[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1658423A1 - Brennkraftmaschine mit einer motorbremseinrichtung - Google Patents

Brennkraftmaschine mit einer motorbremseinrichtung

Info

Publication number
EP1658423A1
EP1658423A1 EP04741405A EP04741405A EP1658423A1 EP 1658423 A1 EP1658423 A1 EP 1658423A1 EP 04741405 A EP04741405 A EP 04741405A EP 04741405 A EP04741405 A EP 04741405A EP 1658423 A1 EP1658423 A1 EP 1658423A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
internal combustion
combustion engine
exhaust
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04741405A
Other languages
English (en)
French (fr)
Inventor
Rainer Albat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1658423A1 publication Critical patent/EP1658423A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/005Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/04Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation using engine as brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/06Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/06Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for braking
    • F01L13/065Compression release engine retarders of the "Jacobs Manufacturing" type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86863Rotary valve unit
    • Y10T137/86871Plug

Definitions

  • the invention relates to an internal combustion engine with an engine brake device according to the preamble of claim 1.
  • the internal combustion engine has an exhaust gas turbocharger, the exhaust gas turbine of which is provided in an exhaust tract and the compressor of which is provided in an intake tract of the internal combustion engine. Downstream of the exhaust gas turbine there is a utility turbine driven by the exhaust gas of the internal combustion engine and coupled to the internal combustion engine via a transmission.
  • a bypass device is provided in an exhaust gas line downstream of the utility turbine, which allows a bypass line to be opened or closed around the utility turbine.
  • the bypass device is designed as a variable switching valve in the form of a flap valve.
  • the exhaust gas from the internal combustion engine drives the exhaust gas turbine, which drives the compressor via a common shaft.
  • the compressor sucks in air and conveys the compressed air into the intake tract of the internal combustion engine.
  • the exhaust gas from the internal combustion engine first flows into the exhaust gas turbine of the exhaust gas turbocharger and then further into the utility turbine, which feeds the remaining energy in the exhaust gas back to the internal combustion engine via the transmission.
  • fuel injection is deactivated and the compression brake is activated.
  • the compression brake opens at least one exhaust valve provided on the cylinder head for a short period of time.
  • the compressed air in the combustion chamber then escapes into the exhaust tract when the exhaust valve is open.
  • the internal combustion engine only performs compression work and thereby generates braking power.
  • the compression work depends on the degree of filling of the cylinders.
  • the exhaust gas back pressure after the exhaust gas turbine must be low.
  • the utility turbine downstream of the exhaust gas turbine represents a throttle that increases the exhaust gas back pressure.
  • the utility turbine driven by the exhaust gas drives the internal combustion engine.
  • the bypass device opens in order to reduce the exhaust gas back pressure and not drive the power turbine.
  • the exhaust gas flows into the bypass line past the utility turbine.
  • the braking power generated by a clocked compression brake shows a flat, approximately linear course over the speed. This means that the braking power is low at low to medium speeds.
  • the object of the invention is to provide an internal combustion engine of the type mentioned at the beginning, the braking power of which is significantly increased at low and medium engine speeds.
  • the braking power increases, even at medium to high engine speeds.
  • the internal combustion engine according to the invention is characterized by the bypass device, which is designed in the form of a combined switching and throttle valve, so that the exhaust line can be closed completely and the bypass line completely or partially.
  • An exhaust gas turbocharger and a power turbine are provided on the internal combustion engine with an engine brake device in the form of a compression brake.
  • the exhaust gas turbocharger has an exhaust gas turbine which has an exhaust tract and a compressor which is assigned to an intake tract.
  • the utility turbine is downstream of the exhaust gas turbine arranged and coupled via a gearbox to the internal combustion engine.
  • the exhaust gas turbine and the power turbine are connected to one another via a connecting line.
  • a bypass line branches off from the connecting line.
  • the bypass device is provided in the bypass line around the utility turbine.
  • the bypass device controls the amount of bypassed exhaust gas around the utility turbine.
  • the bypass device opens or closes the exhaust line, which leads from the utility turbine to the bypass device.
  • the bypass device is designed such that when the exhaust line and the bypass line are completely closed by the bypass device, they can be closed gas-tight.
  • the exhaust line and the bypass line are completely closed by the bypass device, they can be closed gas-tight.
  • the bypass device is designed in the form of a rotary slide valve.
  • the advantage of using a rotary valve as a bypass device lies in the low actuation forces even at high exhaust gas pressures.
  • the rotary slide valve has a housing with a tubular channel inserted therein, in which a freely rotatable rotor is mounted, which is designed with a cross section in the form of a circular section.
  • the housing has an opening the exhaust line, an opening to the bypass line and an opening to an exhaust line through which the exhaust gas can flow into the atmosphere or an exhaust system.
  • the channel allows the exhaust line and the bypass line to communicate with the exhaust line or to establish a connection.
  • the circular cross-section of the rotor is selected so that the rotor can either completely close the exhaust line and the bypass channel or only the exhaust line or the exhaust line and partially close the bypass line.
  • the circular section-shaped cross section of the rotor has a circular section angle of 120 ° to 140 °.
  • the compression brake opens in the engine brake mode and the bypass device closes the exhaust line and the bypass line in the engine brake mode at low to medium engine speeds.
  • the compression brake is preferably designed in the form of a known constant throttle.
  • the constant throttle egg is designed as an additional throttle valve in the cylinder head, which can be opened continuously during engine braking.
  • the throttle valve opens or closes a bypass around an exhaust valve of a cylinder of the internal combustion engine, so that compressed air gets into the exhaust tract.
  • the constant throttle opens and releases at least part of the compression work.
  • the bypass device closes the exhaust line and the bypass line in engine braking mode. This also increases the pumping power of the internal combustion engine.
  • the advantage of using a constant throttle with the bypass device as a dust brake is the increased braking power at low to medium engine speeds. There is also no need for a brake flap in the exhaust system.
  • the compression brake opens in the engine brake mode and the exhaust gas turbine, which has a variable turbine geometry, which changes the flow of the exhaust gas onto a turbine wheel in the engine brake mode so that an increase in the speed of the exhaust gas turbine in the engine brake mode at medium to high engine speeds takes place
  • the bypass device closes the exhaust line and opens the bypass line completely.
  • the variable turbine geometry is designed as a known guide vane, in particular as a radial guide vane with adjustable or fixed guide vanes.
  • the radial guide grid reduces an effective turbine cross-section when the engine is braking, so that the exhaust gas speed increases. This increases the speed of the exhaust gas turbine.
  • Increasing the speed of the exhaust gas turbine also increases the speed of a compressor, which increases the boost pressure.
  • the bypass device closes the exhaust line and opens the bypass line in engine braking mode.
  • the exhaust gas flows through the bypass line past the utility turbine. This reduces the exhaust gas back pressure after the exhaust gas turbine.
  • the speed of the exhaust gas turbine increases due to the increased pressure difference. This advantageously leads to an additional boost pressure increase and thus to an increased braking power.
  • the power turbine contributes to the braking power, since the internal combustion engine drives the power turbine and the power turbine does not deliver energy from the exhaust gas to the internal combustion engine.
  • the compression brake opens in the engine brake mode and the exhaust gas turbine, which has a variable turbine geometry, which changes the flow of the exhaust gas onto a turbine wheel in the engine brake mode so that an increase in the speed of the internal combustion engine increases at high to very high engine speeds Exhaust gas turbine takes place, the bypass device closing the exhaust line and partially closing the bypass line.
  • the exhaust gas turbocharger is optimally designed for the combustion operation of the internal combustion engine. Critical exhaust gas turbocharger speeds can therefore be exceeded in engine braking operation, in particular if an exhaust gas turbine of an exhaust gas turbocharger has a variable turbine geometry. In engine braking mode, the variable turbine geometry serves to increase the speed of the exhaust gas turbocharger.
  • the exhaust gas back pressure increases after the exhaust gas turbine, which leads to a reduction in the pressure difference at the exhaust gas turbine and to a reduction in the speed of the exhaust gas turbocharger.
  • the advantage lies in the omission of a speed-regulating measure on the exhaust gas turbocharger, for example a waste gate valve.
