[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1654404A1 - Electrophoretic method for the production of ceramic structures - Google Patents

Electrophoretic method for the production of ceramic structures

Info

Publication number
EP1654404A1
EP1654404A1 EP04741370A EP04741370A EP1654404A1 EP 1654404 A1 EP1654404 A1 EP 1654404A1 EP 04741370 A EP04741370 A EP 04741370A EP 04741370 A EP04741370 A EP 04741370A EP 1654404 A1 EP1654404 A1 EP 1654404A1
Authority
EP
European Patent Office
Prior art keywords
ceramic
electrodes
particle size
suspension
structures according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04741370A
Other languages
German (de)
French (fr)
Other versions
EP1654404B1 (en
Inventor
Jürgen HAUSSELT
Melanie Dauscher
Holger Von Both
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe GmbH filed Critical Forschungszentrum Karlsruhe GmbH
Publication of EP1654404A1 publication Critical patent/EP1654404A1/en
Application granted granted Critical
Publication of EP1654404B1 publication Critical patent/EP1654404B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material

Definitions

  • the invention relates to a method for producing ceramic structures (such as layers, filters or microstructures) and to ceramic structures and gradient structures produced using this method.
  • Ceramic (micro) structures, ceramic coatings and two-dimensional structures such as plates, substrates or filters are gaining in importance for many areas of technology. This applies both to so-called structural ceramics such as Al 2 O 3 , ZrO, mullite, SiC, Si3 4 as well as to functional ceramics such as BaTi0 3 or PZT (lead zirconate titanate) and to so-called bioceramics such as hydroxylapatite Ca (OH ) (P0 4 ) 3 , but also for mineral glasses.
  • dry pressing, powder technology injection molding, hot molding, slip molding, film casting, electrophoretic deposition from powder suspensions and other processes with subsequent sintering are used as production processes.
  • feedstocks are used for the shaping, which consist of ceramic powders and binders, dispersants and lubricants to improve the processability.
  • feedstocks consist of ceramic powders and binders, dispersants and lubricants to improve the processability.
  • additives are only added to the powders in parts by volume of a few percent.
  • injection molding, hot molding, slip casting and film casting use far higher volumes of binders, dispersants, lubricants, polymers, waxes and
  • Suspension liquids such as water and alcohol are added.
  • the powder proportions are 30 to 70 percent by volume.
  • the volume fractions of the ceramic powder can be in the range from approx. 5 to 50%.
  • powders are used which are present as so-called monomodal powders in a relatively broad distribution, which often follow normal distributions, logarithmic normal distributions or so-called Rosin-Rammler distributions. In some cases, powders are also used, which are in the form of complex multimodal distributions.
  • the roughness of the resulting parts and layers as well as their pore size and sometimes their structure after sintering are influenced by the particle size distribution.
  • the rough proportions of the powders used determine the surface roughness.
  • the pore size distribution for example of filter membranes, also correlates with the particle size: the coarser the powder particles, the larger the resulting pores. Therefore, in the conventional manufacturing processes, for example, to achieve particularly smooth layers or microstructures or to achieve a very fine pore size, only particles below a certain size, such as. B. 500 nm can be used.
  • the powders first have to be fractionated and classified in a complicated way, for example by sieving or air screening, and only the desired powder fraction should be introduced into the feedstock before the production of the starting feedstock.
  • the method according to the invention is based on the combination of electrophoretic deposition and sedimentation due to gravity or centrifugal forces.
  • the electrophoretic deposition of ceramic particles from particle suspensions is known as a process for the production of ceramic layers (Heavens, SN: Electrophoretic Deposition as a Processing Route for Ceramics; in Binner, J. (Ed.), Advanced Ceramics Processing and Technology, Vol. 1, Noyes Publ., Park Ridge, NJ, USA). More recently, attempts have been made to use this technique to realize ceramic microstructures (Both, H. von; Haußelt, J.: l st In tern. Conf. On Elektrophoretic Deposition, Banff, Canada, 2002). For this purpose, by applying an electric field between two electrodes immersed in the powder suspension, a particle stream of charged particles is moved to one of the two electrodes and deposited there.
  • AI 2 O 3 , Zr ⁇ 2, S1O 2 depends on the dispersant and binder additives, but that there may also be a slight dependence on the particle size. Depending on the system, different, but in all cases small, dependencies of the migration speed on the particle size can be observed.
  • Particle size distribution can be separated.
  • a field is superimposed on the electric field, which brings about a particle velocity that is largely independent of particle size in the direction of the electric field, and causes a particle velocity that is dependent on particle size.
  • Particle size-dependent sedimentation is suitable for this either in a constant, location-independent gravitational field (gravity sedimentation) or in a variable and location-dependent gravitational field (centrifugation).
  • the rate of descent v is proportional to r 2 at constant viscosity ⁇ . Even if due to particle shapes in usually deviate from the spherical shape, and at high concentrated
  • a critical particle size r c results for each electric field strength E and for each acceleration b in the gravitational field, at which the effects of both fields cancel and the particle floats. All particles with r> r c move in the direction of the gravitational field, all particles with r ⁇ r c move in the direction of the electrical field.
  • E and the acceleration b for example by varying the speed in a centrifuge
  • largely freely selectable fractions of the particle size distribution originally present can thus be deposited on an electrically conductive substrate.
  • the angle between the directions of the electric field and the gravitational field is chosen such that a velocity component that is dependent on the particle size can be added or subtracted from the velocity distribution in the electric field that is largely independent of particle size.
  • variation of the electric field strength and the angle between the two field directions can ensure that the fine fraction of a particle size distribution is preferably deposited on an electrode.
  • the electrical and the gravitational fields are preferably arranged parallel to one another, ie the electrodes are essentially perpendicular to the direction of the gravitational field (eg horizontally in the gravitational field).
  • a fraction of the suspended particles is deposited in the gravitational field on the upper electrode.
  • the fraction deposited in the form of a ceramic structure is generally distinguished by the fact that its particle size distribution differs from the particle size distribution of the suspension, which is not the case in conventional electrophoresis. Since the finer particles are preferably deposited, the particle size distribution of the ceramic structure has lower values than the particle size distribution of the suspension.
  • the particle size distribution to be separated can be influenced in that not only the absolute amount, but also the point in time at which the electric field from the
  • Gravity sedimentation is superimposed, is freely chosen.
  • the desired limit of the separated size fraction can be set.
  • a particularly preferred embodiment of the invention results from the superimposition of an electric field which is variable in its absolute amount with a gravitational field which is variable in its absolute amount, as is represented in particular by centrifugation, in which centrifugal forces (centrifugal forces) occur.
  • the resulting gravitational field is directed outwards with respect to the axis of rotation of the centrifuge.
  • the fine fraction of the suspension in the form of a ceramic layer is deposited according to the invention on the inner electrode in this arrangement.
  • a further influence on the particle size distribution to be separated can be achieved by not only choosing the absolute amounts of the electrical field and the gravitational field of the centrifugal acceleration over a wide range, but also freely choosing the times at which both fields are switched on and / or off .
  • the present invention is also applicable to suspensions (dispersions) which consist of particles of different compositions. If such particle mixtures differ in their specific electrical charge, their electrophoretic mobilities and their electrophoretic deposition rates are different. If such particle mixtures differ in their density, then their sedimentation speeds are different in the gravitational or centrifugal force field, because in both cases the sedimentation speed according to equation 2 is proportional to the difference between the density of the particles and the density of the liquid of the suspension.
  • the superimposition of an electric field with a gravitational field consequently permits extensive influence on the deposition conditions in the case of particle mixtures which differ not only in their size, but also in their surface charge and / or in their density.
  • the method according to the invention can also be used to separate those particle mixtures which do not differ in their particle size, but do differ in their surface charge and / or their density.
  • the method according to the invention can thus be used to produce ceramic structures with a multiple or continuous variation of the electric field and / or (in the case of centrifugation) of the gravitational field in a deposition process without changing the powder suspension, which structures have a gradient in relation to their composition and / or have pore depth.
  • Ceramic gradient structures of this type are suitable, for example, as filter membranes.
  • the method according to the invention is suitable not only for the production of layers in which the particle size distribution or, if several different powders are present, the composition can be varied within wide limits, but also for Separation of suspensions with a wider range of variation compared to pure sedimentation or centrifugation processes.
  • An Al 2 O 3 layer was produced by superimposing electrophoresis deposition and gravity sedimentation.
  • the counter electrode and substrate were arranged horizontally, ie both surfaces of the pair of electrodes were aligned perpendicular to the direction of the gravitational field.
  • the roughness depth was optically examined with the aid of a surface measuring device (FRT Microglider).
  • FRT Microglider a surface measuring device
  • an additional layer was also produced, in the deposition of which the sedimentation was suppressed in accordance with the prior art by stirring the suspension and the electrodes were arranged vertically.
  • the electrode gap was 13 mm. There were four profiles in each examined a ceramic layer. The mean is given. There was a significant reduction in the roughness depth with superimposed sedimentation, which was determined in each case in accordance with DIN 4678 or ISO 4287.
  • Overlaying electrophoresis deposition and gravity sedimentation were used to produce Al 2 ⁇ 3 layers using different field strengths.
  • the counter electrode and substrate were arranged horizontally to one another.
  • the roughness depth was optically examined using a surface measuring device (FRT microglider).
  • the layers were deposited from this suspension under the following conditions:
  • An SiO 2 layer was produced by superimposing electrophoresis deposition and gravity sedimentation.
  • the counter electrode and substrate were arranged horizontally.
  • the roughness depth was optically examined with the help of a surface measuring device (FRT Microglider).
  • FRT Microglider a surface measuring device
  • an additional layer was also produced, in the deposition of which the sedimentation was suppressed in accordance with the prior art by stirring the suspension and the electrodes were arranged vertically.
  • There was an ethanolisc e Si0 2 suspension (dso 15 microns) with 5 volume percent solids and a dispersant content of 2 mass percent based on the mass of the powder.
  • the layers were deposited from this suspension under the following conditions:
  • the electrode distance was 13 mm.
  • Four profiles in each layer were examined. The mean is given. There was a significant reduction in the roughness depth with overlaid sedimentation, which was determined in accordance with DIN 4678 and ISO 4287.
  • an Al 2 O 3 layer was produced by means of electrophoresis and superimposed gravity sedimentation.
  • the electrodes were arranged horizontally. Electrophoretic deposition was carried out on the upper electrode.
  • the particle size distribution in the suspension and in the layer was determined optically with a laser granulometer.
  • an ethanolic Al 2 O 3 suspension with 30 volume percent solids content and a dispersant content of 2 mass percent based on the mass of the powder was prepared. The layers were deposited from this suspension under the following conditions:
  • the particle size distribution in the suspension before the deposition, during and after the deposition and in the deposited layer after redispersion in pure ethanol was examined in each case.
  • a PZT layer (lead zirconate titanate layer) was produced by superimposing electrophoresis deposition and gravity sedimentation.
  • the counter electrode and substrate were arranged horizontally.
  • a surface measuring device FRT Microglider
  • an additional layer was also produced, in the deposition of which the sedimentation was suppressed in accordance with the prior art by stirring the suspension and the electrodes were arranged vertically.
  • the electrode gap was 13 mm.
  • Four profiles in each layer were examined. The mean is given. There was a significant reduction in the roughness depth with overlaid sedimentation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Electrostatic Separation (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The invention relates to a method for producing ceramic structures and gradient structures whose particle size distribution has at least partly smaller values than the particle size distribution of the suspension from which the same are produced. According to the inventive method, a suspension containing ceramic particles is provided between a couple of electrodes, whereupon an electric field is applied to the couple of electrodes while the electrode surfaces of the couple of electrodes are placed perpendicular to a component of a gravitational field such that a fraction of the particles is deposited on the electrode of the couple of electrodes, which is located upstream of the component of the gravitational field, in the form of a ceramic structure.

