[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1508609A1 - Method for treating the middle fraction of a steam cracking effluent - Google Patents

Method for treating the middle fraction of a steam cracking effluent Download PDF

Info

Publication number
EP1508609A1
EP1508609A1 EP04291954A EP04291954A EP1508609A1 EP 1508609 A1 EP1508609 A1 EP 1508609A1 EP 04291954 A EP04291954 A EP 04291954A EP 04291954 A EP04291954 A EP 04291954A EP 1508609 A1 EP1508609 A1 EP 1508609A1
Authority
EP
European Patent Office
Prior art keywords
cut
unit
aromatics
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04291954A
Other languages
German (de)
French (fr)
Other versions
EP1508609B1 (en
Inventor
Vincent Coupard
Denis Uzio
Denis Guillaume
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1508609A1 publication Critical patent/EP1508609A1/en
Application granted granted Critical
Publication of EP1508609B1 publication Critical patent/EP1508609B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/06Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a selective hydrogenation of the diolefins
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • C10G65/08Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/14Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only
    • C10G65/16Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural parallel stages only including only refining steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen

Definitions

  • the present invention relates to a method for treating effluents from steam cracking of hydrocarbons.
  • the steam cracking process is a process well-known petrochemicals, at the base of the production of the major intermediaries, particularly ethylene and propylene. Steam cracking produces, in addition to ethylene and propylene, significant quantities of co-products less recoverable, including aromatic pyrolysis gasoline, which is noticeable amount when you love propane or butane, and more when you crack naphtha or diesel.
  • the crude pyrolysis gasoline is often hydrotreated in two stages, with a intermediate fractionation to typically produce a C5 cut, a cut C6-C7-C8, and a C9 + cut.
  • a Cn cut is a cut composed essentially of hydrocarbons with n carbon atoms
  • a Cn + cut is a section composed essentially of hydrocarbons having at least n carbon atoms.
  • Pyrolysis gasolines also typically have sulfur contents especially that of the C9 + cut, which is often of the order of 300 ppm weight. However, this sulfur content becomes incompatible with the evolution of the standards the maximum sulfur content of gasoline which tends to fall below 50 ppm, or 30 ppm or even 10 ppm weight.
  • the object of the invention is to find a technically simple solution to the problem above, by requiring a minimum or no modification of the existing units, and allowing a high valuation of products.
  • the charge rate of the unit HD3 is limited, and / or the degree of saturation of aromatics in this unit, so that hydrogen consumption in HD3 is less than or equal to the amount of excess hydrogen produced by steam cracking, and that the hydrogen feeding HD3 (and preferably hydrogen feeding HD1, HD2 and HD3) is provided in full by this hydrogen surplus.
  • the invention therefore makes it possible to move away from the conventional technical philosophy of preserving the aromatics of the pyrolysis gasoline, to use Excess hydrogen from the steam cracker to change the spectrum of co-products steam cracker, and produce one or more new products for recovery high, which are no longer gasoline, and which remove the technical problem related to the amount of sulfur contained in the pyrolysis gasoline.
  • a solvent or a solvent base at the outlet of HD3. having not less than 60% by volume of naphthenes, not more than 5%, and preferably not more than 3% % of aromatics, and at most 10 ppm by weight of sulfur.
  • a kerosene or a light diesel fuel or a kerosene base or diesel having less than 30%, or less than 20%, of aromatics, not more than 300 ppm weight of sulfur, and a distillation interval (ASTM) included inside of the range [120 ° C-310 ° C].
