EP1529022A2 - High-density ceramics and method for the production thereof - Google Patents
High-density ceramics and method for the production thereofInfo
- Publication number
- EP1529022A2 EP1529022A2 EP03790724A EP03790724A EP1529022A2 EP 1529022 A2 EP1529022 A2 EP 1529022A2 EP 03790724 A EP03790724 A EP 03790724A EP 03790724 A EP03790724 A EP 03790724A EP 1529022 A2 EP1529022 A2 EP 1529022A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- density
- produced
- ceramics
- starting powder
- ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
- C04B35/6455—Hot isostatic pressing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/32—Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process
- C01B13/328—Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process by processes making use of emulsions, e.g. the kerosine process
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/36—Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions
- C01B13/363—Mixtures of oxides or hydroxides by precipitation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/006—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
- C04B35/4682—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/495—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3215—Barium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
- C04B2235/3236—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3251—Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
- C04B2235/3255—Niobates or tantalates, e.g. silver niobate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/441—Alkoxides, e.g. methoxide, tert-butoxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5463—Particle size distributions
- C04B2235/5481—Monomodal
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/549—Particle size related information the particle size being expressed by crystallite size or primary particle size
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/781—Nanograined materials, i.e. having grain sizes below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/782—Grain size distributions
- C04B2235/784—Monomodal
Definitions
- the invention relates to ceramics, in particular high-density ceramics with advantageous mechanical, dielectric, piezoelectric or magnetic properties.
- the invention further relates to a method for producing these ceramics, in particular a method for producing oxidic nanoparticles as the starting substance for the high-density ceramics.
- the so-called functional ceramics are used due to different material properties. These include, for example, temperature-dependent electron (insulators, semiconductors, superconductors) or ion conduction (sensors, membranes, fuel cells), magnetism (permanent magnets, data storage), dielectric, piezo or pyroelectric behavior and catalytic activity.
- the area of application of the functional ceramics is therefore to be found preferably in the field of microelectronics (insulators, semiconductors, sensors, actuators) and conventional electronics (resistors, capacitors, thermistors and varistors), as well as electrical engineering (HT heating conductors).
- the number of suitable materials as functional ceramics is constantly increasing. The relevant material properties of these ceramics are causally related to the atomic structure, especially the crystal structure.
- the barium titanate that is tetragonal at room temperature and crystallized in a perovskite structure forms a ferro- and piezoelectric phase. If the Curie temperature is exceeded, a change of modification to a cubic, paraelectric structure takes place. The shift in atomic positions associated with the tetragonal structure leads to the formation of a permanent dipole moment and thus to a high dielectric constant.
- the Curie temperature can be set by targeted doping, above which there is also a strong change in the specific resistance.
- the properties of the finished ceramic depend to a large extent on the phase composition of the solid, the crystal size and the porosity. Ceramics are manufactured from an inhomogeneous material Mix of solid raw materials below the melting point. Therefore, transport processes and diffusion paths of the ions or atoms are of crucial importance for the formation of homogeneous and high-density ceramics.
- the improved mechanical stability of ceramics made of nanoparticles is based on an improved homogeneity and a controlled particle size distribution in the green bodies.
- the production of only weakly agglomerated starting powders leads to the production of dense, uniform and fine-grained ceramic microstructures, which have a significantly reduced sintering temperature, via also only weakly agglomerated ceramic powders.
- Studies on the production of non-agglomerated, ultrafine powders for the systems yttrium, titanium and yttrium-stabilized zirconium oxide from [1] are known. Examination of the starting powders in a scanning electron microscope reveals an average particle size of approximately 20 nm for the titanium dioxide and 10 to 20 nm for the yttrium-stabilized zirconium oxide.
- the particles had mean sizes of 3.0 to 15.9 nm for different compositions of the microemulsion.
- the width of the particle size distribution ⁇ was 1.1 to 1.9 nm.
- the worst case the smallest particles with 3.0 nm correspond to a share of ⁇ 5% for particles with a diameter greater than 9.0 nm, the Three times the mean. The corresponding proportions are much lower for the larger particles.
- the hot pressing and sinter forging of materials with particles ⁇ 10 nm is e.g. B. from Kear, Chag, Skandan and Hahn in US 5,514,350.
- the particle separation takes place from the gas phase and therefore only achieves low particle concentrations.
- the particle size distribution is also wider than for microemulsion synthesis. Not all materials can be easily separated with the correct stoichiometry via the gas phase.
- the pressure-assisted consolidation of loosely aggregated ceramic nanopowders with a metastable structure is described by Kear, Liao and Mayo in US Pat. No. 6,395,214.
- the pressures used are very high. They are 3-5.5 GPa.
- the temperature is given as 0.2 to 0.6 times the absolute melting temperature.
- the powders used have small particles of 10-20 nm, but no narrow particle size distribution (FIG. 2 of the cited patent).
- Ceramics are mainly used in the fields of electronics, optics, mechanical engineering and medicine. In the field of electro-ceramic materials, ceramics with magnetic, ferroelectric, dielectric, piezoelectric, pyroelectric, photoelectrochemical, semiconducting, ion-conducting, superconducting, electro-optical properties have a wide variety of applications.
- Ferroelectrics exhibit a structural phase transition from a low-temperature ferroelectric phase to a high-temperature paraelectric phase, which is generally associated with a very strong dependence of the dielectric constants of the material on the temperature.
- T c Curie temperature
- both the dielectric and the piezoelectric coefficients have maximum values which drop drastically for both lower and higher temperatures.
- Such a pronounced temperature behavior is indispensable in many technological applications. wishes, because in the use of the material a possible warming caused by the operation affects the change of the characteristic values of the corresponding component. It is known that the grain size of electroceramic materials has a very strong effect on the ferroelectric phase transition. As a rule, the destabilization of ferrodelect-
- the object of the invention is to create high-density ceramics with particularly advantageous properties with regard to strength, density and mechanical, dielectric, piezoelectric or magnetic properties. Furthermore, it is the task of the invention to provide a production method for this type of ceramic with the corresponding ceramic starting powder in the form of nanoparticles.
- the objects of the invention are achieved by a production method for a high-density ceramic made of nanoparticles with all the features of the main claim, and by high-density ceramics with all the features of the secondary claim. Further advantageous refinements of the method and the ceramic can be found in the claims which refer back to them.
- the invention relates to a method for producing high-density ceramics from nanoparticles, and materials in the form of nanoparticles and high-density ceramics.
- the process produces oxidic nanoparticles by hydrolysing water-sensitive compounds with microemulsions.
- the particles of the desired stoichiometric composition generated in this way can already be used with the aid of pressure-assisted processes very low temperatures can be processed into high-density ceramics.
- the ceramics are supported by pressure-supported consolidation, e.g. B. by gas pressure sintering, hot pressing or sintering from powders, the
- Primary particles have an average size ⁇ 100 nm, preferably ⁇ 50 nm and particularly preferably ⁇ 10 nm.
- the primary particles are by hydrolysis of alkoxides or a mixture of alkoxides and other easily hydrolyzable compounds, such as. B. halides, oxalates or acetates, with microemulsions.
- the compound to be hydrolyzed or the compounds to be hydrolyzed are initially introduced, at least in part, in a solvent which can be miscible or immiscible with water and hydrolyzed by adding a microemulsion. This produces oxide or hydroxide or mixed oxide-hydroxide nanoparticles with a very narrow size distribution, with less than 10%, preferably less than 5% and particularly preferably less than 2% of the particles
- This microemulsion contains at least the three components, water, a water-immiscible solvent and a surfactant.
- Technical surfactants are usually already multi-component mixtures.
- other components can be added, such as. B. alcohols as cosurfactants or one or more of the reactants or buffers.
- the surfactants can be non-ionic, anionic or cationic.
- Nonionic surfactants are preferably used, since they can be removed without residue by thermal decomposition.
- the synthesis is not limited to the elements and compounds mentioned. In principle, any hydrolyzable compound which forms the corresponding oxide, hydroxide or an oxide hydroxide is suitable.
- the oxides can be obtained from hydroxides and oxide hydroxides by calcining.
- a stoichiometric compound such as. B. in the case of BaTi0 3 , where the stoichiometric 1: 1 composite mixed barium titanium iso-propoxide is formed, which is then hydrolyzed with a microemulsion.
- the stoichiometric composition of the oxides can be set very precisely and easily if parts of the compound or of the product do not decompose during and after the formation of the particles.
- the reduction in the polarity of the solvent in the reaction mixture which is brought about by the addition of the apolar phase of the microemulsion or by the use of a nonpolar solvent for the substance to be hydrolyzed, suppresses the decomposition of the product, as is particularly good in alcohol or Excess water soluble components of mixed oxides, hydroxides or oxide hydroxides can occur.
- the solubility of the alkali ions in the form of their hydroxides can thus be greatly reduced and the preservation of the stoichiometry can be guaranteed regularly.
- the oxides can be obtained in crystalline form during the synthesis. However, it is particularly advantageous for the subsequent compression to use the oxides in amorphous form. In order to keep the particles in amorphous form, it is necessary to increase the hydrolysis rate. This can be achieved, for example, by using particularly reactive hydrolyzable compounds, increasing the polarity of the water-immiscible solvent used for the microemulsion, by a high water content of the microemulsion, by increasing the temperature or by several of the measures mentioned.
- the materials produced during the hydrolysis are then isolated and cleaned.
- the powders obtained generally consist of loose agglomerates of the primary particles. If necessary, they can first be freed of organic components by heating to over 500 ° C and then by a process for pressure-assisted consolidation, e.g. B. by gas pressure sintering, hot pressing or sinter forging at comparatively low temperatures and pressures to high-density ceramics. If the organic constituents can be largely separated off during cleaning, direct compression using pressure-assisted processes is also possible.
- the surfactant from the manufacturing process itself if appropriate after reducing the surfactant content in the raw powder by extraction with an organic solvent, can be a suitable binder for compacting the powder to form the green body.
- surfactants of the alkyl polyethoxylate type have proven to be advantageous over alkyl aryl ethoxylates.
- the temperature required for compression drops considerably with decreasing particle size. It is therefore advantageous to use particles ⁇ 100 nm, preferably ⁇ 50 nm and particularly preferably ⁇ 10 nm.
- the temperature required for the compression can be further reduced if the particles are in amorphous form. Even at comparatively low temperatures, this enables gentle conditions, the pressure-free production of dense ceramics with densities> 90%, preferably> 95%.
- the ceramics that can be produced by the combination of microemulsion synthesis and pressure-supported consolidation have particularly favorable properties, since they have a small average grain size and a uniform grain size distribution at high density.
- the densities are greater than or equal to 94%, preferably> 97%, particularly preferably> 99%.
- the mean grain size is ⁇ 500 nm, preferably ⁇ 100 nm and particularly preferably ⁇ 50 nm.
- the ceramics also have a narrow grain size distribution, the proportion of grains with more than three times the mean grain size advantageously ⁇ 20% and in particular ⁇ 10 % is.
- Ceramics that are produced in accordance with the method according to the invention have a through the Grain size-controlled temperature characteristics of the dielectric material properties additionally have smaller leakage currents, since the grain sizes grow only slightly during the sintering process and the proportion of electrically blocking grain boundaries thus remains high.
- KNaNb 2 0 6 is a particularly advantageous piezoelectric material that has only a slightly smaller piezoelectric effect than that of Pb (Ti, Zr) 0 3 used in many areas.
- Pb Ti, Zr
- Potassium sodium niobates could be an interesting biocompatible and toxicologically harmless alternative material.