Description

ELEKTROPHORETISCHES VERFAHREN ZUR HERSTELLUNG VON KERAMISCHEN STRUKTUREN ELECTROPHORETIC METHOD FOR PRODUCING CERAMIC STRUCTURES

Die Erfindung betrifft ein Verfahren zur Herstellung von keramischen Strukturen (wie zum Beispiel Schichten, Filter oder MikroStrukturen) sowie mit diesem Verfahren hergestellte keramische Strukturen und Gradientenstrukturen .The invention relates to a method for producing ceramic structures (such as layers, filters or microstructures) and to ceramic structures and gradient structures produced using this method.

Keramische (Mikro-) Strukturen, keramische Beschichtungen und zweidimensionale Strukturen wie Platten, Substrate oder Filter gewinnen für viele Bereiche der Technik an Bedeutung. Dies gilt sowohl für so genannte Strukturkeramiken wie zum Beispiel AI2O3, ZrO, Mullit, SiC, Si3 4 als auch für Funktionskeramiken wie BaTi03 oder PZT (Blei-Zirkonat-Titanat) und für so genannte Biokeramiken wie z.B. Hydroxylapatit Ca(OH) (P04)3, aber auch für mineralische Gläser. Je nach Form, Größe und Anwendungsgebiet der zu fertigenden Teile oder Schichten kommen als Herstellungsverfahren Trockenpressen, pulvertechnologisches Spritzgießen, Heißgießen, Schlickergießen, Foliengießen, elektrophoretische Abscheidung aus Pulversuspensionen und weitere Verfahren mit nachfolgendem Sintern zum Einsatz.Ceramic (micro) structures, ceramic coatings and two-dimensional structures such as plates, substrates or filters are gaining in importance for many areas of technology. This applies both to so-called structural ceramics such as Al 2 O 3 , ZrO, mullite, SiC, Si3 4 as well as to functional ceramics such as BaTi0 3 or PZT (lead zirconate titanate) and to so-called bioceramics such as hydroxylapatite Ca (OH ) (P0 4 ) 3 , but also for mineral glasses. Depending on the shape, size and area of application of the parts or layers to be manufactured, dry pressing, powder technology injection molding, hot molding, slip molding, film casting, electrophoretic deposition from powder suspensions and other processes with subsequent sintering are used as production processes.

Allen bekannten Verfahren ist gemeinsam, dass zur Formgebung so genannte Feedstocks verwendet werden, die aus keramischen Pulvern und Bindern, Dispergatoren sowie Gleitmitteln zur Verbesserung der Verarbeitbarkeit bestehen. Bei den Pressverfahren werden den Pulvern derartige Zusätze nur in Volumenanteilen von wenigen Prozent zugesetzt. Beim Spritzgießen, Heißgießen, Schlickergießen und Foliengießen werden hingegen weit höhere Volumenanteile von Bindern, Dispergatoren, Gleitmitteln, Polymeren, Wachsen undAll known methods have in common that so-called feedstocks are used for the shaping, which consist of ceramic powders and binders, dispersants and lubricants to improve the processability. In the pressing process, such additives are only added to the powders in parts by volume of a few percent. In contrast, injection molding, hot molding, slip casting and film casting use far higher volumes of binders, dispersants, lubricants, polymers, waxes and

Suspensionsflüssigkeiten wie Wasser und Alkohol zugesetzt. Bei diesen Verfahren liegen die Pulveranteile bei 30 bis 70 Volumenprozent. Bei der elektrophoretischen Abscheidung aus wässrigen oder alkoholischen Suspensionen können die Volumenanteile des Keramikpulvers im Bereich von ca. 5 bis 50 % liegen.Suspension liquids such as water and alcohol are added. In these processes, the powder proportions are 30 to 70 percent by volume. In the electrophoretic deposition from aqueous or alcoholic suspensions, the volume fractions of the ceramic powder can be in the range from approx. 5 to 50%.