  • the exhaust valves of the internal combustion engine in engine braking operation, can be opened briefly by pressure peaks in the exhaust gas in the exhaust tract, as a result of which exhaust gas from the exhaust tract enters the cylinders of the internal combustion engine. It is possible to open the exhaust valves briefly, especially at low cylinder pressures. This leads, particularly at the end of the first work cycle (intake) or at the start of the second work cycle (compression), to a recharging effect in which exhaust gas from the exhaust system travels into the cylinders of the internal combustion engine. The leads advantageously Reloading effect to an increased cylinder charge and thus increased engine braking power.
  • FIG. 1 shows a schematically simplified illustration of an internal combustion engine which is equipped with an engine brake device, an exhaust gas turbocharger and a utility turbine,
  • FIG. 2 shows a schematically simplified illustration of the rotary slide valve according to the invention with an open exhaust gas line and a closed bypass line
  • FIG. 3 shows a schematically simplified illustration of the rotary slide valve according to the invention with closed exhaust pipe and closed bypass pipe
  • FIG. 4 shows a schematically simplified illustration of the rotary slide valve according to the invention with the exhaust pipe closed and the bypass pipe open and
  • FIG. 5 shows a schematically simplified representation of the rotary slide valve according to the invention with the exhaust gas line closed and with the bypass line partially open.
  • the engine brake device 2 is preferably designed as a constant throttle in the form of a known compression brake.
  • the exhaust gas turbocharger 3 has an exhaust gas turbine 5 and a compressor 6, which are connected to one another via a common shaft 7.
  • the exhaust gas turbine 5 is assigned to an exhaust tract 8 and the compressor 6 is assigned to an intake tract 9 of the internal combustion engine 1.
  • a charge air cooler (not shown in detail) can be introduced in the intake tract 9.
  • the utility turbine 4 is provided downstream of the exhaust gas turbine 5 and is coupled to the internal combustion engine 1 via a transmission 10.
  • the exhaust gas turbine 5 is equipped with a variable turbine geometry 11.
  • the variable turbine geometry 11 is designed as a radial guide vane with adjustable or fixed guide vanes. With the help of the radial guide vane 11, the exhaust gas flow in front of a turbine wheel on the blades of the turbine wheel of the exhaust gas turbine 5 can be changed.
  • the radial guide grill 11 can be actuated electrically, pneumatically or hydraulically by an actuating device, not shown in more detail, which engages the radial guide grill 10 and is located outside a housing of the exhaust gas turbine 5.
  • the actuation device is controlled by means of an electronic engine control unit 12, which is connected to the actuation device via a first control line 13.
  • the exhaust gas turbine 5 and the power turbine 4 are connected to one another via a connecting line 14.
  • a bypass line 15 branches off from the connecting line 14.
  • a bypass device 16 is provided in the bypass line 15 around the utility turbine 4.
  • the bypass device 16 controls the amount of bypassed exhaust gas around the power turbine 4.
  • the bypass device 16 opens or closes an exhaust line 17 which leads from the power turbine 4 to the bypass device 16.
  • the bypass device 16 is controlled by means of the engine control unit 12 via a second control line 18.
  • the engine control unit 12 controls the constant throttle 2 via a third control line 19.
  • the exhaust gases flow via the Bypass device 16 further into an exhaust pipe 20 into the atmosphere or a further exhaust system, not shown.
  • the bypass device 16 is designed in the form of a rotary slide valve or roller control valve with a housing 21.
  • the housing 21 has a tubular channel inserted therein
  • the housing 21 has an opening 24 to the bypass line 15, an opening 25 to the exhaust line 17 and an opening 26 to the exhaust line 20.
  • the rotor 23 in the channel 22 allows either the bypass line 15 or the exhaust line 17 to communicate with the exhaust line 20 via the channel 22 or to establish a connection.
  • the rotor 23 is designed such that, in a position according to FIG. 3, both the bypass line 15 and the exhaust line 17 are closed together by covering the openings 24 and 25 by means of the rotor 23. 2, the bypass line 15 is closed and the exhaust line 17 is completely open. In a position according to FIG. 4, the bypass line 15 is completely open and the exhaust line 17 is closed. 5, the bypass line 15 is partially open and the exhaust line 17 is closed.
  • the rotor 23 is preferably designed as a rod element with a circular cross-sectional cross section, which has a circular cutting angle of 120 ° to 140 °. It is also conceivable to have a rotor 23 which has two cross-sectional cross-sections which are arranged one above the other in the longitudinal direction of a rotor axis of rotation.
  • the two circular section-shaped cross sections can have different circular section angles and, depending on the position of the openings 23, 24 or 25 in the housing 21 to be closed, opened or partially opened, are at any angle to one another.
  • the rotary slide valve 16 is designed such that the rotor 23 when one of the openings 24 and 25 is completely covered, seals them gas-tight.
  • the actuator 23 can be rotated electrically, pneumatically or hydraulically by an actuating device, not shown, which engages the rotor 23 and lies outside the rotary slide valve 16.
  • An electric servomotor is preferably provided for this.
  • the advantage of using a rotary slide valve 16 is its gas tightness when the rotor 23 is completely covered with the openings 24 and 25 to the lines 15 and 17 and the low actuation forces even at high exhaust gas pressures.
  • the internal combustion engine 1 sucks in the air pre-compressed by the compressor 6 from the intake tract 9.
  • the pre-compressed air is compressed further and the compressed air is mixed with fuel (diesel) or an already existing fuel-air mixture is compressed (Otto).
  • the exhaust gas resulting from the combustion of the fuel-air mixture flows through the exhaust gas turbine 5 without its flow being influenced by the radial guide vane 11.
  • the exhaust gas turbine 5 drives the compressor 6 by means of a common shaft 7.
  • the rotor 23 of the rotary slide valve 16 closes the bypass line 15 and opens the exhaust gas line 17, so that the exhaust gas flows completely through the power turbine 4.
  • the power turbine 4 can absorb the remaining energy of the exhaust gas and then supply it to the internal combustion engine 1 by means of the transmission 10.
  • the internal combustion engine 1 draws in pre-compressed air from the intake tract 8.
  • the internal combustion engine 1 compresses the air and, on the other hand, does not mix the compressed air with fuel, so that no combustion can take place.
  • the engine control unit 12 opens the constant throttle 2 in the respective cylinders via the control line 19 in order to to let compressed air escape from the internal combustion engine 1 into the exhaust tract 8.
  • the constant throttle valve 2 is designed as an additional throttle valve in the cylinder head, which can be opened continuously during engine braking.
  • the throttle valve opens or closes a bypass around an exhaust valve of a cylinder of the internal combustion engine 1, so that compressed air enters the exhaust tract 8.
  • the braking power of the internal combustion engine 1 arises from the power which the internal combustion engine 1 applies in order to compress the intake air, but does not get it back by decompression of the compressed air.
  • the engine control unit 12 additionally controls the rotary slide valve 16 and the radial guide vane 11 as a function of the speed of the internal combustion engine 1.
  • the constant throttle valve 2 interacts with the rotary slide valve 16 in such a way that the constant throttle valve 2 is opened and the rotor 23 closes the bypass line 15 and the exhaust gas line 17 equally gas-tight (FIG. 3).
  • This increases the pumping power or engine braking power of the internal combustion engine 1, since the pistons have to perform a higher push-out work in the fourth work cycle (extension cycle) due to the higher exhaust gas back pressure in the exhaust system 8.
  • the constant throttle valve 2 interacts with the radial guide vane 11 and the rotary slide valve 16 such that the constant throttle 2 is open and the radial guide vane 11 changes an effective turbine cross section such that the speed of the exhaust gas turbine 5 increases.
  • This increases the boost pressure and thus the filling of the cylinders and ultimately the compression work in engine braking.
  • the rotor 23 closes the exhaust pipe 17 and opens the Bypass line 15 completely (FIG. 4) or only partially (FIG. 5), the bypass line 15 and the exhaust line 20 being connected to one another via the channel 22 of the rotary slide valve 16.
  • the exhaust gas flows through the bypass line 15 past the utility turbine 4.
  • the exhaust gas counterpressure after the exhaust gas turbine 5 drops and the increased pressure difference at the exhaust gas turbine 5 increases the speed of the exhaust gas turbine 5.
  • this leads to an additional boost pressure increase and thus to an increase in the engine braking power.
  • the exhaust back pressure after the exhaust gas turbine 5 can be increased by partially closing the bypass line 15 by means of the rotary slide valve 16, which leads to a reduction in the pressure difference at the exhaust gas turbine 5 and leads to a decrease in the speed of the exhaust gas turbocharger 3.
  • a characteristic curve for controlling the constant throttle 2, the radial guide vane 11 and the rotary slide valve 16 is stored in the engine control unit 12.
  • the characteristic curve was previously determined in test bench tests depending on the exhaust gas temperature of the internal combustion engine 1 and the speed of the exhaust gas turbocharger 3.
  • the transition point is determined at a medium speed at which the constant throttle 2 interacts with the rotary slide valve 16 or with the radial guide vane 11 and the rotary slide valve 16.
  • the transition point at a medium speed depends on a maximum permissible exhaust gas temperature and / or indicated work in engine braking mode from the high and low