- the compression of ceramic powders into compact ceramics is problematic. Due to the very low sintering activity, only very low relative densities below 94% can be set in conventional KNaNb 2 0 6 powders even at a temperature of 1100 ° C. A significant improvement in the sintering activity occurs in the ceramics which have been produced by the process according to the invention.
- high-density ceramics Due to the fineness of the starting powder and the use of pressure-supported consolidation, high-density ceramics can be achieved at a temperature of 1050 ° C and a pressure of 19 MPa.
- the ceramics obtained are translucent and thus almost have the theoretical density.
- the uniformity of the particles has a particularly advantageous effect. because, despite the faster growth processes, the uniformity of the grains is largely retained and the grain growth is even.
- Fig. 1 Nanocrystalline BaTi0 3 powder from microemulsion synthesis consisting of loosely aggregated primary particles (scanning electron microscope image).
- Fig. 2 Nanocrystalline BaTi0 3 powder from microemulsion synthesis annealed at 800 ° C for one hour (scanning electron microscope image). Because of the uniformity of the primary particles, the growth rate of the grains is uniform during the sintering process.
- A. Nanoparticle synthesis Al Synthesis of crystalline BaTi0 3 using a microemulsion with an alkylaryl polyethoxylate Crystalline (pseudocubic) BaTi0 3 was prepared according to the procedure in [4]. For this, barium was dissolved in 2-propanol. After the stoichiometric amount of titanium tetra-iso-propoxide was added, the mixture was stirred for one hour. A microemulsion of cyclohexane, Tergitol NP 35, octanol and the stoichiometric amount of water was then added to the reaction mixture. The particles were isolated and purified by removing the solvent, boiling with acetone, filtration and Soxhlet extraction.
- A.2 Synthesis of crystalline BaTi0 3 using a microemulsion with an alkyl polyethoxylate
- the synthesis was carried out in accordance with Al.
- the microemulsion used contained the components cyclohexane, Lutensol ON 110 (from BASF), octanol and water.
- Amorphous BaTi0 3 was obtained when a microemulsion for the hydrolysis of the mixed barium-titanium-iso-propoxide was used with a polar oil.
- the composition of the microemulsion was Tergitol TMN 6 (Fluka) 4.970 g ethyl butyrate (Fluka) 12.456 g water 2.601 g
- the X-ray diffraction diagrams show that the barium titanate is largely phase-pure.
- the material contained small amounts of BaC0 3 . 0.2% inorganic carbon was found in the raw powder.
- the content of inorganic carbon increases to a maximum of 0.7% due to the oxidation of the organic components of the raw powder.
- the proportion is reduced to 0.05%.
- the peaks for the raw powder from the microemulsion synthesis are greatly broadened because of the small particle size (FIG. 3a).
- ceramics with different particle sizes can be produced. With increasing sintering temperature, the grains grow and the peaks become narrower (Fig. 3b).
- the X-ray diffraction diagram of the potassium sodium niobate shows no foreign phases despite the addition of a stoichiometric amount of water after sintering of the amorphous material than at 1000 ° C. (FIG. 4).
- FIG. 5 shows the comparison of the sintering curves for BaTi0 3 nanoparticles of 10 nm from the microemulsion synthesis according to 1.1. and two commercial powders with particle sizes of 50-70 nm or 2 ⁇ m. The data show that the powder from microemulsion synthesis in the range of 900-1150 ° C already achieves higher densities at lower temperatures than the comparison powder.
- the surfactant content of the raw powder was reduced by boiling in acetone. The surfactant was largely removed. The total carbon content was still
- a first compression step the powder was pressed with the surfactant as a binder in a steel matrix under 20 kN. (130 MPa) to a green body of 40 - 45% of the theoretical density.
- the subsequent first tempering step up to 400 ° C the total carbon content was reduced to 1.23 + 0.04%.
- the pressing was then cold isostatically compressed to a density of 55-60% at 550 MPa.
- the presence of residues of organic carbon proved to be beneficial, since premature agglomeration of the particles was suppressed.
- the remaining binder was burned out in air at 650 ° C.
- the finished sintered body In order to obtain a maximum density of the finished sintered body, it was welded into a noble metal capsule.
- the capsule with the pressing was first cold isostatically pressed at 400 MPa in order to ensure that the metal was pressed tightly against the pressing.
- the sample was sintered at 850 ° C and 200 MPa for 15 minutes. It became a ceramic with a density of 98 ⁇ 0.6% of the theoretical density and an average grain size of 50.4 nm were obtained.
- Ceramics which can be prepared with the inventions to the invention method, the ceramics Ba 3 and Ti0 KNaNb 2 0 6 described in the embodiments, but also BaFe 12 0 ⁇ 9
- Both oxides belong to the class of ferroelectrics. They have a structural phase transition from a ferro-electrical low-temperature phase to a paraelectric high-temperature phase, which is generally associated with a very strong dependence of the dielectric constants of the material on the temperature.
- T Curie temperature
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Nanotechnology (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Physics & Mathematics (AREA)
Abstract
Disclosed is a method for producing high-density ceramics, in which oxidic nanoparticles are first produced by hydrolyzing water-sensitive compounds with microemulsifiers. The resulting particles which have the desired stoichiometric composition are processed to high-density ceramics at very low temperatures by means of pressure-assisted methods. Ceramics having a dense grain size distribution are created from the initial powders that are produced via microemulsifiers due to the dense particle size distribution. The growth rate of the grains during the sintering process is regular as a result of the uniformity of the primary particles. Ceramics that are produced according to the inventive method are also provided with smaller leakage currents due to the temperature characteristics of the dielectric material properties, which are controlled by the grain size, because the grains grow only slightly during sintering, keeping the proportion of electrically blocking grain boundaries high.
Description
Beschreibung description
Hochdichte Keramiken sowie Verfahren zurHigh density ceramics and processes for
Herstellung derselbenMaking the same
Die Erfindung betrifft Keramiken, insbesondere hochdichte Keramiken mit vorteilhaften mechanischen, dielektrischen, piezoelektrischen oder magnetischen Eigenschaften. Ferner betrifft die Erfindung ein Verfahren zur Herstellung dieser Keramiken, insbesondere ein Verfahren zur Herstellung von oxidischen Nanopartikeln als Ausgangssubstanz für die hochdichten Keramiken.The invention relates to ceramics, in particular high-density ceramics with advantageous mechanical, dielectric, piezoelectric or magnetic properties. The invention further relates to a method for producing these ceramics, in particular a method for producing oxidic nanoparticles as the starting substance for the high-density ceramics.
Stand der Technik Im Gegensatz zu Konstruktionskeramiken, bei denen es hauptsächlich auf ein geringes Gewicht und gute chemische, mechanische sowie thermische Beständigkeit ankommt, werden die sogenannten Funktionskeramiken aufgrund anderer Materialeigenschaften eingesetzt. Dazu gehören beispielsweise die temperaturabhängige Elektronen- (Isolatoren, Halbleiter, Supraleiter) , bzw. Ionenleitung (Sensoren, Membranen, Brennstoffzellen) , der Magnetismus (Permanentmagnete, Datenspeicherung), das dielektrische-, piezo- bzw. pyroelektrische Verhalten und die katalytische Aktivität.State of the art In contrast to construction ceramics, in which a low weight and good chemical, mechanical and thermal resistance are important, the so-called functional ceramics are used due to different material properties. These include, for example, temperature-dependent electron (insulators, semiconductors, superconductors) or ion conduction (sensors, membranes, fuel cells), magnetism (permanent magnets, data storage), dielectric, piezo or pyroelectric behavior and catalytic activity.
Das Einsatzgebiet der Funktionskeramiken ist daher bevorzugt auf dem Gebiet der Mikroelektronik (Isolator, Halbleiter, Sensoren, Aktoren) und der konventionellen Elektronik (Widerstände, Kondensatoren, Thermistoren und Varistoren) , wie auch der Elektrotechnik (HT-Heizleiter) zu suchen.
Die Anzahl an geeigneten Materialien als Funktionskeramiken nimmt ständig zu. Die relevanten Materialeigenschaften dieser Keramiken hängen ursächlich mit dem atomaren Aufbau, insbesondere mit der Kristallstruktur zusammen.The area of application of the functional ceramics is therefore to be found preferably in the field of microelectronics (insulators, semiconductors, sensors, actuators) and conventional electronics (resistors, capacitors, thermistors and varistors), as well as electrical engineering (HT heating conductors). The number of suitable materials as functional ceramics is constantly increasing. The relevant material properties of these ceramics are causally related to the atomic structure, especially the crystal structure.
Beispielsweise bildet das bei Raumtemperatur tetragona- le, in einer Perowskitstruktur kristallisierte Barium- titanat eine ferro- und piezoelektrische Phase aus. Beim Überschreiten der Curietemperatur erfolgt ein Mo- difikationswechsel zu einer kubischen, paraelektrischen Struktur. Die mit der tetragonalen Struktur einhergehende Verschiebung der Atompositionen führt zu einer Ausbildung eines permanenten Dipolmoments und damit zu einer hohen Dielektrizitätskonstante.For example, the barium titanate that is tetragonal at room temperature and crystallized in a perovskite structure forms a ferro- and piezoelectric phase. If the Curie temperature is exceeded, a change of modification to a cubic, paraelectric structure takes place. The shift in atomic positions associated with the tetragonal structure leads to the formation of a permanent dipole moment and thus to a high dielectric constant.
Durch gezielte Dotierung kann die Curietemperatur eingestellt werden, oberhalb welcher ferner auch eine starke Änderung des spezifischen Widerstandes eintritt.The Curie temperature can be set by targeted doping, above which there is also a strong change in the specific resistance.
Synthese der AusgangspulverSynthesis of the starting powder
Bei der Herstellung von Keramiken aus pulverförmigen festen Rohstoffen, sind regelmäßig viele Parameter zu beachten. Während der Formgebung erfolgt eine erste Verdichtung der aufgearbeiteten Ausgangsstoffe. Während des Sinterprozesses erfolgt dann die zweite Verfestigung aufgrund von Kristallisations- und Kornwachstums- Vorgängen, die häufig mit reaktiven Umsetzungen gekoppelt sein können.When manufacturing ceramics from powdery solid raw materials, many parameters have to be observed regularly. During shaping, the processed raw materials are first compressed. During the sintering process, the second solidification takes place due to crystallization and grain growth processes, which can often be coupled with reactive reactions.
Die Eigenschaften der fertigen Keramik hängen in erheblichem Maße von der Phasenzusammensetzung des Feststoffs, der Kristallgröße und der Porosität ab. Die Herstellung von Keramiken erfolgt aus einem inhomogenen
Gemenge fester Rohstoffe unterhalb des Schmelzpunktes. Daher sind Transportvorgänge und Diffusionswege der Ionen bzw. Atome von entscheidender Bedeutung für die Ausbildung homogener und hochdichter Keramiken.The properties of the finished ceramic depend to a large extent on the phase composition of the solid, the crystal size and the porosity. Ceramics are manufactured from an inhomogeneous material Mix of solid raw materials below the melting point. Therefore, transport processes and diffusion paths of the ions or atoms are of crucial importance for the formation of homogeneous and high-density ceramics.
