[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1523754A2 - Heating jacket for plasma etching reactor, and etching method using same - Google Patents

Heating jacket for plasma etching reactor, and etching method using same

Info

Publication number
EP1523754A2
EP1523754A2 EP03763950A EP03763950A EP1523754A2 EP 1523754 A2 EP1523754 A2 EP 1523754A2 EP 03763950 A EP03763950 A EP 03763950A EP 03763950 A EP03763950 A EP 03763950A EP 1523754 A2 EP1523754 A2 EP 1523754A2
Authority
EP
European Patent Office
Prior art keywords
heating jacket
etching
plasma
reactor according
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03763950A
Other languages
German (de)
French (fr)
Inventor
Michel Puech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CollabRx Inc
Original Assignee
Alcatel CIT SA
Alcatel SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel CIT SA, Alcatel SA filed Critical Alcatel CIT SA
Publication of EP1523754A2 publication Critical patent/EP1523754A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature

Definitions

  • the present invention relates to plasma etching reactors, and in particular reactors used for the implementation of micromachining or anisotropic etching processes of a silicon substrate by plasma according to the alternating process described in document US-A-5,501,893.
  • stages of etching a substrate are alternated by a plasma of fluorinated etching gas such as SF 6 , and steps of passivation of the surfaces using a plasma of pas.sivation CxFy gas such that C 4 F 8 for example.
  • the process steps are carried out under a low pressure atmosphere, allowing the establishment and maintenance of a plasma.
  • the substrate is isotropically attacked by the fluorine atoms.
  • the plasma passivation steps of CxFy passivation gas such as C 4 F 8 make it possible to deposit a polymer film on all the surfaces of the substrate exposed to the plasma. The vertical surfaces and the horizontal surfaces are thus covered.
  • the next plasma etching step of fluorinated gas etching and under the combined action of vertical ion bombardment obtained by the negative polarization of the substrate, the polymer film is sprayed and removed on the horizontal surfaces, and the vertical etching of the substrate can continue, while the polymer remaining on the vertical surfaces momentarily opposes the action of the plasma on said vertical surfaces.
  • the mechanism of etching of the substrate by the plasma of etching fluorinated gas is the following: one generates a plasma containing electrons, ions such as SF5 +, and fluorine atoms F.
  • the fluorine atoms arriving at the surface of the substrate react chemically, for example in the case of a silicon substrate, depending on the reaction:
  • reaction products such as SiF 4 and the non-dissociated SF 6 molecules as well as the SxFy radicals remain in gaseous form and are removed by pumping.
  • a plasma is generated containing electrons, ions and radicals of CF type. , CF 2 , ... etc. These radicals or monomers will bond to each other to form polymer chains [-CF-] n or [-CF 2 -] n. These polymers condense on all surfaces exposed to plasma and cover them with a polymer film. These surfaces are of course the surfaces of the silicon substrate being etched, but also all the internal surfaces of the reaction chamber.
  • the surfaces subjected to ion bombardment are freed from the polymer film. This is particularly the case for horizontal surfaces of the silicon substrate, which can then be etched by atoms of atomic fluorine F. It is also the case for all surfaces other than the substrate which are subjected to bombardment.
  • One problem with the alternate anisotropic etching methods according to US Pat. No. 5,501,893 is that the etching speed decreases progressively over time, in a substantially linear fashion, as illustrated in FIG. 1. Thus, starting at time 0 , with an etching speed of 10 microns per minute, the speed gradually decreases to reach 6 microns per minute after 12 hours of operation, in an example of operation of a given reactor and under plasma generation conditions kept constant.
  • the object of the invention is to avoid such a negative drift in the etching performance of an etching equipment anisotropic silicon by an alternating anisotropic etching process according to US-A-5,501,893.
  • the invention results from an in-depth analysis of the phenomena appearing during the passivation and etching stages according to the alternating process, and leads to explaining this negative drift by the following process: during the passivation stages, all the parts of the reaction gradually cover with a polymer film. This film is not removed during the etching steps when the surfaces of the reaction chamber are connected to a low potential, for example to the electrical ground. Due to the low potential, the corresponding receiving surfaces of the reaction chamber are not subjected to ion bombardment, and thus retain a polymer film similar to that covering the surfaces of the substrate to be etched. Over time, this film thickens.
  • Vp is of the order of ten volts, typically 15 to 25 volts relative to the mass. This energy is insufficient to remove the polymer film by spraying, but it is sufficient to heat the walls and therefore the polymer film at temperatures of the order of 40 to 60 ° C.
  • the etching speed of the silicon is optimal that is to say maximum.
  • the polymer film condensed on the receiving surfaces of the walls not subjected to intentional ion bombardment will grow and thicken.
  • Vp the flow of energy particles
  • this film liberates, by partial vaporization, molecules of the CxFy type. These molecules are found in the gas phase, adding to the molecules of C 4 F 8 intentionally introduced by mass flow meters.
  • the invention aims to achieve this temperature rise without excessive expenditure of energy, and without risk of injury to intervention personnel circulating around the reactors.
  • a plasma etching reactor comprising a reaction chamber surrounded by a sealed wall, containing substrate support means, and communicating with a plasma source, further comprises a heating jacket made of a metal or suitable alloy internally covering in leaktight manner all or part of the sealed reaction chamber wall, and an intermediate space thermal insulation provided between the heating jacket and the sealed reaction chamber wall.
  • the heating jacket has a temperature higher than that produced by plasma radiation alone, and the higher temperature of the heating jacket reduces the quantity of polymer molecules deposited on the jacket.
  • the heating jacket itself constitutes the receiving surface, and forms a screen preventing the deposition of the polymers on the sealed wall itself of the reaction chamber.
  • the heating jacket has a structure which avoids any contamination of the substrate to be etched and any drop in yield of the etching process.
  • the metal or suitable alloy is preferably chosen from metals or alloys which, on the one hand do not react with fluorinated etching and passivation gases to form volatile compounds, and on the other hand do not generate an emission of contaminating atoms under the effect of bombardment by the plasma.
  • alkali metals, chromium, and heavy metals such as iron, copper, zinc should be avoided. Good results can be obtained with a heating jacket made of aluminum or titanium, aluminum being preferred for its low cost and its ease of implementation.
  • the reactor according to the invention can also comprise:
  • etching rate control means for controlling one introduction of etching gas into the plasma source
  • the heating jacket is fixed to the sealed wall of the reaction chamber by a limited number of fixing points.
  • the intermediate space between the heating jacket and the sealed wall of the reaction chamber can advantageously communicate with the central space of the reaction chamber by an annular space of reduced thickness.
  • the small thickness prevents the penetration of the plasma into the intermediate space.
  • the attachment points preferably have a thermally insulating structure which prevents the transfer of thermal energy by conduction from the heating jacket to the sealed wall of the reaction chamber.
  • the heating means of the heating jacket can be of several types. According to a first embodiment, the heating jacket is thermally coupled to heating means such as electrical resistors connectable to an external source of electrical energy.
  • the electrical resistors may for example comprise electrical resistors in a thin layer, and / or electrical resistors of the thermoaxial type.
  • the heating jacket is thermally stressed by radiation heating means such as infrared elements.
  • the heating jacket is associated with thermal regulation means ensuring the regulation of its temperature within a range of suitable temperature values.
  • the heating jacket advantageously comprises heating means suitable for heating it to a temperature above 150 ° C.
  • An additional problem with plasma etching reactors results from the presence of a conductive grid, limiting the reaction chamber downstream of the substrate support means. The purpose of this grid is to limit the propagation of the plasma, and to confine it in the reaction chamber. The problem is that 'the gate tends to clog progressively, by accumulation of polymer particles.