Allen Verfahren ist weiterhin gemeinsam, dass die Pulver in etwa die gleiche Partikelgroßenverteilung, in der sie im Ausgangspulver, imIt is also common to all processes that the powder is roughly the same particle size distribution in which they are in the starting powder, in

Schlicker, im Feedstock oder in der Suspension vorhanden sind, auch im so genannten Grünteil aufweisen. Im Allgemeinen kommen Pulver zum Einsatz, die als so genannte monomodale Pulver in einer relativ breiten Verteilung vorliegen, die häufig Normalverteilungen, logarithmischen Normalverteilungen oder so genannte Rosin-Rammler- Verteilungen folgen. Teilweise werden auch Pulver verwendet, die in Form komplexer mehrmodaler Verteilungen vorliegen.Slurry, in the feedstock or in the suspension, also in the so-called green part. In general, powders are used which are present as so-called monomodal powders in a relatively broad distribution, which often follow normal distributions, logarithmic normal distributions or so-called Rosin-Rammler distributions. In some cases, powders are also used, which are in the form of complex multimodal distributions.

Sowohl die Rauheit der entstehenden Teile und Schichten als auch ihre Porengröße und teilweise ihr Gefüge nach dem Sintern werden von der Partikelgroßenverteilung beeinflusst. Zum Beispiel bestimmen die Grobanteile der verwendeten Pulver die Oberflächenrauheit. Auch die Porengrößenverteilung etwa von Filtermembranen korreliert mit der Partikelgröße: Je gröber die Pulverpartikel sind, desto größer sind auch die entstehenden Poren. Deshalb dürfen bei den herkömmlichen Fertigungsverfahren beispielsweise zur Erzielung besonders glatter Schichten oder MikroStrukturen oder zur Erzielung einer sehr feinen Porengröße nur Partikel unterhalb einer bestimmten Größe wie z. B. 500 nm verwendet werden. Dazu müssen vor der Herstellung des Ausgangsfeedstocks die Pulver erst auf kompliziertem Wege fraktioniert und klassifiziert werden, etwa durch Sieben oder Windsichten, und nur die gewünschte Pulverfraktion dürfte in den Feedstock eingebracht werden.The roughness of the resulting parts and layers as well as their pore size and sometimes their structure after sintering are influenced by the particle size distribution. For example, the rough proportions of the powders used determine the surface roughness. The pore size distribution, for example of filter membranes, also correlates with the particle size: the coarser the powder particles, the larger the resulting pores. Therefore, in the conventional manufacturing processes, for example, to achieve particularly smooth layers or microstructures or to achieve a very fine pore size, only particles below a certain size, such as. B. 500 nm can be used. For this purpose, the powders first have to be fractionated and classified in a complicated way, for example by sieving or air screening, and only the desired powder fraction should be introduced into the feedstock before the production of the starting feedstock.

Für die meisten Anwendungen verbieten sich diese zusätzlichen, sehr aufwändigen Prozessschritte bereits aus Kostengründen. Mit herkömmlichen, kommerziell verfügbaren Pulvern, die im Allgemeinen Pulveranteile im Bereich oberhalb 1 μm enthalten, sind deshalb besonders glatte Schichten mit Rautiefen unterhalb 1 μm und MikroStrukturen mit Oberflächendetails im μm-Bereich nicht herstellbar .For most applications, these additional, very complex process steps are out of the question for cost reasons. With conventional, commercially available powders, which generally contain powder components in the range above 1 μm, it is therefore not possible to produce particularly smooth layers with roughness depths below 1 μm and microstructures with surface details in the μm range.

Davon ausgehend ist es die Aufgabe der Erfindung, Verfahren zur Herstellung von keramischen Strukturen anzugeben, die die genannten Nachteile und Einschränkungen nicht aufweisen.Proceeding from this, it is the object of the invention to specify methods for the production of ceramic structures which the named Disadvantages and limitations do not have.

Diese Aufgabe wird durch Verfahren gemäß Anspruch 1 gelöst. Die Unteransprüche beschreiben vorteilhafte Ausgestaltungen der Erfindung.This object is achieved by the method according to claim 1. The subclaims describe advantageous embodiments of the invention.

Das erfindungsgemäße Verfahren beruht auf der Kombination von elektrophoretischer Abscheidung und Sedimentation aufgrund der Schwerkraft bzw. von Fliehkräften. Die elektrophoretische Abscheidung von Keramikpartikeln aus Partikelsuspensionen ist als Verfahren zur Herstellung keramischer Schichten bekannt (Heavens, S.N.: Electrophoretic Deposition as a Processing Route for Ceramics; in Binner, J. (Ed.), Advanced Cerami c Processing and Technology, Vol. 1, Noyes Publ . , Park Ridge, N.J., USA). In jüngerer Zeit wird versucht, mit dieser Technik auch keramische MikroStrukturen zu realisieren (Both, H. von; Haußelt, J. : lst In tern . Conf . on Elektrophoretic Deposi tion, Banff, Kanada, 2002) . Hierzu wird durch Anlegen eines elektrischen Feldes zwischen zwei in die Pulversuspension eintauchenden Elektroden ein Partikelstrom geladener Teilchen auf eine der beiden Elektroden zu bewegt und dort abgeschieden.The method according to the invention is based on the combination of electrophoretic deposition and sedimentation due to gravity or centrifugal forces. The electrophoretic deposition of ceramic particles from particle suspensions is known as a process for the production of ceramic layers (Heavens, SN: Electrophoretic Deposition as a Processing Route for Ceramics; in Binner, J. (Ed.), Advanced Ceramics Processing and Technology, Vol. 1, Noyes Publ., Park Ridge, NJ, USA). More recently, attempts have been made to use this technique to realize ceramic microstructures (Both, H. von; Haußelt, J.: l st In tern. Conf. On Elektrophoretic Deposition, Banff, Canada, 2002). For this purpose, by applying an electric field between two electrodes immersed in the powder suspension, a particle stream of charged particles is moved to one of the two electrodes and deposited there.

Die Prinzipien der Elektrophorese sind seit langem bekannt. Entsprechende theoretische Beschreibungen besagen, dass im Größenbereich technischer Keramikpulver, d. h. zwischen 10 nm und 100 μm, die elektrophoretische Beweglichkeit der Pulverpartikel weitgehend unabhängig von ihrer Größe ist (Nitzsche, R.; Simon, F.: Technisches Messen, Band 64, S. 106-113, 1997) . Deshalb sollten alle in der Suspension vorkommenden Partikelgrößen mit weitgehend gleicher Geschwindigkeit auf dem elektrisch leitfähigen Substrat abgeschieden werden. Die abgeschiedenen Schichten sollten damit - wenn auch in wesentlich dichterer Packung - die gleiche Partikelgroßenverteilung aufweisen wie die Suspension.The principles of electrophoresis have long been known. Corresponding theoretical descriptions state that in the size range of technical ceramic powders, i.e. H. between 10 nm and 100 μm, the electrophoretic mobility of the powder particles is largely independent of their size (Nitzsche, R .; Simon, F .: Technisches Messen, Vol. 64, pp. 106-113, 1997). Therefore, all particle sizes occurring in the suspension should be deposited on the electrically conductive substrate at largely the same speed. The deposited layers should therefore have the same particle size distribution as the suspension, albeit in a much denser packing.

Eigene Messungen bestätigen, dass die Wanderungsgeschwindigkeit vE im elektrischen Feld E nicht nur vom Suspensionsmedium (z. B. wässrig oder alkoholisch), von der chemischen Zusammensetzung des Pulvers (z.Our own measurements confirm that the rate of migration v E in the electric field E is not only from the suspension medium (e.g. aqueous or alcoholic), from the chemical composition of the powder (e.g.

B. AI2O3, Zrθ2, S1O2) und von den Dispergator- und Binderzusatzen abhangt, sondern dass auch eine geringfügig Abhängigkeit von der Partikelgroße vorliegen kann. Je nach System können unterschiedliche, aber in allen Fallen betragsmaßig kleine Abhängigkeiten der Wanderungsgeschwindigkeit von der Partikelgroße beobachtet werden.B. AI 2 O 3 , Zrθ2, S1O 2 ) and depends on the dispersant and binder additives, but that there may also be a slight dependence on the particle size. Depending on the system, different, but in all cases small, dependencies of the migration speed on the particle size can be observed.