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Es wird eine Brennkraftmaschine (1) mit einer Motorbremseinrichtung, insbesondere in Form einer Konstantdrossel, mit einem Abgasturbolader (3), mit einer variablen Turbinengeometrie (11), sowie einer Nutzturbine (4), vorgeschlagen, bei der die Abgasturbine (5) einem Abgastrakt (8) und der Verdichter (6) einem Ansaugtrakt (9) der Brennkraftmaschine (1) zugeordnet ist. Die Nutzturbine (4) ist der Abgasturbine (5) des Abgasturboladers (3) nachgeschaltet und wird mit dem Abgas der Brennkraftmaschine (1) angetriebenen. Die Nutzturbine (4) ist mit der Brennkraftmaschine (1) vorzugsweise über ein Getriebe (10) gekoppelt. In einer Bypassleitung (15) um die Nutzturbine (4) herum ist eine Bypasseinrichtung (16) vorgesehen, wobei die Bypasseinrichtung (16) über eine Abgasleitung (14) mit der 15 Nutzturbine (4) verbunden ist. Die erfindungsgemäße Bypasseinrichtung (16) in Form eines Drehschieberventils ist für luftverdichtende oder gemischverdichtende Brennkraftmaschinen mit einer Motorbremseinrichtung vorgesehen.