  • a domestic fuel oil in aromatics generally less than 50% by volume, or 30% by volume or even at 20% volume, with a sulfur content typically less than 300 ppm by weight, ASTM distillation interval typically within the range [120 ° C-310 ° C].
  • the unit HD3 uses at least one catalyst comprising platinum and palladium deposited on a support. It has been found that such catalysts, used in the refinery, but not in the steam cracking industry, effective and compatible with the specific compounds present in the species pyrolysis.
  • the unit HD3 uses at least one catalyst comprising 0.1 to 0.30% by weight of platinum, and 0.2 to 1% and preferably 0.4 at 0.7% by weight of palladium, deposited on a fluorinated alumina, comprising from 1 to 5% by weight of fluorine.
  • This catalyst makes it possible to operate at high speeds hourly space velocities (VVH), including between 1 and 6 on these charges pyrolysis species.
  • VVH hourly space velocities
  • hydrorefining catalysts in HD3 such as Ni-Mo, Co-Mo (for example type CoMo HR406, HR306C (marketed by Axens) with a guard bed of NiMo type catalyst LD145 (marketed by Axens).
  • a catalyst at least partially saturating the olefins for example for example a CoMo hydrodesulfurization catalyst on alumina.
  • Residual content of olefins products derived from HD3, according to the invention, in particular solvent, or kerosene, or gas oil, or heating oil, or the base of any of these products, may be reduced to less than 5% by weight, or preferably less than 1% by weight, or very preferred less than 0.5% by weight, or even substantially zero.
  • the intermediate fraction produced in step a), and the charge of the HD3 unit are not limited to the essence of pyrolysis, and may have an ASTM endpoint between 230 and 310 ° C, and preferably between 250 and 280 ° C.
  • the charge, also called intermediate fraction, according to the invention is fed by line 1 and treated in a hydrotreatment unit HD1 to realize in particular a preliminary dediénisation.
  • the dedienized charge circulates through line 2 and is fractionated in a distillation column 3 into a fraction C5 flowing through line 4, typically recycled to steam cracking, and a C6 + section flowing through line 5.
  • This C6 + cut is split in the column 6 in a C6-C8 fraction (C6-C7-C8), feeding via line 7 a second hydrotreatment unit HD2 which carries out a thorough desulfurization of the C6-C8 cut, and a deep conversion of olefins.
  • the C6-C8 cut treated, evacuated via line 9 may have for example less than 1 ppm weight of sulfur and less than 50 ppm by weight of olefins.
  • the C9 + cut coming out of the bottom of the column 6 by the line 8 then feeds a third hydrotreatment unit HD3 to produce a desulphurized section at low aromatic content evacuated by line 11.
  • the cut produced is according to the invention typically is a kerosene or a diesel fuel (or a kerosene base or diesel), the aromatic content of which is less than 30% by volume, generally less than 20% by volume, either a solvent or a solvent base, Aromatic content is less than 5% volume.
  • a solvent or solvent base
  • This may optionally include substantial amounts of C6-C8 hydrocarbons also fed to the HD3 unit via the line 10.
  • the cut produced at the output of HD3 can also be a fuel domestic fuel oil or base, of aromatic content typically less than 50% volume, generally less than 30% volume, or even less than 20% volume.
  • the C9 + cut fed by line 8 is added with a recycled fraction of hydrotreated product, circulating in line 8f, and a stream of recycle gas rich in hydrogen, circulating in line 8c.
  • This stream includes hydrogen booster powered by a line not shown.
  • the overall current from the mixture then feeds the hydrotreating reactor R3.
  • the effluent of R3 circulates in the line 8a or it is cooled by means not shown, and enters the balloon separator S3.
  • the gas separated in S3 is mainly recycled by line 8c, a fraction being purged by the line 8d.
  • the liquid product from S3 circulates in the line 8b, to be partially recycled by line 8e and partially evacuated by the line 11.
  • Some of the recycled liquid in the line 8e is injected interbed in the reactor R3, as a quenching liquid.