Untersuchungen an alkoholischen Al2θ3-Suspensionen haben gezeigt, dass kleinere Partikel geringfügig schneller abgeschieden werden als gröbere, dass dieser Effekt aber für eine technische Nutzung wie z. B. für die elektrophoretische In-Situ-Fraktionierung nicht ausreichend ist. In diesem Falle ergibt sich bei der elektrophoretischen Abscheidung eine Abhängigkeit der Beweglichkeit μ und der Wanderungsgeschwindigkeit vE von der Partikelgroße (Radius r) im elektrischen Feld E, für die dvr /dr ≤ 0 da ; und wegen vE = μE dμ/dr ≤ O (lb) gilt.Studies on alcoholic Al 2 θ 3 suspensions have shown that smaller particles are separated slightly faster than coarse ones, but that this effect can be used for technical purposes, e.g. B. is not sufficient for electrophoretic in-situ fractionation. In this case, electrophoretic deposition results in a dependence of the mobility μ and the rate of migration v E on the particle size (radius r) in the electric field E, for which dv r / dr ≤ 0 da; and because of v E = μE dμ / dr ≤ O (lb) applies.

In wassrigen Suspensionen mit sphärischen Sι02-Partikeln mit Durchmessern zwischen 200 nm und 1200 nm scheiden sich hingegen gröbere Partikel geringfügig schneller ab als feinere Partikel, so dass sich bei der elektrophoretischen Abscheidung eine Abhängigkeit der Beweglichkeit μ und der Wanderungsgeschwindigkeit vE von der Partikelgroße (Radius r) im elektrischen Feld E ergibt, für die dvE /dr ≥ 0 (lc) und wegen vE - μE dμ/dr ≥ O (ld) gilt.In aqueous suspensions with spherical Si0 2 particles with diameters between 200 nm and 1200 nm, however, coarser particles separate slightly faster than finer particles, so that during electrophoretic deposition the mobility μ and the rate of migration v E depend on the particle size ( Radius r) results in the electric field E, for which dv E / dr ≥ 0 (lc) and because of v E - μE dμ / dr ≥ O (ld).

Für eine Anzahl von Anwendungen ist es wünschenswert, wenn nur be- stimmte Fraktionen wie etwa der Feinanteil einer vorgegebenenFor a number of applications, it is desirable if only agreed fractions such as the fine fraction of a given

Partikelgroßenverteilung abgeschieden werden können. Mit der demParticle size distribution can be separated. With the

Stand der Technik entsprechenden elektrophoretischen Abscheidung ist dies aus den oben beschriebenen Gründen nicht möglich. AuchFor the reasons described above, this is not possible according to prior art electrophoretic deposition. Also

Anwendungen, bei denen man in einem einzigen Abscheidevorgang ohneApplications in which one can be separated in a single process without

Wechsel der Pulversuspension zum Beispiel zunächst nur grobe und mit fortschreitender Zeit und Schichtdicke stufenweise oder kontinuierlich kleinere Pulverpartikel abscheidet, sind mit der bekannten Technik der elektrophoretischen Pulverabscheidung nicht möglich.Changing the powder suspension, for example, initially only deposits coarse powder particles, which gradually or continuously progressively and with increasing thickness and layer thickness, are not possible with the known technique of electrophoretic powder separation.

Erfindungsgemaß wird dem elektrischen Feld, das eine weitgehend partikelgrόßenunabhängige Teilchengeschwindigkeit in Richtung des elektrischen Feldes bewirkt, ein Feld überlagert, das eine teilchengrόßenabhängige Teilchengeschwindigkeit bewirkt. Hierfür eignet sich die partikelgrόßenabhängige Sedimentation entweder in einem konstanten, ortsunabhängigen Gravitationsfeld (Schwerkraft- Sedimentation) oder in einem variablen und ortsabhängigen Gravitationsfeld ( Zentrifugation) .According to the invention, a field is superimposed on the electric field, which brings about a particle velocity that is largely independent of particle size in the direction of the electric field, and causes a particle velocity that is dependent on particle size. Particle size-dependent sedimentation is suitable for this either in a constant, location-independent gravitational field (gravity sedimentation) or in a variable and location-dependent gravitational field (centrifugation).

Dies steht im Gegensatz zur üblichen Elektrophorese, bei der durch geeignete Mittel wie z. B. die spezielle Anordnung der Elektroden und insbesondere durch Rühren der Suspension die für bestimmte Anwendungen unerwünschte effektive Gravitationskraft, die sich aufgrund des Gravitationsfeldes der Erde ergibt, ausgeschaltet wird.This is in contrast to conventional electrophoresis, in which suitable means such. B. the special arrangement of the electrodes and in particular by stirring the suspension, the undesirable effective gravitational force, which results from the gravitational field of the earth, is switched off for certain applications.

Für einzelne kugelförmige Partikel mit einem Radius r und einer Dichte p, die in einer Flüssigkeit der Dichte pF und der Viskosität η dispergiert (suspendiert) sind, ergibt sich unter Wirkung einer Beschleunigung b eine Sinkgeschwindigkeit v, die der Beziehung nach Stokes folgt: For individual spherical particles with a radius r and a density p, which are dispersed (suspended) in a liquid with a density p F and a viscosity η, a sinking velocity v results under the effect of an acceleration b, which follows the relationship according to Stokes:

Demzufolge ist die Sinkgeschwindigkeit v bei konstanter Viskosität η proportional zu r2. Auch wenn auf Grund von Teilchenformen, die in der Regel von der Kugelform abweichen, und bei hoher konzentriertenAccordingly, the rate of descent v is proportional to r 2 at constant viscosity η. Even if due to particle shapes in usually deviate from the spherical shape, and at high concentrated

Suspensionen Abweichungen von Gleichung 2 auftreten, bleibt der qualitative Zusammenhang erhalten, der besagt, dass die Sedimentationsgeschwindigkeit mit zunehmender Partikelgröße und zunehmender Differenz der Dichtewerte zunimmt. In jedem Falle ist d v/dr > 0. (3)Suspensions deviations from equation 2, the qualitative relationship remains, which says that the sedimentation rate increases with increasing particle size and increasing difference in density values. In any case, d v / dr> 0. (3)

Falls die Richtung der Wanderungsgeschwindigkeit im elektrischen Feld der Sinkgeschwindigkeit im Gravitationsfeld entgegengerichtet ist, ergibt sich für jede elektrische Feldstarke E und für jede Beschleunigung b im Gravitationsfeld eine kritische Partikelgröße rc, bei der sich die Wirkungen beider Felder aufheben und das Partikel schwebt. Alle Partikel mit r > rc bewegen sich in Richtung des Gravitationsfeldes, alle Partikel mit r < rc bewegen sich in Richtung des elektrischen Feldes. Damit lassen sich je nach Wahl der elektrischen Feldstärke E und der Beschleunigung b (z.B. durch Variation der Drehzahl in einer Zentrifuge) weitgehend frei wählbare Fraktionen der ursprünglich vorliegenden Partikelgroßenverteilung auf einem elektrisch leitfahigen Substrat abscheiden.If the direction of the speed of migration in the electric field is opposite to the rate of descent in the gravitational field, a critical particle size r c results for each electric field strength E and for each acceleration b in the gravitational field, at which the effects of both fields cancel and the particle floats. All particles with r> r c move in the direction of the gravitational field, all particles with r <r c move in the direction of the electrical field. Depending on the choice of the electric field strength E and the acceleration b (for example by varying the speed in a centrifuge), largely freely selectable fractions of the particle size distribution originally present can thus be deposited on an electrically conductive substrate.

