[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1517377A1 - Transistor bipolaire - Google Patents

Transistor bipolaire Download PDF

Info

Publication number
EP1517377A1
EP1517377A1 EP04104491A EP04104491A EP1517377A1 EP 1517377 A1 EP1517377 A1 EP 1517377A1 EP 04104491 A EP04104491 A EP 04104491A EP 04104491 A EP04104491 A EP 04104491A EP 1517377 A1 EP1517377 A1 EP 1517377A1
Authority
EP
European Patent Office
Prior art keywords
region
silicon
base
layer
bipolar transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04104491A
Other languages
German (de)
English (en)
Inventor
Alain Chantre
Bertrand Martinet
Michel Marty
Pascal Chevalier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1517377A1 publication Critical patent/EP1517377A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0804Emitter regions of bipolar transistors
    • H01L29/0817Emitter regions of bipolar transistors of heterojunction bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42304Base electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7378Vertical transistors comprising lattice mismatched active layers, e.g. SiGe strained layer transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material

Definitions

  • the present invention relates to the field of microelectronics and more precisely a bipolar transistor and its production.
  • bipolar transistors used as circuit elements including those likely to coexist with MOS transistors in integrated circuits of Bi-CMOS type.
  • Bipolar transistors are used because of their dynamic performance that allows their use in the field of very high frequencies, greater than 50 GHz.
  • a conventional NPN bipolar transistor is schematized in Figure 1. It includes a collector region 1 N-type doped monocrystalline silicon, a base region 2 doped P-type monocrystalline silicon and a region N-type doped monocrystalline silicon transmitter 3.
  • collector is made in a silicon substrate, the region base is formed above the collector region.
  • the emitter region is carried out inside the region of base for example by diffusion of doping atoms.
  • a metal 4 is deposited on the transmitter area 3 to ensure contact electric on this region.
  • the operation of this transistor bipolar is the following.
  • a control current Ib is injected between the base region and the transmitter region and he results, depending on the polarization conditions of the region of collector, a collector current Ic usable in electronic circuits.
  • the collector current Ic is a useful current and the base current Ib is a parasitic current.
  • the ratio Ic / Ib which is the current gain of the transistor bipolar, is a merit factor that the skilled person tries to increase in order to obtain values greater than 60. Very many technological parameters change the gain of the transistor bipolar. If the metal 4 is near the base-emitter junction it creates an important base stream by recombining the minority carriers located near this junction. So if we want to decrease the basic current Ib it is necessary to increase the distance between the metal 4 and the region 2. In other words, it is necessary to have a transmitter whose thickness is greater than several times the diffusion length of the minority carriers falling within this emitter region. Thus, bipolar transistors conventional ones have an emitter thickness greater than 800 nm.
  • Bipolar transistors are often used to their dynamic performance.
  • the structure presented in Figure 1 is not very efficient because of the present capacity between the regions of base and transmitter. This capacity is proportional to the surface of the junction between the base and the transmitter.
  • the transmitter extending deep into the base the contribution of the periphery of the transmitter to the total capacity between regions base and issuer is important while this region, away from the base / collector junction, has a reduced role for the currents of the bipolar transistor.
  • To increase dynamic performance of the bipolar transistor it has been realized bipolar transistors with polycrystalline silicon emitter according to Figure 2.
  • the transistor of Figure 2 comprises a region of collector 10 in N-type doped monocrystalline silicon on which is formed a monocrystalline silicon base layer 20 in and on which is formed a transmitter structure 30-35-40.
  • the emitter 35 is made of polycrystalline silicon doped with type N and is extended in the base region 20 by a region A metal 40 rests on the emitter 35.
  • the thickness of the monocrystalline silicon portion 30 of the transmitter is about 100 nm and the thickness of part 35 of the polycrystalline silicon emitter is about 600 nm.
  • Part 30 of the transmitter has a preponderant contribution to the stray capacitance between the transmitter and the base region of the bipolar transistor. The shallow depth of part 30 This parasitic capacitance is greatly reduced by compared to the case of Figure 1, although the overall thickness of the transmitter is similar for the cases of Figures 1 and 2.
  • An object of the present invention is to provide a bipolar transistor whose dynamic performance is improved.
  • Another object of the present invention is to provide a bipolar transistor easily integrable in a process Bi-CMOS.
  • the present invention provides a bipolar transistor having a first region monocrystalline silicon collector of a first type of conductivity surmounted by a second monocrystalline base region based on silicon and germanium of a second type of conductivity, the base region containing a third region emitter of the first conductivity type located on the opposite side to the collector region and covered with a metal, in which the emitter region has a thickness of less than 50 nm, preferably between 5 and 30 nm.
  • the second region consists, from the collector, of a first SiGe layer whose concentration of germanium decreases from a value of about 30% and doped with boron with a concentration between 10 19 and 10 20 at / cm 3 , and a second silicon layer of about 15 nm thick.
  • the metal is tungsten deposited on a layer containing titanium or titanium nitride.
  • the metal is copper deposited on a layer containing tantalum or tantalum nitride.
  • the epitaxy process of the base comprises at least two phases leading to two successive layers: a first layer consisting of an alloy of silicon and germanium whose concentration in germanium decreases from of a value of about 30% and having a concentration of doping atoms between 10 19 and 10 20 at / cm 3 , and a second layer made of low doped silicon.
  • the transmitter is made by ion implantation in the window formed above the base in the polycrystalline silicon.
  • the transmitter is made by diffusion of doping species contained in doped silicon through an oxide layer native.
  • the step of depositing metal on the transmitter comprises the steps subsequent to the issuer's broadcast: engrave said doped silicon to delineate it laterally; deposit an insulator completely covering said doped silicon; open a passage through the insulator opening on the doped silicon; completely eliminating said doped silicon through the passage; and fill the cavity thus created with a metal compound.
  • the metal deposit comprises at least two layers, the first containing titanium or tantalum, the second containing aluminum, tungsten or copper.
  • the plaintiff uses a bipolar transistor whose silicon emitter monocrystalline has a thickness less than 50 nm. It is best to optimize the dynamic performance of using a thickness for the emitter region of between 5 and 30 nm.
  • Such a transistor for example of the NPN type, comprises a doped monocrystalline silicon collector region of the type N on which is formed by epitaxial growth a region monocrystalline base in which a region is formed emitter.
  • the base region is p-type doped for example with boron.
  • a metal rests on this emitter forming a metal contact zone.
  • the base region consists of two distinct layers.
  • the first layer is a monocrystalline silicon matrix epitaxially grown on the collector region in which germanium is incorporated with a concentration profile of between 0 and 30%, a P type dopant, for example boron with a concentration of between 10 and 20%. and 10 20 at / cm 3, and carbon.
  • the thickness of the first layer is about 30 nm.
  • the concentration of germanium is not constant, it decreases towards the upper part of the first layer.
  • the second layer is monocrystalline silicon epitaxially grown on the first layer. The thickness of the second layer is less than about 50 nm. It is in at least the thickness of this second layer that the emitter is formed.
  • the current gains are greater than 50, which is an acceptable value for transistors bipolar with high dynamic performance.
  • the thickness reduced transmitter causes a decrease in current gain which is offset by the increase in current gain due to the presence of germanium in the base.
  • We determine the gain in current by adjusting the thickness of the transmitter and the concentration of germanium in the base region.
  • a transmitter thickness of less than 50 nm has many positive consequences for performance dynamics of the bipolar transistor. For example, we will mention three, but this list is not exhaustive. First, the transmitter resistance is decreased because the metal region is close to the base / emitter junction. Second, the transit time of the carriers in the transmitter is also decreased. Thirdly, we limit the phenomenon of storage of minority holders in the issuer. During the conduction of the device many minority carriers are injected into the transmitter and then form a stored charge in this transmitter. When the transistor switches and goes to the blocked state it is necessary to eliminate this load, which is not instantaneous since they are minority carriers. The duration of this phase depends on the number of carriers stored and their lifetime. These two parameters are minimized in the bipolar transistor according to the invention.
  • the choice of a transmitter thickness of less than 50 nm also has a favorable consequence for the performances static of the bipolar transistor.
  • the doping of the base is not determined solely by the gain to be obtained since this gain also depends on the thickness of the transmitter.
  • the thickness and doping of the base are determined independently of the gain current of the bipolar transistor. We then choose doping and the thickness of the base according to the other parameters of the bipolar transistor, for example the breakdown voltage between the emitter and the collector of the bipolar transistor.