Der Einfluss der Partikelgröße wird bei der signifikanten Erniedrigung der Sintertemperatur deutlich. Die verbesserte mechanische Stabilität von Keramiken aus Nanopartikeln basiert auf einer verbesserten Homogeni- tat und einer kontrollierten Partikelgrößenverteilung in den Grünkδrpern. Die Herstellung nur schwach agglomerierter Ausgangspulver führt über ebenfalls nur schwach agglomerierte Keramikpulver izur Herstellung von dichten, einheitlichen und feinkörnigen keramischen MikroStrukturen, die eine deutlich erniedrigte Sintertemperatur aufweisen. Dazu sind Untersuchungen für die Herstellung von nicht-agglomerierten, ultrafeinen Pulvern für die Systeme Yttrium- , Titan- und Yttriumstabilisiertes Zirkonoxid aus [1] bekannt. Die Untersu- chung der Ausgangspulver im Rasterelektronenmikroskop ergibt dabei eine mittlere Partikelgröße von ca. 20 nm für das Titandioxid und 10 bis 20 nm für das Yttriumstabilisierte Zirkonoxid.The influence of the particle size becomes clear when the sintering temperature is significantly reduced. The improved mechanical stability of ceramics made of nanoparticles is based on an improved homogeneity and a controlled particle size distribution in the green bodies. The production of only weakly agglomerated starting powders leads to the production of dense, uniform and fine-grained ceramic microstructures, which have a significantly reduced sintering temperature, via also only weakly agglomerated ceramic powders. Studies on the production of non-agglomerated, ultrafine powders for the systems yttrium, titanium and yttrium-stabilized zirconium oxide from [1] are known. Examination of the starting powders in a scanning electron microscope reveals an average particle size of approximately 20 nm for the titanium dioxide and 10 to 20 nm for the yttrium-stabilized zirconium oxide.
Verfahren zur Herstellung von nanokristallinen gemischten oxidischen Keramikpulvern durch einen mikroemulsi- onsgestützten Sol-Gel-Prozess sind in der Literatur beschrieben. Aus [2] ist die Herstellung von nanokristallinen keramischen Pulvern über zwei Verfahrens- wege bekannt. Einerseits wird dort die Erzeugung von nano-kristallinem BaTi03 durch Hydrolyse von reaktivem Precursor in wassergefüllten inversen Mizellen [3] und andererseits die Erzeugung von NH4MnF3 durch eine Aus-
fällungsreaktion verschiedener Metallsalze in inversen Mizellen beschrieben.Processes for producing nanocrystalline mixed oxide ceramic powders by means of a microemulsion-based sol-gel process are described in the literature. [2] discloses the production of nanocrystalline ceramic powders using two process routes. On the one hand the generation of nano-crystalline BaTi0 3 by hydrolysis of reactive precursor in water-filled inverse micelles [3] and on the other hand the production of NH 4 MnF 3 by an precipitation reaction of various metal salts in inverse micelles.
Die Synthese von Nanopartikeln aus Alkoxiden mit Mikro- emulsionen nach der oben beschriebenen Methode wurde schon in [4] von Beck, Härtl und Hempelmann beschrieben. Das Verfahren ist bezüglich der Ausgangsverbindungen einem Sol -Gel-Verfahren ähnlich und wird von den Autoren deshalb auch so bezeichnet. Bezüglich der wäh- rend der Synthese ablaufenden Prozesse und der erhaltenen Produkte bestehen aber grundlegende Unterschiede. Insbesondere wird durch die enge Tropfengrößenverteilung in der Mikroemulsion eine so enge Verteilung der Partikelgrößen erhalten, wie sie bei einem Sol-Gel- Prozess in homogenen Lösemittelgemischen nicht erhalten werden kann. Die Größenverteilung, gekennzeichnet durch den Durchmesser d, der erzeugten Partikel wurde an eine logarithmische NormalverteilungThe synthesis of nanoparticles from alkoxides with microemulsions using the method described above has already been described in [4] by Beck, Härtl and Hempelmann. The process is similar to a sol-gel process with regard to the starting compounds and is therefore also referred to as such by the authors. However, there are fundamental differences with regard to the processes taking place during the synthesis and the products obtained. In particular, the narrow droplet size distribution in the microemulsion gives such a narrow distribution of the particle sizes that cannot be obtained in a sol-gel process in homogeneous solvent mixtures. The size distribution, characterized by the diameter d, of the particles produced was based on a logarithmic normal distribution
(ln<-/-lnμ)2 (ln <- / - lnμ) 2
GLN(d) = expG LN (d) = exp
XΪπ d lnσ 2(lnσ)XΪπ d lnσ 2 (lnσ)
angepasst. Die Partikel wiesen für verschiedene Zusammensetzungen der Mikroemulsion mittlere Größen von 3,0 bis 15,9 nm auf. Die Breite der Partikelgrößenvertei- lung σ betrug 1,1 bis 1,9 nm. Diese Werte entsprechen im ungünstigsten Fall der kleinsten Partikel mit 3,0 nm einem Anteil von < 5% für Partikel mit einem Durchmesser größer als 9,0 nm, dem Dreifachen des Mittelwerts. Bei den größeren Partikeln liegen die entsprechenden Anteile wesentlich niedriger.
Als weitere Materialien wurden von Hempelmann et. al . Ti02, Zr02, SrTi03, BaZr03, SrZr03, CaTi03, CaZr03, BaxSrι-xTi03, BaYxZrι-x03, MgAl204, CoAl20, NiAl20/ CuAl204, BaZro,
BaZro,85lno,1502,925 und BaZro,8sCao,1502,925 über diese Syntheseroute hergestellt und in mehreren Veröffentlichungen beschrieben.customized. The particles had mean sizes of 3.0 to 15.9 nm for different compositions of the microemulsion. The width of the particle size distribution σ was 1.1 to 1.9 nm. In the worst case, the smallest particles with 3.0 nm correspond to a share of <5% for particles with a diameter greater than 9.0 nm, the Three times the mean. The corresponding proportions are much lower for the larger particles. Hempelmann et. al. Ti0 2 , Zr0 2 , SrTi0 3 , BaZr0 3 , SrZr0 3 , CaTi0 3 , CaZr0 3 , Ba x Srι- x Ti0 3 , BaY x Zrι- x 0 3 , MgAl 2 0 4, CoAl 2 0 , NiAl 2 0 / CuAl 2 0 4 , BaZr o , BaZro, 85l n o, 1502.925 and BaZro, 8sCao, 1502.925 produced via this synthesis route and described in several publications.
Die Synthese von Kaliumniobat aus den Alkoxiden über ein Sol-Gel-Verfahren ist aus [5] bekannt. Trotz des von den Autoren eingesetzten, stöchiometrisch zusammengesetzten Doppelalkoxids konnten nicht in jedem Fall reine KNb03-Phasen erhalten werden. Vielmehr waren die Eigenschaften des Produktes stark vom Lösungsmittel abhängig. In der Regel wiesen die Produkte ein Defizit an Kalium auf.The synthesis of potassium niobate from the alkoxides via a sol-gel process is known from [5]. Despite the stoichiometric double alkoxide used by the authors, pure KNb0 3 phases could not always be obtained. Rather, the properties of the product were heavily dependent on the solvent. As a rule, the products were deficient in potassium.
Das Heißpressen und Sinterschmieden von Materialien mit Partikeln < 10 nm (SiCxNy und ZrOxCy) ist z. B. von Kear, Chag, Skandan und Hahn in US 5,514,350 beschrie- ben. Die Partikelabscheidung erfolgt dabei jedoch aus der Gasphase und erzielt deshalb nur geringe Partikel- konzentrationen. Die Partikelgrößenverteilung ist zudem breiter als für die Mikroemulsionssynthese . Über die Gasphase lassen sich auch nicht alle Materialien prob- lemlos mit der korrekten Stöchiometrie abscheiden.The hot pressing and sinter forging of materials with particles <10 nm (SiC x N y and ZrO x C y ) is e.g. B. from Kear, Chag, Skandan and Hahn in US 5,514,350. However, the particle separation takes place from the gas phase and therefore only achieves low particle concentrations. The particle size distribution is also wider than for microemulsion synthesis. Not all materials can be easily separated with the correct stoichiometry via the gas phase.
Herstellung der KeramikManufacture of ceramics
Weiterhin sind verschiedene Verfahren zur Formgebung der keramischen Ausgangspulver z. B. Trockenpressen, Extrudieren, Spritzgießen, Foliengießen oder auchFurthermore, various methods for shaping the ceramic starting powder z. B. dry pressing, extruding, injection molding, film casting or
Schlickergießen bekannt. Daran schließt sich regelmäßig eine thermische Behandlung, mit der die endgültige Gefügeausbildung in der Keramik vollzogen wird. Der Pro-
zess der Stoffverdichtung und -Verfestigung wird abgeschlossen. Für das Austreiben von organischen Zusätzen wird zunächst ein Binderausbrand vorgenommen (RT bis max. 500 °C) , wobei auch die Feuchtigkeit entfernt wird. Erst im Anschluß daran findet der eigentliche Sinterprozeß typischerweise bei Temperaturen bis zu 1700 °C statt.Known slip casting. This is regularly followed by a thermal treatment with which the final structure formation in the ceramic is carried out. The pro The process of material compaction and consolidation is completed. For the expulsion of organic additives, a binder burnout is first carried out (RT up to max. 500 ° C), whereby the moisture is also removed. Only then does the actual sintering process typically take place at temperatures up to 1700 ° C.
Neben den verschiedenen Sintermethoden unter Atmosphä- ren Bedingungen mit oder ohne Schutzgas, werden in der Literatur auch die druckunterstützte Konsolidierung (Heißpressen, Sinterschmieden u.s.w.) von Materialien, die in flüssiger Phase erzeugt werden, beschrieben.In addition to the various sintering methods under atmospheric conditions with or without protective gas, the literature also describes pressure-assisted consolidation (hot pressing, sintering, etc.) of materials that are produced in the liquid phase.
Die druckunterstützte Konsolidierung lose aggregierter keramischer Nanopulver mit metastabiler Struktur ist von Kear, Liao und Mayo in US 6,395,214 beschrieben. Die verwendeten Drücke sind sehr hoch. Sie liegen bei 3-5,5 GPa. Die Temperatur wird mit dem 0,2- bis 0,6- fachen der absoluten Schmelztemperatur angegeben. Die verwendeten Pulver weisen kleine Partikel von 10-20 nm, aber keine enge Partikelgrößenverteilung (Fig. 2 der genannten Patentschrift) auf.The pressure-assisted consolidation of loosely aggregated ceramic nanopowders with a metastable structure is described by Kear, Liao and Mayo in US Pat. No. 6,395,214. The pressures used are very high. They are 3-5.5 GPa. The temperature is given as 0.2 to 0.6 times the absolute melting temperature. The powders used have small particles of 10-20 nm, but no narrow particle size distribution (FIG. 2 of the cited patent).
Die druckunterstützte Konsolidierung von Materialien, die in flüssiger Phase erzeugt wurden, wurde in [1] für Yttrium-stabilisiertes Zirkondioxid mit Partikelgrößen von 10-20 nm beschrieben. Die Verfahren, die in der Druckschrift für die Synthese genannt werden, gewähr- leisten allerdings keine enge Partikelgrößenverteilung.The pressure-supported consolidation of materials that were generated in the liquid phase was described in [1] for yttrium-stabilized zirconium dioxide with particle sizes of 10-20 nm. The processes mentioned in the publication for the synthesis, however, do not guarantee a narrow particle size distribution.
Die Autoren geben für Partikel, die größer als 1 μm sind," einen Anteil von 85-90 % an. In derselben Druckschrift wurden abhängig von den genauen Synthesebedin-
gungen Y203-Pulver mit unterschiedlichen Sintereigenschaften beschrieben. Pulver mit scharfkantigen stark agglomerierten Partikeln erwiesen sich dabei als ungeeignet für die Herstellung dichter Keramiken, während Pulver mit schwach agglomerierten Partikeln sich hervorragend sintern lassen.The authors provide for particles that are larger than 1 micron, "a proportion of from 85-90%. In the same publication are dependent on the exact Synthesebedin- Y 2 0 3 powder with different sintering properties. Powders with sharp-edged, strongly agglomerated particles have proven unsuitable for the production of dense ceramics, while powders with weakly agglomerated particles can be sintered extremely well.