  • the invention solves this problem by ensuring that the conductive grid is in thermal contact with the heating jacket. It appears that the resulting rise in temperature on the grid prevents it from fouling and keeps it in correct working condition for a long time.
  • an advantageous embodiment of such substrate support means comprises attraction electrodes substrate electrostatic. In known reactors, these electrodes cover themselves fairly quickly with polymer, and their efficiency decreases rapidly over time.
  • the invention greatly reduces this problem, since the electrostatic attraction electrodes of the substrate remain with sufficient cleanliness for correct operation of the electrodes for a long period of time, apparently because the electrodes are no longer charged with polymer.
  • a process for etching the substrate by plasma in a reactor as defined above comprising alternating steps for etching the substrate with a plasma of fluorinated etching gas and of steps of passivation of the surfaces by a plasma of CxFy passivation gas, and at least during the passivation steps, the heating jacket is heated to a temperature higher than the condensation temperature of the polymers generated by the passivation plasma.
  • the heating jacket is heated continuously during all the stages of the process.
  • a plasma etching reactor comprises a reaction chamber 1 surrounded by a sealed wall 2 containing substrate support means 3 and communicating with a plasma source 4 .
  • the sealed wall 2 of the reaction chamber 1 comprises for example a peripheral portion 2a which is connected to a front inlet portion 2b which is itself open to communicate with an inlet tube 6 constituting the plasma source 4.
  • the portion peripheral 2a and the front input portion 2b are metal portions, advantageously connected to the ground potential.
  • the inlet tube 6 is made of dielectric material, and is surrounded by a coupling electrode 7 supplied with alternating electric current at radio frequency by a radiofrequency generator 8.
  • a source of etching gas 9a and etching flow control means 9b such as a solenoid valve make it possible to control the introduction of etching gas at the end of the inlet tube 6, into the plasma source 4.
  • a source of passivation gas 9c and means for controlling passivation flow rate 9d such as a solenoid valve make it possible to control the introduction of passivation gas at the end of the inlet tube 6, into the source of plasma 4.
  • a control device 9e alternately controls the etching flow control means 9b and the passivation flow control means 9c.
  • the coupling electrode 7 excites the gases in the inlet tube 6 to produce a plasma which then moves towards the interior of the reaction chamber 1 in the direction of the substrate support means 3.
  • the substrate support means 3 are polarized by a radiofrequency generator 11 to which they are connected by a polarization line 10.
  • the reaction chamber 1 is connected by a pumping line 12 to pumping means 13 making it possible to establish and maintain in the reaction chamber 1 a low and controlled gas pressure, compatible with the production of a plasma.
  • reaction chamber 1 Downstream of the substrate support means 3, the reaction chamber 1 is limited by a conductive grid 5 also connected to the potential of the mass, and the mesh of which is in relation to the ion density of the plasma.
  • the reactor of Figure 2 further comprises a heating jacket 14 internally covering all the portions of the sealed wall 2 which are at ground potential and which are in contact with the plasma.
  • the heating jacket 14 comprises a peripheral wall 14a which covers the peripheral portion 2a, and comprises an upper wall 14b which covers the front inlet portion 2b.
  • the heating jacket 14 is a wall made of a suitable metal, itself connected to the ground potential, and associated with heating means such as electrical resistors 17 or others. Thermal insulation means are interposed between the heating jacket 14 and the sealed wall 2 of the reaction chamber 1.
  • the thermal insulation means consist of an intermediate space 15, of suitable thickness, for example of the order of approximately 0.5 to 1 mm, between the heating jacket 14 and the sealed wall 2 of the reaction chamber 1.
  • the intermediate space 15 contains an atmosphere at very low pressure, and therefore having good thermal insulation properties.
  • the heating jacket 14 is fixed to the sealed wall 2 of the reaction chamber 1 by a limited number of fixing points, for example the three fixing points 16a, 16b and 16c illustrated in FIGS. 2 and 3.
  • the fixing points 16a, 16b and 16c have a thermally insulating structure, which further prevents the transfer of thermal energy by conduction from the heating jacket 14 to the sealed wall 2 of the reaction chamber 1.
  • the heating jacket 14 is suspended from the sealed wall 2 of the reaction chamber 1 by fixing points
  • 16a, 16b and 16c each consisting of a protuberance with a head, projecting below the watertight wall 2, and engaged in a respective slot 26a, 26b and 26c of the upper wall 14b of the heating jacket 14.
  • the slots 26a, 26b and 26c are of the buttonhole type with a large portion of head passage and a narrow portion of head retention, as illustrated in FIG. 3.
  • the internal surface 14d of the heating jacket 14 is structured so as to present a slight radiation emission factor. In this way, we limit
  • the electrical resistors 17 or other means for heating the heating jacket 14 are supplied by a line 21 controlled by thermal regulation means comprising a control device 19 which receives by a line 20 temperature information from the heating jacket 14 taken by a temperature sensor 18.
  • the control device is designed so as to regulate the temperature of the heating jacket 14 and to maintain it within a range of suitable temperature values making it possible to avoid the deposition of polymer molecules [-CF- ] n or [-CF 2 -] n on the heating jacket 14.
  • the temperature of the heating jacket 14 can be chosen as a function of the type of gas CxFy used, and therefore as a function of the type of polymer deposited during the passivation steps.
  • the heating means 17 are adapted to heat the heating jacket 14 to a temperature above 150 ° C., sufficient to avoid condensation of the polymers generated during the passivation steps.
  • the conductive grid 5 is in thermal contact with the heating jacket 14 in a peripheral contact zone 22.
  • the heating of the conductive grid 5 prevents its progressive fouling and considerably prolongs its duration of use.
  • the heating of the conductive grid 5 by specific heating means constitutes in itself an independent invention capable of being applied to reactors without the heating jacket 14.
  • FIG. 2 A schematic illustration has been shown in FIG. 2 of specific means for holding a substrate 23 on the substrate support means 3: these particular means are electrostatic electrodes 3a for attracting the substrate, which attract the substrate 23 by electrostatic attraction. In this case, it is necessary to maintain satisfactory cleanliness of the electrostatic electrodes 3a, failing which the substrate 23 is not correctly held on the substrate support means 3.
  • the pumping means 12 and 13 maintain an appropriate low gas pressure inside the reaction chamber 1.
  • Appropriate etching or passivation gases are introduced by the gas generation means 9.
  • the supply of the coupling electrode 7 by the RF generator 8 generates a plasma 24 in the inlet tube 6, and the plasma 24 propagates in the reaction chamber 1 in the direction of the substrate 23 thanks to the polarization of the substrate 23 by the radio frequency generator 11.
  • the electrical resistors 17 supplied by the line 21 and the control device 19 maintain the heating jacket 14 at a appropriate temperature avoiding any deposition of passivation polymer, and simultaneously protecting the sealed wall 2 of the reaction chamber 1.
  • etching the substrate 23 by a gas plasma 24 comprises alternating stages of etching the substrate 23 by a gas plasma 24. fluorinated etching and passivation steps of surfaces by a plasma 24 of CxFy passivation gas. During this process, the heating jacket 14 is heated to a temperature higher than the condensation temperature of the passivation polymer generated by the plasma, at least during the passivation steps.
  • the heating jacket 14 can be heated continuously during all the stages of the process.
  • the thermal insulation means 15 interposed between the heating jacket 14 and the sealed wall 2 of the reaction chamber 1 the electric power necessary to maintain the heating jacket 14 at the desired temperature is limited, and unnecessary heating is avoided.
  • the external temperature of the sealed wall 2 remains compatible with security requirements, that is to say that this temperature is bearable and the intervention personnel during of use can touch the wall without risk of burns.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