Description

Brennkraftmaschine mit einer Motorbremseinrichtung
Die Erfindung betrifft eine Brennkraftmaschine mit einer Motorbremseinrichtung nach dem Oberbegriff des Anspruchs 1.
Aus der Patentschrift EP 0 477 579 Bl ist eine gattungsgemäße Brennkraftmaschine mit einer Motorbremseinrichtung in Form einer Kompressionsbremse bekannt . Die Brennkraftmaschine weist einen Abgasturbolader auf, dessen Abgasturbine in einem Abgastrakt und dessen Verdichter in einem Ansaugtrakt der Brennkraftmaschine vorgesehen sind. Stromab der Abgasturbine ist eine vom Abgas der Brennkraftmaschine angetriebene und mit der Brennkraftmaschine über ein Getriebe gekoppelte Nutzturbine vorgesehen. In einer Abgasleitung stromab der Nutzturbine ist eine Bypasseinrichtung vorgesehen, die es erlaubt, eine Bypassleitung um die Nutzturbine herum zu öffnen oder zu schließen. Die Bypasseinrichtung ist als variables Schaltventil in Form eines Klappenventils ausgeführt . Das Abgas der Brennkraftmaschine treibt die Abgasturbine an, die über eine gemeinsame Welle den Verdichter antreibt. Der Verdichter saugt Luft an und befördert die verdichtete Luft in den Ansaugtrakt der Brennkraftmaschine . Das Abgas der Brennkraf maschine strömt zunächst in die Abgasturbine des Abgasturboladers und dann weiter in die Nutzturbine, die die restliche Energie im Abgas über das Getriebe an die Brennkraftmaschine wieder zuführt . Im Motorbremsbetrieb ist die Kraftstoffeinspritzung deaktiviert und die Kompressionsbremse aktiviert. Die Kompressionsbremse öffnet am Ende eines Verdichtungstaktes mindestens ein am Zylinderkopf vorgesehenes Auslassventil für einen kurzen Zeitraum. Die komprimierte Luft im Brennraum entweicht bei offenem Auslassventil dann in den Abgastrakt . Die Brennkraftmaschine leistet nur Kompressionsarbeit und erzeugt dadurch eine Bremsleistung. Die Kompressionsarbeit ist abhängig vom Füllungsgrad der Zylinder. Um einen hohen Füllungsgrad zu erreichen, muss der Abgasgegendruck nach der Abgasturbine gering sein. Die Nutzturbine stromab der Abgasturbine stellt eine Drossel dar, die den Abgasgegendruck erhöht . Außerdem treibt die vom Abgas angetriebene Nutzturbine die Brennkraftmaschine an. Um den Abgasgegendruck zu senken und die Nutzturbine nicht anzutreiben, öffnet die Bypasseinrichtung. Das Abgas strömt in die Bypassleitung an der Nutzturbine vorbei. Die von einer getakteten Kompressionsbremse erzeugte Bremsleistung zeigt über der Drehzahl einen flachen, etwa linearen Verlauf. Dies bedeutet, dass bei niedrigen bis mittleren Drehzahlen die Bremsleistung gering ist .
Aufgabe der Erfindung ist es demgegenüber, eine Brennkraftmaschine der eingangs genannten Art zur Verfügung zu stellen, deren Bremsleistung bei niedrigen und mittleren Drehzahlen der Brennkraftmaschine deutlich erhöht ist. Vorteilhafterweise ergibt sich ein ansteigender Verlauf der Bremsleistung auch bei mittleren bis hohen Drehzahlen der Brennkraftmaschine .
Diese Aufgabe wird durch eine Brennkraftmaschine mit den Merkmalen des Anspruchs 1 gelöst .
Die erfindungsgemäße Brennkraftmaschine ist gekennzeichnet durch die Bypasseinrichtung, die in Form eines kombinierten Schalt- und Drosselventils ausgeführt ist, so dass die Abgasleitung vollständig und die Bypassleitung vollständig oder teilweise schließbar ist. An der Brennkraftmaschine mit einer Motorbremseinrichtung in Form einer Kompressionsbremse sind ein Abgasturbolader und eine Nutzturbine vorgesehen. Der Abgasturbolader weist eine Abgasturbine auf, die einen Abgastrakt und einen Verdichter, der einen Ansaugtrakt zugeordnet sind. Die Nutzturbine ist stromab der Abgasturbine angeordnet und über ein Getriebe mit der Brennkraftmaschine gekoppelt. Die Abgasturbine und die Nutzturbine sind über eine Verbindungsleitung miteinander verbunden. Von der Verbindungsleitung zweigt eine Bypassleitung ab. In der Bypassleitung um die Nutzturbine herum ist die Bypasseinrichtung vorgesehen. Die Bypasseinrichtung steuert die Menge des bypassierten Abgases um die Nutzturbine herum. Neben der Steuerung der Abgasmenge in der Bypassleitung, öffnet oder schließt die Bypasseinrichtung die Abgasleitung, die von der Nutzturbine zu der Bypasseinrichtung führt. Der Vorteil dieser Anordnung ist, dass ein Schaltventil und ein Drosselventil in einem gemeinsamen Bauteil, der Bypasseinrichtung kombiniert sind.
In Ausgestaltung der Erfindung ist die Bypasseinrichtung so ausgeführt, dass bei vollständigen Schließen der Abgasleitung und der Bypassleitung durch die Bypasseinrichtung, diese gasdicht geschlossen werden können. Um einen möglichst hohen Wirkungsgrad im Verbrennungsbetrieb oder im Motorbremsbetrieb der Brennkraftmaschine zu erreichen, ist es nötig der Abgasstrom genau zu steuern bzw. zu regeln. Beispielsweise würde bei einer nicht gasdicht geschlossenen Bypassleitung im Verbrennungsbetrieb Abgasesenergie verloren gehen, da diese der über die geöffnete Abgasleitung mit Abgas angetriebene Nutzturbine nicht mehr zur Verfügung steht.
In Ausgestaltung der Erfindung ist die Bypasseinrichtung in Form eines Drehschieberventils ausgeführt. Der Vorteil der Verwendung eines Drehschiebers als Bypasseinrichtung liegt in den geringen Betätigungskräften selbst bei hohen Abgasdrücken .
In weiterer Ausgestaltung der Erfindung weist das Drehschieberventil ein Gehäuse mit einem darin eingebrachten rohrförmigen Kanal auf, in dem ein frei drehbarer Rotor gelagert ist, der mit einem kreisausschnittsfδrmigen Querschnitt ausgeführt ist. Das Gehäuse weist eine Öffnung zu der Abgasleitung, eine Öffnung zu der Bypassleitung und eine Öffnung zur einer Abgasleitung, durch die das Abgas in die Atmosphäre oder eine Abgasanlage strömen kann, auf. Der Kanal erlaubt es der Abgasleitung und der Bypassleitung mit der Abgasleitung zu kommunizieren bzw. eine Verbindung herzustellen. Der kreisausschnittsförmige Querschnitt des Rotors ist so gewählt, dass der Rotor entweder die Abgasleitung und den Bypasskanal oder nur die Abgasleitung oder die Abgasleitung vollständig und die Bypassleitung teilweise verschließen kann. Der Vorteil liegt in dem einfachen, druckunempfindlichen und gasdichten Aufbau selbst bei hohen Abgasdrücken.
In weiterer Ausgestaltung der Erfindung weist der kreisausschnittsförmige Querschnitt des Rotors einen Kreisausschnittswinkel von 120° bis 140° auf. Durch die Wahl dieses Kreisausschnittswinkels kann ein flacher, bauraumsparender Aufbau des Gehäuses und der angeschlossenen Leitungen realisiert werden.
In weiterer Ausgestaltung der Erfindung öffnet die Kompressionsbremse im Motorbremsbetrieb und die Bypasseinrichtung schließt im Motorbremsbetrieb bei niedrigen bis mittleren Drehzahlen der Brennkraftmaschine die Abgasleitung und die Bypassleitung. Die Kompressionsbremse ist vorzugsweise in Form einer bekannten Konstantdrossel ausgeführt . Die Konstantdrossei ist als ein zusätzliches Drosselventil im Zylinderkopf ausgeführt, das sich im Motorbremsbetrieb kontinuierlich öffnen lässt. Das Drosselventil öffnet oder schließt einen Bypass um ein Auslassventil eines Zylinders der Brennkraftmaschine herum, so dass komprimierte Luft in den Abgastrakt gelangt. Im Motorbremsbetrieb öffnet die Konstantdrossel und setzt zumindest einen Teil der Kompressionsarbeit frei . Außerdem schließt im Motorbremsbetrieb die Bypasseinrichtung die Abgasleitung und die Bypassleitung. Dadurch erhöht sich zusätzlich die Pumpleistung der Brennkraftmaschine. Der Vorteil der Verwendung einer Konstantdrossei mit der Bypasseinrichtung als Staubremse liegt in der erhöhten Bremsleistung bei niedrigen bis mittleren Drehzahlen der Brennkraftmaschine. Außerdem kann auf eine Bremsklappe im Abgassystem verzichtet werden.