  • the unit HD3 comprises at least one catalyst enabling to achieve very efficiently, in a single unit the specifications in sulfur and sought after aromatics.
  • the catalyst of the unit HD3 comprises in particular at least one bed of platinum / palladium catalyst on a support of the type fluorinated alumina.
  • the support can be composed essentially of gamma-alumina and comprise from 1 to 10, preferably from 1 to 7, and very preferably from 3 to and 5% by weight of fluorine.
  • the unit HD3 can therefore include such a catalyst on fluorinated alumina support arranged in one or more beds and optionally first bed, or guard bed with a conventional catalyst of Ni / Mo type acting in pretreatment.
  • This platinum / palladium catalyst may preferably comprise between 0.10 and 0.30%, preferably between 0.15 and 0.30%, and very preferably between 0.20 and 0.30% by weight of platinum, as well as usually from 0.2 to 1.0%, and preferably between 0.4 and 0.7% by weight of palladium.
  • the molar ratio of palladium to platinum can in particular be between 3 and 8, preferably between 3.5 and 6.
  • the end point of the cut treated is modified, and increased compared to a conventional cut of pyrolysis gasoline, the end point is often between 205 and 220 ° C.
  • the end point of the cut treated in this variant of the invention may be higher because the C9 + cut is then typically intended to be transformed into products other than gasoline. Indeed, some solvents, as well as fractions kerosene, diesel or fuel oil, may have final distillation points (ASTM distillation) above 220 ° C.
  • the fraction treated can therefore be a long fraction going beyond gasoline, having a final distillation point greater than 220 ° C, for example between 230 and 310 ° C, especially between 240 and 280 ° C.
  • This can be achieved by modifying the fractionation of steam cracking effluents in primary distillation, the cutting point between the petrol fraction and the fuel fraction of pyrolysis, to leave fractions boiling above about 220 ° C in the so-called "gasoline” fraction, which becomes an intermediate fraction "gasoline + middle distillate".
  • Steam cracking effluents of naphtha are fractionated in a plant of treatment of these effluents, comprising a primary distillation, to produce including a pyrolysis gasoline cut, including the C5 cut and heavier hydrocarbons to an ASTM endpoint of 210 ° C.
  • This pyrolysis gasoline charge is treated according to the process scheme described in Figure 1.
  • the feed fed to the hydrotreating unit HD3 is the C9 + feed, without C6 / C8 cutting from HD2, line 10 not being used.
  • Catalyst palladium on alumina catalyst, comprising 0.30% by weight of palladium.
  • Hydrogen content (total reactor inlet gas): 90 Nm 3 of hydrogen / m 3 of feedstock.
  • the unused gas is separated and sent as an add-on to the second unit HD2.
  • Recycle rate of the load 2 (we recycle 2 volumes of hydrotreated product leaving of HD1 for a fresh charge volume fed to HD1, to limit the increase in temperature due to the exothermicity of the reaction).
  • Recycling rate of the unit 5 (recycling of liquid effluent in mass ratio by relation to the charge). 90% of the recycling is mixed with the load, and 10% is injected in catalytic inter-beds in order to adjust the thermal profile. Recycling liquid is indeed required by the heat released during hydrogenation.
  • Example 1 is repeated but with a long charge, end point ASTM 250 ° C. This is achieved by modifying the operating parameters of the effluent treatment of steam cracking, so that the fractionation leaves with the pyrolysis gasoline fractions a little heavier than gasoline.
  • Recycle hydrogen content including make-up hydrogen (hydrogen-rich total gas: inlet + quench): 400 Nm 3 / m 3 of charge of unit HD3.
  • Recycling rate liquid effluent recycling with the load and between beds to adjust the thermal profile: 3 en masse, of which 0.45 in inter-beds.
  • the invention may also use other hydrotreatment catalysts, and / or other operating conditions, or other undescribed characteristics but obvious to the skilled person.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