The invention concerns a reactor wherein the reaction chamber (1) is delimited by a sealed wall (2) protected by a heating jacket (14). The heating jacket (14) is brought to a temperature higher than the polymer condensation temperature generated during the passivation steps of an alternating plasma etching process, so as to prevent polymer deposition on the sealed wall (2) of the reaction chamber (1) and on the heating jacket itself (14), thereby maintaining a constant etching speed.

Description

CHEMISAGE CHAUFFANT POUR REACTEUR DE GRAVURE PLASMA, ET PROCEDE DE GRAVURE POUR SA MISE EN ŒUVRE HEATING LINER FOR PLASMA ENGRAVING REACTOR, AND ENGRAVING METHOD FOR IMPLEMENTING SAME
DOMAINE TECHNIQUE DE L'INVENTION La présente invention concerne les réacteurs de qravure plasma, et en particulier les réacteurs utilisés pour la mise en œuvre de procédés de micro-usinage ou de gravure anisotrope d'un substrat en silicium par plasma suivant le procédé alterné décrit dans le document US-A-5,501,893. Durant un tel procédé alterné, on alterne des étapes de gravure d'un substrat par un plasma de gaz fluoré de gravure tel que le SF6, et des étapes de passivation des surfaces grâce à un plasma de gaz de pas.sivation CxFy tel que le C4F8 par exemple .TECHNICAL FIELD OF THE INVENTION The present invention relates to plasma etching reactors, and in particular reactors used for the implementation of micromachining or anisotropic etching processes of a silicon substrate by plasma according to the alternating process described in document US-A-5,501,893. During such an alternating process, stages of etching a substrate are alternated by a plasma of fluorinated etching gas such as SF 6 , and steps of passivation of the surfaces using a plasma of pas.sivation CxFy gas such that C 4 F 8 for example.
Les étapes du procédé sont réalisées sous une atmosphère à faible pression, permettant l'établissement et le maintien d'un plasma .The process steps are carried out under a low pressure atmosphere, allowing the establishment and maintenance of a plasma.
Pendant 1 ' étape de gravure par plasma de gaz fluoré de gravure, le substrat est attaqué de manière isotrope par les atomes de fluor. Les étapes de passivation par plasma de gaz de passivation CxFy tel que le C4F8 permettent de déposer un film de polymère sur toutes les surfaces du substrat exposées au plasma. Les surfaces verticales et les surfaces horizontales sont ainsi recouvertes. Au cours de l'étape suivante de gravure par plasma de gaz fluoré de gravure, et sous l'action conjuguée du bombardement ionique vertical obtenu par la polarisation négative du substrat, le film de polymère est pulvérisé et enlevé sur les surfaces horizontales, et la gravure verticale du substrat peut se poursuivre, alors .que le polymère restant sur les surfaces verticales s'oppose momentanément à l'action du plasma sur lesdites surfaces verticales. En répétant ainsi les étapes de gravure avec un plasma de gaz fluoré de gravure et les étapes de passivation avec un plasma de gaz de passivation CxFy, on obtient une gravure anisotrope du substrat.During the plasma etching step of fluorinated etching gas, the substrate is isotropically attacked by the fluorine atoms. The plasma passivation steps of CxFy passivation gas such as C 4 F 8 make it possible to deposit a polymer film on all the surfaces of the substrate exposed to the plasma. The vertical surfaces and the horizontal surfaces are thus covered. During the next plasma etching step of fluorinated gas etching, and under the combined action of vertical ion bombardment obtained by the negative polarization of the substrate, the polymer film is sprayed and removed on the horizontal surfaces, and the vertical etching of the substrate can continue, while the polymer remaining on the vertical surfaces momentarily opposes the action of the plasma on said vertical surfaces. By thus repeating the etching steps with a fluorinated etching gas plasma and the passivation steps with a CxFy passivation gas plasma, an anisotropic etching of the substrate is obtained.
Le mécanisme de gravure du substrat par le plasma de gaz fluoré de gravure est le suivant : on génère un plasma contenant des électrons, des ions tels que SF5+, et des atomes de fluor F. Les atomes de fluor arrivant à la surface du substrat réagissent chimiquement, par exemple dans le cas d'un substrat en silicium, selon la réaction :The mechanism of etching of the substrate by the plasma of etching fluorinated gas is the following: one generates a plasma containing electrons, ions such as SF5 +, and fluorine atoms F. The fluorine atoms arriving at the surface of the substrate react chemically, for example in the case of a silicon substrate, depending on the reaction:
Si(s) + 4F(g) → SiF4(g) .Si (s) + 4F (g) → SiF 4 (g).
Les produits de réaction tels que SiF4 et les molécules de SF6 non dissociées ainsi que les radicaux SxFy restent sous forme gazeuse et sont évacués par le pompage.The reaction products such as SiF 4 and the non-dissociated SF 6 molecules as well as the SxFy radicals remain in gaseous form and are removed by pumping.
Pendant l'étape de passivation des surfaces au moyen d'un plasma de gaz de passivation C4F8, par exemple des surfaces d'un substrat en silicium, on génère un plasma contenant des électrons, des ions et des radicaux de type CF, CF2, ... etc. Ces radicaux ou monomères vont se lier les uns aux autres pour former des chaînes de polymère [-CF-]n ou [-CF2-]n. Ces polymères se condensent sur toutes les surfaces exposées au plasma et les recouvrent d'un film de polymère . Ces surfaces sont bien sûr les surfaces du substrat de silicium en cours de gravure, mais également toutes les surfaces internes de la chambre de réaction.During the passivation step of surfaces by means of a plasma of passivation gas C 4 F 8 , for example the surfaces of a silicon substrate, a plasma is generated containing electrons, ions and radicals of CF type. , CF 2 , ... etc. These radicals or monomers will bond to each other to form polymer chains [-CF-] n or [-CF 2 -] n. These polymers condense on all surfaces exposed to plasma and cover them with a polymer film. These surfaces are of course the surfaces of the silicon substrate being etched, but also all the internal surfaces of the reaction chamber.
Au cours de l'étape suivante de gravure par plasma de gaz fluoré de gravure, les surfaces soumises au bombardement ionique, sous l'effet de la polarisation négative, sont débarrassées du film de polymère. Ceci est notamment le cas pour les surfaces horizontales du substrat de silicium, qui pourront ensuite être gravées par les atomes de fluor atomique F. C'est aussi le cas pour toutes les surfaces' autres que le substrat qui sont soumises au bombardement . Un problème des procédés alternés de gravure anisotrope selon le brevet US-A-5,501, 893 est que la vitesse de gravure décroît progressivement dans le temps, de façon sensiblement linéaire, comme illustré sur la figure 1. Ainsi, partant à l'instant 0, d'une vitesse de gravure de 10 microns par minute, la vitesse diminue progressivement pour atteindre 6 microns par minute après 12 heures de fonctionnement, dans un exemple de fonctionnement d'un réacteur donné et dans des conditions de génération de plasma maintenues constantes .During the next plasma etching step of fluorinated etching gas, the surfaces subjected to ion bombardment, under the effect of negative polarization, are freed from the polymer film. This is particularly the case for horizontal surfaces of the silicon substrate, which can then be etched by atoms of atomic fluorine F. It is also the case for all surfaces other than the substrate which are subjected to bombardment. One problem with the alternate anisotropic etching methods according to US Pat. No. 5,501,893 is that the etching speed decreases progressively over time, in a substantially linear fashion, as illustrated in FIG. 1. Thus, starting at time 0 , with an etching speed of 10 microns per minute, the speed gradually decreases to reach 6 microns per minute after 12 hours of operation, in an example of operation of a given reactor and under plasma generation conditions kept constant.
EXPOSE DE L'INVENTION Le but de l'invention est d'éviter une telle dérive négative des performances de gravure d'un équipement de gravure anisotrope de silicium par un procédé alterné de gravure anisotrope selon le brevet US-A-5,501,893.SUMMARY OF THE INVENTION The object of the invention is to avoid such a negative drift in the etching performance of an etching equipment anisotropic silicon by an alternating anisotropic etching process according to US-A-5,501,893.
L'invention résulte de l'analyse approfondie des phénomènes apparaissant lors des étapes de passivation et de gravure selon le procédé alterné, et conduit à expliquer cette dérive négative par le processus suivant : pendant les étapes de passivation, toutes les parties de la chambre de réaction se recouvrent progressivement d'un film de polymère. Ce film n'est pas enlevé au cours des étapes de gravure lorsque les surfaces de la chambre de réaction sont reliées à un potentiel faible, par exemple à la masse électrique. Du fait du faible potentiel, les surfaces réceptrices correspondantes de la chambre de réaction ne sont pas soumises au bombardement ionique, et conservent ainsi un film de polymère similaire à celui recouvrant les surfaces du substrat à graver. Au cours du temps, ce film s'épaissit.The invention results from an in-depth analysis of the phenomena appearing during the passivation and etching stages according to the alternating process, and leads to explaining this negative drift by the following process: during the passivation stages, all the parts of the reaction gradually cover with a polymer film. This film is not removed during the etching steps when the surfaces of the reaction chamber are connected to a low potential, for example to the electrical ground. Due to the low potential, the corresponding receiving surfaces of the reaction chamber are not subjected to ion bombardment, and thus retain a polymer film similar to that covering the surfaces of the substrate to be etched. Over time, this film thickens.
Bien que non soumis au bombardement ionique, le film de polymère déposé sur les surfaces réceptrices reliées au potentiel de masse est soumis à un léger flux d'ions et d'électrons d'énergie égal à E = Vp - 0 dans laquelle Vp représente le potentiel plasma positif.Although not subjected to ion bombardment, the polymer film deposited on the receiving surfaces connected to the mass potential is subjected to a light flux of ions and electrons of energy equal to E = Vp - 0 in which Vp represents the positive plasma potential.
En général, Vp est de l'ordre de la dizaine de volts, typiquement de 15 à 25 volts par rapport à la masse. Cette énergie est insuffisante pour éliminer par pulvérisation le film de polymère, mais elle est suffisante pour échauffer les parois et donc le film de polymère à des températures de l'ordre de 40 à 60°C.In general, Vp is of the order of ten volts, typically 15 to 25 volts relative to the mass. This energy is insufficient to remove the polymer film by spraying, but it is sufficient to heat the walls and therefore the polymer film at temperatures of the order of 40 to 60 ° C.