  • Figure 3 illustrates an example of a profile of concentration of dopants as a function of depth at the level emitter / base / collector junctions of a transistor according to the invention. We successively meet four regions: the metal, the monocrystalline emitter, the base and the collector. We have also shown in Figure 3, in dotted lines, the region incorporating germanium.
  • the metal ensures a contact on the transmitter. Its thickness, for example 200 nm, is sufficient to limit the access resistance to the device. All metal and alloy may be suitable provided that they do not penetrate in the transmitter.
  • the metal is constituted, for example aluminum, tungsten or copper.
  • barrier layers are used, for example titanium and titanium nitride in the case of aluminum or tungsten, tantalum nitride and tantalum in the case of copper. all another barrier layer and any deposit method for different metal layers can be used.
  • the transmitter is very thin and very doped. Preferably a thickness of less than 50 nm, preferably 5 to 30 nm is used. Doping, for example with arsenic, is of the order of 10 20 at / cm 3 .
  • the thickness of the transmitter is a setting parameter of the current gain of the device. Its fineness determines the maximum electrical performance.
  • An advantage provided by a monocrystalline silicon emitter vis-à-vis a polycrystalline silicon emitter can be cited. Unlike the case of polycrystalline silicon, the roughness of the upper surface of monocrystalline silicon is low and less than 3 nm. The thickness of the emitter with an accuracy of less than 1 nm can be controlled during the manufacturing process of the bipolar transistor, which would not be possible in the case of a polycrystalline silicon emitter.
  • the base consists of a SiGe alloy containing between 0 and 30% germanium.
  • the germanium profile is optimized.
  • the base has a thickness of the order of 25 nm.
  • Doping, for example boron, is between 1019 and 10 20 at / cm 3.
  • carbon is incorporated. The fineness of the base and its low resistance are decisive for the dynamic performance of the bipolar transistor.
  • the doping profile of the collector is optimized for increase the breakdown voltage of the base / collector junction and to minimize the resistance of access to the collector as well as the transit time of the carriers in the junction base / collector.
  • the proposed goal is achieved by this type of transistor bipolar.
  • the current gain is maintained over a minimum value of 50 mainly by adjusting the thickness of the transmitter and optimizing the germanium profile in the base.
  • the base / transmitter capacity is very low because the transmitter enters little in the base.
  • the vertical resistance of the transmitter is minimized because the transmitter thickness is less than 50 nm.
  • the number of minority holes injected into the volume of the transmitter is reduced by reducing the volume of the transmitter. The evacuation of this load will be very fast in case of switching of the device. Operating frequencies will be improved.
  • the doping of the base as well as the gain in current of the bipolar transistor being reduced, the holding in voltage between the emitter and the collector will be improved and can reach 5 V.
  • the first method describes the realization of a bipolar transistor said quasi-self-aligned.
  • the second describes the realization of a bipolar transistor said self-aligned.
  • FIG. 4A represents initial stages of realization a quasi-self-aligned bipolar transistor.
  • substrate 100 of N type monocrystalline silicon makes shallow trenches 110 filled with insulation. These shallow trenches delineate active areas opening on the surface of the substrate.
  • a deposit of the region of base 200 is made on the entire surface of the substrate of such way it is monocrystalline on the active and polycrystalline zones above the shallow trenches filled.
  • this deposit 200 consists of two layers 202, 203.
  • the layer 203 is silicon
  • the layer 202 is a SiGe alloy containing carbon and boron.
  • the germanium concentration profile in layer 202 is not constant, it preferably has a triangular shape descending to the surface. Boron is brought during the stage deposit, the carbon is implanted after the completion of the layer 200. Then a layer of oxide of 20 nm thick on the whole structure.
  • FIG. 4B shows the following steps for producing the quasi-self-aligned bipolar transistor.
  • the oxide layer 500 is etched so as to leave an oxide pellet situated approximately above the monocrystalline region of the layer 200.
  • a layer 600 of 100 nm thick of strongly doped polycrystalline silicon is deposited, approximately 10 ⁇ m thick. 20 at / cm 3 , boron.
  • a layer of nitride 700 of 50 nm is then deposited on the entire structure.
  • the layers of nitride 700 and polycrystalline silicon 600 are then etched to form an open window 805 without nitride and without polycrystalline silicon above and inside the oxide pellet 500.
  • 800 nitride spacers are produced. on the flanks of the window 805. The width of these spacers is for example 30 nm.
  • the polycrystalline silicon 600 is completely isolated from the window 805 and in contact with the base 200.
  • An annealing makes it possible to diffuse the dopant of the polycrystalline silicon towards the base region in order to form an extrinsic base region 250 strongly doped P-type providing electrical contact between the P-type base 200 and the P-type 600 polycrystalline silicon.
  • a diffusion of the boron contained in the layer 202 to the layer 203 occurs.
  • FIG. 4C represents the following steps for producing the quasi-self-aligned bipolar transistor.
  • Window 805 is implanted with arsenic ions to create a strongly N-type region 300 in the base region 200, substantially in the previously described region 203.
  • This implantation is preferably carried out through the oxide layer 500.
  • This ion implantation can also be performed after removing the oxide inside the window 805.
  • the implantation energy is of the order of 10 keV and the dose of the order of 5.10 15 at / cm 2 .
  • FIG. 4D represents the following realization steps quasi-self-aligned bipolar transistor.
  • the thickness of the layer 450 is 20 nm, and that of layer 400 is 300 nm.
  • FIG. 5A represents initial steps for producing an auto-aligned bipolar transistor.
  • a starting substrate 1000 made of monocrystalline silicon of the N type shallow trenches 1100 filled with an insulator are conventionally produced.
  • a layer of silicon oxide 1200 of 50 nm thick is then deposited.
  • a layer 100 of 100 nm thick P-type heavily doped polycrystalline silicon, about 10 20 at / cm 3 is deposited with boron.
  • a layer of 7000 nitride of 50 nm is then deposited on the entire structure.
  • the layers of 7000 nitride and polycrystalline silicon 6000 are then etched so as to leave an open window 8050 opening above the oxide layer 1200.
  • Conventionally 8000 nitride spacers are produced on the sides of the window 8050. The width of these spacers is 30 nm.
  • the polycrystalline silicon 6000 is entirely isolated from the window 8050 and the substrate 1000.
  • Figure 5B shows the following steps of realization of a bipolar transistor self-aligned.
  • the oxide layer For example, an aqueous solution containing hydrofluoric acid.
  • This solution is very selective vis-a-vis other layers in the presence and hardly attack nitride and polycrystalline silicon.
  • the base region 2000 is then deposited. preferably this deposit 2000 consists of two layers 2020, 2030.
  • the 2030 layer is silicon
  • the 2020 layer is a SiGe alloy containing carbon and boron.
  • the concentration profile of germanium in the 2020 layer is not constant, it preferably has a triangular shape descending to the surface. The maximum concentration of the germanium is around 30%. Boron and carbon are made during the depositing step.
  • the process used for Deposit of the 2000 base region is selective.
  • the 2000 layer only grows on the 1000 substrate and silicon polycrystalline 6000 discovered by the cavity. It is also a epitaxial deposition: the base region 2000 is monocrystalline when it grows from the monocrystalline substrate 1000.
  • Figure 5C shows the following steps of the realization of a bipolar transistor self-aligned.
  • Annealing allows diffusion of dopant polysilicon 6000 to the underlying base 2000 region in order to form an extrinsic base region 2500 heavily doped with type P providing electrical contact between the base 2000 type P and the polycrystalline silicon 6000 P type.
  • this repository is not in direct contact with the 2000 base region but separated from it by a native oxide 3200 of thickness between 0.5 and 2 nm. Quality control and thickness of this oxide native is done by the type of cleaning done before the deposit layer 3500.
  • the layer 3500 is etched to leave a doped polycrystalline silicon pad overflowing on all sides of the 8050 window.
  • a quick annealing of a few dozen seconds at 1000 ° C allows the penetration of arsenic atoms from polycrystalline silicon 3500 in the base 2000 so to form an emitter region 3000, through the layer 3200 native oxide.
  • Figure 5D shows the following steps of the realization of a bipolar transistor self-aligned.
  • a step of planarization provides a planar upper surface for this oxide 9000.
  • An access chimney is opened above layer 3500 leading to the surface of this 9600 layer. selective, eliminates all accessible silicon by stopping the etching on the 3200 oxide layer.
  • At this stage there is process a cavity above the bounded emitter region by 3200 oxide, nitride spacers 8000, the layer 7000 nitride insulation and 9000 oxide.
  • This cavity opens outside by the chimney 9600.
  • this cavity can be carried out at the end of the manufacturing process and in particular during one of the steps of making the interconnections.
  • FIG. 5E represents the following realization steps of a self-aligned bipolar transistor.
  • We deposit isotropic manner conventionally a first metal layer 4500 titanium and titanium nitride in the cavity previously created. It is then deposited by a CVD method (Chemical Vapor Deposition) 4000 tungsten to fill isotropic this cavity.
  • CVD Chemical Vapor Deposition
  • ALD Atomic Layer Deposition
  • a second stage of planarization allows to remove any metal deposited above the oxide layer 9000.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