Anwendungenapplications
Viele Eigenschaften von Keramiken hängen entscheidend von der Korngröße und der Korngrößenverteilung ab. Dies gilt nicht nur für die mechanischen, sondern auch für andere physikalische Eigenschaften, wie sie in bestimmten Funktionskeramiken genutzt werden. So werden Keramiken vor allem auch in den Bereichen Elektronik, Op- tik, Maschinenbau und Medizin eingesetzt. Im Bereich elektrokeramischer Materialien finden Keramiken mit magnetischen, ferroelektrischen, dielektrischen, piezoelektrischen, pyroelektrischen, photoelektrochemischen, halbleitenden, ionenleitenden, supraleitenden, elektro- optischen Eigenscha ten vielfältige Anwendungen.Many properties of ceramics depend crucially on the grain size and the grain size distribution. This applies not only to the mechanical, but also to other physical properties as used in certain functional ceramics. Ceramics are mainly used in the fields of electronics, optics, mechanical engineering and medicine. In the field of electro-ceramic materials, ceramics with magnetic, ferroelectric, dielectric, piezoelectric, pyroelectric, photoelectrochemical, semiconducting, ion-conducting, superconducting, electro-optical properties have a wide variety of applications.
Ferroelektrika weisen einen strukturellen Phasenübergang von einer ferroelektrischen Tieftemperaturphase in eine paraelektrische Hochtemperaturphase auf, der im allgemeinen mit einer sehr starken Abhängigkeit der dielektrischen Konstanten des Materials von der Temperatur verbunden ist. Um den Bereich der Curie- Temperatur Tc, die den Umwandlungspunkt kennzeichnet, weisen sowohl die dielektrischen als auch die piezo- elektrischen Koeffizienten maximale Werte auf, die sowohl für tiefere als auch für höhere Temperaturen drastisch abfallen. In vielen technologischen Anwendungen ist ein solch ausgeprägtes Temperaturverhalten uner-
wünscht, da sich im Einsatz des Materials eine durch den Betrieb bedingte eventuelle Erwärmung als Änderung der Kennwerte des entsprechenden Bauteils auswirkt. Bekannt ist, dass sich die Korngröße elektrokeramischer Materialien sehr stark auf den ferroelektrischen Phasenübergang auswirkt . So wird in der Regel mit abnehmender Korngröße eine DeStabilisierung der ferrdelekt-Ferroelectrics exhibit a structural phase transition from a low-temperature ferroelectric phase to a high-temperature paraelectric phase, which is generally associated with a very strong dependence of the dielectric constants of the material on the temperature. Around the range of the Curie temperature T c , which characterizes the transformation point, both the dielectric and the piezoelectric coefficients have maximum values which drop drastically for both lower and higher temperatures. Such a pronounced temperature behavior is indispensable in many technological applications. wishes, because in the use of the material a possible warming caused by the operation affects the change of the characteristic values of the corresponding component. It is known that the grain size of electroceramic materials has a very strong effect on the ferroelectric phase transition. As a rule, the destabilization of ferrodelect-
I risch polarisierten Phase beobachtet. Dies äußert sich unter anderem in einer Verschiebung der Curie- Temperatur zu niedrigeren Werten und in einer Verbreiterung des charakteristischen Maximums in der Temperaturabhängigkeit der Dielektrizitätskonstanten (Curie- Peak) . In der Praxis werden Materialien mit einer solchen Temperaturcharakteristik bereits in Form von Kom- positwerkstoffen, die eine sogenannte Core-Shell- '.I polarized phase observed. This manifests itself among other things in a shift in the Curie temperature to lower values and in a broadening of the characteristic maximum in the temperature dependence of the dielectric constant (Curie peak). In practice, materials are positwerkstoffen having such a temperature characteristic already in the form of com- that a so-called core-shell '.
Struktur aufweisen, eingesetzt. Klassisches Anwendungsbeispiel sind Vielschichtkondensatoren (z. B. vom Typ X7R) , in denen eine besonders geringe Temperaturabhän- gingkeit der Dielektrizitätskonstanten gefordert ist. Mit zunehmendem Trend zur Miniaturisierung und zurHave structure used. Classic application examples are multi-layer capacitors (eg of type X7R), in which a particularly low temperature dependency of the dielectric constant is required. With increasing trend towards miniaturization and
Steigerung der Volumeneffizienz solcher Bauteile nimmt die Schichtdicke der dielektrischen Lagen mehr und mehr ab. Dies hat zur Folge, dass bei gleichbleibender Betriebsspannung die Feldbelastung in der dielektrischen Keramik zunimmt. Diese erhöhte Feldbelastung kann zuIncreasing the volume efficiency of such components decreases the layer thickness of the dielectric layers more and more. As a result, the field load in the dielectric ceramic increases with the operating voltage remaining the same. This increased field load can
Materialversagen durch Degradation des Isolationswiderstandes führen. Prinzipiell treten diese Versagensmech- nanismen in allen dielektrischen Materialien auf. Sie werden durch die angelegte Gleichspannung induziert . Speziell bei erhöhten Betriebstemperaturen tritt ein beschleunigtes Versagen ein. Hemmend gegen die Degradation des Widerstandes wirken Korngrenzen, da sie als
Barrieren fungieren und das Einsetzen des ionischen Leckstroms hinauszögern [6] .Cause material failure due to degradation of the insulation resistance. In principle, these failure mechanisms occur in all dielectric materials. They are induced by the applied DC voltage. Accelerated failure occurs especially at elevated operating temperatures. Grain boundaries have an inhibiting effect on the degradation of the resistance, since they act as Barriers act and delay the onset of ionic leakage [6].
Aufgabe und Lösung Aufgabe der Erfindung ist es, hochdichte Keramiken mit besonders vorteilhaften Eigenschaften bezüglich der Festigkeit, der Dichte und der mechanischen, dielektrischen, piezoelektrischen oder magnetischen Eigenschaften zu schaffen. Ferner ist es die Aufgabe der Erfin- düng für diese Art von Keramiken ein Herstellungsverfahren mit dem entsprechenden keramischen Ausgangspulver in Form von Nanopartikeln bereit zu stellen.OBJECT AND SOLUTION The object of the invention is to create high-density ceramics with particularly advantageous properties with regard to strength, density and mechanical, dielectric, piezoelectric or magnetic properties. Furthermore, it is the task of the invention to provide a production method for this type of ceramic with the corresponding ceramic starting powder in the form of nanoparticles.
Die Aufgaben der Erfindung werden gelöst durch ein Her- stellungsverfahren für eine hochdichte Keramik aus Nanopartikeln mit der Gesamtheit der Merkmale des Hauptanspruchs, sowie durch hochdichte Keramiken mit der Gesamtheit der Merkmale des Nebenanspruchs. Weitere vorteilhafte Ausgestaltungen des Verfahrens und der Kera- mik finden sich in den jeweils darauf rückbezogenen Ansprüchen.The objects of the invention are achieved by a production method for a high-density ceramic made of nanoparticles with all the features of the main claim, and by high-density ceramics with all the features of the secondary claim. Further advantageous refinements of the method and the ceramic can be found in the claims which refer back to them.
Gegenstand der ErfindungSubject of the invention
Die Erfindung betrifft ein Verfahren zur Herstellung von hochdichten Keramiken aus Nanopartikeln, sowie Materialien in Form von Nanopartikeln und hochdichten Keramiken.The invention relates to a method for producing high-density ceramics from nanoparticles, and materials in the form of nanoparticles and high-density ceramics.
Bei dem Verfahren werden oxidische Nanopartikel über die Hydrolyse wasserempfindlicher Verbindungen mit Mikroemulsionen hergestellt. Die dabei erzeugten Partikel der gewünschten stöchiometrischen Zusammensetzung können mit Hilfe druckunterstützter Verfahren bereits bei
sehr niedrigen Temperaturen zu hochdichten Keramiken verarbeitet werden.The process produces oxidic nanoparticles by hydrolysing water-sensitive compounds with microemulsions. The particles of the desired stoichiometric composition generated in this way can already be used with the aid of pressure-assisted processes very low temperatures can be processed into high-density ceramics.
Die Keramiken werden durch druckunterstützte Konsolidierung, also z. B. durch Gasdrucksintern, Heißpressen oder Sinterschmieden aus Pulvern hergestellt, derenThe ceramics are supported by pressure-supported consolidation, e.g. B. by gas pressure sintering, hot pressing or sintering from powders, the
Primärpartikel eine mittlere Größe < 100 nm, bevorzugt < 50 nm und besonders bevorzugt < 10 nm aufweisen. Die Primärpartikel werden durch Hydrolyse von Alkoxiden o- der einer Mischung von Alkoxiden und anderen gut hydro- lysierbaren Verbindungen, wie z. B. Halogeniden, Oxala- ten oder Acetaten, mit Mikroemulsionen hergestellt. Zur Synthese wird die zu hydrolysierende Verbindung bzw. werden die zu hydrolysierenden Verbindungen zumindest zum Teil in einem Lösemittel, das mit Wasser mischbar oder nicht mischbar sein kann, vorgelegt und durch Zugabe einer Mikroemulsion hydrolysiert. Dabei entstehen Oxid-, bzw. Hydroxid- oder gemischte Oxid-Hydroxid- Nanopartikel mit einer sehr engen Größenverteilung, wobei weniger als 10 % bevorzugt weniger als 5 % und be- sonders bevorzugt weniger als 2 % der Partikel einePrimary particles have an average size <100 nm, preferably <50 nm and particularly preferably <10 nm. The primary particles are by hydrolysis of alkoxides or a mixture of alkoxides and other easily hydrolyzable compounds, such as. B. halides, oxalates or acetates, with microemulsions. For the synthesis, the compound to be hydrolyzed or the compounds to be hydrolyzed are initially introduced, at least in part, in a solvent which can be miscible or immiscible with water and hydrolyzed by adding a microemulsion. This produces oxide or hydroxide or mixed oxide-hydroxide nanoparticles with a very narrow size distribution, with less than 10%, preferably less than 5% and particularly preferably less than 2% of the particles
Größe von mehr als dem dreifachen der mittleren Größe aufweisen.Size larger than three times the medium size.
Diese Mikroemulsion enthält mindestens die drei Kompo- nenten, Wasser, ein mit Wasser nicht mischbares Lösungsmittel und ein Tensid. Technische Tenside sind in der Regel bereits Mehrstoffgemische . Dazu können weitere Komponenten hinzukommen, wie z. B. Alkohole als Co- tenside oder auch einer oder mehrere der Reaktionspart- ner oder Puffer. Die Tenside können nichtionisch, anionisch oder kationisch sein. Bevorzugt werden nichtionische Tenside eingesetzt, da sie durch thermische Zersetzung rückstandsfrei entfernt werden können.
Zur Hydrolyse werden bevorzugt Verbindungen eingesetzt, die sehr schnell umgesetzt werden, wie z. B. Alkoxide (z. B: Barium-iso-propoxid, Titan-iso-propoxid, Natriu- methoxid, Kaliumethoxid, Niobethoxid, Eisenethoxid) .This microemulsion contains at least the three components, water, a water-immiscible solvent and a surfactant. Technical surfactants are usually already multi-component mixtures. In addition, other components can be added, such as. B. alcohols as cosurfactants or one or more of the reactants or buffers. The surfactants can be non-ionic, anionic or cationic. Nonionic surfactants are preferably used, since they can be removed without residue by thermal decomposition. For the hydrolysis, preference is given to using compounds which are implemented very quickly, such as, for. B. alkoxides (eg: barium iso propoxide, titanium iso propoxide, sodium methoxide, potassium ethoxide, niobium ethoxide, iron ethoxide).