Dans un premier temps, lorsque le réacteur est froid et propre, c'est-à-dire exempt de dépôt de polymère de type [-CF-]n ou [-CF2-]n, la vitesse de gravure du silicium est optimale c'est-à- dire maximale. Ensuite, au fur et à mesure de la gravure du substrat, le film de polymère condensé sur les surfaces réceptrices des parois non soumises au bombardement ionique intentionnel va croître et s'épaissir. En même temps, il va s'échauffer sous l'effet du flux de particules d'énergie Vp. En s 'échauffant, ce film libère par vaporisation partielle des molécules de type CxFy. Ces molécules se retrouvent dans la phase gazeuse, s ' additionnant aux molécules de C4F8 intentionnellement introduites par les débitmètres de masse. Ces molécules se déposent ensuite sur les surfaces du substrat, entraînant une augmentation incontrôlée de la passivation des surfaces horizontales de silicium au cours des étapes de passivation. Au cours de l'étape de gravure qui suit, la passivation en excès augmente la durée nécessaire pour détruire le polymère et commencer le processus de gravure des surfaces horizontales. Il en résulte une diminution de la vitesse globale de gravure . L'idée qui est à la base de l'invention est d'empêcher dès l'origine, lors d'un procédé alterné de gravure, la formation des dépôts de film de polymère condensés sur les surfaces réceptrices des parois de chambre de réaction non soumises au bombardement ionique, en portant les surfaces réceptrices à une température suffisante pour assurer la volatilisation de tout dépôt éventuel de polymère .Initially, when the reactor is cold and clean, that is to say free of polymer deposition of the type [-CF-] n or [-CF 2 -] n, the etching speed of the silicon is optimal that is to say maximum. Then, as the substrate is etched, the polymer film condensed on the receiving surfaces of the walls not subjected to intentional ion bombardment will grow and thicken. At the same time, it will heat up under the effect of the flow of energy particles Vp. As it heats up, this film liberates, by partial vaporization, molecules of the CxFy type. These molecules are found in the gas phase, adding to the molecules of C 4 F 8 intentionally introduced by mass flow meters. These molecules are then deposited on the surfaces of the substrate, causing an uncontrolled increase in the passivation of the horizontal silicon surfaces during the passivation steps. During the following etching step, excess passivation increases the time required to destroy the polymer and begin the process of etching horizontal surfaces. This results in a decrease in the overall etching speed. The idea which is the basis of the invention is to prevent from the outset, during an alternating etching process, the formation of deposits of condensed polymer film on the receiving surfaces of the walls of the reaction chamber not subjected to ion bombardment, by bringing the receiving surfaces to a temperature sufficient to ensure the volatilization of any possible deposit of polymer.
Simultanément, l'invention vise à réaliser cette élévation de température sans dépense excessive d'énergie, et sans risque de blessure du personnel d'intervention circulant autour des réacteurs .Simultaneously, the invention aims to achieve this temperature rise without excessive expenditure of energy, and without risk of injury to intervention personnel circulating around the reactors.
On a déjà proposé, dans le document US 5,788,799, de réduire la formatio'n de dépôts sur les parois d'un réacteur de dépôt en prévoyant une chemise chauffante en céramique interposée entre le plasma et certaines parties de paroi du réacteur. Les seuls procédés décrits sont des procédés de dépôt, et les céramiques choisies comprennent des oxydes, nitrures ou carbures de bore, d'aluminium, de silicium, de titane, de zirconium, de chrome.It has already been proposed, in document US Pat . No. 5,788,799, to reduce the format of deposits on the walls of a deposition reactor by providing a ceramic heating jacket interposed between the plasma and certain parts of the wall of the reactor. The only methods described are deposition methods, and the ceramics chosen include oxides, nitrides or carbides of boron, aluminum, silicon, titanium, zirconium, chromium.
Les solutions décrites ne seraient pas adaptées à un réacteur de gravure, pour diverses raisons et notamment : contamination du substrat à graver, baisse de rendement de gravure.The solutions described would not be suitable for an etching reactor, for various reasons and in particular: contamination of the substrate to be etched, drop in etching yield.
Pour cela, un réacteur de gravure plasma selon l'invention, comprenant une chambre de réaction entourée d'une paroi étanche, contenant des moyens supports de substrat, et communiquant avec une source de plasma, comprend en outre une chemise chauffante en un métal ou alliage adapté recouvrant intérieurement de façon non étanche tout ou partie de la paroi étanche de chambré de réaction, et un espace intermédiaire d'isolation thermique prévu entre la chemise chauffante et la paroi étanche de chambre de réaction.For this, a plasma etching reactor according to the invention, comprising a reaction chamber surrounded by a sealed wall, containing substrate support means, and communicating with a plasma source, further comprises a heating jacket made of a metal or suitable alloy internally covering in leaktight manner all or part of the sealed reaction chamber wall, and an intermediate space thermal insulation provided between the heating jacket and the sealed reaction chamber wall.
De la sorte, la chemise chauffante présente une température supérieure à celle produite par le seul rayonnement du plasma, et la température plus élevée de la chemise chauffante réduit la quantité de molécules de polymère déposée sur la chemise. Simultanément, la chemise chauffante constitue elle-même la surface réceptrice, et forme un écran empêchant le dépôt des polymères sur la paroi étanche elle-même de chambre de réaction. Et la chemise chauffante présente une structure qui évite toute contamination du substrat à graver et toute baisse de rendement du procédé de gravure .In this way, the heating jacket has a temperature higher than that produced by plasma radiation alone, and the higher temperature of the heating jacket reduces the quantity of polymer molecules deposited on the jacket. Simultaneously, the heating jacket itself constitutes the receiving surface, and forms a screen preventing the deposition of the polymers on the sealed wall itself of the reaction chamber. And the heating jacket has a structure which avoids any contamination of the substrate to be etched and any drop in yield of the etching process.
Pour être compatible avec un procédé alterné de gravure, pouvant être utilisé notamment dans l'industrie microélectronique, pour graver des substrats semiconducteurs, le métal ou alliage adapté est de préférence choisi parmi les métaux ou alliages qui, d'une part ne réagissent pas avec les gaz fluorés de gravure et de passivation pour former des composés volatiles, et d'autre part ne génèrent pas une émission d'atomes contaminants sous l'effet du bombardement par le plasma. On évitera en particulier les métaux alcalins, le chrome, et les métaux lourds tels que le fer, le cuivre, le zinc. De bons résultats pourront être obtenus avec une chemise chauffante en aluminium ou en titane, l'aluminium étant préféré pour son faible coût et sa facilité de mise en œuvre. Dans le cas d'un procédé alterné de gravure, le réacteur selon 1 ' invention peut comprendre en outre :To be compatible with an alternating etching process, which can be used in particular in the microelectronics industry, for etching semiconductor substrates, the metal or suitable alloy is preferably chosen from metals or alloys which, on the one hand do not react with fluorinated etching and passivation gases to form volatile compounds, and on the other hand do not generate an emission of contaminating atoms under the effect of bombardment by the plasma. In particular, alkali metals, chromium, and heavy metals such as iron, copper, zinc should be avoided. Good results can be obtained with a heating jacket made of aluminum or titanium, aluminum being preferred for its low cost and its ease of implementation. In the case of an alternating etching process, the reactor according to the invention can also comprise:
- des moyens de polarisation des moyens supports de substrat, pour contrôler le bombardement de particules provenant du plasma,- means for biasing the substrate support means, to control the bombardment of particles coming from the plasma,
- une source de gaz "de gravure, et des moyens de commande de débit de gravure pour piloter 1 ' introduction de gaz de gravure dans la source de plasma,- a source of gas "engraving, and etching rate control means for controlling one introduction of etching gas into the plasma source,
- une source de gaz de passivation, et des moyens de commande de débit de passivation pour piloter l'introduction de gaz de passivation dans la source de plasma, - un dispositif de commande, adapté pour piloter de façon alternée les moyens de commande de débit de gravure et les moyens de commande de débit de passivation. Selon un mode de réalisation avantageux, la chemise chauffante est fixée à la paroi étanche de la chambre de réaction par un nombre limité de points de fixation.- a source of passivation gas, and means for controlling passivation flow to control the introduction of passivation gas into the plasma source, - a control device, suitable for alternately controlling the flow control means etching and passivation flow control means. According to an advantageous embodiment, the heating jacket is fixed to the sealed wall of the reaction chamber by a limited number of fixing points.
L'espace intermédiaire entre la chemise chauffante et la paroi étanche de la chambre de réaction peut avantageusement communiquer avec l'espace central de la chambre de réaction par un espace annulaire d'épaisseur réduite. La faible épaisseur évite la pénétration du plasma dans l'espace intermédiaire.The intermediate space between the heating jacket and the sealed wall of the reaction chamber can advantageously communicate with the central space of the reaction chamber by an annular space of reduced thickness. The small thickness prevents the penetration of the plasma into the intermediate space.
Les points de fixation ont de préférence une structure thermiquement isolante qui s'oppose au transfert d'énergie thermique par conduction depuis la chemise chauffante vers la paroi étanche de la chambre de réaction.The attachment points preferably have a thermally insulating structure which prevents the transfer of thermal energy by conduction from the heating jacket to the sealed wall of the reaction chamber.
Les moyens chauffants de la chemise chauffante peuvent être de plusieurs types. Selon un premier mode de réalisation, la chemise chauffante est couplée thermiquement à des moyens d'échauffement tels que des résistances électriques connectables à une source extérieure d'énergie électrique.The heating means of the heating jacket can be of several types. According to a first embodiment, the heating jacket is thermally coupled to heating means such as electrical resistors connectable to an external source of electrical energy.
Les résistances électriques peuvent par exemple comprendre des résistances électriques en couche mince, et/ou des résistances électriques de type thermoaxial.The electrical resistors may for example comprise electrical resistors in a thin layer, and / or electrical resistors of the thermoaxial type.
En alternative, la chemise chauffante est sollicitée thermiquement par des moyens d'échauffement par rayonnement tels que des éléments infrarouges .Alternatively, the heating jacket is thermally stressed by radiation heating means such as infrared elements.
De préférence, la chemise chauffante est associée à des moyens de régulation thermique assurant la régulation de sa température dans une plage de valeurs de température appropriée.Preferably, the heating jacket is associated with thermal regulation means ensuring the regulation of its temperature within a range of suitable temperature values.