The process involves the separation of effluents from a catalytic cracking unit to obtain an intermediate fraction comprising a 5 - 9C fraction with a final boiling point less than 310[deg]C, which is subjected to hydrotreatments. The process comprises the stages (1) separation of the effluents to produce an intermediate fraction consisting mainly of a pyrolytic petrol with mostly 5C+ compounds an with a final boiling point less than 310[deg]C; (2) a primary hydrotreatment of the intermediate fraction; (3) fractionation of the effluent from the primary unit to produce a C5 cut and a C6+ cut; (4) fractionation of the C6+ cut to produce a 6 - 8C and C9+ cut; (5) a second hydrotreatment of the 6 - 8C cut to produce a hydrotreated 6 - 8C cut; (6) a third hydrotreatment of the C9+ cut, and optionally part of the 6 - 8C or hydrotreated 6 - 8C cut, to saturate at least 20% vol of the aromatics, using the escess hydrogen produced in the cracking unit. The final product obtained from the third hydrotreatment consists of solvents comprising less than 5% aromatics, kerosene, gasoil or domestic fuel cuts, or bases for the preparation of these products. An independent claim is also included for the final product obtained from the process.

Description

La présente invention concerne un procédé de traitement d'effluents de vapocraquage d'hydrocarbures. Le procédé de vapocraquage est un procédé pétrochimique bien connu, à la base de la production des grands intermédiaires, en particulier de l'éthylène et du propylène. Le vapocraquage produit, outre de l'éthylène et du propylène, des quantités importantes de coproduits moins valorisables, notamment de l'essence de pyrolyse aromatique, qui se trouve en quantité notable lorsque l'on craque du propane ou du butane, et plus encore lorsque l'on craque du naphta ou du gazole.The present invention relates to a method for treating effluents from steam cracking of hydrocarbons. The steam cracking process is a process well-known petrochemicals, at the base of the production of the major intermediaries, particularly ethylene and propylene. Steam cracking produces, in addition to ethylene and propylene, significant quantities of co-products less recoverable, including aromatic pyrolysis gasoline, which is noticeable amount when you love propane or butane, and more when you crack naphtha or diesel.

L'essence de pyrolyse brute est souvent hydrotraitée en deux étapes, avec un fractionnement intermédiaire pour produire typiquement une coupe C5, une coupe C6-C7-C8, et une coupe C9+.The crude pyrolysis gasoline is often hydrotreated in two stages, with a intermediate fractionation to typically produce a C5 cut, a cut C6-C7-C8, and a C9 + cut.

Par définition, une coupe Cn est une coupe composée essentiellement d'hydrocarbures à n atomes de carbone, et une coupe Cn+ est une coupe composée essentiellement d'hydrocarbures à au moins n atomes de carbone.By definition, a Cn cut is a cut composed essentially of hydrocarbons with n carbon atoms, and a Cn + cut is a section composed essentially of hydrocarbons having at least n carbon atoms.

La coupe C5 est généralement recyclée au vapocraqueur, la coupe C6-C7-C8, notée par la suite C6-C8 (composée essentiellement d'hydrocarbures à 6, 7, ou 8 atomes de carbone), utilisée comme base de production d'aromatiques, et la coupe C9+ utilisée comme base d'essence automobile. L'ensemble de la coupe C5+ ou C6+ peut également être utilisée comme base d'essence automobile, après avoir subi un premier hydrotraitement de dédiénisation (hydrogénation sélective). De façon typique, les hydrotraitements réalisés sur les fractions pouvant contenir des aromatiques sont réalisés en préservant au maximum ces aromatiques, dont la teneur n'est guère modifiée. Cette philosophie technique résulte des faits suivants:

  • Soit on produit une coupe C6-C8 utilisée comme base de production d'aromatiques, et l'on a évidemment intérêt à préserver au maximum ces aromatiques,
  • Soit on produit une coupe C6-C8, ou C5+, ou C6+ utilisée comme base d'essence, et il faut également préserver au maximum les aromatiques pour maximiser l'indice d'octane de l'essence.
The C5 cut is generally recycled to the steam cracker, the C6-C7-C8 cut, subsequently denoted C6-C8 (essentially composed of hydrocarbons with 6, 7 or 8 carbon atoms), used as a base for producing aromatics , and the C9 + cut used as a motor gasoline base. The entire C5 + or C6 + cut can also be used as a motor gasoline base, after having undergone a first hydrolysis of dedienization (selective hydrogenation). Typically, the hydrotreatments carried out on the fractions that may contain aromatics are made by preserving these aromatics as much as possible, the content of which is hardly modified. This technical philosophy results from the following facts:
  • Either a C6-C8 cut is used as a base for the production of aromatics, and it is obviously advantageous to preserve these aromatics as much as possible.
  • Either a C6-C8, or C5 +, or C6 + cut is used as a gasoline base, and it is also necessary to preserve the aromatics as much as possible in order to maximize the octane number of the gasoline.

Les essences de pyrolyse ont par ailleurs typiquement des teneurs en soufre élevées notamment celle de la coupe C9+ qui est souvent de l'ordre de 300 ppm poids. Or cette teneur en soufre devient incompatible avec l'évolution des normes sur la teneur en soufre maximale de l'essence qui tend à descendre en dessous de 50 ppm, ou 30 ppm voire 10 ppm poids.Pyrolysis gasolines also typically have sulfur contents especially that of the C9 + cut, which is often of the order of 300 ppm weight. However, this sulfur content becomes incompatible with the evolution of the standards the maximum sulfur content of gasoline which tends to fall below 50 ppm, or 30 ppm or even 10 ppm weight.

La teneur en soufre élevée des essence de pyrolyse pose donc un problème technique délicat à l'industrie du vapocraquage, pour la valorisation de ces essences.The high sulfur content of pyrolysis gasoline is therefore a problem delicate technique to the steam cracking industry, for the valorization of these species.