Dabei ist die Synthese nicht auf die genannten Elemente und Verbindungen beschränkt. Grundsätzlich ist jede hydrolysierbare Verbindung, die das entsprechende Oxid, Hydroxid oder ein Oxid-Hydroxid bildet, geeignet. Aus Hydroxiden und Oxid-Hydroxiden lassen sich die Oxide durch Kalzinieren erhalten.The synthesis is not limited to the elements and compounds mentioned. In principle, any hydrolyzable compound which forms the corresponding oxide, hydroxide or an oxide hydroxide is suitable. The oxides can be obtained from hydroxides and oxide hydroxides by calcining.
Sollen gemischte Oxide mehrerer Elemente hergestellt werden, so ist es für den Erhalt eines stδchiometrisch zusammengesetzten Produktes von Vorteil die Komponenten gemeinsam vorzulegen. Besonders vorteilhaft ist es, wenn eine stöchiometrisch zusammengesetzte Verbindung vorgelegt wird, wie z. B. im Fall des BaTi03, wo zunächst das stδchiometrisch 1:1 zusammengesetzte ge- mischte Barium-Titan-iso-propoxid gebildet wird, das dann mit einer Mikroemulsion hydrolysiert wird. Auf diese Weise läßt sich die stöchiometrische Zusammensetzung der Oxide sehr genau und einfach einstellen, wenn sich nicht während und nach der Entstehung der Partikel Teile der Verbindung bzw. des Produktes zersetzen. Die Reduzierung der Polarität des Lösungsmittels im Reaktionsgemisch, die durch die Zugabe der apolaren Phase der Mikroemulsion oder durch die Verwendung eines unpolaren Lösungsmittels für die zu hydrolysierende Substanz be- wirkt wird, unterdrückt die Zersetzung des Produktes, wie sie vor allem für gut in Alkohol oder überschüssigem Wasser lösliche Bestandteile von Mischoxiden, Hydroxiden oder Oxid-Hydroxiden auftreten kann. Insbe-
sondere bei der Verwendung von Alkalialkoxiden kann somit die Löslichkeit der Alkaliionen in Form ihrer Hydroxide stark herabgesetzt und der Erhalt der Stöchi- ometrie regelmäßig garantiert werden.If mixed oxides of several elements are to be produced, it is advantageous to present the components together to obtain a stoichiometrically composed product. It when a stoichiometric compound is presented, such as. B. in the case of BaTi0 3 , where the stoichiometric 1: 1 composite mixed barium titanium iso-propoxide is formed, which is then hydrolyzed with a microemulsion. In this way, the stoichiometric composition of the oxides can be set very precisely and easily if parts of the compound or of the product do not decompose during and after the formation of the particles. The reduction in the polarity of the solvent in the reaction mixture, which is brought about by the addition of the apolar phase of the microemulsion or by the use of a nonpolar solvent for the substance to be hydrolyzed, suppresses the decomposition of the product, as is particularly good in alcohol or Excess water soluble components of mixed oxides, hydroxides or oxide hydroxides can occur. In particular, especially when using alkali alkoxides, the solubility of the alkali ions in the form of their hydroxides can thus be greatly reduced and the preservation of the stoichiometry can be guaranteed regularly.
Die Oxide können bei der Synthese kristallin anfallen. Besonders vorteilhaft für die sich anschließende Verdichtung ist es jedoch, die Oxide in amorpher Form zu verwenden. Um die Partikel in amorpher Form zu erhal- ten, ist es notwendig, die Hydrolysegeschwindigkeit zu erhöhen. Dies kann beispielsweise durch Verwendung besonders reaktiver hydrolysierbarer Verbindungen, die Erhöhung der Polarität des für die Mikroemulsion verwendeten mit Wasser nicht mischbaren Lösungsmittels, durch einen hohen Wassergehalt der Mikroemulsion, durch die Erhöhung der Temperatur oder mehrere der genannten Maßnahmen erreicht werden.The oxides can be obtained in crystalline form during the synthesis. However, it is particularly advantageous for the subsequent compression to use the oxides in amorphous form. In order to keep the particles in amorphous form, it is necessary to increase the hydrolysis rate. This can be achieved, for example, by using particularly reactive hydrolyzable compounds, increasing the polarity of the water-immiscible solvent used for the microemulsion, by a high water content of the microemulsion, by increasing the temperature or by several of the measures mentioned.
Die bei der Hydrolyse entstandenen Materialien (Oxide, Hydroxide oder Oxid-Hydroxide) werden anschließend isoliert und gereinigt. Die erhaltenen Pulver bestehen in der Regel aus losen Agglomeraten der Primärpartikel . Sie können bei Bedarf zunächst durch Erhitzen auf über 500 °C von organischen Bestandteilen befreit werden und anschließend durch ein Verfahren zur druckunterstützten Konsolidierung, z. B. durch Gasdrucksintern, Heißpressen oder Sinterschmieden bei vergleichsweise niedrigen Temperaturen und Drücken zu hochdichten Keramiken verfestigt werden. Wenn bei der Reinigung die organischen Bestandteile weitgehend genug abgetrennt werden können, ist auch eine direkte Verdichtung durch druckunterstützte Verfahren möglich.
Bei Verwendung geeigneter Tenside kann unter günstigen Umständen das Tensid aus dem Herstellungsprozess selbst, gegebenenfalls nach einer Reduktion des Tensid- gehalts im Rohpulver durch Extraktion mit einem organischen Lösungsmittel, einen geeigneten Binder für die Kompaktierung des Pulvers zum Grünkörper darstellen. Beim Ausbrand haben sich dabei Tenside vom Typ der Al- kylpolyethoxylate gegenüber Alkylarylethoxylaten als vorteilhaft erwiesen.The materials produced during the hydrolysis (oxides, hydroxides or oxide hydroxides) are then isolated and cleaned. The powders obtained generally consist of loose agglomerates of the primary particles. If necessary, they can first be freed of organic components by heating to over 500 ° C and then by a process for pressure-assisted consolidation, e.g. B. by gas pressure sintering, hot pressing or sinter forging at comparatively low temperatures and pressures to high-density ceramics. If the organic constituents can be largely separated off during cleaning, direct compression using pressure-assisted processes is also possible. If suitable surfactants are used, the surfactant from the manufacturing process itself, if appropriate after reducing the surfactant content in the raw powder by extraction with an organic solvent, can be a suitable binder for compacting the powder to form the green body. During the burnout, surfactants of the alkyl polyethoxylate type have proven to be advantageous over alkyl aryl ethoxylates.
Die für die Verdichtung notwendige Temperatur sinkt mit abnehmender Partikelgröße beträchtlich. Es ist deshalb von Vorteil Partikel < 100 nm, bevorzugt < 50 nm und besonders bevorzugt < 10 nm zu verwenden. Die für die Verdichtung notwendige Temperatur kann weiter reduziert werden, wenn die Partikel in amorpher Form vorliegen. Dies ermöglicht bereits bei vergleichsweise niedrigen Temperaturen also schonenden Bedingungen, die drucklose Herstellung dichter Keramiken mit Dichten > 90 %, be- vorzugt > 95 %.The temperature required for compression drops considerably with decreasing particle size. It is therefore advantageous to use particles <100 nm, preferably <50 nm and particularly preferably <10 nm. The temperature required for the compression can be further reduced if the particles are in amorphous form. Even at comparatively low temperatures, this enables gentle conditions, the pressure-free production of dense ceramics with densities> 90%, preferably> 95%.
Im Gegensatz dazu kann z. B. KNaNb06 in Form herkömmlicher Pulver im Bereich von > 100 nm erst bei Temperaturen knapp unterhalb der Schmelztemperatur dieser Ver- bindung bei 1140 °C unter Normaldruck zu einer maximalen Dichte von weniger als 94 % der theoretischen Dichte kompaktiert (verdichtet) werden. Die druckunterstützte Konsolidierung erfolgt bevorzugt bei Drücken < 350 MPa, besonders bevorzugt < 200 MPa und idealerweise < 30 MPa.
Während des Sinterns wachsen die Primärpartikel. Auf Grund der engen Partikelgrδßenverteilung entstehen dabei aus den über Mikroemulsionen hergestellten Pulvern Keramiken mit einer engen Korngrößenverteilung. Wegen der Einheitlichkeit der Primärpartikel, ist die Wachstumsgeschwindigkeit der Körner während des Sinterprozesses gleichmäßig. Im Gegensatz hierzu führt das Sintern bei uneinheitlichen Pulvern zu einem bevorzugten Wachstum der großen Körner und somit zu einer stärkeren Zunahme der mittleren Partikelgrößen. Dieser Vorgang spielt mit steigender Temperatur eine zunehmende Rolle.In contrast, e.g. B. KNaNb0 6 in the form of conventional powders in the range of> 100 nm can only be compacted (compressed) at temperatures just below the melting temperature of this compound at 1140 ° C under normal pressure to a maximum density of less than 94% of the theoretical density. The pressure-supported consolidation is preferably carried out at pressures <350 MPa, particularly preferably <200 MPa and ideally <30 MPa. The primary particles grow during sintering. Due to the narrow particle size distribution, ceramics with a narrow grain size distribution are created from the powders produced using microemulsions. Because of the uniformity of the primary particles, the growth rate of the grains is uniform during the sintering process. In contrast, in the case of non-uniform powders, sintering leads to a preferred growth of the large grains and thus to a greater increase in the mean particle sizes. This process plays an increasing role with increasing temperature.
Durch die druckunterstützen Sinterverfahren (Konsolidationen) können oxidische Pulver bereits bei niedrigeren Temperaturen zu hochdichten Keramiken verdichtet werden. Zusätzlich wirkt die geringere Sintertemperatur der Nanopartikel hemmend auf das Wachstum der Primärpartikel . Deshalb haben die durch die Kombination von MikroemulsionsSynthese und druckunterstützter Konsoli- dierung herstellbaren Keramiken besonders günstige Eigenschaften, da sie bei hoher Dichte eine geringe mittlere Korngröße und eine gleichmäßige Korngrößenverteilung aufweisen. Die Dichten sind größer/gleich 94 %, bevorzugt > 97 %, besonders bevorzugt > 99 %. Die mitt- lere Korngröße ist dabei < 500 nm, bevorzugt < 100 nm und besonders bevorzugt < 50 nm. Die Keramiken weisen ferner eine enge Korngrößenverteilung auf, deren Anteil an Körnern mit mehr als der dreifachen mittleren Korngröße vorteilhaft < 20 % und insbesondere < 10 % ist.Thanks to the pressure-supported sintering process (consolidation), oxidic powders can be compacted to high-density ceramics even at lower temperatures. In addition, the lower sintering temperature of the nanoparticles inhibits the growth of the primary particles. Therefore, the ceramics that can be produced by the combination of microemulsion synthesis and pressure-supported consolidation have particularly favorable properties, since they have a small average grain size and a uniform grain size distribution at high density. The densities are greater than or equal to 94%, preferably> 97%, particularly preferably> 99%. The mean grain size is <500 nm, preferably <100 nm and particularly preferably <50 nm. The ceramics also have a narrow grain size distribution, the proportion of grains with more than three times the mean grain size advantageously <20% and in particular <10 % is.