En pratique, la chemise chauffante comprend avantageusement des moyens d'échauffement adaptés pour l'échauffer à une température supérieure à 150°C. Un problème supplémentaire des réacteurs de gravure par plasma résulte de la présence d'une grille conductrice, limitant la chambre de réaction en aval des moyens supports de substrat. Cette grille a pour but de limiter la propagation du plasma, et de le confiner dans la chambre de réaction. Le problème est que ' cette grille tend à se boucher progressivement, par accumulation de particules de polymère. L'invention résout ce problème en faisant en sorte que la grille conductrice soit en contact thermique avec la chemise chauffante. Il apparaît que l'élévation de température qui en résulte sur la grille évite son encrassement et la maintient en état de fonctionnement correct pendant une longue durée.In practice, the heating jacket advantageously comprises heating means suitable for heating it to a temperature above 150 ° C. An additional problem with plasma etching reactors results from the presence of a conductive grid, limiting the reaction chamber downstream of the substrate support means. The purpose of this grid is to limit the propagation of the plasma, and to confine it in the reaction chamber. The problem is that 'the gate tends to clog progressively, by accumulation of polymer particles. The invention solves this problem by ensuring that the conductive grid is in thermal contact with the heating jacket. It appears that the resulting rise in temperature on the grid prevents it from fouling and keeps it in correct working condition for a long time.
En outre, la présence de la chemise chauffante dans la chambre de réaction produit un effet avantageux sur les moyens de maintien d'un substrat sur le support de substrat : un mode de réalisation avantageux de tels moyens supports de substrat comprend des électrodes d'attraction électrostatique de substrat. Dans les réacteurs connus, ces électrodes se recouvrent assez rapidement de polymère, et leur efficacité décroît rapidement dans le temps.In addition, the presence of the heating jacket in the reaction chamber produces an advantageous effect on the means for holding a substrate on the substrate support: an advantageous embodiment of such substrate support means comprises attraction electrodes substrate electrostatic. In known reactors, these electrodes cover themselves fairly quickly with polymer, and their efficiency decreases rapidly over time.
L'invention réduit très fortement ce problème, car les électrodes d'attraction électrostatique de substrat restent avec une propreté suffisante pour un fonctionnement correct des électrodes pendant une longue durée, apparemment parce que les électrodes ne se chargent plus de polymère.The invention greatly reduces this problem, since the electrostatic attraction electrodes of the substrate remain with sufficient cleanliness for correct operation of the electrodes for a long period of time, apparently because the electrodes are no longer charged with polymer.
Selon un autre aspect de l'invention, on prévoit un procédé de gravure de substrat par plasma dans un réacteur tel que défini ci-dessus, le procédé comprenant une alternance d'étapes de gravure du substrat par un plasma de gaz de gravure fluoré et d'étapes de passivation des surfaces par un plasma de gaz de passivation CxFy, et au moins pendant les étapes de passivation, on échauffe la chemise chauffante à une température supérieure à la température de condensation des polymères générés par le plasma de passivation.According to another aspect of the invention, there is provided a process for etching the substrate by plasma in a reactor as defined above, the process comprising alternating steps for etching the substrate with a plasma of fluorinated etching gas and of steps of passivation of the surfaces by a plasma of CxFy passivation gas, and at least during the passivation steps, the heating jacket is heated to a temperature higher than the condensation temperature of the polymers generated by the passivation plasma.
Selon un mode de réalisation avantageux, on échauffe la chemise chauffante en continu pendant toutes les étapes du procédé.According to an advantageous embodiment, the heating jacket is heated continuously during all the stages of the process.
DESCRIPTION SOMMAIRE DES DESSINS D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles:SUMMARY DESCRIPTION OF THE DRAWINGS Other objects, characteristics and advantages of the present invention will emerge from the following description of particular embodiments, made in relation to the attached figures, among which:
- la figure 1 illustre l'évolution négative de la vitesse de gravure dans les réacteurs connus ;- Figure 1 illustrates the negative evolution of the etching speed in known reactors;
- la figure 2 est une représentation schématique d'un réacteur selon un mode de réalisation de la présente invention ; et - la figure 3 est une vue de dessous illustrant la surface inférieure de la paroi supérieure de la chemise chauffante. DESCRIPTION DES MODES DE REALISATION PREFERES Dans le mode de réalisation illustré sur la figure 2, un réacteur de gravure plasma comprend une chambre de réaction 1 entourée d'une paroi étanche 2 contenant des moyens supports de substrat 3 et communiquant avec une source de plasma 4.- Figure 2 is a schematic representation of a reactor according to an embodiment of the present invention; and - Figure 3 is a bottom view illustrating the lower surface of the upper wall of the heating jacket. DESCRIPTION OF THE PREFERRED EMBODIMENTS In the embodiment illustrated in FIG. 2, a plasma etching reactor comprises a reaction chamber 1 surrounded by a sealed wall 2 containing substrate support means 3 and communicating with a plasma source 4 .
La paroi étanche 2 de la chambre de réaction 1 comprend par exemple une portion périphérique 2a qui se raccorde à une portion frontale d'entrée 2b elle-même ouverte pour communiquer avec un tube d'entrée 6 constituant la source de plasma 4. La portion périphérique 2a et la portion frontale d'entrée 2b sont des portions métalliques, avantageusement connectées au potentiel de la masse. Le tube d'entrée 6 est en matériau diélectrique, et est entouré d'une électrode de couplage 7 alimentée en courant électrique alternatif à fréquence radio par un générateur radiofréquence 8.The sealed wall 2 of the reaction chamber 1 comprises for example a peripheral portion 2a which is connected to a front inlet portion 2b which is itself open to communicate with an inlet tube 6 constituting the plasma source 4. The portion peripheral 2a and the front input portion 2b are metal portions, advantageously connected to the ground potential. The inlet tube 6 is made of dielectric material, and is surrounded by a coupling electrode 7 supplied with alternating electric current at radio frequency by a radiofrequency generator 8.
Une source de gaz de gravure 9a et des moyens de commande de débit de gravure 9b tels qu'une électrovanne permettent de piloter l'introduction de gaz de gravure à l'extrémité du tube d'entrée 6, dans la source de plasma 4. De même, une source de gaz de passivation 9c et des moyens de commande de débit de passivation 9d tels qu'une électrovanne permettent de piloter l'introduction de gaz de passivation à l'extrémité du tube d'entrée 6, dans la source de plasma 4. Un dispositif de commande 9e pilote de façon alternée les moyens de commande de débit de gravure 9b et les moyens de commande de débit de passivation 9c.A source of etching gas 9a and etching flow control means 9b such as a solenoid valve make it possible to control the introduction of etching gas at the end of the inlet tube 6, into the plasma source 4. Likewise, a source of passivation gas 9c and means for controlling passivation flow rate 9d such as a solenoid valve make it possible to control the introduction of passivation gas at the end of the inlet tube 6, into the source of plasma 4. A control device 9e alternately controls the etching flow control means 9b and the passivation flow control means 9c.
L'électrode de couplage 7 excite les gaz dans le tube d'entrée 6 pour produire un plasma qui se déplace ensuite vers l'intérieur de la chambre de réaction 1 en direction des moyens supports de substrat 3.The coupling electrode 7 excites the gases in the inlet tube 6 to produce a plasma which then moves towards the interior of the reaction chamber 1 in the direction of the substrate support means 3.
Pour contrôler le bombardement de particules provenant du plasma, les moyens supports de substrat 3 sont polarisés par un générateur radiofréquence 11 auquel ils sont connectés par une ligne de polarisation 10.To control the bombardment of particles coming from the plasma, the substrate support means 3 are polarized by a radiofrequency generator 11 to which they are connected by a polarization line 10.
La chambre de réaction 1 est raccordée par une ligne de pompage 12 à moyen de pompage 13 permettant d'établir et de maintenir dans la chambre de réaction 1 une pression gazeuse faible et contrôlée, compatible avec la production d'un plasma.The reaction chamber 1 is connected by a pumping line 12 to pumping means 13 making it possible to establish and maintain in the reaction chamber 1 a low and controlled gas pressure, compatible with the production of a plasma.
En aval des moyens supports de substrat 3, la chambre de réaction 1 est limitée par une grille 5 conductrice également connectée au potentiel de la masse, et dont la maille est en rapport avec la densité ionique du plasma.Downstream of the substrate support means 3, the reaction chamber 1 is limited by a conductive grid 5 also connected to the potential of the mass, and the mesh of which is in relation to the ion density of the plasma.
Le réacteur de la figure 2 comprend en outre une chemise chauffante 14 recouvrant intérieurement toutes les portions de la paroi étanche 2 qui sont au potentiel de la masse et qui sont au contact du plasma. Ainsi, la chemise chauffante 14 comprend une paroi périphérique 14a qui recouvre la portion périphérique 2a, et comprend une paroi supérieure 14b qui recouvre la portion frontale d'entrée 2b. La chemise chauffante 14 est une paroi en un métal adapté, elle-même connectée au potentiel de la masse, et associée à des moyens d'échauffement tels que des résistances électriques 17 ou autres. Des moyens d'isolation thermique sont interposés entre la chemise chauffante 14 et la paroi étanche 2 de la chambre de réaction 1.The reactor of Figure 2 further comprises a heating jacket 14 internally covering all the portions of the sealed wall 2 which are at ground potential and which are in contact with the plasma. Thus, the heating jacket 14 comprises a peripheral wall 14a which covers the peripheral portion 2a, and comprises an upper wall 14b which covers the front inlet portion 2b. The heating jacket 14 is a wall made of a suitable metal, itself connected to the ground potential, and associated with heating means such as electrical resistors 17 or others. Thermal insulation means are interposed between the heating jacket 14 and the sealed wall 2 of the reaction chamber 1.
Dans la réalisation illustrée, les moyens d'isolation thermique sont constitués d'un espace intermédiaire 15, d'épaisseur appropriée, par exemple de l'ordre de 0,5 à 1 mm environ, entre la chemise chauffante 14 et la paroi étanche 2 de la chambre de réaction 1. Placé à l'intérieur de la chambre de réaction 1, et communiquant avec l'espace intérieur de la chambre de réaction par un espace annulaire 14c d'épaisseur réduite, par exemple de même épaisseur que l'espace intermédiaire 15, l'espace intermédiaire 15 contient une atmosphère à très faible pression, et présentant donc de bonnes propriétés d'isolation thermique. Simultanément, la chemise chauffante 14 est fixée à la paroi étanche 2 de la chambre de réaction 1 par un nombre limité de points de fixation, par exemple les trois points de fixation 16a, 16b et 16c illustrés sur les figures 2 et 3.In the illustrated embodiment, the thermal insulation means consist of an intermediate space 15, of suitable thickness, for example of the order of approximately 0.5 to 1 mm, between the heating jacket 14 and the sealed wall 2 of the reaction chamber 1. Placed inside the reaction chamber 1, and communicating with the interior space of the reaction chamber by an annular space 14c of reduced thickness, for example of the same thickness as the space intermediate 15, the intermediate space 15 contains an atmosphere at very low pressure, and therefore having good thermal insulation properties. Simultaneously, the heating jacket 14 is fixed to the sealed wall 2 of the reaction chamber 1 by a limited number of fixing points, for example the three fixing points 16a, 16b and 16c illustrated in FIGS. 2 and 3.