In weiterer Ausgestaltung der Erfindung öffnet die Kompressionsbremse im Motorbremsbetrieb und die Abgasturbine, die über eine variable Turbinengeometrie verfügt, die im Motorbremsbetrieb die Strömung des Abgases auf ein Turbinenrad so verändert, dass im Motorbremsbetrieb bei mittleren bis hohen Drehzahlen der Brennkraftmaschine eine Erhöhung der Drehzahl der Abgasturbine erfolgt, wobei die Bypasseinrichtung die Abgasleitung schließt und die Bypassleitung vollständig öffnet. Die variable Turbinengeometrie ist als bekanntes Leitgitter ausgeführt, insbesondere als Radialleitgitter mit verstellbaren oder feststehenden Leitschaufeln. Das Radialleitgitter verkleinert im Motorbremsbetrieb einen wirksamen Turbinenquerschnitt, so dass die Geschwindigkeit des Abgases steigt . Dadurch steigt die Drehzahl der Abgasturbine . Durch die Steigerung der Drehzahl der Abgasturbine steigt auch die Drehzahl eines Verdichters, wodurch sich der Ladedruck erhöht. Mit einer Erhöhung des Ladedrucks erhöht sich die Füllung im Zylinder und in Verbindung mit einer Konstantdrossei erhöht sich auch die Bremsleistung. Gleichzeitig verschließt im Motorbremsbetrieb die Bypasseinrichtung die Abgasleitung und öffnet die Bypassleitung. Das Abgas strömt durch die Bypassleitung an der Nutzturbine vorbei. Dadurch sinkt der Abgasgegendruck nach der Abgasturbine. Durch die erhöhte Druckdifferenz steigt die Drehzahl der Abgasturbine. Vorteilhafterweise führt dies zu einer zusätzlichen Ladedruckerhöhung und damit zu einer erhöhten Bremsleistung. Außerdem trägt die Nutzturbine zur Bremsleistung bei, da die Brennkraftmaschine die Nutzturbine antreibt und die Nutzturbine nicht Energie aus dem Abgas an die Brennkraftmaschine abgibt . In weiterer Ausgestaltung der Erfindung öffnet die Kompressionsbremse im Motorbremsbetrieb und die Abgasturbine, die über eine variable Turbinengeometrie verfügt, die im Motorbremsbetrieb die Strömung des Abgases auf ein Turbinenrad so verändert, dass im Motorbremsbetrieb bei hohen bis sehr hohen Drehzahlen der Brennkraftmaschine eine Erhöhung der Drehzahl der Abgasturbine erfolgt, wobei die Bypasseinrichtung die Abgasleitung schließt und die Bypassleitung teilweise schließt. Bei einer Brennkraftmaschine mit einem Abgasturbolader ist der Abgasturbolader für den Verbrennungsbetrieb der Brennkraftmaschine optimal ausgelegt . Im Motorbremsbetrieb kann es daher zum Überschreiten von kritischen Abgasturboladerdrehzahlen kommen, insbesondere wenn eine Abgasturbine eines Abgasturboladers eine variable Turbinengeometrie aufweist. Im Motorbremsbetrieb dient die variable Turbinengeometrie zur Drehzahlsteigerung des Abgasturboladers. Durch Drosselung der Bypassleitung steigt der Abgasgegendruck nach der Abgasturbine, was zu einer Verringerung der Druckdifferenz an der Abgasturbine führt und zu einer Verminderung der Drehzahl des Abgasturboladers bewirkt. Der Vorteil liegt im Wegfall einer drehzahlregulierenden Maßnahme am Abgasturbolader, beispielsweise eines Waste-Gate-Ventils .
In weiterer Ausgestaltung der Erfindung können im Motorbremsbetrieb die Auslassventile der Brennkraftmaschine durch Druckspitzen des Abgases im Abgastrakt kurzzeitig geöffnet werden, wodurch Abgas aus dem Abgastrakt in die Zylinder der Brennkraftmaschine gelangt. Das kurze Öffnen der Auslassventile ist insbesondere bei niedrigen Zylinderdrücken möglich. Dies führt insbesondere am Ende des ersten Arbeitstaktes (Ansaugen) oder zu Beginn des zweiten Arbeitstaktes (Komprimieren) zu einem Nachladeeffekt, bei dem Abgas aus dem Abgastrakt in die Zylinder der Brennkraftmaschine gelangt. Vorteilhafterweise führt der Nachladeeffekt zu einer erhöhten Zylinderfüllung und damit erhöhten Motorbrems1eistung .
Weitere Merkmale und Merkmalskombinationen ergeben sich aus der Beschreibung sowie den Zeichnungen. Ein konkretes Ausführungsbeispiel der Erfindung ist in den Zeichnungen vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
Fig.l eine schematisch vereinfachte Darstellung einer Brennkraftmaschine, die mit einer Motorbremseinrichtung, einem Abgasturbolader und einer Nutzturbine ausgestattet ist,
Fig.2 eine schematisch vereinfachte Darstellung des erfindungsgemäßen Drehschieberventils mit offener Abgasleitung und geschlossener Bypassleitung,
Fig.3 eine schematisch vereinfachte Darstellung des erfindungsgemäßen Drehschieberventils mit geschlossener Abgasleitung und geschlossener Bypassleitung,
Fig.4 eine schematisch vereinfachte Darstellung des erfindungsgemäßen Drehschieberventils mit geschlossener Abgasleitung und mit geöffneter Bypassleitung und
Fig.5 eine schematisch vereinfachte Darstellung des erfindungsgemäßen Drehschieberventils mit geschlossener Abgasleitung und mit teilgeöffneter Bypassleitung.
In Fig. 1 ist schematisch vereinfacht eine Brennkraftmaschine 1 mit mindestens einem Auslassventil pro Zylinder dargestellt, die mit einer Motorbremseinrichtung 2, mit einem Abgasturbolader 3 und einer Nutzturbine 4 ausgestattet ist. Die Motorbremseinrichtung 2 ist in Form einer bekannten Kompressionsbremse vorzugsweise als Konstantdrossei ausgeführt. Zu dem Aufbau und der Wirkungsweise der Konstantdrossei wird beispielhaft auf die DE 197 27 584 Cl verwiesen. Der Abgasturbolader 3 weist eine Abgasturbine 5 und einen Verdichter 6 auf, die über eine gemeinsame Welle 7 miteinander verbunden sind. Die Abgasturbine 5 ist einem Abgastrakt 8 und der Verdichter 6 ist einem Ansaugtrakt 9 der Brennkraftmaschine 1 zugeordnet . In dem Ansaugtrakt 9 kann ein nicht näher dargestellter Ladeluft-Kühler eingebracht sein. Die Nutzturbine 4 ist stromab der Abgasturbine 5 vorgesehen und über ein Getriebe 10 an der Brennkraftmaschine 1 gekoppelt. Die Abgasturbine 5 ist mit einer variablen Turbinengeometrie 11 ausgestattet. Die variable Turbinengeometrie 11 ist als Radialleitgitter mit verstellbaren oder feststehenden Leitschaufeln ausgeführt. Mit Hilfe des Radialleitgitters 11 ist die Abgasströmung vor einem Turbinenrad auf die Schaufeln des Turbinenrades der Abgasturbine 5 veränderbar. Durch eine nicht näher dargestellte Betätigungseinrichtung, die an dem Radialleitgitter 10 angreift und außerhalb eines Gehäuses der Abgasturbine 5 liegt, kann das Radialleitgitter 11 elektrisch, pneumatisch oder hydraulisch betätigt werden. Die Steuerung der Betätigungseinrichtung erfolgt mittels eines elektronischen Motorsteuergerätes 12, das über eine erste Steuerleitung 13 mit der Betätigungseinrichtung verbunden ist. Die Abgasturbine 5 und die Nutzturbine 4 sind über eine Verbindungsleitung 14 miteinander verbunden. Von der Verbindungsleitung 14 zweigt eine Bypassleitung 15 ab. In der Bypassleitung 15 um die Nutzturbine 4 herum ist eine Bypasseinrichtung 16 vorgesehen. Die Bypasseinrichtung 16 steuert die Menge des bypassierten Abgases um die Nutzturbine 4 herum. Neben der Steuerung der Abgasmenge in der Bypassleitung 15, öffnet oder schließt die Bypasseinrichtung 16 eine Abgasleitung 17, die von der Nutzturbine 4 zu der Bypasseinrichtung 16 führt. Die Steuerung der Bypasseinrichtung 16 erfolgt mittels des Motorsteuergerätes 12 über eine zweite Steuerleitungen 18. Außerdem steuert das Motorsteuergerät 12 über eine dritte Steuerleitung 19 die Konstantdrossel 2. Die Abgase strömen über die Bypasseinrichtung 16 weiter in eine Abgasleitung 20 in die Atmosphäre oder eine nicht näher dargestellte, weiterführende Abgasanläge .
Die Fig. 2 bis 5 zeigen eine schematisch, vereinfachte Ausführung der erfindungsgemäßen Bypasseinrichtung 16. Die Bypasseinrichtung 16 ist in Form eines Drehschieberventils bzw. Walzensteuerventils mit einem Gehäuse 21 ausgeführt. Das Gehäuse 21 weist einen darin eingebrachten rohrförmigen Kanal
22 auf, in dem ein frei drehbarer Rotor 23 gelagert ist. Das Gehäuse 21 weist eine Öffnung 24 zu der Bypassleitung 15, eine Öffnung 25 zu der Abgasleitung 17 und eine Öffnung 26 zu der Abgasleitung 20 auf. Der Rotor 23 in dem Kanal 22 erlaubt es wahlweise der Bypassleitung 15 oder der Abgasleitung 17 über den Kanal 22 mit der Abgasleitung 20 zu kommunizieren bzw. eine Verbindung herzustellen. Die Gestaltung des Rotors