Keramiken die entsprechend des erfindungsgemäßen Verfahrens hergestellt werden, weisen über eine durch die
Korngröße gesteuerte Temperaturcharakteristik der dielektrischen Materialeigenschaften zusätzlich kleinere Leckströme auf, da die Korngrößen beim Sinterprozess nur wenig wachsen und somit der Anteil der elektrisch blockierenden Korngrenzen hoch bleibt .Ceramics that are produced in accordance with the method according to the invention have a through the Grain size-controlled temperature characteristics of the dielectric material properties additionally have smaller leakage currents, since the grain sizes grow only slightly during the sintering process and the proportion of electrically blocking grain boundaries thus remains high.
KNaNb206 ist ein besonders vorteilhaftes piezoelektrische Material, das nur einen geringfügig geringeren piezoelektrischen Effekt aufweist als dass in vielen Bereichen verwendete Pb(Ti, Zr) 03. In der Medizintechnik, wenn es um das Implantieren piezokeramischer Elemente in den menschlichen Körper geht, sind allerdings Pb-haltige Materialien aufgrund ihrer Toxizität zu vermeiden. Hier könnten Kalium-Natrium Niobate ein inte- ressantes biokompatibles und toxikologisch unbedenkliches Alternativmaterial darstellen. Problematisch zeigt sich hier jedoch die Verdichtung keramischer Pulver zu kompakten Keramiken. Aufgrund einer nur sehr geringen Sinteraktivität können in herkömmlichen KNaNb206- Pulvern selbst bei einer Temperatur von 1100 °C nur sehr geringe relative Dichten unterhalb 94 % eingestellt werden. Eine deutliche Verbesserung der Sinteraktivität tritt bei den Keramiken, die nach dem erfindungsgemäßen Verfahren hergestellt wurden, ein.KNaNb 2 0 6 is a particularly advantageous piezoelectric material that has only a slightly smaller piezoelectric effect than that of Pb (Ti, Zr) 0 3 used in many areas. In medical technology, when it comes to implanting piezoceramic elements into the human body, materials containing Pb must be avoided due to their toxicity. Potassium sodium niobates could be an interesting biocompatible and toxicologically harmless alternative material. However, the compression of ceramic powders into compact ceramics is problematic. Due to the very low sintering activity, only very low relative densities below 94% can be set in conventional KNaNb 2 0 6 powders even at a temperature of 1100 ° C. A significant improvement in the sintering activity occurs in the ceramics which have been produced by the process according to the invention.
Hier können infolge der Feinheit des Ausgangspulvers und der Anwendung druckunterstützter Konsolidierung hochdichte Keramiken bei einer Temperatur von 1050 °C und einem Druck von 19 MPa erreicht werden. Die erhal- tenen Keramiken sind durchscheinend und weisen somit nahezu die theoretische Dichte auf. Bei der im Vergleich zu US 6,395,214 hohen Temperatur wirkt sich die Einheitlichkeit der Partikel besonders vorteilhaft aus,
da trotz der schnelleren Wachstumsprozesse die Einheitlichkeit der Körner weitgehend erhalten bleibt und das Kornwachstum gleichmäßig verläuft.Due to the fineness of the starting powder and the use of pressure-supported consolidation, high-density ceramics can be achieved at a temperature of 1050 ° C and a pressure of 19 MPa. The ceramics obtained are translucent and thus almost have the theoretical density. At the high temperature compared to US Pat. No. 6,395,214, the uniformity of the particles has a particularly advantageous effect. because, despite the faster growth processes, the uniformity of the grains is largely retained and the grain growth is even.
Spezieller BeschreibungsteilSpecial description part
Nachfolgend wird der Gegenstand der Erfindung anhand von Ausführungsbeispielen und Figuren näher erläutert, ohne daß der Gegenstand der Erfindung dadurch be- schränkt wird.The subject matter of the invention is explained in more detail below on the basis of exemplary embodiments and figures, without the subject matter of the invention being restricted thereby.
Es zeigenShow it
Fig. 1: Nanokristallines BaTi03 Pulver aus Mikroemul- sionssynthese bestehend aus lose aggregierten Primärpartikeln (Rasterelektronenmikroskopische Aufnahme) .Fig. 1: Nanocrystalline BaTi0 3 powder from microemulsion synthesis consisting of loosely aggregated primary particles (scanning electron microscope image).
Fig. 2: Nanokristallines BaTi03 Pulver aus Mikroemul- sionssynthese für eine Stunde bei 800 °C ge- tempert (Rasterelektronenmikroskopische Aufnahme) . Wegen der Einheitlichkeit der Primärpartikel, ist die Wachstumsgeschwindigkeit der Körner während des Sinterprozesses gleichmäßig.Fig. 2: Nanocrystalline BaTi0 3 powder from microemulsion synthesis annealed at 800 ° C for one hour (scanning electron microscope image). Because of the uniformity of the primary particles, the growth rate of the grains is uniform during the sintering process.
Fig. 3: Röntgenbeugungsdiagramme von BaTi03 a) Vergleich des Rohpulvers der Mikroemul- sionssynthese mit kommerziellen Pulvern b) nach Sintern des Pulvers aus der Mikro- emulsionsSynthese bei verschiedenen Temperaturen
Fig. 4: Röntgenbeugungsdiagramm von KNaNb206 aus der Mikroemulsionssynthese3: X-ray diffraction diagrams of BaTi0 3 a) Comparison of the raw powder of the microemulsion synthesis with commercial powders b) after sintering the powder from the microemulsion synthesis at different temperatures Fig. 4: X-ray diffraction diagram of KNaNb 2 0 6 from the microemulsion synthesis
Fig. 5: Vergleich der Dichte des bei verschiedenen Temperaturen gesinterten BaTi03-Pulvers aus der Mikroemulsionssynthese mit zwei kommerziellen Pulvern5: Comparison of the density of the BaTi0 3 powder sintered at different temperatures from the microemulsion synthesis with two commercial powders
A . Nanopartikel -Synthese A.l) Synthese von kristallinem BaTi03 unter Verwendung einer Mikroemulsion mit einem Alkylarylpolyethoxylat Kristallines (pseudokubisches) BaTi03 wurde nach der Vorschrift gemäß [4] hergestellt. Hierzu wurde Barium in 2-Propanol gelöst. Nach Zugabe der stöchiometrischen Menge an Titantetra-iso-propoxid wurde eine Stunde gerührt. Anschließend wurde zur Reaktionsmischung eine Mikroemulsion aus Cyclohexan, Tergitol NP 35, Oktanol und der stöchiometrischen Menge Wasser zugegeben. Die Partikel wurden durch Entfernen des Lösungsmittels, Aufkochen mit Aceton, Filtration und Soxhlet-Extraktion isoliert und gereinigt.A. Nanoparticle synthesis Al) Synthesis of crystalline BaTi0 3 using a microemulsion with an alkylaryl polyethoxylate Crystalline (pseudocubic) BaTi0 3 was prepared according to the procedure in [4]. For this, barium was dissolved in 2-propanol. After the stoichiometric amount of titanium tetra-iso-propoxide was added, the mixture was stirred for one hour. A microemulsion of cyclohexane, Tergitol NP 35, octanol and the stoichiometric amount of water was then added to the reaction mixture. The particles were isolated and purified by removing the solvent, boiling with acetone, filtration and Soxhlet extraction.
A.2) Synthese von kristallinem BaTi03 unter Verwendung einer Mikroemulsion mit einem Alkylpolyethoxylat Die Synthese wurde entsprechend zu A.l durchgeführt. Die eingesetzte Mikroemulsion enthielt in diesem Fall allerdings die Komponenten Cyclohexan, Lutensol ON 110 (von BASF) , Oktanol und Wasser.A.2) Synthesis of crystalline BaTi0 3 using a microemulsion with an alkyl polyethoxylate The synthesis was carried out in accordance with Al. In this case, however, the microemulsion used contained the components cyclohexane, Lutensol ON 110 (from BASF), octanol and water.
A.3) Synthese von amorphem BaTi03 A.3) Synthesis of amorphous BaTi0 3
Amorphes BaTi03 wurde erhalten, wenn zur Hydrolyse des gemischten Barium-Titan-iso-propoxid eine Mikroemulsion
mit einem polaren Öl eingesetzt wurde. Die Zusammensetzung der Mikroemulsion betrug Tergitol TMN 6 (Fluka) 4,970 g Ethylbutyrat (Fluka) 12,456 g Wasser 2,601 gAmorphous BaTi0 3 was obtained when a microemulsion for the hydrolysis of the mixed barium-titanium-iso-propoxide was used with a polar oil. The composition of the microemulsion was Tergitol TMN 6 (Fluka) 4.970 g ethyl butyrate (Fluka) 12.456 g water 2.601 g
13,0 g dieser Mikroemulsion wurden zu einer Lösung von Barium-Titan-iso-propoxid aus 5,1 g Barium, 10,8 g Titantetra-iso-propoxid in 250 ml iso-Propanol zugegeben. Bei der Aufarbeitung wurde im Gegensatz zum Beispiel 1.1. bereits nach der Entfernung des Lösemittels ein trockenes feines Pulver erhalten, das Aufkochen mit A- ceton zur Isolierung des Produktes konnte deshalb entfallen. Das Pulver wurde allein durch Soxhlet- Extraktion gereinigt.13.0 g of this microemulsion were added to a solution of barium titanium isopropoxide from 5.1 g barium, 10.8 g titanium tetra isopropoxide in 250 ml isopropanol. In contrast to example 1.1. Obtain a dry, fine powder as soon as the solvent has been removed; boiling with acetone to isolate the product was therefore not necessary. The powder was cleaned by Soxhlet extraction alone.
A.4) Synthese von amorphem KNaNb206 A.4) Synthesis of amorphous KNaNb 2 0 6
Bei der Hydrolyse einer Mischung von 0,373 g Kaliu- methoxid, 0,283 g Natriumethoxid und 2,65 g Niobpen- taethoxid in 50 ml Ethanol mit 35,1 g einer Mikroemulsion der Zusammensetzung Tergitol NP 35 (Fluka) 10,426 % Cyclohexan 80,737 %In the hydrolysis of a mixture of 0.373 g of potassium methoxide, 0.283 g of sodium ethoxide and 2.65 g of niobium pentethoxide in 50 ml of ethanol with 35.1 g of a microemulsion of the composition Tergitol NP 35 (Fluka) 10.426% cyclohexane 80.737%
1-Oktanol 6,051 % Wasser 2,787 % wurde KNaNb205 als amorphes Pulver erhalten. Das Reaktionsgemisch wurde über eine Glasfilterfritte G3 filtriert . Das Produkt wurde mehrfach mit Cyclohexan gewaschen. Die eingesetzte Wassermenge entsprach dem 2,15- fachen der stöchiometrischen Menge, die für die direkte1-octanol 6.051% water 2.787% KNaNb 2 0 5 was obtained as an amorphous powder. The reaction mixture was filtered through a glass filter frit G3. The product was washed several times with cyclohexane. The amount of water used was 2.15 times the stoichiometric amount, that for the direct
Oxidbildung notwendig war.