Les points de fixation 16a, 16b et 16c ont une structure thermiquement isolante, qui s'oppose encore au transfert d'énergie thermique par conduction depuis la chemise chauffante 14 vers la paroi étanche 2 de la chambre de réaction 1. Dans la réalisation simple et efficace illustrée sur les figures 2 et 3, la chemise chauffante 14 est suspendue à la paroi étanche 2 de la chambre de réaction 1 par des points de fixationThe fixing points 16a, 16b and 16c have a thermally insulating structure, which further prevents the transfer of thermal energy by conduction from the heating jacket 14 to the sealed wall 2 of the reaction chamber 1. In the simple and effective embodiment illustrated in FIGS. 2 and 3, the heating jacket 14 is suspended from the sealed wall 2 of the reaction chamber 1 by fixing points
16a, 16b et 16c constitués chacun d'une excroissance à tête, dépassant en sous face de la paroi étanche 2, et engagée dans une lumière respective 26a, 26b et 26c de la paroi supérieure 14b de la chemise chauffante 14. Les lumières 26a, 26b et 26c sont de type boutonnière à portion large de passage de tête et à portion étroite de retenue de tête, comme illustré sur la figure 3. De préférence, la surface interne 14d de la chemise chauffante 14 est structurée de façon à présenter un faible coefficient d'émission de rayonnement. De la sorte, on limite16a, 16b and 16c each consisting of a protuberance with a head, projecting below the watertight wall 2, and engaged in a respective slot 26a, 26b and 26c of the upper wall 14b of the heating jacket 14. The slots 26a, 26b and 26c are of the buttonhole type with a large portion of head passage and a narrow portion of head retention, as illustrated in FIG. 3. Preferably, the internal surface 14d of the heating jacket 14 is structured so as to present a slight radiation emission factor. In this way, we limit
1 'échauffement d'un substrat 23 placé sur les moyens supports de substrat 3, et on évite ainsi de perturber les étapes de gravure et de passivation.1 heating of a substrate 23 placed on the substrate support means 3, and thus avoids disturbing the etching and passivation steps.
Les résistances électriques 17 ou autres moyens d'échauffement de la chemise chauffante 14 sont alimentées par une ligne 21 pilotée par des moyens de régulation thermique comprenant un dispositif de commande 19 qui reçoit par une ligne 20 des informations de température de la chemise chauffante 14 prélevées par un capteur de température 18. Le dispositif de commande est conçu de façon à réguler la température de la chemise chauffante 14 et à la maintenir dans une plage de valeurs de température appropriée permettant d'éviter le dépôt de molécules de polymère [-CF-]n ou [-CF2-]n sur la chemise chauffante 14.The electrical resistors 17 or other means for heating the heating jacket 14 are supplied by a line 21 controlled by thermal regulation means comprising a control device 19 which receives by a line 20 temperature information from the heating jacket 14 taken by a temperature sensor 18. The control device is designed so as to regulate the temperature of the heating jacket 14 and to maintain it within a range of suitable temperature values making it possible to avoid the deposition of polymer molecules [-CF- ] n or [-CF 2 -] n on the heating jacket 14.
On peut choisir la température de la chemise chauffante 14 en fonction du type de gaz CxFy utilisé, et donc en fonction du type de polymère déposé pendant les étapes de passivation.The temperature of the heating jacket 14 can be chosen as a function of the type of gas CxFy used, and therefore as a function of the type of polymer deposited during the passivation steps.
En pratique, les moyens d'échauffement 17 sont adaptés pour échauffer la chemise chauffante 14 à une température supérieure à 150°C, suffisante pour éviter la condensation des polymères générés lors des étapes de passivation.In practice, the heating means 17 are adapted to heat the heating jacket 14 to a temperature above 150 ° C., sufficient to avoid condensation of the polymers generated during the passivation steps.
De préférence, la grille 5 conductrice est en contact thermique avec la chemise chauffante 14 dans une zone périphérique de contact 22. De la sorte, l'échauffement de la grille 5 conductrice évite son encrassement progressif et prolonge considérablement sa durée d'utilisation. L'échauffement de la grille 5 conductrice par des moyens chauffants spécifiques constitue en lui-même une invention indépendante susceptible d'être appliquée à des réacteurs dépourvus de la chemise chauffante 14.Preferably, the conductive grid 5 is in thermal contact with the heating jacket 14 in a peripheral contact zone 22. In this way, the heating of the conductive grid 5 prevents its progressive fouling and considerably prolongs its duration of use. The heating of the conductive grid 5 by specific heating means constitutes in itself an independent invention capable of being applied to reactors without the heating jacket 14.
On a illustré schématique ent sur la figure 2 des moyens particuliers de tenue d'un substrat 23 sur les moyens supports de substrat 3 : ces moyens particuliers sont des électrodes électrostatiques 3a d'attraction de substrat, qui attirent le substrat 23 par attraction électrostatique. Il est nécessaire, dans ce cas, de maintenir une propreté satisfaisante des électrodes électrostatiques 3a, à défaut de quoi le substrat 23 n'est pas correctement tenu sur les moyens supports de substrat 3.A schematic illustration has been shown in FIG. 2 of specific means for holding a substrate 23 on the substrate support means 3: these particular means are electrostatic electrodes 3a for attracting the substrate, which attract the substrate 23 by electrostatic attraction. In this case, it is necessary to maintain satisfactory cleanliness of the electrostatic electrodes 3a, failing which the substrate 23 is not correctly held on the substrate support means 3.
L'adaptation de la chemise chauffante 14 et des moyens permettant de la chauffer de façon satisfaisante réduit considérablement l'encrassement des électrodes électrostatiques 3a, et permet d'augmenter également la durée de fonctionnement correct des électrodes pour un maintien satisfaisant du substrat 23.The adaptation of the heating jacket 14 and the means making it possible to heat it satisfactorily considerably reduces the fouling of the electrostatic electrodes 3a, and also makes it possible to increase the correct operating time of the electrodes for satisfactory maintenance of the substrate 23.
Lors du fonctionnement, les moyens de pompage 12 et 13 maintiennent à l'intérieur de la chambre de réaction 1 une pression gazeuse faible appropriée. On introduit des gaz appropriés de gravure ou de passivation par les moyens de génération de gaz 9. L'alimentation de l'électrode de couplage 7 par le générateur RF 8 génère un plasma 24 dans le tube d'entrée 6, et le plasma 24 se propage dans la chambre de réaction 1 en direction du substrat 23 grâce à la polarisation du substrat 23 par le générateur radiofréquence 11. Simultanément, les résistances électriques 17 alimentées par la ligne 21 et le dispositif de commande 19 maintiennent la chemise chauffante 14 à une température appropriée évitant tout dépôt de polymère de passivation, et protégeant simultanément la paroi étanche 2 de la chambre de réaction 1. De la sorte, en fin d'étape de passivation, les molécules de monomère sont rapidement évacuées par les moyens de pompage 12 et 13, et l'introduction des gaz de gravure dans le tube d'entrée 6 provoque rapidement un effet de gravure sur le substrat 23, sans apparition de réduction progressive de vitesse de gravure. Ainsi, un procédé de gravure de substrat 23 par un plasmaDuring operation, the pumping means 12 and 13 maintain an appropriate low gas pressure inside the reaction chamber 1. Appropriate etching or passivation gases are introduced by the gas generation means 9. The supply of the coupling electrode 7 by the RF generator 8 generates a plasma 24 in the inlet tube 6, and the plasma 24 propagates in the reaction chamber 1 in the direction of the substrate 23 thanks to the polarization of the substrate 23 by the radio frequency generator 11. Simultaneously, the electrical resistors 17 supplied by the line 21 and the control device 19 maintain the heating jacket 14 at a appropriate temperature avoiding any deposition of passivation polymer, and simultaneously protecting the sealed wall 2 of the reaction chamber 1. In this way, at the end of the passivation step, the monomer molecules are rapidly removed by the pumping means 12 and 13, and the introduction of the etching gases into the inlet tube 6 rapidly causes an etching effect on the substrate 23, without the appearance of progressive reduction in engraving speed. Thus, a process for etching substrate 23 with a plasma
24 dans un réacteur selon la structure décrite précédemment comprend une alternance d'étapes de gravure du substrat 23 par un plasma 24 de gaz de. gravure fluoré et d'étapes de passivation des surfaces par un plasma 24 de gaz de passivation CxFy. Pendant ce procédé, on échauffe la chemise chauffante 14 à une température supérieure à la température de condensation du polymère de passivation généré par le plasma, au moins pendant les étapes de passivation.24 in a reactor according to the structure described above comprises alternating stages of etching the substrate 23 by a gas plasma 24. fluorinated etching and passivation steps of surfaces by a plasma 24 of CxFy passivation gas. During this process, the heating jacket 14 is heated to a temperature higher than the condensation temperature of the passivation polymer generated by the plasma, at least during the passivation steps.
Pour simplifier, on peut échauffer la chemise chauffante 14 en continu pendant toutes les étapes du procédé.For simplicity, the heating jacket 14 can be heated continuously during all the stages of the process.
Grâce aux moyens d'isolation thermique 15 interposés entre la chemise chauffante 14 et la paroi étanche 2 de la chambre de réaction 1, on limite la puissance électrique nécessaire pour maintenir la chemise chauffante 14 à la température désirée, et on évite de chauffer inutilement la paroi étanche 2 de la chambre de réaction 1. Il en résulte que la température externe de la paroi étanche 2 reste compatible avec les exigences de sécurité, c'est-à- dire que cette température est supportable et le personnel d'intervention au cours de l'utilisation peut toucher la paroi sans risque de brûlure.Thanks to the thermal insulation means 15 interposed between the heating jacket 14 and the sealed wall 2 of the reaction chamber 1, the electric power necessary to maintain the heating jacket 14 at the desired temperature is limited, and unnecessary heating is avoided. sealed wall 2 of the reaction chamber 1. As a result, the external temperature of the sealed wall 2 remains compatible with security requirements, that is to say that this temperature is bearable and the intervention personnel during of use can touch the wall without risk of burns.
La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations qui sont à la portée de l'homme du métier. The present invention is not limited to the embodiments which have been explicitly described, but it includes the various variants and generalizations which are within the reach of those skilled in the art.