Trois voies sont actuellement mises en oeuvre ou envisagées pour faire face à cette situation, en particulier pour les vapocraqueurs existants:

  • 1) Modifier les deux unités d'hydrotraitement existantes pour accroítre fortement la désulfuration. Des catalyseurs de désulfuration adéquats existent, les plus utilisés étant principalement des catalyseurs à base de nickel et molybdène, ou nickel et tungstène ou cobalt et molybdène, sur support alumine.
  • 2) rajouter une troisième unité de désulfuration finale sur la fraction vendue comme essence. Ces deux voies conduisent à des investissements supplémentaires notables, sans gain sur la valorisation des produits, qui restent des bases d'essence de qualité assez médiocre. De plus, la désulfuration poussée s'accompagne d'une réduction limitée de la teneur en aromatiques, que l'on cherche à minimiser, mais qui reste défavorable pour l'indice d'octane de l'essence, et donc sa valorisation. Elle s'accompagne également d'une certaine réduction des oléfines, également défavorable pour l'indice d'octane de l'essence, et donc sa valorisation. La désulfuration poussée conduira donc à une perte de valorisation, par rapport à la situation actuelle.
  • 3) céder la fraction essence telle que produite à une raffinerie de pétrole qui réalisera une désulfuration finale. Cette option conduit à une moins value importante sur le prix de l'essence ainsi cédée.
  • Three ways are currently being implemented or envisaged to deal with this situation, in particular for existing steam crackers:
  • 1) Modify the two existing hydrotreating units to greatly increase desulphurization. Suitable desulphurisation catalysts exist, the most commonly used catalysts being mainly based on nickel and molybdenum, or nickel and tungsten or cobalt and molybdenum, supported on alumina.
  • 2) add a third unit of final desulfurization on the fraction sold as gasoline. These two routes lead to significant additional investments, with no gain on the valuation of products, which remain fuel bases of rather poor quality. In addition, the extensive desulphurization is accompanied by a limited reduction of the aromatics content, which is sought to minimize, but which remains unfavorable for the octane number of gasoline, and therefore its valuation. It is also accompanied by a certain reduction in olefins, which is also unfavorable for the octane number of gasoline, and therefore its recovery. The high level of desulphurization will therefore lead to a loss of valuation, compared to the current situation.
  • 3) yield the gasoline fraction as produced to an oil refinery that will achieve final desulphurization. This option leads to a significant reduction in the price of gasoline thus sold.
  • Le but de l'invention est de trouver une solution techniquement simple au problème précité, et ce en requérant une modification minimale ou nulle des unités existantes, et en permettant une valorisation élevée des produits. The object of the invention is to find a technically simple solution to the problem above, by requiring a minimum or no modification of the existing units, and allowing a high valuation of products.

    L'invention propose à cet effet un procédé de traitement d'effluents de vapocraquage d'hydrocarbures, comprenant:

  • a) la séparation de ces effluents pour produire notamment une fraction intermédiaire comprenant la plus grande partie au moins (c'est à dire 50% poids au moins) de l'essence de pyrolyse comprise dans ces effluents, et composée dans sa plus grande partie au moins par des hydrocarbures ayant au moins 5 atomes de carbone et un point d'ébullition final inférieur à 310 °C,
  • b) un premier hydrotraitement de cette fraction intermédiaire dans une unité HD1,
  • c) un fractionnement d'une partie au moins de l'effluent de l'unité HD1, pour produire une coupe C5 et une coupe C6+,
  • d) un fractionnement d'une partie au moins de la coupe C6+, pour produire une coupe C6-C8 et une coupe C9+,
  • e) un deuxième hydrotraitement d'une partie au moins de la coupe C6-C8 dans une unité HD2, pour produire une coupe C6-C8 hydrotraitée,
  • f) un troisième hydrotraitement d'une charge comprenant une partie au moins de la coupe C9+, et optionnellement une partie au moins de la coupe C6-C8 ou de la coupe C6-C8 hydrotraitée, dans une unité HD3 pour saturer au moins 20%, généralement au moins 25%, et typiquement au moins 35% volume des aromatiques compris dans la charge de l'unité HD3 avec, en partie ou de préférence en totalité, de l'hydrogène excédentaire produit par ledit vapocraquage. On peut alors produire en sortie de HD3 au moins un produit final du groupe constitué par: les solvants comprenant moins de 5% volume d'aromatiques, les coupes kérosène, ou gazole, ou fuel domestique, ou les bases pour la fabrication de ces produits. Les produits de ce groupe ont une valorisation élevée, qui n'est pas liée au maintien d'une teneur élevée en aromatiques ni en oléfines, contrairement à l'essence pour laquelle l'indice d'octane, lié à la teneur en aromatiques et oléfines, est un paramètre essentiel. Il est donc possible d'obtenir des produits de haute valeur, sans pénalité pour la réduction d'aromatiques et d'oléfines, quel que soit le niveau de désulfuration recherché. Au contraire, la réduction notamment de la teneur en aromatiques augmente la qualité des produits considérés (pureté des solvants, point de fumée du kérosène, indice de cétane des gazoles, aptitude à la combustion du fuel domestique).
  • To this end, the invention proposes a process for treating hydrocarbon steam cracking effluents, comprising:
  • a) the separation of these effluents to produce in particular an intermediate fraction comprising at least the major part (ie at least 50% by weight) of the pyrolysis gasoline included in these effluents, and composed for the most part at least by hydrocarbons having at least 5 carbon atoms and a final boiling point of less than 310 ° C,
  • b) a first hydrotreatment of this intermediate fraction in an HD1 unit,
  • c) a fractionation of at least a portion of the effluent of the unit HD1, to produce a C5 cut and a C6 + cut,
  • d) a fractionation of at least a portion of the C6 + cut, to produce a C6-C8 cut and a C9 + cut,
  • e) a second hydrotreatment of at least a portion of the C6-C8 cut in a unit HD2, to produce a hydrotreated C6-C8 cut,
  • f) a third hydrotreatment of a feed comprising at least a portion of the C9 + cut, and optionally at least a portion of the C6-C8 cut or hydrotreated C6-C8 cut, in an HD3 unit to saturate at least 20% , generally at least 25%, and typically at least 35% of the aromatics included in the feed of the unit HD3 with, in part or preferably all of the excess hydrogen produced by said steam-cracking. It is then possible to produce at the output of HD3 at least one final product from the group consisting of: solvents comprising less than 5% volume of aromatics, kerosene or diesel cuts, or heating oil, or bases for the manufacture of these products . The products in this group have a high valuation, which is not related to the maintenance of a high content of aromatics and olefins, unlike gasoline for which the octane number, related to the content of aromatics and olefins, is an essential parameter. It is therefore possible to obtain products of high value, without penalty for the reduction of aromatics and olefins, whatever the desired level of desulphurisation. On the contrary, the reduction in particular of the aromatics content increases the quality of the products under consideration (purity of the solvents, kerosene smoke point, cetane number of diesel fuels, combustion capacity of domestic fuel oil).
  • De façon préférée, on limite le débit de charge de l'unité HD3, et/ou le degré de saturation des aromatiques dans cette unité, pour que la consommation d'hydrogène dans HD3 soit inférieure ou égale à la quantité d'hydrogène excédentaire produit par le vapocraquage, et que l'hydrogène alimentant HD3 (et de préférence l'hydrogène alimentant HD1, HD2 et HD3) soit pourvu en totalité par cet hydrogène excédentaire.Preferably, the charge rate of the unit HD3 is limited, and / or the degree of saturation of aromatics in this unit, so that hydrogen consumption in HD3 is less than or equal to the amount of excess hydrogen produced by steam cracking, and that the hydrogen feeding HD3 (and preferably hydrogen feeding HD1, HD2 and HD3) is provided in full by this hydrogen surplus.

    L'invention permet donc, en s'éloignant de la philosophie technique conventionnelle consistant à préserver les aromatiques de l'essence de pyrolyse, d'utiliser l'hydrogène excédentaire du vapocraqueur pour changer le spectre des co-produits du vapocraqueur, et produire un ou plusieurs produits nouveaux de valorisation élevée, qui ne sont plus de l'essence, et qui suppriment le problème technique lié à la quantité de soufre contenue dans l'essence de pyrolyse.The invention therefore makes it possible to move away from the conventional technical philosophy of preserving the aromatics of the pyrolysis gasoline, to use Excess hydrogen from the steam cracker to change the spectrum of co-products steam cracker, and produce one or more new products for recovery high, which are no longer gasoline, and which remove the technical problem related to the amount of sulfur contained in the pyrolysis gasoline.