L'invention concerne un nouveau transistor bipolaire à très hautes performances dynamiques et utilisable dans un circuit intégré. Ce transistor bipolaire comporte une région d'émetteur en silicium monocristallin d'épaisseur inférieure à 50 nm. La base du transistor bipolaire est en alliage SiGe. <IMAGE>

Description

La présente invention concerne le domaine de la microélectronique et plus précisément un transistor bipolaire et sa réalisation.
On s'intéressera plus particulièrement ici aux transistors bipolaires utilisés comme éléments de circuits intégrés notamment susceptibles de cohabiter avec des transistors MOS dans les circuits intégrés de type Bi-CMOS.
On réalise des circuits intégrés de plus en plus performants. Pour cela il faut que tous les composants soient optimisés. Les transistors bipolaires sont utilisés à cause de leurs performances dynamiques qui permettent leur utilisation dans le domaine des très hautes fréquences, supérieures à 50 GHz.
Un transistor bipolaire de type NPN classique est schématisé par la figure 1. Il comprend une région de collecteur 1 en silicium monocristallin dopé de type N, une région de base 2 en silicium monocristallin dopé de type P et une région d'émetteur 3 en silicium monocristallin dopé de type N. Le collecteur est réalisé dans un substrat de silicium, la région de base est formée au-dessus de la région de collecteur. La région d'émetteur est réalisée à l'intérieur de la région de base par exemple par diffusion d'atomes dopants. Un métal 4 est déposé sur la région d'émetteur 3 afin d'assurer un contact électrique sur cette région. Le fonctionnement de ce transistor bipolaire est le suivant. On injecte un courant de commande Ib entre la région de base et la région d'émetteur et il en résulte, selon les conditions de polarisation de la région de collecteur, un courant de collecteur Ic utilisable dans des circuits électroniques. Le courant de collecteur Ic est un courant utile et le courant de base Ib est un courant parasite. Le rapport Ic/Ib, qui est le gain en courant du transistor bipolaire, est un facteur de mérite que l'homme du métier essaye d'augmenter afin d'obtenir des valeurs supérieures à 60. De très nombreux paramètres technologiques modifient le gain du transistor bipolaire. Si le métal 4 est près de la jonction base-émetteur il crée un courant de base important en recombinant les porteurs minoritaires se situant à proximité de cette jonction. Ainsi si on veut diminuer le courant de base Ib il est nécessaire d'augmenter la distance entre le métal 4 et la région de base 2. En d'autres termes, il est nécessaire d'avoir un émetteur dont l'épaisseur est supérieure à plusieurs fois la longueur de diffusion des porteurs minoritaires se situant dans cette région d'émetteur. Ainsi, les transistors bipolaires classiques ont une épaisseur d'émetteur supérieure à 800 nm. La présence du métal n'est pas le seul paramètre influant sur le gain. Les paramètres qui modifient le gain en courant des transistors bipolaires sont très nombreux, quelquefois mal compris et souvent mal maítrisés. Mais il a été observé qu'une augmentation de l'épaisseur de l'émetteur avait toujours pour conséquences une meilleure efficacité d'injection (augmentation de Ic) et un plus faible courant de base Ib.
Les transistors bipolaires sont souvent utilisés pour leurs performances dynamiques. Pour des raisons purement géométriques, la structure présentée par la figure 1 n'est pas très performante à cause de la capacité présente entre les régions de base et d'émetteur. Cette capacité est proportionnelle à la surface de la jonction entre la base et l'émetteur. L'émetteur s'étendant profondément dans la base, la contribution de la périphérie de l'émetteur à la capacité totale entre les régions de base et d'émetteur est importante alors que cette région, éloignée de la jonction base/collecteur, a un rôle réduit pour les courants du transistor bipolaire. Pour augmenter les performances dynamiques du transistor bipolaire, on a réalisé des transistors bipolaires à émetteur en silicium polycristallin selon la figure 2.
Le transistor de la figure 2 comprend une région de collecteur 10 en silicium monocristallin dopé de type N sur laquelle est formée une couche de base 20 en silicium monocristallin dans et sur laquelle est formée une structure d'émetteur 30-35-40. L'émetteur 35 est en silicium polycristallin dopé de type N et est prolongé, dans la région de base 20 par une région 30 diffusée de type N. Un métal 40 repose sur l'émetteur 35. L'épaisseur de la partie 30 en silicium monocristallin de l'émetteur est d'environ 100 nm et l'épaisseur de la partie 35 de l'émetteur en silicium polycristallin est d'environ 600 nm. La partie 30 de l'émetteur a une contribution prépondérante pour la capacité parasite entre l'émetteur et la région de base du transistor bipolaire. La faible profondeur de la partie 30 entraíne que cette capacité parasite est fortement réduite par rapport au cas de la figure 1, bien que l'épaisseur globale de l'émetteur soit similaire pour les cas des figures 1 et 2.
Un objet de la présente invention est de prévoir un transistor bipolaire dont les performances dynamiques sont améliorées.
Un autre objet de la présente invention est de prévoir un transistor bipolaire facilement intégrable dans un procédé Bi-CMOS.
Pour atteindre ces objets, la présente invention prévoit un transistor bipolaire comportant une première région de collecteur en silicium monocristallin d'un premier type de conductivité surmontée d'une deuxième région de base monocristalline à base de silicium et germanium d'un second type de conductivité, la région de base contenant une troisième région d'émetteur du premier type de conductivité située du côté opposé à la région de collecteur et recouverte d'un métal, dans lequel la région d'émetteur a une épaisseur inférieure à 50 nm, de préférence comprise entre 5 et 30 nm.
Selon un mode de réalisation de la présente invention, la deuxième région est constituée, à partir du collecteur, d'une première couche en SiGe dont la concentration en germanium décroít à partir d'une valeur d'environ 30 % et dopée au bore avec une concentration comprise entre 1019 et 1020 at/cm3, et d'une deuxième couche en silicium d'environ 15 nm d'épaisseur.
Selon un mode de réalisation de la présente invention, le métal est du tungstène déposé sur une couche contenant du titane ou du nitrure de titane.
Selon un mode de réalisation de la présente invention, le métal est du cuivre déposé sur une couche contenant du tantale ou du nitrure de tantale.
La présente invention prévoit aussi un procédé de réalisation d'un transistor bipolaire à émetteur fin, comportant les étapes suivantes :