Claims

REVENDICATIONS
1 - Réacteur de gravure plasma, comprenant une chambre de réaction (1) entourée d'une paroi étanche (2), contenant des moyens supports de substrat (3) , et communiquant avec une source de plasma (4), caractérisé en ce qu'il comprend en outre une chemise chauffante (14) en un métal ou alliage adapté recouvrant intérieurement de façon non étanche tout ou partie de la paroi étanche (2) de la chambre de réaction (1) , et un espace intermédiaire d'isolation thermique (15) prévu entre la chemise chauffante (14) et la paroi étanche (2) de la chambre de réaction1 - Plasma etching reactor, comprising a reaction chamber (1) surrounded by a sealed wall (2), containing substrate support means (3), and communicating with a plasma source (4), characterized in that '' it further comprises a heating jacket (14) made of a suitable metal or alloy internally covering in an unsealed manner all or part of the sealed wall (2) of the reaction chamber (1), and an intermediate space of thermal insulation (15) provided between the heating jacket (14) and the sealed wall (2) of the reaction chamber
(1) .(1).
2 - Réacteur selon la revendication 1, caractérisé en ce que le métal ou alliage adapté est choisi parmi les métaux ou alliages qui d'une part ne réagissent pas avec les gaz fluorés de gravure et de passivation pour former des composés volatiles, et d'autre part ne génèrent pas une émission d'atomes contaminants sous l'effet du bombardement par le plasma.2 - Reactor according to claim 1, characterized in that the metal or suitable alloy is chosen from metals or alloys which on the one hand do not react with the fluorinated gases of etching and passivation to form volatile compounds, and on the other hand do not generate an emission of contaminating atoms under the effect of bombardment by the plasma.
3 - Réacteur selon la revendication 2, caractérisé en ce que le métal adapté est l'aluminium ou le titane. 4 - Réacteur selon l'une quelconque des revendications 1 à3 - Reactor according to claim 2, characterized in that the suitable metal is aluminum or titanium. 4 - Reactor according to any one of claims 1 to
3, caractérisé en ce qu'il comprend en outre :3, characterized in that it further comprises:
- des moyens de polarisation (10, 11) des moyens supports de substrat (3) , pour contrôler le bombardement de particules provenant du plasma, - une source de gaz de gravure (9a) , et des moyens de commande de débit de gravure (9b) pour piloter l'introduction de gaz de gravure dans la source de plasma (4) ,- polarization means (10, 11) of the substrate support means (3), for controlling the bombardment of particles coming from the plasma, - a source of etching gas (9a), and means of etching flow control ( 9b) to control the introduction of etching gases into the plasma source (4),
- une source de gaz de passivation (9c) , et des moyens de commande de débit de passivation (9d) pour piloter l'introduction de gaz de passivation dans la source de plasma (4) ,a source of passivation gas (9c), and means for controlling passivation flow (9d) to control the introduction of passivation gas into the plasma source (4),
- un dispositif de commande (9e) , adapté pour piloter de façon alternée les moyens de commande de débit de gravure (9b) et les moyens de commande de débit de passivation (9d) .- A control device (9e), adapted to alternate control the etching flow control means (9b) and the passivation flow control means (9d).
5 - Réacteur selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la chemise chauffante (14) est fixée à la paroi étanche (2) de la chambre de réaction (1) par un nombre limité de points de fixation (16a, 16b) . 6 - Réacteur selon la revendication 5, caractérisé en ce que l'espace intermédiaire entre la chemise chauffante (14) et la paroi étanche (2) de la chambre de réaction (1) communique avec l'espace central de la chambre de réaction (1) par un espace annulaire (14c) d'épaisseur réduite.5 - Reactor according to any one of claims 1 to 4, characterized in that the heating jacket (14) is fixed to the sealed wall (2) of the reaction chamber (1) by a limited number of fixing points ( 16a, 16b). 6 - Reactor according to claim 5, characterized in that the intermediate space between the heating jacket (14) and the sealed wall (2) of the reaction chamber (1) communicates with the central space of the reaction chamber ( 1) by an annular space (14c) of reduced thickness.
7 - Réacteur selon l'une des revendications 5 ou 6, caractérisé en ce que les points de fixation (16a, 16b) ont une structure thermiquement isolante qui s'oppose au transfert d'énergie thermique par conduction depuis la chemise chauffante (14) vers la paroi étanche (2) de la chambre de réaction (1) .7 - Reactor according to one of claims 5 or 6, characterized in that the fixing points (16a, 16b) have a thermally insulating structure which prevents the transfer of thermal energy by conduction from the heating jacket (14) towards the sealed wall (2) of the reaction chamber (1).
8 - Réacteur selon l'une quelconque des revendications 5 à8 - Reactor according to any one of claims 5 to
7, caractérisé en ce que la chemise chauffante (14) est suspendue à la paroi étanche (2) de la chambre de réaction (1) par trois excroissances à tête, dépassant en sous face de la paroi étanche (2) , et engagées dans des lumières de type boutonnière à portion large de passage de tête et portion étroite de retenue de tête.7, characterized in that the heating jacket (14) is suspended from the sealed wall (2) of the reaction chamber (1) by three head protrusions, protruding beneath the sealed wall (2), and engaged in buttonhole type lights with a large head passage portion and a narrow head retention portion.
9 - Réacteur selon l'une quelconque des revendications 1 à9 - Reactor according to any one of claims 1 to
8, caractérisé en ce que la chemise chauffante (14) est couplée thermiquement à des moyens d'échauffement tels que des résistances électriques (17) connectables à une source extérieure d'énergie électrique.8, characterized in that the heating jacket (14) is thermally coupled to heating means such as electrical resistors (17) connectable to an external source of electrical energy.
10 - Réacteur selon la revendication 9, caractérisé en ce que les résistances électriques (17) comprennent des résistances électriques en couche mince et/ou des résistances électriques de type thermocoaxial .10 - Reactor according to claim 9, characterized in that the electrical resistors (17) comprise electrical resistors in thin layer and / or electrical resistors of thermocoaxial type.
11 - Réacteur selon l'une quelconque des revendications 1 à 8, caractérisé en ce que la chemise chauffante (14) est sollicitée thermiquement par des moyens d'échauffement par rayonnement tels que des éléments infrarouges . 12 - Réacteur selon l'une quelconque des revendications 1 à 11, caractérisé en ce que la chemise chauffante (14) est associée à des moyens de régulation thermique (18-21) assurant la régulation de sa température dans une plage de valeurs de température appropriée . 13 - Réacteur selon l'une quelconque des revendications 1 à 12, caractérisé en ce que la chemise chauffante (14) comprend des moyens d'échauffement (17) adaptés pour l'échauffer à une température supérieure à 150°C.11 - Reactor according to any one of claims 1 to 8, characterized in that the heating jacket (14) is thermally stressed by means of heating by radiation such as infrared elements. 12 - Reactor according to any one of claims 1 to 11, characterized in that the heating jacket (14) is associated with thermal regulation means (18-21) ensuring the regulation of its temperature in a range of temperature values appropriate. 13 - Reactor according to any one of claims 1 to 12, characterized in that the heating jacket (14) comprises heating means (17) adapted to heat it to a temperature above 150 ° C.
14 - Réacteur selon l'une quelconque des revendications 1 à 13, caractérisé en ce que la surface interne (14d) de la chemise chauffante (14) est structurée de façon à présenter un faible coefficient d'émissi n de rayonnement.14 - Reactor according to any one of claims 1 to 13, characterized in that the internal surface (14d) of the heating jacket (14) is structured so as to have a low emission coefficient n of radiation.
15 - Réacteur selon l'une quelconque des revendications 1 à 14, caractérisé en ce que, en aval des moyens supports de substrat (3) , la chambre de réaction (1) est limitée par une grille (5) conductrice en contact thermique avec la chemise chauffante (14) .15 - Reactor according to any one of claims 1 to 14, characterized in that, downstream of the substrate support means (3), the reaction chamber (1) is limited by a conductive grid (5) in thermal contact with the heating jacket (14).
16 - Réacteur selon l'une quelconque des revendications 1 à 15, caractérisé en ce que les moyens supports de substrat (3) comprennent des électrodes électrostatiques (3a) d'attraction de substrat.16 - Reactor according to any one of claims 1 to 15, characterized in that the substrate support means (3) comprise electrostatic electrodes (3a) of substrate attraction.
17 - Procédé de gravure de substrat (23) par un plasma (24) dans un réacteur selon l'une quelconque des revendications 1 à 16, caractérisé en ce qu'il comprend une alternance d'étapes de gravure du substrat (23) par un plasma (24) de gaz de gravure fluoré et d'étapes de passivation des surfaces par un plasma (24) de gaz de passivation CxFy, et en ce que, au moins pendant les étapes de passivation, on échauffe la chemise chauffante (14) à une température supérieure à la température de condensation des polymères générés par le plasma (24) . 18 - Procédé selon la revendication 17, caractérisé en ce qu'on échauffe la chemise chauffante (14) en continu pendant toutes les étapes du procédé. 17 - Method for etching the substrate (23) by a plasma (24) in a reactor according to any one of claims 1 to 16, characterized in that it comprises an alternation of steps for etching the substrate (23) by a plasma (24) of fluorinated etching gas and stages of passivation of the surfaces by a plasma (24) of CxFy passivation gas, and in that, at least during the passivation stages, the heating jacket (14) is heated ) at a temperature higher than the condensation temperature of the polymers generated by the plasma (24). 18 - Process according to claim 17, characterized in that the heating jacket (14) is heated continuously during all the stages of the process.
EP03763950A 2002-07-11 2003-07-10 Heating jacket for plasma etching reactor, and etching method using same Withdrawn EP1523754A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0208728 2002-07-11
FR0208728A FR2842387B1 (en) 2002-07-11 2002-07-11 HEATING SHIELD FOR PLASMA ENGRAVING REACTOR, ETCHING METHOD FOR ITS IMPLEMENTATION
PCT/FR2003/002156 WO2004008477A2 (en) 2002-07-11 2003-07-10 Heating jacket for plasma etching reactor, and etching method using same

Publications (1)

Publication Number Publication Date
EP1523754A2 true EP1523754A2 (en) 2005-04-20

Family

ID=29763738

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03763950A Withdrawn EP1523754A2 (en) 2002-07-11 2003-07-10 Heating jacket for plasma etching reactor, and etching method using same

Country Status (5)