B . Charakterisierung der Materiali en B.l) BariumtitanatOxide formation was necessary. B. Characterization of the materials Bl) barium titanate
Die Röntgenbeugungsdiagramme (Fig. 3a und 3b) zeigen, dass das Bariumtitanat weitgehend phasenrein ist . Das Material enthielt geringe Anteile an BaC03. Im Rohpulver wurde 0,2 % anorganischer Kohlenstoff gefunden. Während des Sinterns bei tiefen Temperaturen nimmt der Gehalt an anorganischem Kohlenstoff durch die Oxidation der organischen Bestandteile des Rohpulvers auf maximal 0,7 % zu. Bei höheren Temperaturen reduziert sich der Anteil auf 0,05 %. Verglichen mit kommerziellen Pulvern sind die Peaks für das Rohpulver aus der Mikroemulsionssynthese wegen der geringen Partikelgröße stark ver- breitert (Fig. 3a) . Durch das Sintern bei unterschiedlichen Temperaturen können Keramiken mit unterschiedlichen Partikelgrößen hergestellt werden. Mit zunehmender Sintertemperatur wachsen die Körner und die Peaks werden schmaler (Fig. 3b) .The X-ray diffraction diagrams (FIGS. 3a and 3b) show that the barium titanate is largely phase-pure. The material contained small amounts of BaC0 3 . 0.2% inorganic carbon was found in the raw powder. During sintering at low temperatures, the content of inorganic carbon increases to a maximum of 0.7% due to the oxidation of the organic components of the raw powder. At higher temperatures, the proportion is reduced to 0.05%. Compared to commercial powders, the peaks for the raw powder from the microemulsion synthesis are greatly broadened because of the small particle size (FIG. 3a). By sintering at different temperatures, ceramics with different particle sizes can be produced. With increasing sintering temperature, the grains grow and the peaks become narrower (Fig. 3b).
B.2) KaliumnatriumniobatB.2) Potassium sodium niobate
Das Röntgenbeugungsdiagramm des Kaliumnatriumniobates zeigt trotz der Zugabe einer überstöchiometrischen Menge an Wasser nach einer Sinterung des amorphen Materi- als bei 1000 °C keine Fremdphasen (Fig. 4) .The X-ray diffraction diagram of the potassium sodium niobate shows no foreign phases despite the addition of a stoichiometric amount of water after sintering of the amorphous material than at 1000 ° C. (FIG. 4).
C. Verdi chtung bei NormaldruckC. Densification at normal pressure
C.l) Verdichtung von kristallinem BaTi03 aus Synthese A.l bei Normaldruck Fig. 5 zeigt den Vergleich der Sinterkurven für BaTi03- Nanopartikel von 10 nm aus der Mikroemulsionssynthese nach 1.1. und zweier kommerzieller Pulver mit Partikelgrößen von 50-70 nm bzw. 2 μm. Die Daten belegen, dass
das Pulver aus der Mikroemulsionssynthese im Bereich von 900-1150 °C bereits bei niedrigeren Temperaturen höhere Dichten als die Vergleichspulver erreicht.Cl) Densification of crystalline BaTi0 3 from synthesis Al at normal pressure. FIG. 5 shows the comparison of the sintering curves for BaTi0 3 nanoparticles of 10 nm from the microemulsion synthesis according to 1.1. and two commercial powders with particle sizes of 50-70 nm or 2 μm. The data show that the powder from microemulsion synthesis in the range of 900-1150 ° C already achieves higher densities at lower temperatures than the comparison powder.
D. Druckunterstützte VerdichtungD. Pressure assisted compaction
D.l) Verdichtung von kristallinem BaTi03 aus Synthese A.2 unter hohem DruckDl) densification of crystalline BaTi0 3 from synthesis A.2 under high pressure
Der Tensidgehalt des Rohpulvers wurde durch Aufkochen in Aceton reduziert. Das Tensid wurde dabei weitgehend entfernt . Der Gesamtkohlenstoffgehalt betrug nochThe surfactant content of the raw powder was reduced by boiling in acetone. The surfactant was largely removed. The total carbon content was still
2,7 + 0,1 %. In einem ersten Verdichtungsschritt wurde das Pulver mit dem Tensid als Binder in einer Stahlmatrix unter 20 kN .(130 MPa) zu einem Grünkörper von 40 - 45 % der theoretischen Dichte gepresst . Im darauf folgenden ersten Temperschritt bis 400 °C wurde der Gesamtkohlenstoffgehalt auf 1,23 + 0,04 % reduziert. Anschließend wurde der Pressung kaltisostatisch bei 550 MPa auf eine Dichte von 55 - 60 % nachverdichtet. Dabei erwies sich die Anwesenheit von Resten organischen Koh- lenstoffs als förderlich, da eine vorzeitige Agglomerierung der Partikel unterdrückt wurde. Der Ausbrand des restlichen Binders erfolgte bei 650 °C an der Luft. Der Restgehalt an Gesamtkohlenstoff, der im wesentlichen als Carbonat vorlag, betrug 0,29 + 0,02 %. Um eine maximale Dichte des fertigen Sinterkörpers zu erhalten, wurde dieser in eine Edelmetallkapsel eingeschweißt. Die Kapsel mit dem Pressung wurde zunächst bei 400 MPa kaltisostatisch gepresst, um ein enges Anliegen des Metalls am Pressung zu gewährleisten. Schließlich wurde die Probe bei 850 °C und 200 MPa für 15 Minuten gesin- tetert . Es wurde eine Keramik mit einer Dichte von
98 ± 0,6 % der theoretischen Dichte und einer mittleren Korngröße von 50,4 nm erhalten.2.7 + 0.1%. In a first compression step, the powder was pressed with the surfactant as a binder in a steel matrix under 20 kN. (130 MPa) to a green body of 40 - 45% of the theoretical density. In the subsequent first tempering step up to 400 ° C the total carbon content was reduced to 1.23 + 0.04%. The pressing was then cold isostatically compressed to a density of 55-60% at 550 MPa. The presence of residues of organic carbon proved to be beneficial, since premature agglomeration of the particles was suppressed. The remaining binder was burned out in air at 650 ° C. The residual total carbon content, which was essentially carbonate, was 0.29 + 0.02%. In order to obtain a maximum density of the finished sintered body, it was welded into a noble metal capsule. The capsule with the pressing was first cold isostatically pressed at 400 MPa in order to ensure that the metal was pressed tightly against the pressing. Finally, the sample was sintered at 850 ° C and 200 MPa for 15 minutes. It became a ceramic with a density of 98 ± 0.6% of the theoretical density and an average grain size of 50.4 nm were obtained.
Besonders vorteilhafte Keramiken, die mit dem erfin- dungsgemäßen Verfahren herstellbar sind, sind die in den Ausführungsbeispielen beschriebenen Keramiken Ba- Ti03 und KNaNb206, aber auch BaFe120ι9 Particularly advantageous ceramics which can be prepared with the inventions to the invention method, the ceramics Ba 3 and Ti0 KNaNb 2 0 6 described in the embodiments, but also BaFe 12 0ι 9
Beide Oxide gehören zu der Klasse der Ferroelektrika. Sie weisen einen strukturellen Phasenübergang von einer ferro-elektrischen Tieftemperaturphase in eine paraelektrische Hochtemperaturphase auf, der im allgemeinen mit einer sehr starken Abhängigkeit der dielektrischen Konstanten des Materials von der Temperatur verbunden ist. Um den Bereich der Curie-Temperatur T (BaTi03: Tc = 120 °C, KNaNb06:Tc = 425 °C) , die den Umwandlungspunkt kennzeichnet, weisen sowohl die dielektrischen als auch die piezoelektrischen Koeffizienten maximale Werte auf, die sowohl für tiefere als auch für höhere Temperaturen drastisch abfallen.Both oxides belong to the class of ferroelectrics. They have a structural phase transition from a ferro-electrical low-temperature phase to a paraelectric high-temperature phase, which is generally associated with a very strong dependence of the dielectric constants of the material on the temperature. Around the range of the Curie temperature T (BaTi0 3 : T c = 120 ° C, KNaNb0 6 : T c = 425 ° C), which characterizes the transformation point, both the dielectric and the piezoelectric coefficients have maximum values that both drop drastically for lower and higher temperatures.
Zitierte Literatur:Literature cited:
[1] M. Ciftcioglu, M. J. Mayo; "Processing of[1] M. Ciftcioglu, M. J. Mayo; "Processing of
Nanocrystalline Ceramics " ; Mat . Res . Soc . Symp . Proc . Vol . 196 (1990) 77 - 86Nanocrystalline Ceramics "; Mat. Res. Soc. Symp. Proc. Vol. 196 (1990) 77-86
[2 ] W. Härtl . Ch . Beck, M. Roth, F. Meyer, R .[2] W. Härtl. Ch. Beck, M. Roth, F. Meyer, R.
Hempelmann; "Nanocrystalline Metals and Oxides II: Reverse Microemulsion " ; Ber. Bunsenge . Phys . Chem . 101 , 1714 -1717 (1997) [3 ] ff. Herrig , -R . Hempelmann; " A colloidal approach to nanometre-sized mixed oxide ceramic powders " ; Materials Letters, Vol . 27, 287 (1997)
[4] Ch. Beck, W. Härtl, r. Hempelmann; "Size-controlled synthesis of nanocrystalline BaTiö3 by a sol-gel type hydrolysis in microemulsion-provided nanoreac - tors " ; J. Mater. Res . , Vol. 13, No . 11, (1998) 3174 - 3180.Hempel man; "Nanocrystalline Metals and Oxides II: Reverse Microemulsion"; Ber. Bunsenge. Phys. Chem. 101, 1714 -1717 (1997) [3] ff. Herrig, -R. Hempel man; "A colloidal approach to nanometer-sized mixed oxide ceramic powders"; Materials Letters, vol. 27, 287 (1997) [4] Ch. Beck, W. Härtl, r. Hempel man; "Size-controlled synthesis of nanocrystalline BaTiö 3 by a sol-gel type hydrolysis in microemulsion-provided nanoreac tors"; J. Mater. Res. , Vol. 13, No. 11, (1998) 3174-3188.
[5] Amini, Sacks; J. American Ceramic Society 74(1), 53-59 (1991)[5] Amini, sacks; J. American Ceramic Society 74 (1), 53-59 (1991)
[6] R. Waser et al . : J. Am. Ceram. Soc . 73 (1990) 1645; R. Waser: Ferroelectrics 133 (1992) 109)
[6] R. Waser et al. : J. Am. Ceram. Soc. 73 (1990) 1645; R. Waser: Ferroelectrics 133 (1992) 109)
Claims
1. Verfahren zur Herstellung einer Keramik, die eine Dichte von wenigstens 94 % der theoretischen Dichte aufweist, mit den Schritten - das Ausgangspulver für die Keramik wird mit Hilfe einer Mikroemulsion erzeugt, - das so hergestellte Ausgangspulver wird durch einen druckunterstützten Prozeß zur Keramik verfestigt .1. A method for producing a ceramic, which has a density of at least 94% of the theoretical density, with the steps - the starting powder for the ceramic is produced with the aid of a microemulsion, - the starting powder thus produced is solidified by a pressure-assisted process to the ceramic.
2. Verfahren nach vorhergehendem Anspruch 1, bei dem ein Ausgangspulver erzeugt wird, bei dem weniger als 10 % der Partikel eine Größe von mehr als dem dreifachen der mittleren Größe aufweisen.2. The method according to the preceding claim 1, in which a starting powder is produced in which less than 10% of the particles have a size of more than three times the average size.
3. Verfahren nach vorhergehendem Anspruch 1 bis 2, bei dem ein Ausgangspulver erzeugt wird, bei dem weniger als 5 % der Partikel eine Größe von mehr als dem dreifachen der mittleren Größe aufweisen.3. The method according to the preceding claims 1 to 2, in which a starting powder is produced in which less than 5% of the particles have a size of more than three times the average size.
