/fr active Active
Also Published As
Publication number | Publication date |
---|---|
EP1661970A1 (fr) | 2006-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7906469B2 (en) | Lubricating oil compositions | |
US8709988B2 (en) | Lubricating oil compositions | |
US6869919B2 (en) | Lubricating oil compositions | |
US6715473B2 (en) | EGR equipped diesel engines and lubricating oil compositions | |
CA2446238C (fr) | Compositions d'huile lubrifiante a faible teneur en phosphore | |
US8513169B2 (en) | Lubricating oil compositions | |
EP1538193B1 (fr) | Compositions d'huiles lubrifiantes | |
CA2436817C (fr) | Detergents modifies et compositions d'huiles lubrifiantes les contenant | |
EP1661970B1 (fr) | Compositions d'huiles lubrifiantes | |
EP1661969B1 (fr) | Compositions d'huiles lubrifiantes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051102 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17Q | First examination report despatched |
Effective date: 20060808 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602005033474 Country of ref document: DE Representative=s name: UEXKUELL & STOLBERG PARTNERSCHAFT VON PATENT- , DE Ref country code: DE Ref legal event code: R082 Ref document number: 602005033474 Country of ref document: DE Representative=s name: UEXKUELL & STOLBERG, DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 552327 Country of ref document: AT Kind code of ref document: T Effective date: 20120415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2380938 Country of ref document: ES Kind code of ref document: T3 Effective date: 20120521 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602005033474 Country of ref document: DE Effective date: 20120531 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 552327 Country of ref document: AT Kind code of ref document: T Effective date: 20120404 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20120404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120804 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120705 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130107 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602005033474 Country of ref document: DE Effective date: 20130107 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120704 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120404 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051102 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20191030 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20191029 Year of fee payment: 15 Ref country code: ES Payment date: 20191202 Year of fee payment: 15 Ref country code: BE Payment date: 20191021 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20201201 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231013 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231113 Year of fee payment: 19 Ref country code: DE Payment date: 20231010 Year of fee payment: 19 |