Country Link
US (1) US20050224178A1 (en)
EP (1) EP1523754A2 (en)
JP (1) JP2005532693A (en)
FR (1) FR2842387B1 (en)
WO (1) WO2004008477A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7708859B2 (en) * 2004-04-30 2010-05-04 Lam Research Corporation Gas distribution system having fast gas switching capabilities
US20070066038A1 (en) * 2004-04-30 2007-03-22 Lam Research Corporation Fast gas switching plasma processing apparatus
JP5608157B2 (en) * 2008-03-21 2014-10-15 アプライド マテリアルズ インコーポレイテッド Substrate etching system and process method and apparatus
SG193943A1 (en) * 2011-04-11 2013-11-29 Lam Res Corp E-beam enhanced decoupled source for semiconductor processing
CN105957792A (en) * 2016-06-30 2016-09-21 上海华力微电子有限公司 Etching method of semiconductor structure
JP7422531B2 (en) * 2019-12-17 2024-01-26 東京エレクトロン株式会社 Plasma processing equipment and plasma processing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501893A (en) * 1992-12-05 1996-03-26 Robert Bosch Gmbh Method of anisotropically etching silicon
US6171438B1 (en) * 1995-03-16 2001-01-09 Hitachi, Ltd. Plasma processing apparatus and plasma processing method

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880396A (en) * 1973-10-25 1975-04-29 Eaton Corp Quick change panel fastening system
JPS6056431B2 (en) * 1980-10-09 1985-12-10 三菱電機株式会社 plasma etching equipment
US4439463A (en) * 1982-02-18 1984-03-27 Atlantic Richfield Company Plasma assisted deposition system
AU585177B2 (en) * 1986-09-12 1989-06-08 U.S. Filter Wastewater Group, Inc. Hollow fibre filter cartridge and header
JP2677418B2 (en) * 1989-06-22 1997-11-17 富士通株式会社 ATM switch system switching method
DE4007123A1 (en) * 1990-03-07 1991-09-12 Siegfried Dipl Ing Dr Straemke Plasma treatment appts. - has working vessel with vacuum sealed vessel with evacuation of the intermediate zone
US20020004309A1 (en) * 1990-07-31 2002-01-10 Kenneth S. Collins Processes used in an inductively coupled plasma reactor
US6518195B1 (en) * 1991-06-27 2003-02-11 Applied Materials, Inc. Plasma reactor using inductive RF coupling, and processes
US6063233A (en) * 1991-06-27 2000-05-16 Applied Materials, Inc. Thermal control apparatus for inductively coupled RF plasma reactor having an overhead solenoidal antenna
US5328556A (en) * 1992-12-31 1994-07-12 Nace Technology, Inc. Wafer fabrication
US5798016A (en) * 1994-03-08 1998-08-25 International Business Machines Corporation Apparatus for hot wall reactive ion etching using a dielectric or metallic liner with temperature control to achieve process stability
JPH07273086A (en) * 1994-03-30 1995-10-20 Sumitomo Metal Ind Ltd Plasma treatment apparatus and plasma treatment method employing said apparatus
US5885356A (en) * 1994-11-30 1999-03-23 Applied Materials, Inc. Method of reducing residue accumulation in CVD chamber using ceramic lining
JP3778299B2 (en) * 1995-02-07 2006-05-24 東京エレクトロン株式会社 Plasma etching method
JP3218917B2 (en) * 1995-05-19 2001-10-15 株式会社日立製作所 Plasma processing apparatus and plasma processing method
US5968379A (en) * 1995-07-14 1999-10-19 Applied Materials, Inc. High temperature ceramic heater assembly with RF capability and related methods
US5908316A (en) * 1995-12-18 1999-06-01 Motorola, Inc. Method of passivating a semiconductor substrate
JPH09186137A (en) * 1995-12-27 1997-07-15 Sony Corp Manufacturing apparatus for semiconductor device
US5788799A (en) * 1996-06-11 1998-08-04 Applied Materials, Inc. Apparatus and method for cleaning of semiconductor process chamber surfaces
US6055927A (en) * 1997-01-14 2000-05-02 Applied Komatsu Technology, Inc. Apparatus and method for white powder reduction in silicon nitride deposition using remote plasma source cleaning technology
US6692617B1 (en) * 1997-05-08 2004-02-17 Applied Materials, Inc. Sustained self-sputtering reactor having an increased density plasma
KR100258984B1 (en) * 1997-12-24 2000-08-01 윤종용 Dry etching apparatus
US6129808A (en) * 1998-03-31 2000-10-10 Lam Research Corporation Low contamination high density plasma etch chambers and methods for making the same
US6014979A (en) * 1998-06-22 2000-01-18 Applied Materials, Inc. Localizing cleaning plasma for semiconductor processing
JP2000082694A (en) * 1998-06-29 2000-03-21 Sumitomo Metal Ind Ltd Plasma processing apparatus
DE19900179C1 (en) * 1999-01-07 2000-02-24 Bosch Gmbh Robert Installation for etching substrates by high-density plasmas comprises a phase delay line causing the supply voltages at both ends of the inductively coupled plasma coil to be in counter-phase with one another
JP4865948B2 (en) * 1999-04-14 2012-02-01 サーフィス テクノロジー システムズ ピーエルシー Method and apparatus for stabilizing plasma
DE19919469A1 (en) * 1999-04-29 2000-11-02 Bosch Gmbh Robert Process for plasma etching silicon
KR100759935B1 (en) * 1999-05-14 2007-09-18 아숙 테크놀러지스 엘엘씨 Electrical Heating Devices And Resettable Fuses
JP2001077094A (en) * 1999-09-07 2001-03-23 Matsushita Electric Ind Co Ltd Plasma processing device
US6408786B1 (en) * 1999-09-23 2002-06-25 Lam Research Corporation Semiconductor processing equipment having tiled ceramic liner
TW503442B (en) * 2000-02-29 2002-09-21 Applied Materials Inc Coil and coil support for generating a plasma
US20020015855A1 (en) * 2000-06-16 2002-02-07 Talex Sajoto System and method for depositing high dielectric constant materials and compatible conductive materials
US6506254B1 (en) * 2000-06-30 2003-01-14 Lam Research Corporation Semiconductor processing equipment having improved particle performance
US20020185226A1 (en) * 2000-08-10 2002-12-12 Lea Leslie Michael Plasma processing apparatus
US7345342B2 (en) * 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US20030052088A1 (en) * 2001-09-19 2003-03-20 Anisul Khan Method for increasing capacitance in stacked and trench capacitors
US20030188685A1 (en) * 2002-04-08 2003-10-09 Applied Materials, Inc. Laser drilled surfaces for substrate processing chambers
US6759340B2 (en) * 2002-05-09 2004-07-06 Padmapani C. Nallan Method of etching a trench in a silicon-on-insulator (SOI) structure
US20030213560A1 (en) * 2002-05-16 2003-11-20 Yaxin Wang Tandem wafer processing system and process
FR2842388B1 (en) * 2002-07-11 2004-09-24 Cit Alcatel METHOD AND DEVICE FOR ETCHING SUBSTRATE BY INDUCTIVE PLASMA WITH VERY HIGH POWER
US7638841B2 (en) * 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7205240B2 (en) * 2003-06-04 2007-04-17 Applied Materials, Inc. HDP-CVD multistep gapfill process

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501893A (en) * 1992-12-05 1996-03-26 Robert Bosch Gmbh Method of anisotropically etching silicon
US6171438B1 (en) * 1995-03-16 2001-01-09 Hitachi, Ltd. Plasma processing apparatus and plasma processing method

Also Published As

Publication number Publication date
JP2005532693A (en) 2005-10-27
WO2004008477A2 (en) 2004-01-22
WO2004008477A3 (en) 2004-04-08
US20050224178A1 (en) 2005-10-13
FR2842387A1 (en) 2004-01-16
FR2842387B1 (en) 2005-07-08

Similar Documents

Publication Publication Date Title
EP0115970B1 (en) Vessel for the processing and particularly etching of substrates by the reactive plasma method
FR2794036A1 (en) Enhancement of cleaning of semiconductor treatment chamber involves coating chamber components with fluorinated polymer
US6071797A (en) Method for forming amorphous carbon thin film by plasma chemical vapor deposition
JPH0698301B2 (en) Cleaning equipment
FR2691834A1 (en) Method for producing and initiating a low voltage discharge, vacuum treatment plant and cathode chamber therefor, and uses of the method.
FR2708624A1 (en) Process for deposition of a protective coating based on amorphous diamond pseudocarbon or on modified silicon carbide
EP0005442B1 (en) Process and apparatus for producing aluminium nitride useful for electronic applications
JP3150957B2 (en) Self-cleaning vacuum processing reactor
EP1523754A2 (en) Heating jacket for plasma etching reactor, and etching method using same
EP0614852A1 (en) Process for preparation of disilane from monosilane by electric discharge and use of a cryogenic trap and reactor for carrying out the process
EP1048747A1 (en) Process and apparatus for treating a material with electromagnetic radiation under a controlled atmosphere
EP0879897B1 (en) Process for continuous annealing of metal substrates
WO2011033188A1 (en) Low pressure device for melting and purifying silicon and melting/purifying/solidifying method
FR2516097A1 (en) PLASMA SILICON DEPOSITION PROCESS
JPS63267430A (en) Cleaning method for inside of reaction chamber
JP2001526325A (en) Method and apparatus for modifying a surface
JP2001250814A (en) Plasma treatment device
EP3568505B1 (en) Treatment chamber for a chemical vapor deposition (cvd) reactor and thermalization process carried out in this chamber
JP2006351696A (en) Member for semiconductor processing apparatus and semiconductor processing apparatus equipped with member
JP4570186B2 (en) Plasma cleaning method
EP0908924B1 (en) Device for the condensation deposition of a film on a substrate
JP3307239B2 (en) Plasma cleaning method
FR2923945A1 (en) METHOD AND DEVICE FOR PRODUCING HOMOGENEOUS DISCHARGE ON NON-INSULATING SUBSTRATES
EP0012327B1 (en) Lithographic reactive ion etching method
FR2606038A1 (en) Improvement to enclosures for the treatment of semiconductive substrates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

17Q First examination report despatched

Effective date: 20071227

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TEGAL CORPORATION

RTI1 Title (correction)

Free format text: HEATING JACKET FOR PLASMA ETCHING REACTOR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120327