Im Allgemeinen wird der Winkel zwischen den Richtungen des elektrischen Feldes und des Gravitationsfeldes so gewählt, dass sich zur weitgehend teilchengrößenunabhängigen Geschwindigkeitsverteilung im elektrischen Feld eine von der Teilchengröße abhängige Geschwindigkeitskomponente addieren oder subtrahieren lässt. Bereits unter der Wirkung der konstanten und ortsunabhangigen Erdbeschleunigung lässt sich durch Variation der elektrischen Feldstärke und des Winkels zwischen beiden Feldrichtungen dafür sorgen, dass bevorzugt der Feinanteil einer Partikelgroßenverteilung auf einer Elektrode abgeschieden wird. Bevorzugt sind das elektrische und das Gravitationsfeld parallel zueinander angeordnet, d.h. die Elektroden stehen im Wesentlichen senkrecht zur Richtung des Gravitationsfeldes (z. B. horizontal im Schwerefeld). - 1 -In general, the angle between the directions of the electric field and the gravitational field is chosen such that a velocity component that is dependent on the particle size can be added or subtracted from the velocity distribution in the electric field that is largely independent of particle size. Already under the effect of the constant and location-independent gravitational acceleration, variation of the electric field strength and the angle between the two field directions can ensure that the fine fraction of a particle size distribution is preferably deposited on an electrode. The electrical and the gravitational fields are preferably arranged parallel to one another, ie the electrodes are essentially perpendicular to the direction of the gravitational field (eg horizontally in the gravitational field). - 1 -

Im Gegensatz zur herkömmlichen Elektrophorese wird erfindungsgemäß eine Fraktion der suspendierten Partikel im Schwerefeld auf der oberen Elektrode abgeschieden. Die in Form einer keramischen Struktur abgeschiedene Fraktion zeichnet sich in der Regel dadurch aus, dass sich ihre Partikelgroßenverteilung von der Partikelgroßenverteilung der Suspension unterscheidet, was in der üblichen Elektrophorese nicht der Fall ist. Da bevorzugt die feineren Partikel abgeschieden werden, weist die Partikelgroßenverteilung der keramischen Struktur geringere Werte auf als die Partikelgroßenverteilung der Suspension.In contrast to conventional electrophoresis, a fraction of the suspended particles is deposited in the gravitational field on the upper electrode. The fraction deposited in the form of a ceramic structure is generally distinguished by the fact that its particle size distribution differs from the particle size distribution of the suspension, which is not the case in conventional electrophoresis. Since the finer particles are preferably deposited, the particle size distribution of the ceramic structure has lower values than the particle size distribution of the suspension.

In einer bevorzugten Ausgestaltung der Erfindung kann eine Beeinflussung der abzuscheidenden Partikelgroßenverteilung dadurch erreicht werden, dass nicht nur der Absolutbetrag, sondern auch der Zeitpunkt, zu dem das elektrische Feld von derIn a preferred embodiment of the invention, the particle size distribution to be separated can be influenced in that not only the absolute amount, but also the point in time at which the electric field from the

Schwerkraftsedimentation überlagert wird, frei gewählt wird. Durch Variation der elektrischen Feldstärke lässt sich damit die jeweils gewünschte Grenze der abgeschiedenen Größenfraktion einstellen.Gravity sedimentation is superimposed, is freely chosen. By varying the electric field strength, the desired limit of the separated size fraction can be set.

Eine besonders bevorzugte Ausgestaltung der Erfindung ergibt sich aus der Überlagerung eines in seinem Absolutbetrag variablen elektrischen Feldes mit einem in seinem Absolutbetrag variablen Gravitationsfeld, wie es insbesondere die Zentrifugation, bei der Fliehkräfte (Zentrifugalkräfte) auftreten, darstellt. Im Betrieb ist das hierdurch erzeugte Gravitationsfeld nach außen in Bezug auf die Rotationsachse der Zentrifuge gerichtet. Dadurch wird in dieser Anordnung der Feinanteil der Suspension in Form einer keramischen Schicht erfindungsgemäß auf der inneren Elektrode abgeschieden.A particularly preferred embodiment of the invention results from the superimposition of an electric field which is variable in its absolute amount with a gravitational field which is variable in its absolute amount, as is represented in particular by centrifugation, in which centrifugal forces (centrifugal forces) occur. In operation, the resulting gravitational field is directed outwards with respect to the axis of rotation of the centrifuge. As a result, the fine fraction of the suspension in the form of a ceramic layer is deposited according to the invention on the inner electrode in this arrangement.

Eine weitere Beeinflussung der abzuscheidenden Partikelgroßenverteilung lässt sich dadurch erreichen, dass nicht nur die Absolutbeträge des elektrischen Feldes und des Gravitationsfeldes der Zentrifugalbeschleunigung in weiten Bereichen gewählt werden, sondern dass auch die Zeitpunkte, zu denen beide Felder eingeschaltet und/oder ausgeschaltet werden, frei gewählt werden. Die vorliegende Erfindung ist auch auf Suspensionen (Dispersionen) anwendbar, die aus Partikeln unterschiedlicher Zusammensetzung bestehen. Unterscheiden sich solche Partikelmischungen in ihrer spezifischen elektrischen Ladung, so sind ihre elektrophoretische Beweglichkeiten und ihre elektrophoretische Abscheidegeschwindigkeiten unterschiedlich. Unterscheiden sich solche Partikelmischungen in ihrer Dichte, so sind ihre Sedimentationsgeschwindigkeiten im Schwerkraft- bzw. im Fliehkraftfeld unterschiedlich, weil in beiden Fällen die Sedimentationsgeschwindigkeit gemäß Gleichung 2 proportional zur Differenz zwischen der Dichte der Partikel und der Dichte der Flüssigkeit der Suspension ist.A further influence on the particle size distribution to be separated can be achieved by not only choosing the absolute amounts of the electrical field and the gravitational field of the centrifugal acceleration over a wide range, but also freely choosing the times at which both fields are switched on and / or off , The present invention is also applicable to suspensions (dispersions) which consist of particles of different compositions. If such particle mixtures differ in their specific electrical charge, their electrophoretic mobilities and their electrophoretic deposition rates are different. If such particle mixtures differ in their density, then their sedimentation speeds are different in the gravitational or centrifugal force field, because in both cases the sedimentation speed according to equation 2 is proportional to the difference between the density of the particles and the density of the liquid of the suspension.

Die Überlagerung eines elektrischen Feldes mit einem Gravitationsfeld erlaubt demzufolge bei Partikelmischungen, die sich nicht nur in ihrer Größe, sondern auch in ihrer Oberflächenladung und/oder in ihrer Dichte unterscheiden, eine weitgehende Beeinflussung der Abscheidebedingungen. Weiterhin lassen sich mit dem erfindungsgemäßen Verfahren auch solche Partikelmischungen trennen, die sich zwar nicht in ihrer Teilchengröße, wohl aber in ihrer Oberflächenladung und/oder ihrer Dichte unterscheiden.The superimposition of an electric field with a gravitational field consequently permits extensive influence on the deposition conditions in the case of particle mixtures which differ not only in their size, but also in their surface charge and / or in their density. Furthermore, the method according to the invention can also be used to separate those particle mixtures which do not differ in their particle size, but do differ in their surface charge and / or their density.

Das erfindungsgemäße Verfahren lässt sich damit einsetzen, um mit Hilfe von mehrfacher bzw. kontinuierlicher Variation des elektrischen Feldes und/oder (bei Zentrifugation) des Gravitationsfeldes in einem Abscheidevorgang ohne Wechsel der Pulversuspension keramische Strukturen herzustellen, die einen Gradienten in Bezug auf ihre Zusammensetzung und/oder Porentiefe aufweisen. Derartige keramische Gradientenstrukturen sind beispielsweise als Filtermembranen geeignet .The method according to the invention can thus be used to produce ceramic structures with a multiple or continuous variation of the electric field and / or (in the case of centrifugation) of the gravitational field in a deposition process without changing the powder suspension, which structures have a gradient in relation to their composition and / or have pore depth. Ceramic gradient structures of this type are suitable, for example, as filter membranes.