4. Verfahren nach vorhergehendem Anspruch 1 bis 3, bei dem ein Ausgangspulver erzeugt wird, bei dem weni- ger als 2 % der Partikel eine Größe von mehr als dem dreifachen der mittleren Größe aufweisen.4. The method according to the preceding claims 1 to 3, in which a starting powder is produced in which less than 2% of the particles have a size of more than three times the average size.
5. Verfahren nach vorhergehendem Anspruch 1 bis 4, bei dem ein Ausgangspulver erzeugt wird, welches eine mittlere Partikelgröße von weniger als 100 nm auf- weist.5. The method according to the preceding claims 1 to 4, in which a starting powder is produced which has an average particle size of less than 100 nm.
6. Verfahren nach vorhergehendem Anspruch 1 bis 5, bei dem ein Ausgangspulver erzeugt wird, welches eine mittlere Partikelgröße von weniger als 50 nm aufweist. 6. The method according to the preceding claims 1 to 5, in which a starting powder is produced which has an average particle size of less than 50 nm.
7. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 6, bei dem ein Ausgangspulver erzeugt wird, welches eine mittlere Partikelgröße von weniger als 10 nm aufweist.7. The method according to any one of the preceding claims 1 to 6, in which a starting powder is produced which has an average particle size of less than 10 nm.
8. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 7, bei dem BaTi03 als Ausgangspulver erzeugt wird.8. The method according to any one of the preceding claims 1 to 7, in which BaTi0 3 is produced as the starting powder.
9. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 7, bei dem ein Ausgangspulver umfassend Niob erzeugt wird.9. The method according to any one of the preceding claims 1 to 7, in which a starting powder comprising niobium is produced.
10. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 7, bei dem KNaNb206 als Ausgangspulver erzeugt wird.10. The method according to any one of the preceding claims 1 to 7, in which KNaNb 2 0 6 is produced as the starting powder.
11. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 10, bei dem das Ausgangspulver erzeugt wird, welches amorphe Partikel aufweist.11. The method according to any one of the preceding claims 1 to 10, in which the starting powder is produced which has amorphous particles.
12. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 12, bei dem eine Mikroemulsion mit einem polaren Öl eingesetzt wird.12. The method according to any one of the preceding claims 1 to 12, in which a microemulsion with a polar oil is used.
13. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 12, bei dem das Ausgangsmaterial durch eine Gasdrucksinterung verfestigt wird.13. The method according to any one of the preceding claims 1 to 12, in which the starting material is solidified by gas pressure sintering.
14. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 12, bei dem das Ausgangspulver mittels Heiß- pressen verfestigt wird.14. The method according to any one of the preceding claims 1 to 12, in which the starting powder is solidified by means of hot pressing.
15. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 12, bei dem das Ausgangspulver mittels Sinterschmieden verfestigt wird. 15. The method according to any one of the preceding claims 1 to 12, in which the starting powder is solidified by means of sinter forging.
16. Hochdichte Keramik, herstellbar nach einem Verfahren gemäß der Ansprüche 1 bis 15, gekennzeichnet durch16. High-density ceramic, can be produced by a method according to claims 1 to 15, characterized by
- eine Dichte, die wenigstens 94 % der theoreti- sehen Dichte entspricht, und- a density which corresponds to at least 94% of the theoretical density, and
- mit einer mittleren Korngröße von weniger als 500 nm.- With an average grain size of less than 500 nm.
17. Hochdichte Keramik nach Anspruch 16 mit einer mittleren Korngröße von weniger als 100 nm.17. High-density ceramic according to claim 16 with an average grain size of less than 100 nm.
18. Hochdichte Keramik nach Anspruch 16 bis 17 mit einer mittleren Korngröße von weniger als 50 nm.18. High-density ceramic according to claim 16 to 17 with an average grain size of less than 50 nm.
19. Hochdichte Keramik nach Anspruch 16 bis 18 mit einer engen Korngrößenverteilung, deren Anteil an Körnern mit mehr als der dreifachen mittleren Korngröße bevorzugt weniger als 20 % beträgt.19. High-density ceramic according to claim 16 to 18 with a narrow grain size distribution, the proportion of grains with more than three times the average grain size is preferably less than 20%.
20. Hochdichte Keramik nach Anspruch 16 bis 18 mit einer engen Korngrößenverteilung, deren Anteil an Körnern mit mehr als der dreifachen mittleren Korngröße bevorzugt weniger als 10 % beträgt.20. High-density ceramic according to claim 16 to 18 with a narrow grain size distribution, the proportion of grains with more than three times the average grain size is preferably less than 10%.
21. Hochdichte Keramik nach Anspruch 16 bis 20 mit einer Dichte, die wenigstens 97 % der theoretischen Dichte entspricht .21. High-density ceramic according to claim 16 to 20 with a density which corresponds to at least 97% of the theoretical density.
22. Hochdichte Keramik nach Anspruch 16 bis 21 mit einer Dichte, die wenigstens 99 % der theoretischen Dichte entspricht.22. High-density ceramic according to claim 16 to 21 with a density which corresponds to at least 99% of the theoretical density.
23. Hochdichte Keramik nach Anspruch 16 bis 22, umfassend BaTi03. 23. High-density ceramic according to claim 16 to 22, comprising BaTi0 3 .
24. Hochdichte Keramik nach Anspruch 16 bis 22, umfassend niobhaltige Oxide.24. High-density ceramic according to claim 16 to 22, comprising niobium-containing oxides.
25. Hochdichte Keramik nach Anspruch 24, umfassend KNaNb206. 25. High-density ceramic according to claim 24, comprising KNaNb 2 0 6 .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10237915 | 2002-08-14 | ||
DE2002137915 DE10237915A1 (en) | 2002-08-14 | 2002-08-14 | High-density ceramics and methods of manufacturing the same |
PCT/DE2003/002748 WO2004020363A2 (en) | 2002-08-14 | 2003-08-14 | High-density ceramics and method for the production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1529022A2 true EP1529022A2 (en) | 2005-05-11 |
Family
ID=31501808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03790724A Withdrawn EP1529022A2 (en) | 2002-08-14 | 2003-08-14 | High-density ceramics and method for the production thereof |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1529022A2 (en) |
DE (1) | DE10237915A1 (en) |
WO (1) | WO2004020363A2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1805256A1 (en) | 2004-10-28 | 2007-07-11 | Dow Corning Corporation | Conductive curable compositions |
DE102005038411B4 (en) * | 2005-08-12 | 2016-06-09 | Forschungszentrum Jülich GmbH | Process for the preparation of piezoelectric sodium niobate |
DE102005040582A1 (en) * | 2005-08-22 | 2007-03-01 | Itn Nanovation Gmbh | High temperature stable ceramic layers and moldings |
DE102006025770A1 (en) * | 2006-05-31 | 2007-12-13 | Jürgen Dr. Dornseiffer | Production of coating solutions together with manufactured products |
KR20140143154A (en) | 2012-03-21 | 2014-12-15 | 바스프 에스이 | Process for producing nanoparticles and their use in the production of high-temperature superconductors |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4307333A1 (en) * | 1993-03-09 | 1994-09-15 | Merck Patent Gmbh | Process for preparing finely divided metal oxide powders |
US5514350A (en) * | 1994-04-22 | 1996-05-07 | Rutgers, The State University Of New Jersey | Apparatus for making nanostructured ceramic powders and whiskers |
IT1270200B (en) * | 1994-06-09 | 1997-04-29 | Ausimont Spa | PREPARATION OF ULTRA FINE PARTICLES FROM MICROEMULSIONS OF WATER IN OIL |
DE4444597C2 (en) * | 1994-12-14 | 1998-11-05 | Klingspor Gmbh C | A method for producing a sintered material containing alumina |
DE19733700C2 (en) * | 1996-10-04 | 1999-06-02 | Fraunhofer Ges Forschung | Reinforced stabilized Zr02 ceramic with mechanical stability under hydrothermal stress, process for its production and use |
DE19827575A1 (en) * | 1998-06-20 | 1999-12-23 | Philips Patentverwaltung | Ceramic passive electronic component useful as an actuator, a sensor, a nonlinear resistor or a multilayer capacitor |
US6395214B1 (en) * | 1998-11-30 | 2002-05-28 | Rutgers, The State University Of New Jersey | High pressure and low temperature sintering of nanophase ceramic powders |
-
2002
- 2002-08-14 DE DE2002137915 patent/DE10237915A1/en not_active Withdrawn
-
2003
- 2003-08-14 WO PCT/DE2003/002748 patent/WO2004020363A2/en not_active Application Discontinuation
- 2003-08-14 EP EP03790724A patent/EP1529022A2/en not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2004020363A3 * |
Also Published As
Publication number | Publication date |
---|---|
WO2004020363A2 (en) | 2004-03-11 |
DE10237915A1 (en) | 2004-03-11 |
WO2004020363A3 (en) | 2004-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69408921T2 (en) | Process for the production of crystalline ceramic powders from perovskite compounds | |
DE69902867T2 (en) | HYDROTHERMAL METHOD FOR THE PRODUCTION OF BARIUM TITANATE POWDER | |
EP2459497B1 (en) | Piezo-electric ceramic composition, method for producing the composition, and electric component comprising the composition | |
EP0823885B1 (en) | Process for producing weakly agglomerated nanoscalar particles | |
DE102005027928B4 (en) | Grain-oriented ceramics, production methods therefor and their use | |
DE102010050553B4 (en) | Hexagonal barium titanate powder, production method therefor, dielectric ceramic composition and electronic component | |
EP2942338B1 (en) | Capacitor comprising a ceramic material | |
DE102007000459B4 (en) | Anisotropically shaped powder production method and method for producing a crystal oriented ceramic | |
JPH04502303A (en) | Method for producing submicron ceramic powders of perovskite compounds with controlled stoichiometry and particle size | |
DE102017211348B3 (en) | A method of making a textured perovskite ceramic and perovskite ceramics and uses made in this manner | |
DE69024340T2 (en) | SEMICONDUCTOR CERAMIC CAPACITOR OF LAMINATED AND INTERMEDIATE GRAIN INSULATION TYPE AND METHOD FOR THE PRODUCTION THEREOF | |
EP2773598B1 (en) | Ceramic material, method for producing the ceramic material, and electroceramic component comprising the ceramic material | |
DE60208464T2 (en) | Cerium oxide-containing solid electrolytes | |
EP1831107B1 (en) | Fine lead-zirkonium-titanates and zirconium-titanates and method of production using titaniumdioxide hydrate particles with a specific surface >50 m^2/g | |
DE4436392C2 (en) | Metal niobates and / or tantalates, processes for their preparation and their further processing into perovskites | |
DE2659016A1 (en) | PROCESS FOR MANUFACTURING A DIELECTRIC WITH PEROWSKITE STRUCTURE | |
DE69923635T2 (en) | Piezoelectric ceramics | |
EP2751854B1 (en) | Method for producing a piezoelectric component | |
DE69009628T2 (en) | Powder composition for sintering in a modified barium titanate semiconducting ceramic. | |
DE2941304A1 (en) | DIELECTRICAL, METHOD FOR THE PRODUCTION THEREOF, AND THEIR USE IN CAPACITORS FOR TEMPERATURE COMPENSATION PURPOSES | |
DE69010178T2 (en) | METHOD FOR PRODUCING POWDERED PEROVSKITE CONNECTIONS. | |
EP1529022A2 (en) | High-density ceramics and method for the production thereof | |
DE3714819C2 (en) | Co-synthesized compositions based on barium titanate | |
EP2411347A1 (en) | Lead zirconate titanates and method for the production thereof | |
DE2922260A1 (en) | Piezoelectric polymer composite material - for transducer or pyroelectric material, contains ferroelectric ceramic with single domain microcrystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050127 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20081009 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20100421 |