  • former par épitaxie sur un substrat monocristallin d'un premier type de conductivité une région de base d'épaisseur inférieure à 100 nm d'un second type de conductivité et comportant du germanium ;
  • réaliser sur le pourtour de la région de base une région fortement dopée du second type de conductivité recouverte de silicium polycristallin fortement dopé du second type de conductivité ;
  • réaliser dans la partie centrale de la base et à l'intérieur d'une fenêtre non recouverte par le silicium polycristallin une région d'émetteur fortement dopé du premier type de conductivité et d'épaisseur inférieure à 50 nm et de préférence comprise entre 5 et 30 nm ; et
  • déposer un métal au-dessus de l'émetteur.
  • Selon un mode de réalisation de la présente invention, le procédé d'épitaxie de la base comporte au moins deux phases conduisant à deux couches successives : une première couche constituée d'un alliage de silicium et de germanium dont la concentration en germanium décroít à partir d'une valeur d'environ 30 % et ayant une concentration d'atomes dopants comprise entre 1019 et 1020 at/cm3, et une deuxième couche constituée de silicium peu dopé.
    Selon un mode de réalisation de la présente invention, l'émetteur est réalisé par implantation ionique dans la fenêtre ménagée au dessus de la base dans le silicium polycristallin.
    Selon un mode de réalisation de la présente invention, l'émetteur est réalisé par diffusion d'espèces dopantes contenues dans du silicium dopé à travers une couche d'oxyde natif.
    Selon un mode de réalisation de la présente invention, l'étape de dépôt de métal sur l'émetteur comporte les étapes suivantes subséquentes à la diffusion de l'émetteur : graver ledit silicium dopé afin de le délimiter latéralement ; déposer un isolant recouvrant entièrement ledit silicium dopé ; ouvrir un passage à travers l'isolant débouchant sur le silicium dopé ; éliminer complètement ledit silicium dopé par le passage ; et remplir la cavité ainsi créée par un composé métallique.
    Selon un mode de réalisation de la présente invention, le dépôt métallique comporte au moins deux couches, la première contenant du titane ou du tantale, la seconde contenant de l'aluminium, du tungstène ou du cuivre.
    Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non limitatif en relation avec les figures jointes parmi lesquelles :
  • la figure 1 représente un transistor bipolaire selon l'art antérieur ;
  • la figure 2 représente un autre type de transistor bipolaire selon l'art antérieur ;
  • la figure 3 représente un exemple de profil de dopage d'un transistor bipolaire selon la présente invention ;
  • les figures 4A à 4D représentent des étapes successives de fabrication d'un transistor bipolaire selon un premier mode de réalisation de la présente invention ; et
  • les figures 5A à 5E représentent des étapes successives de fabrication d'un transistor bipolaire selon un deuxième mode de réalisation de la présente invention.
  • Comme il est usuel en matière de représentation des dispositifs de circuits intégrés, les échelles ne sont pas respectées afin de mettre en évidence les différentes couches et éléments des dispositifs.
    Selon la présente invention, pour augmenter les performances dynamiques d'un transistor bipolaire, la demanderesse utilise un transistor bipolaire dont l'émetteur en silicium monocristallin possède une épaisseur inférieure à 50 nm. Il est préférable pour optimiser les performances dynamiques d'utiliser une épaisseur pour la région d'émetteur comprise entre 5 et 30 nm.
    Un tel transistor, par exemple de type NPN, comprend une région de collecteur en silicium monocristallin dopé de type N sur laquelle est formée par croissance épitaxiale une région de base monocristalline dans laquelle est formée une région d'émetteur. La région de base est dopée de type P par exemple avec du bore. A la surface de cette base, et à l'intérieur de celle-ci existe une région de type N fortement dopée qui constitue la région d'émetteur du transistor bipolaire. Un métal repose sur cet émetteur formant une zone de contact métallique.
    Selon la présente invention la région de base est constituée de deux couches distinctes. La première couche est une matrice en silicium monocristallin épitaxiée sur la région de collecteur dans laquelle on incorpore du germanium avec un profil de concentration compris entre 0 et 30 %, un dopant de type P, par exemple du bore avec une concentration comprise entre 1019 et 1020 at/cm3, et du carbone. L'épaisseur de la première couche est d'environ 30 nm. La concentration de germanium n'est pas constante, elle décroít vers la partie supérieure de la première couche. La deuxième couche est en silicium monocristallin épitaxié sur la première couche. L'épaisseur de la deuxième couche est inférieure à environ 50 nm. C'est dans au moins l'épaisseur de cette deuxième couche qu'est formé l'émetteur.
    On observe qu'en associant un émetteur d'épaisseur réduite à cette structure de base les gains en courant sont supérieurs à 50, ce qui est une valeur acceptable pour les transistors bipolaires à hautes performances dynamiques. L'épaisseur réduite de l'émetteur provoque une diminution du gain en courant qui est compensée par l'augmentation de gain en courant due à la présence de germanium dans la base. On détermine le gain en courant en ajustant l'épaisseur de l'émetteur et la concentration de germanium dans la région de base.
    Le choix d'une épaisseur d'émetteur inférieure à 50 nm a de nombreuses conséquences favorables pour les performances dynamiques du transistor bipolaire. A titre d'exemple on en citera trois, mais cette liste n'est pas exhaustive. Premièrement, la résistance de l'émetteur est diminuée car la région métallique est proche de la jonction base/émetteur. Deuxièmement, le temps de transit des porteurs dans l'émetteur est également diminué. Toisièmement, on limite le phénomène de stockage des porteurs minoritaires dans l'émetteur. Pendant la conduction du dispositif de nombreux porteurs minoritaires sont injectés dans l'émetteur et forment alors une charge stockée dans cet émetteur. Lorsque le transistor commute et passe à l'état bloqué il faut éliminer cette charge, ce qui n'est pas instantané puisqu'il s'agit de porteurs minoritaires. La durée de cette phase dépend du nombre de porteurs stockés et de leur durée de vie. Ces deux paramètres sont minimisés dans le transistor bipolaire selon l'invention.