Darüber hinaus eignet sich das erfindungsgemäße Verfahren nicht nur zur Herstellung von Schichten, bei denen die Partikelgroßenverteilung oder bei Vorliegen mehrerer unterschiedlicher Pulver die Zusammensetzung in weiten Grenzen variierbar ist, sondern auch zur Trennung von Suspensionen mit einer gegenüber reinen Sedimentationsoder Zentrifugationsverfahren erweiterten Variationsbreite.In addition, the method according to the invention is suitable not only for the production of layers in which the particle size distribution or, if several different powders are present, the composition can be varied within wide limits, but also for Separation of suspensions with a wider range of variation compared to pure sedimentation or centrifugation processes.

Die Erfindung wird im Folgenden anhand von fünf Ausführungsbeispielen näher erläutert.The invention is explained in more detail below on the basis of five exemplary embodiments.

Ausführungsbeispiel 1 :Example 1:

Mittels Überlagerung von Elektrophorese-Abscheidung und Schwerkraft- Sedimentation wurde eine Al2θ3-Schicht hergestellt. Gegenelektrode und Substrat waren horizontal angeordnet, d.h. beide Flächen des Elektrodenpaars waren senkrecht zur Richtung des Gravitationsfeldes ausgerichtet. Um zu zeigen, dass mit überlagerter Sedimentation zunehmend feinere Partikel abgeschieden werden, wurde die Rautiefe mit Hilfe eines Oberflächenmessgerätes (FRT Microglider) optisch untersucht. Zum Vergleich wurde zudem eine zusätzliche Schicht hergestellt, bei deren Abscheidung die Sedimentation dem Stand der Technik entsprechend durch Rühren der Suspension unterdrückt wurde und die Elektroden vertikal angeordnet waren. Es wurde eine ethanolische l2θ3-Sus nsion (dso - 1300 n ) mit 30 Volumenprozent Feststoffgehalt und einem Dispergatorgehalt von 2 Massenprozent bezogen auf die Masse des Pulvers angesetzt. Die Schichten wurden aus dieser Suspension unter folgenden Bedingungen (im Falle der horizontalen Anordnung auf der oberen Elektrode) abgeschiede :An Al 2 O 3 layer was produced by superimposing electrophoresis deposition and gravity sedimentation. The counter electrode and substrate were arranged horizontally, ie both surfaces of the pair of electrodes were aligned perpendicular to the direction of the gravitational field. In order to show that increasingly finer particles are separated with overlaid sedimentation, the roughness depth was optically examined with the aid of a surface measuring device (FRT Microglider). For comparison, an additional layer was also produced, in the deposition of which the sedimentation was suppressed in accordance with the prior art by stirring the suspension and the electrodes were arranged vertically. An ethanolic l2θ 3 solution (dso - 1300 n) with 30 volume percent solids content and a dispersant content of 2 mass percent based on the mass of the powder was prepared. The layers were deposited from this suspension under the following conditions (in the case of a horizontal arrangement on the upper electrode):

Der Elektrodenabstand betrug 13 mm. Es wurden jeweils vier Profile in einer keramischen Schicht untersucht. Angegeben ist der Mittelwert. Es ergab sich eine deutliche Verringerung der Rautiefe bei überlagerter Sedimentation, die jeweils gemäß DIN 4678 bzw. ISO 4287 ermittelt wurde.The electrode gap was 13 mm. There were four profiles in each examined a ceramic layer. The mean is given. There was a significant reduction in the roughness depth with superimposed sedimentation, which was determined in each case in accordance with DIN 4678 or ISO 4287.

Ausführungsbeispiel 2 :Example 2:

Mittels Überlagerung von Elektrophorese-Abscheidung und Schwerkraft- Sedimentation wurden Al2θ3-Schichten bei Verwendung unterschiedlicher Feldstärken hergestellt. Gegenelektrode und Substrat waren horizontal zueinander angeordnet. Um zu zeigen, dass eine Separierung der Partikel nach ihrem Durchmesser über die Variation der Feldstärke bei der elektrophoretischen Abscheidung erfolgt, wurde die Rautiefe mit Hilfe eines Oberflächenmessgerätes (FRT Microglider) optisch untersucht . Hierzu wurde eine ethanolische Al2θ3~Suspension (d50 = 1300 nm) mit 5 Volumenprozent Feststoffgehalt und einem Dispergatorgehalt von 2 Massenprozent bezogen auf die Masse des Pulvers angesetzt. Die Schichten wurden aus dieser Suspension mit folgenden Bedingungen abgeschieden:Overlaying electrophoresis deposition and gravity sedimentation were used to produce Al 2 θ 3 layers using different field strengths. The counter electrode and substrate were arranged horizontally to one another. In order to show that the particles are separated according to their diameter by varying the field strength during electrophoretic deposition, the roughness depth was optically examined using a surface measuring device (FRT microglider). For this purpose, an ethanolic Al 2 O 3 suspension (d 50 = 1300 nm) with 5 volume percent solids content and a dispersant content of 2 mass percent based on the mass of the powder was used. The layers were deposited from this suspension under the following conditions:

Es wurden jeweils vier Profile in einer Schicht untersucht. Angegeben ist der Mittelwert. Es ergab sich eine nach DIN 4678 bzw. ISO 4287 höhere Rautiefe der bei größeren Feldstärken abgeschiedenen Schichten. Dieses Ergebnis bestätigt die Separierung der Partikel nach ihrem Durchmesser. Ausführungsbeispiel 3Four profiles in each layer were examined. The mean is given. According to DIN 4678 or ISO 4287, the roughness of the layers deposited at higher field strengths was higher. This result confirms the separation of the particles according to their diameter. Embodiment 3

Mittels Überlagerung von Elektrophorese-Abscheidung und Schwerkraft- Sedimentation wurde eine Si02-Schicht hergestellt. Gegenelektrode und Substrat waren horizontal angeordnet. Um zu zeigen, dass mit Sedimentation zunehmend feinere Partikel abgeschieden werden, wurde die Rautiefe mit Hilfe eines Oberflächenmessgerätes (FRT Microglider) optisch untersucht. Zum Vergleich wurde zudem eine zusätzliche Schicht hergestellt, bei deren Abscheidung die Sedimentation dem Stand der Technik entsprechend durch Rühren der Suspension unterdrückt wurde und die Elektroden vertikal angeordnet waren. Es wurde eine ethanolisc e Si02-Suspension (dso = 15 μm) mit 5 Volumenprozent Feststoffgehalt und einem Dispergatorgehalt von 2 Massenprozent bezogen auf die Masse des Pulvers angesetzt. Die Schichten wurden aus dieser Suspension unter folgenden Bedingungen abgeschieden:An SiO 2 layer was produced by superimposing electrophoresis deposition and gravity sedimentation. The counter electrode and substrate were arranged horizontally. In order to show that increasingly finer particles are separated out with sedimentation, the roughness depth was optically examined with the help of a surface measuring device (FRT Microglider). For comparison, an additional layer was also produced, in the deposition of which the sedimentation was suppressed in accordance with the prior art by stirring the suspension and the electrodes were arranged vertically. There was an ethanolisc e Si0 2 suspension (dso = 15 microns) with 5 volume percent solids and a dispersant content of 2 mass percent based on the mass of the powder. The layers were deposited from this suspension under the following conditions:

Der Ξlektrodenabstand betrug 13 mm. Es wurden jeweils vier Profile in einer Schicht untersucht. Angegeben ist der Mittelwert. Es ergab sich eine deutliche Verringerung der Rautiefe bei überlagerter Sedimentation, die gemäß DIN 4678 bzw. ISO 4287 ermittelt wurde.The electrode distance was 13 mm. Four profiles in each layer were examined. The mean is given. There was a significant reduction in the roughness depth with overlaid sedimentation, which was determined in accordance with DIN 4678 and ISO 4287.