23 ist so ausgeführt, dass in einer Stellung gemäß Fig. 3 sowohl die Bypassleitung 15 als auch die Abgasleitung 17 durch Überdeckung der Öffnungen 24 und 25 mittels des Rotors 23 gemeinsam geschlossen sind. In einer Stellung gemäß Fig. 2 ist die Bypassleitung 15 geschlossen und die Abgasleitung 17 vollständig geöffnet. In einer Stellung gemäß Fig. 4 ist die Bypassleitung 15 vollständig geöffnet und die Abgasleitung 17 geschlossen. In einer Stellung gemäß Fig. 5 ist die Bypassleitung 15 teilweise geöffnet und die Abgasleitung 17 geschlossen. Der Rotor 23 ist vorzugsweise als ein Stangenelement mit einem kreisausschnittsförmigen Querschnitt ausgeführt, der einen Kreisausschnittswinkel von 120° bis 140° aufweist. Denkbar ist auch ein Rotor 23 der zwei kreisausschnittsförmige Querschnitte mit besitzt, die in Längsrichtung einer Rotordrehachse übereinander angeordnet sind. Die zwei kreisausschnittsförmige Querschnitte können unterschiedliche Kreisausschnittswinkel besitzen und entsprechend der Lage der zu verschliessenden, zu öffnenden oder teilweise zu öffnenden Öffnungen 23, 24 oder 25 im Gehäuse 21 in einem beliebigen Winkel zueinander stehen. Das Drehschieberventil 16 ist so ausgeführt, dass der Rotor 23 bei voller Überdeckung einer der Öffnungen 24 und 25, diese gasdicht verschließt. Durch eine nicht näher dargestellte Betätigungseinrichtung, die an dem Rotor 23 angreift und außerhalb des Drehschieberventils 16 liegt, kann der Rotor 23 elektrisch, pneumatisch oder hydraulisch gedreht werden. Vorzugsweise ist hierzu ein elektrischer Stellmotor vorgesehen. Der Vorteil der Verwendung eines Drehschieberventils 16 liegt seiner Gasdichtheit bei voller Überdeckung des Rotors 23 mit den Öffnungen 24 bzw. 25 zu den Leitungen 15 bzw. 17 und den geringen Betätigungskräften selbst bei hohen Abgasdrücken.
Im Verbrennungsbetrieb saugt die Brennkraftmaschine 1 die durch den Verdichter 6 vorverdichtete Luft aus dem Ansaugtrakt 9 an. In den Zylindern der Brennkraftmaschine 1 wird die vorverdichtete Luft weiter komprimiert und die komprimierte Luft mit Kraftstoff vermischt (Diesel) oder es wird ein bereits vorhandenes Kraftstoff-Luft-Gemisch komprimiert (Otto) . Das durch die Verbrennung des Kraftstoff- Luft-Gemisches entstehende Abgas strömt durch die Abgasturbine 5 ohne in seiner Strömung von dem Radialleitgitter 11 beeinflusst zu werden. Die Abgasturbine 5 treibt mittels einer gemeinsamen Welle 7 den Verdichter 6 an. Wie in Fig. 2 dargestellt, schließt der Rotor 23 des Drehschieberventils 16 die Bypassleitung 15 und öffnet die Abgasleitung 17, so dass das Abgas vollständig durch die Nutzturbine 4 strömt. Die Nutzturbine 4 kann die restliche Energie des Abgases aufnehmen und sie anschließend mittels des Getriebes 10 der Brennkraftmaschine 1 zuführen.
Im Motorbremsbetrieb saugt die Brennkraftmaschine 1 vorverdichtete Luft aus dem Ansaugtrakt 8 an. Die Brennkraftmaschine 1 komprimiert die Luft und vermischt die komprimierte Luft hingegen nicht mit Kraftstoff, so dass keine Verbrennung stattfinden kann. Stattdessen öffnet die Motorsteuereinheit 12 über die Steuerleitung 19 die Konstantdrossel 2 in den jeweiligen Zylindern, um die komprimierte Luft aus der Brennkraftmaschine 1 in den Abgastrakt 8 entweichen zu lassen. Die Konstantdrossei 2 ist als ein zusätzliches Drosselventil im Zylinderkopf ausgeführt, das sich im Motorbremsbetrieb kontinuierlich öffnen lässt. Das Drosselventil öffnet oder schließt einen Bypass um ein Auslassventil eines Zylinders der Brennkraftmaschine 1 herum, so dass komprimierte Luft in den Abgastrakt 8 gelangt.
Die Bremsleistung der Brennkraftmaschine 1 entsteht durch die Leistung, welche die Brennkraftmaschine 1 aufbringt, um die angesaugte Luft zu komprimieren, aber nicht durch Dekompression der komprimierten Luft zurückerhält. Um im Motorbremsbetrieb die Bremsleistung weiter zu steigern, steuert das Motorsteuergerät 12 in Abhängigkeit der Drehzahl der Brennkraftmaschine 1 zusätzlich das Drehschieberventil 16 und das Radialleitgitter 11 an.
Bei niedrigen bis mittleren Drehzahlen der Brennkraftmaschine 1 wirkt die Konstantdrossei 2 mit dem Drehschieberventil 16 so zusammen, dass die Konstantdrossei 2 geöffnet ist und der Rotor 23 die Bypassleitung 15 und die Abgasleitung 17 beide gleichermaßen gasdicht schließt (Fig. 3) . Dadurch erhöht sich die Pumpleistung bzw. Motorbremsleistung der Brennkraftmaschine 1, da die Kolben im vierten Arbeitstakt (Ausschubtakt) auf Grund des höheren Abgasgegendruckes in dem Abgastrakt 8 eine höhere Ausschiebearbeit leisten muss .
Bei mittleren bis hohen Drehzahlen der Brennkraftmaschine 1 wirkt die Konstantdrossei 2 mit dem Radialleitgitter 11 und dem Drehschieberventil 16 so zusammen, dass die Konstantdrossel 2 geöffnet ist und das Radialleitgitter 11 einen wirksamen Turbinenquerschnitt so verändert, dass die Drehzahl der Abgasturbine 5 steigt. Dadurch erhöht sich der Ladedruck und damit die Füllung der Zylinder und schließlich die Kompressionsarbeit im Motorbremsbetrieb. Der Rotor 23 schließt dabei die Abgasleitung 17 und öffnet die Bypassleitung 15 vollständig (Fig. 4) oder auch nur teilweise (Fig. 5) , wobei die Bypassleitung 15 und die Abgasleitung 20 über den Kanal 22 des Drehschieberventils 16 miteinander verbunden sind. Das Abgas strömt durch die Bypassleitung 15 an der Nutzturbine 4 vorbei. Dadurch sinkt der Abgasgegendruck nach der Abgasturbine 5 und durch die erhöhte Druckdifferenz an der Abgasturbine 5 steigt die Drehzahl der Abgasturbine 5. Vorteilhafterweise führt dies zu einer zusätzlichen Ladedruckerhöhung und damit zu einer Erhöhung der Motorbremsleistung. Um ein Überschreiten von kritischen Drehzahlen des Abgasturboladers 3 bei hohen bis sehr hohen Drehzahlen der Brennkraftmaschine 1 zu vermeiden, kann durch teilweises Schließen der Bypassleitung 15 mittels des Drehschieberventils 16 der Abgasgegendruck nach der Abgasturbine 5 erhöht werden, was zu einer Verringerung der Druckdifferenz an der Abgasturbine 5 und zu einem Absinken der Drehzahl des Abgasturboladers 3 führt .
Im Motorbremsbetrieb können im Abgastrakt 8 auftretende Druckspitzen des Abgases zu einem kurzen Öffnen der Auslassventile insbesondere bei niedrigen Zylinderdrücken führen. Dies führt insbesondere am Ende des ersten Arbeitstaktes (Ansaugen) oder zu Beginn des zweiten Arbeitstaktes (Komprimieren) zu einem Nachladeeffekt, bei dem Abgas aus dem Abgastrakt 8 in die Zylinder der Brennkraftmaschine 1 gelangt . Der Nachladeeffekt führt zu einer erhöhten Zylinderfüllung und damit erhöhten Motorbremsleistung. Durch schwächere Ventilfedern an den Auslassventilen würden die Auslassventile schon bei niedrigeren Druckspitzen wiederöffnen und die Bremsleistung könnte weiter gesteigert werden. Es muss jedoch gewährleistet sein, dass die Auslassventile im Gaswechsel exakt der Nockenform folgen und es auch bei sehr hohen Drehzahlen der Brennkraftmaschine nicht zu einem Abheben der Auslassventile kommt . Im Motorbremsbetrieb trägt die Nutzturbine 4 zur Bremsleistung bei, da sie von der Brennkraftmaschine 1 mitgeschleppt wird.
In dem Motorsteuergerät 12 ist eine Kennlinie zur Steuerung der Konstantdrossel 2, des Radialleitgitters 11 und des Drehschieberventils 16 hinterlegt. Die Kennlinie ist zuvor in PrüfStandsversuchen abhängig von der Abgastemperatur der Brennkraftmaschine 1 und der Drehzahl des Abgasturboladers 3 ermittelt worden. Dabei wird der Übergangspunkt bei einer mittleren Drehzahl festgelegt, bei der die Konstantdrossel 2 mit dem Drehschieberventil 16 oder mit dem Radialleitgitter 11 und dem Drehschieberventil 16 zusammenwirkt. Der Übergangspunkt bei einer mittleren Drehzahl hangt von einer maximal zulässigen Abgastemperatur und/oder indizierten Arbeit im Motorbremsbetrieb aus der Hoch- und
Niederdruckschleife ab. Bei Nutzfahrzeugmotoren mit etwa zwei Liter Hubraum pro Zylinder liegt der Übergangspunkt zwischen einer Drehzahl der Brennkraftmaschine 1 von n=1400/min und n=1600/min, vorzugsweise bei einer Drehzahl von n=1500/min.
Denkbar ist anstelle des Drehschieberventils 16 ein Schaltventil in die Abgasleitung 17 und ein Drosselventil in die Bypassleitung 15 einzubringen. Das Schaltventil und das Drosselventil sind über Steuerleitungen mit dem Motorsteuergerät 12 verbunden, das eine entsprechende Betätigungseinrichtungen an dem Schaltventil und dem Drosselventil ansteuern kann.