    Le choix d'une épaisseur d'émetteur inférieure à 50 nm a également une conséquence favorable pour les performances statiques du transistor bipolaire. Le dopage de la base n'est pas déterminé uniquement par le gain à obtenir puisque ce gain dépend aussi de l'épaisseur de l'émetteur. L'épaisseur et le dopage de la base sont déterminés de façon indépendante du gain en courant du transistor bipolaire. On choisit alors le dopage et l'épaisseur de la base en fonction des autres paramètres du transistor bipolaire, par exemple la tension de claquage entre l'émetteur et le collecteur du transistor bipolaire.
    La figure 3 illustre un exemple de profil de concentration des dopants en fonction de la profondeur au niveau des jonctions émetteur/base/collecteur d'un transistor selon l'invention. On rencontre successivement quatre régions : le métal, l'émetteur monocristallin, la base et le collecteur. On a également représenté en figure 3, en pointillés, la région incorporant du germanium.
    Le métal assure un contact sur l'émetteur. Son épaisseur, par exemple 200 nm, est suffisante pour limiter la résistance d'accès au dispositif. Tout métal et tout alliage métallique peuvent convenir à condition qu'ils ne pénètrent pas dans l'émetteur. Le métal est constitué, par exemple d'aluminium, de tungstène ou de cuivre. Selon le cas, des couches barrières sont utilisées, par exemple du titane et du nitrure de titane dans le cas de l'aluminium ou du tungstène, du nitrure de tantale et du tantale dans le cas du cuivre. Toute autre couche barrière et toute méthode de dépôt pour les différentes couches métalliques peuvent être utilisées.
    L'émetteur est très fin et très dopé. De préférence on utilise une épaisseur inférieure à 50 nm, de préférence entre 5 et 30 nm. Le dopage, par exemple à l'arsenic, est de l'ordre de 1020 at/cm3. L'épaisseur de l'émetteur est un paramètre d'ajustement du gain en courant du dispositif. Sa finesse détermine les performances électriques maximales. On peut citer un avantage apporté par un émetteur en silicium monocristallin vis-à-vis d'un émetteur en silicium polycristallin. Contrairement au cas du silicium polycristallin, la rugosité de la surface supérieure du silicium monocristallin est faible et inférieure à 3 nm. On peut contrôler durant le procédé de fabrication du transistor bipolaire l'épaisseur de l'émetteur avec une précision inférieure à 1 nm, ce qui ne serait pas réalisable dans le cas d'un émetteur en silicium polycristallin.
    La base est constituée d'un alliage de SiGe contenant entre 0 et 30 % de germanium. Le profil de germanium est optimisé. De préférence, la base a une épaisseur de l'ordre de 25 nm. Le dopage, par exemple au bore, est compris entre 1019 et 1020 at/cm3. Enfin du carbone est incorporé. La finesse de la base et sa faible résistance sont déterminantes pour les performances dynamiques du transistor bipolaire.
    Le profil de dopage du collecteur est optimisé pour augmenter la tension de claquage de la jonction base/collecteur et pour minimiser la résistance d'accès au collecteur ainsi que le temps de transit des porteurs dans la jonction base/collecteur.
    Le but proposé est atteint par ce type de transistor bipolaire. Le gain en courant est maintenu au dessus d'une valeur minimum de 50 principalement en ajustant l'épaisseur de l'émetteur et en optimisant le profil de germanium dans la base. La capacité base/émetteur est très faible car l'émetteur pénètre peu dans la base. La résistance verticale de l'émetteur est minimisée car l'épaisseur de l'émetteur est inférieure à 50 nm. Enfin le nombre de trous minoritaires injectés dans le volume de l'émetteur est réduit par la réduction du volume de l'émetteur. L'évacuation de cette charge sera très rapide en cas de commutation du dispositif. Les fréquences de fonctionnement seront améliorées. De plus le dopage de la base ainsi que le gain en courant du transistor bipolaire étant réduits, la tenue en tension entre l'émetteur et le collecteur sera améliorée et peut atteindre 5 V.
    On propose deux procédés pour réaliser, suivant l'invention, des transistors bipolaires aux performances optimisées. Le premier procédé décrit la réalisation d'un transistor bipolaire dit quasi-autoaligné. Le second décrit la réalisation d'un transistor bipolaire dit autoaligné.
    Procédé quasi-autoaligné
    La figure 4A représente des étapes initiales de réalisation d'un transistor bipolaire quasi-autoaligné. Dans un substrat de départ 100 en silicium monocristallin de type N, on réalise des tranchées peu profondes 110 remplies d'un isolant. Ces tranchées peu profondes délimitent des zones actives débouchant à la surface du substrat. Un dépôt de la région de base 200 est réalisé sur toute la surface du substrat de telle manière qu'il soit monocristallin sur les zones actives et polycristallin au-dessus des tranchées peu profondes remplies. De préférence, ce dépôt 200 est constitué de deux couches successives 202, 203. La couche 203 est du silicium, la couche 202 est un alliage SiGe contenant du carbone et du bore. Le profil de concentration de germanium dans la couche 202 n'est pas constant, il a de préférence une forme triangulaire décroissant vers la surface. Le bore est apporté pendant l'étape de dépôt, le carbone est implanté après la réalisation de la couche 200. On dépose ensuite une couche d'oxyde 500 de 20 nm d'épaisseur sur toute la structure.
    La figure 4B représente des étapes suivantes de réalisation du transistor bipolaire quasi-autoaligné. On grave la couche d'oxyde 500 de façon à laisser une pastille d'oxyde située approximativement au-dessus de la région monocristalline de la couche 200. On dépose une couche 600 de 100 nm d'épaisseur de silicium polycristallin fortement dopé, environ 1020 at/cm3, au bore. On dépose alors une couche de nitrure 700 de 50 nm sur toute la structure. Les couches de nitrure 700 et de silicium polycristallin 600 sont alors gravées de façon à former une fenêtre 805 ouverte sans nitrure et sans silicium polycristallin au-dessus et à l'intérieur de la pastille d'oxyde 500. On réalise des espaceurs 800 en nitrure sur les flancs de la fenêtre 805. La largeur de ces espaceurs est par exemple de 30 nm. A ce stade, le silicium polycristallin 600 est entièrement isolé de la fenêtre 805 et en contact avec la base 200. Un recuit permet d'effectuer une diffusion du dopant du silicium polycristallin vers la région de base afin de former une région de base extrinsèque 250 fortement dopée de type P assurant le contact électrique entre la base 200 de type P et le silicium polycristallin 600 de type P. Pendant ce recuit, il se produit une diffusion du bore contenu dans la couche 202 vers la couche 203.
    La figure 4C représente des étapes suivantes de réalisation du transistor bipolaire quasi-autoaligné. On implante dans la fenêtre 805 des ions arsenic pour créer une région 300 fortement dopée de type N dans la région de base 200, sensiblement dans la région 203 précédemment décrite. Cette implantation se fait de préférence à travers la couche d'oxyde 500. On peut effectuer également cette implantation ionique après avoir éliminé l'oxyde à l'intérieur de la fenêtre 805. L'énergie d'implantation est de l'ordre de 10 keV et la dose de l'ordre de 5.1015 at/cm2.