Ausführungsbeispiel :Design example:

Mittels Elektrophorese und überlagerter Schwerkraft-Sedimentation wurde erfindungsgemäß eine Al2θ3-Schicht hergestellt. Die Elektroden waren horizontal angeordnet. Die elektrophoretische Abscheidung erfolgte auf der oberen Elektrode. Um zu zeigen, dass mit überlagerter Sedimentation zunehmend feinere Partikel abgeschieden werden als bei Vermeidung der Sedimentation durch Rühren, wurde die Partikelgroßenverteilung in der Suspension und in der Schicht mit einem Lasergranulometer optisch bestimmt. Hierzu wurde eine ethanolische Al2θ3-Suspension mit 30 Volumenprozent Feststoffgehalt und einem Dispergatorgehalt von 2 Massenprozent bezogen auf die Masse des Pulvers angesetzt. Die Schichten wurden aus dieser Suspension unter folgenden Bedingungen abgeschieden:According to the invention, an Al 2 O 3 layer was produced by means of electrophoresis and superimposed gravity sedimentation. The electrodes were arranged horizontally. Electrophoretic deposition was carried out on the upper electrode. In order to show that increasingly finer particles are deposited with overlaid sedimentation than when avoiding sedimentation by stirring, the particle size distribution in the suspension and in the layer was determined optically with a laser granulometer. For this purpose, an ethanolic Al 2 O 3 suspension with 30 volume percent solids content and a dispersant content of 2 mass percent based on the mass of the powder was prepared. The layers were deposited from this suspension under the following conditions:

Es wurde jeweils die Partikelgroßenverteilung in der Suspension vor der Abscheidung, während und nach der Abscheidung sowie in der abgeschiedenen Schicht nach Redispergierung in reinem Ethanol untersucht. Die differentiellen und kumulierten Partikelgrößenverteilungen sowie die dso-Werte aller Messungen zeigen, dass ausgehend von einer nahezu symmetrischen Partikelgroßenverteilung mit d50 = 1,45 μm und im klaren Gegensatz zur herkömmlichen Elektrophorese die mit dem erfindungsgemäßen Verfahren abgeschiedene Schicht einen deutlich verringerten Mittelwert der Teilchengrößenverteilung und einen ebenso deutlich erkennbaren Pulveranteil mit Partikelgrößen unterhalb von 500 nm aufweist.The particle size distribution in the suspension before the deposition, during and after the deposition and in the deposited layer after redispersion in pure ethanol was examined in each case. The differential and cumulative particle size distributions and the dso values of all measurements show that, starting from an almost symmetrical particle size distribution with d 50 = 1.45 μm and in clear contrast to conventional electrophoresis, the layer deposited using the method according to the invention has a significantly reduced average particle size distribution and one just as clearly recognizable Powder content with particle sizes below 500 nm.

Ausführungsbeispiel 5 :Example 5:

Mittels Überlagerung von Elektrophorese-Abscheidung und Schwerkraft- Sedimentation wurde erfindungsgemäß eine PZT-Schicht (Blei-Zirkonat- Titanat-Schicht) hergestellt. Gegenelektrode und Substrat waren horizontal angeordnet. Um zu zeigen, dass mit Sedimentation zunehmend feinere Partikel abgeschieden werden, wurde die Rautiefe mit Hilfe eines Oberflächenmessgerätes (FRT Microglider) gemäß DIN 4678 bzw. ISO 4287 optisch untersucht. Zum Vergleich wurde zudem eine zusätzliche Schicht hergestellt, bei deren Abscheidung die Sedimentation dem Stand der Technik entsprechend durch Rühren der Suspension unterdrückt wurde und die Elektroden vertikal angeordnet waren. Es wurde eine ethanolische PZT-Suspension (dso = 2,5 μm) mit 5 Volumenprozent Feststoffgehalt und einem Dispergatorgehalt von 2 Massenprozent bezogen auf die Masse des Pulvers angesetzt. Die Schichten wurden aus dieser Suspension unter folgenden Bedingungen abgeschieden:According to the invention, a PZT layer (lead zirconate titanate layer) was produced by superimposing electrophoresis deposition and gravity sedimentation. The counter electrode and substrate were arranged horizontally. To show that increasingly finer particles are separated with sedimentation, the roughness depth was optically examined with the help of a surface measuring device (FRT Microglider) in accordance with DIN 4678 or ISO 4287. For comparison, an additional layer was also produced, in the deposition of which the sedimentation was suppressed in accordance with the prior art by stirring the suspension and the electrodes were arranged vertically. An ethanolic PZT suspension (dso = 2.5 μm) with 5 volume percent solids content and a dispersant content of 2 mass percent based on the mass of the powder was prepared. The layers were deposited from this suspension under the following conditions:

Der Elektrodenabstand betrug 13 mm. Es wurden jeweils vier Profile in einer Schicht untersucht. Angegeben ist der Mittelwert. Es ergab sich eine deutliche Verringerung der Rautiefe bei überlagerter Sedimentation. The electrode gap was 13 mm. Four profiles in each layer were examined. The mean is given. There was a significant reduction in the roughness depth with overlaid sedimentation.

Claims

Patentansprüche : Claims: 1. Verfahren zur Herstellung keramischer Strukturen, bei dem zwischen jeweils einem Elektrodenpaar, das in eine sich in einem Gravitationsfeld befindliche Suspension, die keramische Partikel mit einer Partikelgroßenverteilung enthält, eintaucht, ein elektrisches Feld derart angelegt wird, dass sich auf einer der Elektroden des jeweiligen Elektrodenpaars nur die Größenfraktion der keramischen Partikel abscheidet, die kleiner ist als eine kritische Partikelgröße, die sich aus dem Gleichgewicht zwischen den aus dem elektrischen Feld und aus dem Gravitationsfeld resultierenden Kräften ergibt.1. A method for producing ceramic structures, in which an electric field is applied between each pair of electrodes, which is immersed in a suspension in a gravitational field, which contains ceramic particles with a particle size distribution, in such a way that one of the electrodes of the respective Electrode pairs only separates the size fraction of the ceramic particles, which is smaller than a critical particle size, which results from the equilibrium between the forces resulting from the electric field and from the gravitational field. 2. Verfahren zur Herstellung von keramischen Strukturen nach Anspruch 1, dadurch gekennzeichnet, dass die Elektroden des jeweiligen Elektrodenpaars parallel zueinander und horizontal im Schwerefeld der Erde angeordnet sind, und sich die keramische Struktur auf der oberen Elektrode abscheidet.2. The method for producing ceramic structures according to claim 1, characterized in that the electrodes of the respective pair of electrodes are arranged parallel to one another and horizontally in the gravitational field of the earth, and the ceramic structure is deposited on the upper electrode. 3. Verfahren zur Herstellung von keramischen Strukturen nach Anspruch 1, dadurch gekennzeichnet, dass das Gravitationsfeld mittels einer rotierenden Zentrifuge erzeugt wird.3. A method for producing ceramic structures according to claim 1, characterized in that the gravitational field is generated by means of a rotating centrifuge. 4. Verfahren zur Herstellung von keramischen Strukturen nach Anspruch 3, dadurch gekennzeichnet, dass die Elektroden des jeweiligen Elektrodenpaars parallel zueinander und senkrecht zur Richtung des Gravitationsfeldes einer rotierenden Zentrifuge angeordnet sind, und sich die keramische Struktur auf der inneren Elektrode abscheidet . 4. A method for producing ceramic structures according to claim 3, characterized in that the electrodes of the respective pair of electrodes are arranged parallel to one another and perpendicular to the direction of the gravitational field of a rotating centrifuge, and the ceramic structure is deposited on the inner electrode. 5. Verfahren zur Herstellung von keramischen Strukturen nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Betrage des elektrischen Feldes und des Gravitationsfeldes unabhängig voneinander zeitlich variiert werden.5. A method for producing ceramic structures according to one of claims 1 to 4, characterized in that the amounts of the electric field and the gravitational field are varied in time independently of one another. 6. Verfahren zur Herstellung von keramischen Strukturen nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Partikelgroßenverteilung der keramischen Struktur geringere Werte als die Partikelgroßenverteilung der Suspension aufweist.6. The method for producing ceramic structures according to one of claims 1 to 5, characterized in that the particle size distribution of the ceramic structure has lower values than the particle size distribution of the suspension. 7. Verfahren zur Herstellung von keramischen Strukturen nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die keramischen Partikel - Strukturkeramiken wie AI2O3, Zr02, Mullit, SiC, Sι3N4 und/oder - Funktionskeramiken wie BaTi03 oder Blei-Zirkonat-Titanat (PZT) und/oder - Biokeramiken wie Hydroxylapatit (Ca(OH) (P04)3) und/oder - mineralische Glaser umfassen.7. The method for producing ceramic structures according to one of claims 1 to 6, characterized in that the ceramic particles - structural ceramics such as Al 2 O 3 , Zr0 2 , mullite, SiC, Sι 3 N 4 and / or - functional ceramics such as BaTi0 3rd or lead zirconate titanate (PZT) and / or - bioceramics such as hydroxylapatite (Ca (OH) (P0 4 ) 3 ) and / or - mineral glasses. 8. Verfahren zur Herstellung von keramischen Strukturen nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Suspension mindestens zwei verschiedene Arten keramischer Partikel enthalt.8. A method for producing ceramic structures according to one of claims 1 to 7, characterized in that the suspension contains at least two different types of ceramic particles. 9. Verfahren zur Herstellung von keramischen Strukturen nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Großen der keramischen Partikel zwischen 5 nm und 500 μm, bevorzugt zwischen 10 nm und 100 μm, besonders bevorzugt zwischen 10 nm und 10 μm betragen. 9. A method for producing ceramic structures according to one of claims 1 to 8, characterized in that the sizes of the ceramic particles are between 5 nm and 500 μm, preferably between 10 nm and 100 μm, particularly preferably between 10 nm and 10 μm. 10. Keramische Struktur, hergestellt gemäß einem der Ansprüche 1 bis 9.10. Ceramic structure produced according to one of claims 1 to 9. 11. Keramische Gradientenstruktur, hergestellt gemäß einem der Ansprüche 5 bis 9. 11. Ceramic gradient structure, produced according to one of claims 5 to 9.
EP04741370.3A 2003-08-16 2004-08-05 Electrophoretic method for the production of ceramic structures Expired - Lifetime EP1654404B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10337688A DE10337688B3 (en) 2003-08-16 2003-08-16 Process for the preparation of ceramic structures and ceramic structures produced by this process
PCT/EP2004/008768 WO2005019505A1 (en) 2003-08-16 2004-08-05 Electrophoretic method for the production of ceramic structures