Claims

Patentansprüche
1. Brennkraftmaschine (1) mit einer Motorbremseinrichtung (2) , insbesondere in Form einer Kompressionsbremse, mit mindestens einem Auslassventil pro Zylinder der Brennkraftmaschine (1) , mit einem Abgasturbolader (3) , dessen Abgasturbine (5) einem Abgastrakt (8) und dessen Verdichter (6) einem Ansaugtrakt (9) der Brennkraftmaschine (1) zugeordnet ist, mit einer vom Abgas der Brennkraftmaschine (1) angetriebenen und mit der Brennkraftmaschine (1) vorzugsweise über ein Getriebe (10) gekoppelten Nutzturbine (4) , die der Abgasturbine (5) des Abgasturboladers (3) nachgeschaltet ist, mit einer Bypassleitung (15) um die Nutzturbine (4) herum und einer Bypasseinrichtung (16) in der Bypassleitung (15) , wobei die Bypasseinrichtung (16) über eine Abgasleitung (17) mit der Nutzturbine (3) verbunden ist, dadurch gekennzeichnet, dass die Bypasseinrichtung (16) in Form eines kombinierten Schalt- und Drosselventils ausgeführt ist, so dass die Abgasleitung (17) vollständig und die Bypassleitung (15) vollständig oder teilweise schließbar ist.
2. Brennkraftmaschine nach Anspruch 1, dadurch gekennzeichnet, dass die Bypasseinrichtung (16) so ausgeführt ist, dass bei vollständigen Schließen der Abgasleitung (17) und der Bypassleitung (15) durch die Bypasseinrichtung (16) , diese gasdicht geschlossen werden können.
3. Brennkraftmaschine nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die Bypasseinrichtung (16) in Form eines Drehschieberventils ausgeführt ist.
4. Brennkraftmaschine nach Anspruch 3 , dadurch gekennzeichnet, dass das Drehschieberventil (16) ein Gehäuse (21) mit einem darin eingebrachten rohrförmigen Kanal (22) aufweist, in dem ein frei drehbarer Rotor (23) gelagert ist, der mit einem kreisausschnittsförmigen Querschnitt ausgeführt ist.
5. Brennkraftmaschine nach Anspruch 4, dadurch gekennzeichnet, dass der kreisausschnittsförmige Querschnitt des Rotors (23) einen Kreisausschnittswinkel von 120° bis 140° aufweist.
6. Brennkraftmaschine nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass die Kompressionsbremse (2) im Motorbremsbetrieb öffnet und die Bypasseinrichtung (16) im Motorbremsbetrieb bei niedrigen bis mittleren Drehzahlen der Brennkraftmaschine (I) die Abgasleitung (17) und die Bypassleitung (15) schließt .
7. Brennkraftmaschine nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass die Kompressionsbremse (2) im Motorbremsbetrieb öffnet und die Abgasturbine (5) über eine variable Turbinengeometrie (II) verfügt, die im Motorbremsbetrieb die Strömung des Abgases auf ein Turbinenrad so verändert, dass im Motorbremsbetrieb bei mittleren bis hohen Drehzahlen der Brennkraftmaschine (1) eine Erhöhung der Drehzahl der Abgasturbine (5) erfolgt, wobei die Bypasseinrichtung (16) die Abgasleitung (17) schließt und die Bypassleitung (15) vollständig öffnet.
8. Brennkraftmaschine nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass die Kompressionsbremse (2) im Motorbremsbetrieb öffnet und die Abgasturbine (5) über eine variable Turbinengeometrie (11) verfügt, die im Motorbremsbetrieb die Strömung des Abgases auf ein Turbinenrad so verändert, dass im Motorbremsbetrieb bei hohen bis sehr hohen Drehzahlen der Brennkraftmaschine (1) eine Erhöhung der Drehzahl der Abgasturbine (5) erfolgt, wobei die Bypasseinrichtung (16) die Abgasleitung (17) schließt und die Bypassleitung (15) teilweise schließt.
9. Brennkraftmaschine nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass im Motorbremsbetrieb die Auslassventile der Brennkraftmaschine (1) durch Druckspitzen des Abgases im Abgastrakt (8) kurzzeitig geöffnet werden können, wodurch Abgas aus dem Abgastrakt (8) in die Zylinder der Brennkraftmaschine (1) gelangt.
EP04741405A 2003-08-29 2004-08-11 Brennkraftmaschine mit einer motorbremseinrichtung Withdrawn EP1658423A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003139857 DE10339857A1 (de) 2003-08-29 2003-08-29 Brennkraftmaschine mit einer Motorbremseinrichtung
PCT/EP2004/008978 WO2005028830A1 (de) 2003-08-29 2004-08-11 Brennkraftmaschine mit einer motorbremseinrichtung

Publications (1)

Publication Number Publication Date
EP1658423A1 true EP1658423A1 (de) 2006-05-24

Family

ID=34202200

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04741405A Withdrawn EP1658423A1 (de) 2003-08-29 2004-08-11 Brennkraftmaschine mit einer motorbremseinrichtung

Country Status (5)