    La figure 4D représente des étapes suivantes de réalisation du transistor bipolaire quasi-autoaligné. On nettoie la fenêtre émetteur 805 et on met à nu, à l'intérieur de cette fenêtre, la surface de silicium de l'émetteur 300. On dépose une première couche métallique 450 de titane et nitrure de titane suivie d'une couche métallique 400, par exemple un alliage d'aluminium et de silicium à 2 %, puis on délimite ces couches par gravure. Dans un mode de réalisation, l'épaisseur de la couche 450 est de 20 nm, et celle de la couche 400 est de 300 nm.
    Procédé autoaligné
    La figure 5A représente des étapes initiales de réalisation d'un transistor bipolaire autoaligné. Dans un substrat de départ 1000 en silicium monocristallin de type N, on réalise de manière classique des tranchées peu profondes 1100 remplies d'un isolant. On dépose ensuite une couche d'oxyde de silicium 1200 de 50 nm d'épaisseur. On dépose une couche 6000 de 100 nm d'épaisseur de silicium polycristallin fortement dopé de type P, environ 1020 at/cm3, au bore. On dépose alors une couche de nitrure 7000 de 50 nm sur toute la structure. Les couches de nitrure 7000 et de silicium polycristallin 6000 sont alors gravées de façon à laisser une fenêtre 8050 ouverte débouchant au-dessus de la couche d'oxyde 1200. On réalise de manière classique des espaceurs 8000 en nitrure sur les flancs de la fenêtre 8050. La largeur de ces espaceurs est de 30 nm. A ce stade le silicium polycristallin 6000 est entièrement isolé de la fenêtre 8050 et du substrat 1000.
    La figure 5B représente des étapes suivantes de réalisation d'un transistor bipolaire autoaligné. On grave de façon isotrope, à travers la fenêtre 8050 la couche d'oxyde 1200. On utilise par exemple une solution aqueuse contenant de l'acide fluorhydrique. Cette solution est très sélective vis-à-vis des autres couches en présence et n'attaque pratiquement pas le nitrure et le silicium polycristallin. On poursuit cette gravure isotrope de l'oxyde 1200 de façon à dégager une partie d'oxyde 1200 sous-jacente au silicium polycristallin 6000 sur le pourtour de la fenêtre 8050 et sur une distance de 200 nm environ. A ce stade, il existe une cavité dans la couche d'oxyde 1200 bornée dans sa partie inférieure par le silicium du substrat 1000, dans ses parties latérales par l'oxyde 1200 et dans ses parties supérieures par le silicium polycristallin 6000 et le nitrure 8000. On accède à cette cavité par la fenêtre 8050. On effectue alors le dépôt de la région de base 2000. De préférence ce dépôt 2000 est constitué de deux couches successives 2020, 2030. La couche 2030 est du silicium, la couche 2020 est un alliage SiGe contenant du carbone et du bore. Le profil de concentration de germanium dans la couche 2020 n'est pas constant, il a de préférence une forme triangulaire décroissant vers la surface. Le maximum de concentration du germanium est d'environ 30 %. Le bore et le carbone sont apportés pendant l'étape de dépôt. Le procédé utilisé pour le dépôt de la région de base 2000 est sélectif. La couche 2000 croít uniquement sur le substrat 1000 et sur le silicium polycristallin 6000 découverts par la cavité. C'est également un dépôt épitaxial : la région de base 2000 est monocristalline lorsqu'elle croít à partir du substrat monocristallin 1000.
    La figure 5C représente des étapes suivantes de la réalisation d'un transistor bipolaire autoaligné. Un recuit permet d'effectuer une diffusion du dopant du silicium polycristallin 6000 vers la région de base 2000 sous-jacente afin de former une région de base extrinsèque 2500 fortement dopée de type P assurant le contact électrique entre la base 2000 de type P et le silicium polycristallin 6000 de type P. On dépose une couche de silicium polycristallin 3500 fortement dopée de type N avec de l'arsenic. Dans la fenêtre 8050 ce dépôt n'est pas en contact direct avec la région de base 2000 mais séparé de celle-ci par un oxyde natif 3200 d'épaisseur comprise entre 0,5 et 2 nm. Le contrôle de la qualité et de l'épaisseur de cet oxyde natif se fait par le type de nettoyage effectué avant le dépôt de la couche 3500. On grave la couche 3500 de façon à laisser un plot de silicium polycristallin dopé débordant de tous les côtés de la fenêtre 8050. Un recuit rapide de quelques dizaines de secondes à 1000°C permet la pénétration des atomes d'arsenic provenant du silicium polycristallin 3500 dans la base 2000 afin de former une région d'émetteur 3000, à travers la couche d'oxyde natif 3200.
    La figure 5D représente des étapes suivantes de la réalisation d'un transistor bipolaire autoaligné. On dépose un oxyde 9000 de 500 nm d'épaisseur. Une étape de planarisation permet d'obtenir une surface supérieure plane pour cet oxyde 9000. On ouvre au dessus de la couche 3500 une cheminée d'accès débouchant à la surface de cette couche 9600. Par voie chimique sélective, on élimine tout le silicium accessible en arrêtant la gravure sur la couche d'oxyde 3200. Il existe à ce stade du procédé une cavité au-dessus de la région d'émetteur bornée par l'oxyde 3200, les espaceurs en nitrure 8000, la couche d'isolation en nitrure 7000 et l'oxyde 9000. Cette cavité débouche à l'extérieur par la cheminée 9600. Dans le cas d'un circuit intégré comportant d'autres types d'éléments nécessitant de nombreuses autres étapes technologiques cette cavité peut être réalisée à la fin du procédé de fabrication et en particulier pendant l'une des étapes de réalisation des interconnexions.
    La figure 5E représente des étapes suivantes de réalisation d'un transistor bipolaire autoaligné. On dépose de manière isotrope de façon classique une première couche métallique 4500 de titane et nitrure de titane dans la cavité précédemment crée. On dépose alors par une méthode de CVD (Chemical Vapor Deposition) du tungstène 4000 pour remplir de façon isotrope cette cavité. On peut également déposer de l'aluminium par une méthode ALD (Atomic Layer Déposition). On peut également réaliser un contact à base de cuivre en utilisant une couche barrière en nitrure de tantale et en faisant croítre du cuivre électrolytique. Une deuxième étape de planarisation permet d'éliminer tout métal déposé au-dessus de la couche d'oxyde 9000.
    Bien que divers matériaux, épaisseurs, et modes de dépôt ou de gravure aient été indiqués ci-dessus à titre d'exemple, il sera clair que l'homme de l'art pourra y apporter diverses variantes et modifications en restant dans le domaine de l'invention.