Publications (2)

Publication Number Publication Date
EP1654404A1 true EP1654404A1 (en) 2006-05-10
EP1654404B1 EP1654404B1 (en) 2013-10-09

Family

ID=34201583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04741370.3A Expired - Lifetime EP1654404B1 (en) 2003-08-16 2004-08-05 Electrophoretic method for the production of ceramic structures

Country Status (5)

Country Link
US (1) US20070221500A1 (en)
EP (1) EP1654404B1 (en)
JP (1) JP2007502912A (en)
DE (1) DE10337688B3 (en)
WO (1) WO2005019505A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030012985A1 (en) 1998-08-03 2003-01-16 Mcalister Roy E. Pressure energy conversion systems
DE102008036661A1 (en) 2008-08-06 2010-02-11 Forschungszentrum Karlsruhe Gmbh Process for the production of oxidic dental ceramics
US8329219B2 (en) * 2009-12-22 2012-12-11 Cook Biotech Incorporated Methods for producing ECM-based biomaterials
US8838367B1 (en) 2013-03-12 2014-09-16 Mcalister Technologies, Llc Rotational sensor and controller
US9377105B2 (en) 2013-03-12 2016-06-28 Mcalister Technologies, Llc Insert kits for multi-stage compressors and associated systems, processes and methods
WO2014144581A1 (en) 2013-03-15 2014-09-18 Mcalister Technologies, Llc Internal combustion engine and associated systems and methods
US9255560B2 (en) 2013-03-15 2016-02-09 Mcalister Technologies, Llc Regenerative intensifier and associated systems and methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3023910A (en) * 1957-01-24 1962-03-06 Shirley E Schless Support for sliding shelves
US3791577A (en) * 1972-08-08 1974-02-12 J Lacher Centrifuge and rotating discharge means therefor
US3929596A (en) * 1972-10-02 1975-12-30 Toyo Kogyo Co Electrodeposition of wear resistant and oil retentive nickel coatings and article having such a coating
US4026780A (en) * 1976-04-05 1977-05-31 Rca Corporation Method and apparatus for cataphoretic deposition
US4459327A (en) * 1979-08-24 1984-07-10 Kennecott Corporation Method for the production of copper-boron carbide composite
CA2007501A1 (en) * 1989-02-01 1990-08-01 Jau-Ho Jean Process for the electrophoretic deposition of barrier coatings on precious metals
DE10013092C2 (en) * 2000-03-17 2002-01-24 Haenel & Co Altstaetten storage rack
CA2418138A1 (en) * 2003-01-29 2004-07-29 Eugenia Kumacheva Method of colloid crystal growth on patterned surfaces

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005019505A1 *

Also Published As

Publication number Publication date
EP1654404B1 (en) 2013-10-09
WO2005019505A1 (en) 2005-03-03
US20070221500A1 (en) 2007-09-27
JP2007502912A (en) 2007-02-15
DE10337688B3 (en) 2005-03-17

Similar Documents

Publication Publication Date Title
DE69518548T2 (en) Process for the production of a ceramic substrate
DE69009934T2 (en) Ceramic filter and process for its manufacture.
DE3612825C2 (en)
EP2794769B1 (en) Pigmented, fine-structured, tribological composite material
EP0599957A1 (en) Process for the continuous separation of mixtures of microscopically small dielectric particles and device for implementing the process.
DE60034184T2 (en) METHOD FOR PRODUCING FILMS WITH CERAMIC POROUS FILM AS A SEPARATE FILM
DE10337688B3 (en) Process for the preparation of ceramic structures and ceramic structures produced by this process
DE102008054596A1 (en) Open-celled ceramic and / or metal foams with a rough, enveloping surface and process for their preparation
DE4227720C2 (en) Process for the production of coatings from spinel and use of the carrier produced thereafter
DE60032198T2 (en) METHOD FOR PRODUCING FILMS WITH CERAMIC POROUS FILM AS A SEPARATE FILM
DE60005040T2 (en) METHOD FOR PRODUCING A THREE-DIMENSIONAL CLOTHING OF PARTICLES ARRANGED IN ROWS
DE112016001561T5 (en) DDR type zeolite seed crystal and a process for producing a DDR type zeolite membrane
DE3810919C2 (en)
DE2452386A1 (en) METHOD AND DEVICE FOR TREATING DISPERSIONS
DE102009005446A1 (en) Granules, process for its preparation and its use
EP0775672A1 (en) Process for producing a flat, glasslike or ceramic shaped article of structured surface
EP1859479A1 (en) Method for microstructuring solid surfaces
EP1042794A1 (en) Process for producing a porous layer by an electrochemical etching process
CN107999280A (en) A kind of Electro Sorb comprising graphene refines filter core and its manufacture method
RU2048974C1 (en) Method of manufacturing sintered porous articles
DE4212514A1 (en) Process for the production of silicon carbide green bodies
US5656168A (en) Method of fabricating inorganic filter structures
EP2892629A1 (en) Filter element
WO2004068501A2 (en) Probe for an optical near field microscope and method for producing the same
DE19807256C2 (en) Method for producing a ceramic raw film and device for providing a ceramic raw film

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DAUSCHER, MELANIE

Inventor name: VON BOTH, HOLGER

Inventor name: HAUSSELT, JUERGEN

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KARLSRUHER INSTITUT FUER TECHNOLOGIE

17Q First examination report despatched

Effective date: 20110322

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130403

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20130607

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 635612

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004014387

Country of ref document: DE

Effective date: 20131205

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014387

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

26N No opposition filed

Effective date: 20140710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004014387

Country of ref document: DE

Effective date: 20140710

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140821

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140805

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140805

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 635612

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004014387

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131009

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040805