Country Link
US (1) US7347048B2 (de)
EP (1) EP1658423A1 (de)
JP (1) JP2007504383A (de)
DE (1) DE10339857A1 (de)
WO (1) WO2005028830A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9103274B2 (en) * 2006-07-29 2015-08-11 Cummins Emission Solution Inc. Multi-stage turbocharger system
GB0615143D0 (en) * 2006-07-29 2006-09-06 Cummins Turbo Tech Ltd Multi-stage turbocharger system
EP2092178B2 (de) * 2006-12-20 2019-10-23 Volvo Lastvagnar AB Motorbremse für fahrzeug
US8230684B2 (en) * 2007-04-20 2012-07-31 Borgwarner Inc. Combustion engine breathing system including a compressor valve for a biturbo with cylinder deactivation
GB0717212D0 (en) 2007-09-05 2007-10-17 Cummins Turbo Tech Ltd Multi-stage turbocharger system
US8069664B2 (en) * 2008-09-18 2011-12-06 GM Global Technology Operations LLC Integrated inlet and bypass throttle for positive-displacement supercharged engines
US9995207B2 (en) 2009-11-21 2018-06-12 Cummins Turbo Technologies Limited Multi-stage turbocharger system
GB2475534B (en) * 2009-11-21 2014-11-12 Cummins Turbo Tech Ltd Sequential two-stage turbocharger system
US10054037B2 (en) 2009-11-21 2018-08-21 Cummins Turbo Technologies Limited Multi-stage turbocharger system with bypass flowpaths and flow control valve
AT510237B1 (de) 2010-07-26 2015-12-15 MAN Truck & Bus Österreich AG Verfahren zur motorbremsung
US8127544B2 (en) * 2010-11-03 2012-03-06 Paul Albert Schwiesow Two-stroke HCCI compound free-piston/gas-turbine engine
KR101831285B1 (ko) * 2011-04-21 2018-02-22 맥 트럭스 인코포레이팃드 터빈 바이패스를 갖는 파워 시스템 및 파워 시스템을 작동하는 방법
DE102011107413A1 (de) * 2011-07-15 2013-01-17 Meta Motoren- Und Energie-Technik Gmbh Drehschieberventil, insbesondere zum Verbinden eines Abgasturboladers mit einer Brennkraftmaschine, sowie Abgaskrümmerbaugruppe
US9108628B2 (en) * 2012-08-31 2015-08-18 GM Global Technology Operations LLC Turbo compounding hybrid generator powertrain
US20140214308A1 (en) * 2013-01-29 2014-07-31 Cummins Ip, Inc. Apparatus, system and method for increasing braking power
DE102013006876B4 (de) 2013-04-20 2017-07-06 Jenoptik Industrial Metrology Germany Gmbh Rauheitsmessgerät
RU2568763C2 (ru) * 2014-01-30 2015-11-20 Альстом Текнолоджи Лтд Компонент газовой турбины
EP3144471B1 (de) * 2015-09-21 2018-02-28 Fuelsave GmbH Drehkolbenmotor und verfahren zum betreiben eines drehkolbenmotors
CN105464769B (zh) * 2015-12-30 2017-11-17 东风商用车有限公司 一种双流道动力涡轮系统及其控制方法
WO2017150543A1 (ja) * 2016-02-29 2017-09-08 三菱重工業株式会社 過給機および内燃機関
GB201713461D0 (en) 2017-08-22 2017-10-04 Cummins Ltd Valve system
JP6581163B2 (ja) * 2017-10-03 2019-09-25 本田技研工業株式会社 内燃機関
US11391223B2 (en) 2020-08-19 2022-07-19 Caterpillar Inc. Increasing braking power and exhaust gas temperature
US11668255B2 (en) 2020-12-09 2023-06-06 Caterpillar Inc. Engine braking method and control system varying engine braking power within cylinder-number braking mode

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728681A1 (de) * 1986-08-29 1988-03-10 Isuzu Motors Ltd Turbo-verbundkraftmaschine
JPS6357824A (ja) * 1986-08-29 1988-03-12 Isuzu Motors Ltd タ−ボコンパウンドエンジン
IT1197943B (it) * 1986-11-03 1988-12-21 Giuseppe Ponzielli Dispositivo di separazione di particelle solide da un fluido in pressione
US4882906A (en) * 1987-05-22 1989-11-28 Isuzu Motors Limited Engine braking system
JPS6435026A (en) * 1987-07-30 1989-02-06 Isuzu Motors Ltd Turbo compound engine
JPH0361612A (ja) * 1989-07-29 1991-03-18 Fuji Heavy Ind Ltd 2サイクルエンジンの排気ロータリ弁
US5119633A (en) * 1990-09-25 1992-06-09 Cummins Engine Company, Inc. Power turbine bypass for improved compression braking
DE4324749A1 (de) * 1993-07-23 1995-01-26 Freudenberg Carl Fa Regelventil
DE4416039C1 (de) * 1994-05-06 1995-08-31 Freudenberg Carl Fa Regelventil
DE4431711A1 (de) * 1994-09-06 1996-03-07 Bosch Gmbh Robert Vorrichtung zur Regelung der Leerlaufdrehzahl einer Brennkraftmaschine
DE19724584A1 (de) 1997-06-11 1998-12-17 Bayer Ag Verfahren zur Herstellung von 3,3-Dimethylbuttersäure
DE10222919B4 (de) * 2002-05-24 2007-12-20 Man Nutzfahrzeuge Ag Zweistufig aufgeladene Brennkraftmaschine
US7010918B2 (en) * 2003-06-17 2006-03-14 Daimlerchrysler Ag Internal combustion engine with motor brake

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005028830A1 *

Also Published As

Publication number Publication date
US7347048B2 (en) 2008-03-25
US20060174620A1 (en) 2006-08-10
WO2005028830A1 (de) 2005-03-31
DE10339857A1 (de) 2005-03-24
JP2007504383A (ja) 2007-03-01

Similar Documents

Publication Publication Date Title
EP1658423A1 (de) Brennkraftmaschine mit einer motorbremseinrichtung
DE69404630T2 (de) Abgasturbolader für brennkraftmaschinen
DE3526532C2 (de)
DE102010021449B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors und Verbrennungsmotor
DE3326133C2 (de)
DE102009048125B4 (de) Wastegate-Anordnung für eine Turbine, Turbine für einen Abgasturbolader, Abgasturbolader für ein Kraftfahrzeug und Verfahren zum Betreiben eines Abgasturboladers
EP2208875B1 (de) Ventileinrichtung und Brennkraftmaschinensystem
EP2151569B1 (de) Vorrichtung zur Entnahme eines Abgasteilstroms und Brennkraftmaschine mit dieser Vorrichtung
EP2412955A1 (de) Verfahren zur Motorbremsung
DE10253693A1 (de) Abgasturbolader
EP1881162B1 (de) Abgasturbolader für eine Brennkraftmaschine
DE3032218A1 (de) Kolbenbrennkraftmaschine mit einem abgasturbolader
WO2011050874A2 (de) Leitvorrichtung für einen abgasturbolader mit verstellbarer turbinengeometrie sowie abgasturbolader für eine brennkraftmaschine
EP2825745B1 (de) Abgasturbolader mit einem wastegateventil und einem schubumluftventil
DE3246855C2 (de) Aufladungssteuereinrichtung für Verbrennungsmotoren
DE3439999C1 (de) Viertakt-Brennkraftmaschine mit zwei Abgasturboladern
DE112013004989T5 (de) Ventilanordnung mit Zylinder, der Durchgangsbohrungen aufweist
DE19824476B4 (de) Otto-Brennkraftmaschine mit einem Abgasturbolader und Verfahren zum Betrieb einer solchen Brennkraftmaschine
WO2011032534A1 (de) Gasdynamische druckwellenmaschine
EP1433937A1 (de) Abgasturbolader mit einer in das Gehäuse integrierten Bypasseinrichtung und Herstellungsverfahren für diese Bypasseinrichtung
EP3009629B1 (de) Verfahren und Vorrichtung zur Einstellung eines Ladedruckes in einer Brennkraftmaschine mit einem Druckwellenlader
DE19623970C2 (de) Aufgeladener Verbrennungsmotor mit einer Abgasrückführungsleitung
DE102011115206A1 (de) Abgasturbolader für eine Brennkraftmaschine
AT507802B1 (de) Verfahren zur leistungsmodulation bei motorischen blockheizkraftwerken
DE10051325B4 (de) Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17P Request for examination filed

Effective date: 20060214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

18W Application withdrawn

Effective date: 20060509