    Claims (11)

    1. Transistor bipolaire comportant une première région de collecteur en silicium monocristallin d'un premier type de conductivité surmontée d'une deuxième région de base monocristalline à base de silicium et germanium d'un second type de conductivité, la région de base contenant une troisième région d'émetteur du premier type de conductivité située du côté opposé à la région de collecteur et recouverte d'un métal, caractérisé en ce que la région d'émetteur a une épaisseur inférieure à 50 nm, de préférence comprise entre 5 et 30 nm.
    2. Transistor bipolaire selon la revendication 1, dans lequel la deuxième région (200, 2000) est constituée, à partir du collecteur, d'une première couche (202, 2020) en SiGe dont la concentration en germanium décroít à partir d'une valeur d'environ 30 % et dopée au bore avec une concentration comprise entre 1019 et 1020 at/cm3, et d'une deuxième couche (203, 2030) en silicium d'environ 15 nm d'épaisseur.
    3. Transistor bipolaire selon la revendication 1, dans lequel le métal (400, 4000) est du tungstène déposé sur une couche (450, 4500) contenant du titane ou du nitrure de titane.
    4. Transistor bipolaire selon la revendication 1, dans lequel le métal (400, 4000) est du cuivre déposé sur une couche (450, 4500) contenant du tantale ou du nitrure de tantale.
    5. Procédé de réalisation d'un transistor bipolaire à émetteur fin, caractérisé en ce qu'il comporte les étapes suivantes :
      a) former par épitaxie sur un substrat monocristallin (100, 1000) d'un premier type de conductivité une région de base (200, 2000) d'épaisseur inférieure à 100 nm d'un second type de conductivité et comportant du germanium ;
      b) réaliser sur le pourtour de la région de base une région fortement dopée (250, 2500) du second type de conductivité recouverte de silicium polycristallin (600, 6000) fortement dopé du second type de conductivité ;
      c) réaliser dans la partie centrale de la base (200, 2000) et à l'intérieur d'une fenêtre non recouverte par le silicium polycristallin (805, 8050) une région d'émetteur (300, 3000) fortement dopé du premier type de conductivité et d'épaisseur inférieure à 50 nm et de préférence comprise entre 5 et 30 nm ; et
      d) déposer un métal (450, 400, 4500, 4000) au-dessus de l'émetteur.
    6. Procédé selon la revendication 5, dans lequel l'étape b) est réalisée avant l'étape a).
    7. Procédé selon la revendication 5 ou 6, dans lequel le procédé d'épitaxie de la base comporte au moins deux phases conduisant à deux couches successives : une première couche constituée d'un alliage de silicium et de germanium dont la concentration en germanium décroít à partir d'une valeur d'environ 30 % et ayant une concentration d'atomes dopant comprise entre 1019 et 1020 at/cm3, et une deuxième couche constituée de silicium peu dopé.
    8. Procédé selon la revendication 5 ou 6, dans lequel l'émetteur est réalisé par implantation ionique dans la fenêtre (805, 8050) ménagée dans le silicium polycristallin (600, 6000) au dessus de la base (200, 2000).
    9. Procédé selon la revendication 5 ou 6, dans lequel l'émetteur (300, 3000) est réalisé par diffusion d'espèces dopantes contenues dans du silicium dopé (3500) à travers une couche d'oxyde natif (320).
    10. Procédé selon la revendication 9, dans lequel l'étape de dépôt de métal sur l'émetteur (300, 3000) comporte les étapes suivantes subséquentes à la diffusion de l'émetteur :
      graver ledit silicium dopé (3500) afin de le délimiter latéralement ;
      déposer un isolant (9000) recouvrant entièrement ledit silicium dopé (3500) ;
      ouvrir un passage (9600) à travers l'isolant (9000) débouchant sur ledit silicium dopé (3500) ;
      éliminer complètement ledit silicium dopé par le passage (9600) ; et
      remplir la cavité ainsi créée (3600) par un composé métallique (4500, 4000).
    11. Procédé selon la revendication 5, dans lequel le dépôt métallique comporte au moins deux couches, la première (450, 4500) contenant du titane ou du tantale, la seconde contenant de l'aluminium, du tungstène ou du cuivre.
    EP04104491A 2003-09-17 2004-09-16 Transistor bipolaire Withdrawn EP1517377A1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0350553 2003-09-17
    FR0350553 2003-09-17

    Publications (1)

    Publication Number Publication Date
    EP1517377A1 true EP1517377A1 (fr) 2005-03-23

    Family

    ID=34179001

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP04104491A Withdrawn EP1517377A1 (fr) 2003-09-17 2004-09-16 Transistor bipolaire

    Country Status (3)

    Country Link
    US (2) US7122879B2 (fr)
    EP (1) EP1517377A1 (fr)
    JP (1) JP2005094001A (fr)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2830097A1 (fr) * 2008-12-12 2015-01-28 IHP GmbH-Innovations for High Performance Microelectronics / Leibniz-Institut für innovative Mikroelektronik Transistor bipolaire doté de contact émetteur à ajustage automatique

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP2008544562A (ja) * 2005-06-27 2008-12-04 エヌエックスピー ビー ヴィ 半導体デバイス及びその製造方法
    US7772060B2 (en) * 2006-06-21 2010-08-10 Texas Instruments Deutschland Gmbh Integrated SiGe NMOS and PMOS transistors
    US8828835B2 (en) 2009-03-06 2014-09-09 Texas Instruments Incorporated Ultrashallow emitter formation using ALD and high temperature short time annealing
    US20130137199A1 (en) 2011-11-16 2013-05-30 Skyworks Solutions, Inc. Systems and methods for monitoring heterojunction bipolar transistor processes
    US9847407B2 (en) 2011-11-16 2017-12-19 Skyworks Solutions, Inc. Devices and methods related to a gallium arsenide Schottky diode having low turn-on voltage
    US20170351263A1 (en) * 2016-06-02 2017-12-07 Delphi Technologies, Inc. Roadway-Infrastructure-Maintenance System Using Automated Vehicles

    Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1207562A2 (fr) * 2000-11-17 2002-05-22 Nec Corporation Dispositif semi-conducteur comprenant une région peu profonde fortement dopée et procédé pour sa fabrication
    US20020061627A1 (en) * 2000-01-27 2002-05-23 Kovacic Stephen J. Method of producing a SI-GE base heterojunction bipolar device
    US20020158313A1 (en) * 1999-06-22 2002-10-31 Matsushita Electric Industrial Co., Ltd. Heterojunction bipolar transistor and method for fabricating the same
    US6563147B1 (en) * 2000-01-11 2003-05-13 Mitsubishi Denki Kabushiki Kaisha HBT with a SiGe base region having a predetermined Ge content profile
    US20030132453A1 (en) * 2002-01-15 2003-07-17 International Business Machines Corporation Method to fabricate SiGe HBTs with controlled current gain and improved breakdown voltage characteristics

    Family Cites Families (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5846867A (en) * 1995-12-20 1998-12-08 Sony Corporation Method of producing Si-Ge base heterojunction bipolar device
    JPH10135238A (ja) * 1996-11-05 1998-05-22 Sony Corp 半導体装置およびその製造方法
    TW407364B (en) * 1998-03-26 2000-10-01 Toshiba Corp Memory apparatus, card type memory apparatus, and electronic apparatus
    JP2004228187A (ja) * 2003-01-21 2004-08-12 Renesas Technology Corp 薄膜磁性体記憶装置

    Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US20020158313A1 (en) * 1999-06-22 2002-10-31 Matsushita Electric Industrial Co., Ltd. Heterojunction bipolar transistor and method for fabricating the same
    US6563147B1 (en) * 2000-01-11 2003-05-13 Mitsubishi Denki Kabushiki Kaisha HBT with a SiGe base region having a predetermined Ge content profile
    US20020061627A1 (en) * 2000-01-27 2002-05-23 Kovacic Stephen J. Method of producing a SI-GE base heterojunction bipolar device
    EP1207562A2 (fr) * 2000-11-17 2002-05-22 Nec Corporation Dispositif semi-conducteur comprenant une région peu profonde fortement dopée et procédé pour sa fabrication
    US20030132453A1 (en) * 2002-01-15 2003-07-17 International Business Machines Corporation Method to fabricate SiGe HBTs with controlled current gain and improved breakdown voltage characteristics

    Non-Patent Citations (2)

    * Cited by examiner, † Cited by third party
    Title
    TZE-CHIANG CHEN ET AL: "AN ADVANCED BIPOLAR TRANSISTOR WITH SELF-ALIGNED ION-IMPLANTED BASEAND W/POLY EMITTER", IEEE TRANSACTIONS ON ELECTRON DEVICES, IEEE INC. NEW YORK, US, vol. 35, no. 8, 1 August 1988 (1988-08-01), pages 1322 - 1327, XP000030550, ISSN: 0018-9383 *
    YANG W L ET AL: "Barrier capability of TaNx films deposited by different nitrogen flow rate against Cu diffusion in Cu/TaNx/n-p junction diodes", SOLID STATE ELECTRONICS, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 45, no. 1, 1 January 2001 (2001-01-01), pages 149 - 158, XP004313667, ISSN: 0038-1101 *

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP2830097A1 (fr) * 2008-12-12 2015-01-28 IHP GmbH-Innovations for High Performance Microelectronics / Leibniz-Institut für innovative Mikroelektronik Transistor bipolaire doté de contact émetteur à ajustage automatique
    US9508824B2 (en) 2008-12-12 2016-11-29 IHP GmbH—Innovations for High Perforamce Microelectronics/Leibniz-Institut fur Innovative Mikroelektronik Method for fabricating a bipolar transistor having self-aligned emitter contact

    Also Published As

    Publication number Publication date
    US7122879B2 (en) 2006-10-17
    US20070004161A1 (en) 2007-01-04
    US7824978B2 (en) 2010-11-02
    US20060054998A1 (en) 2006-03-16
    JP2005094001A (ja) 2005-04-07

    Similar Documents

    Publication Publication Date Title
    EP1266409A1 (fr) Transistor mos a source et drain metalliques, et procede de fabrication d&#39;un tel transistor
    FR2749977A1 (fr) Transistor mos a puits quantique et procedes de fabrication de celui-ci
    EP1330836A1 (fr) Procede de realisation d&#39;une diode schottky dans du carbure de silicium
    EP1681725A1 (fr) Composant unipolaire vertical à faible courant de fuite
    FR2569495A1 (fr) Procede pour la fabrication de dispositifs a semi-conducteur comportant des jonctions planaires a concentration de charge variable et a tres haute tension de rupture
    FR2795554A1 (fr) Procede de gravure laterale par trous pour fabriquer des dis positifs semi-conducteurs
    WO2018100262A1 (fr) Transistor à hétérojonction à structure verticale
    FR2756103A1 (fr) Fabrication de circuits integres bipolaires/cmos et d&#39;un condensateur
    EP0581625B1 (fr) Composant életronique multifonctions, notamment élément à résistance dynamique négative, et procédé de fabrication correspondant
    US7824978B2 (en) Bipolar transistor with high dynamic performances
    FR2650122A1 (fr) Dispositif semi-conducteur a haute tension et son procede de fabrication
    EP0577498B1 (fr) Transistor JFET vertical à mode de fonctionnement bipolaire optimisé et procédé de fabrication correspondant
    FR2860919A1 (fr) Structures et procedes de fabrication de regions semiconductrices sur isolant
    FR2795233A1 (fr) Procede de fabrication autoaligne de transistors bipolaires
    FR2496990A1 (fr) Transistor a effet de champ a barriere schottky
    FR3040538A1 (fr) Transistor mos et son procede de fabrication
    EP1058302B1 (fr) Procédé de fabrication de dispositifs bipolaires à jonction base-émetteur autoalignée
    EP3826072A1 (fr) Transistor a gaz d&#39;electrons, dispositif monobloc comportant au moins deux transistors en cascode et procedes de fabrication associes
    CA2399115C (fr) Transistor mos pour circuits a haute densite d&#39;integration
    EP1006573B1 (fr) Procédé de fabrication de circuits intégrés BICMOS sur un substrat CMOS classique
    EP4302339A1 (fr) Condensateur comprenant un empilement de couches en materiau semi-conducteur a large bande interdite
    EP0109331B1 (fr) Thyristor asymétrique à forte tenue en tension inverse
    FR3035265A1 (fr) Procede de fabrication de transistors soi pour une densite d&#39;integration accrue
    EP1241704A1 (fr) Procédé de fabrication d&#39;un transistor bipolaire de type double polysilicum à base à hétérojonction et transistor correspondant
    EP0607075A1 (fr) Composant électronique capable de résistance dynamique négative et procédé de fabrication correspondant

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL HR LT LV MK

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: CHEVALIER, PASCAL

    Inventor name: MARTY, MICHEL

    Inventor name: MARTINET, BERTRAND

    Inventor name: CHANTRE, ALAIN

    17P Request for examination filed

    Effective date: 20050922

    AKX Designation fees paid

    Designated state(s): DE FR GB IT

    17Q First examination report despatched

    Effective date: 20060223

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18D Application deemed to be withdrawn

    Effective date: 20100401