    On peut notamment produire en sortie de HD3 un solvant ou une base de solvant ayant au moins 60% volume de naphtènes, au plus 5%, et de préférence au plus 3 % volume d'aromatiques, et au plus 10 ppm poids de soufre. On peut également produire en sortie de HD3 un kérosène ou un gazole léger ou une base de kérosène ou de gazole, ayant moins de 30%, ou moins de 20% volume d'aromatiques, au plus 300 ppm poids de soufre, et un intervalle de distillation (ASTM) compris à l'intérieur de l'intervalle [120°C-310°C]. On peut aussi produire un fuel domestique de teneur en d'aromatiques généralement inférieure à 50% volume, ou à 30% volume ou même à 20% volume, de teneur en soufre typiquement inférieure à 300 ppm poids, d'intervalle de distillation ASTM typiquement compris à l'intérieur de l'intervalle [120°C-310°C].It is possible in particular to produce a solvent or a solvent base at the outlet of HD3. having not less than 60% by volume of naphthenes, not more than 5%, and preferably not more than 3% % of aromatics, and at most 10 ppm by weight of sulfur. We can also produce at the output of HD3 a kerosene or a light diesel fuel or a kerosene base or diesel, having less than 30%, or less than 20%, of aromatics, not more than 300 ppm weight of sulfur, and a distillation interval (ASTM) included inside of the range [120 ° C-310 ° C]. It is also possible to produce a domestic fuel oil in aromatics generally less than 50% by volume, or 30% by volume or even at 20% volume, with a sulfur content typically less than 300 ppm by weight, ASTM distillation interval typically within the range [120 ° C-310 ° C].

    De préférence, l'unité HD3 utilise au moins un catalyseur comprenant du platine et du palladium déposés sur un support. On a trouvé en effet que de tels catalyseurs, utilisés en raffinerie, mais pas dans l'industrie du vapocraquage, se révélaient efficaces et compatibles avec les composés spécifiques présents dans les essences de pyrolyse. Preferably, the unit HD3 uses at least one catalyst comprising platinum and palladium deposited on a support. It has been found that such catalysts, used in the refinery, but not in the steam cracking industry, effective and compatible with the specific compounds present in the species pyrolysis.

    De façon particulièrement avantageuse, l'unité HD3 utilise au moins un catalyseur comprenant de 0,1 à 0,30% poids de platine, et de 0,2 à 1% et de préférence de 0,4 à 0,7 % poids de palladium, déposés sur une alumine fluorée, comprenant de 1 à 5% poids de fluor. Ce catalyseur permet de fonctionner à de hautes vitesses spatiales horaires (VVH), comprises notamment entre 1 et 6 sur ces charges d'essences de pyrolyse. On peut aussi utiliser optionnellement, en lit de garde, ou en premier réacteur dans la même unité HD3, un catalyseur conventionnel, par exemple le LD 145, catalyseur au NiMo (Nickel/Molybdène) commercialisé par la société Axens. Enfin, on peut, notamment lorsqu'on ne recherche pas la production de solvants déaromatisés, utiliser dans HD3 des catalyseurs d'hydroraffinage conventionnels par exemple de type Ni-Mo, Co-Mo (par exemple les catalyseurs de type CoMo HR406, HR306C (commercialisés par Axens) avec un lit de garde de catalyseur de type NiMo LD145 (Commercialisé par Axens). On peut aussi utiliser dans un lit de garde un catalyseur saturant au moins partiellement les oléfines, par exemple un catalyseur d'hydrodésulfuration de type CoMo sur alumine. On peut saturer par exemple au moins 70%, ou au moins 90%, ou au moins 95% poids voire plus des oléfines présentes dans la charge de HD3. La teneur résiduelle en oléfines des produits issus de HD3, selon l'invention, notamment du solvant, ou kérosène, ou gazole, ou fuel domestique, ou base de l'un de ces produits, peut être réduite à moins de 5% poids, ou de façon préférée moins de 1% poids, ou de façon très préférée moins de 0,5% poids, voire sensiblement nulle.Particularly advantageously, the unit HD3 uses at least one catalyst comprising 0.1 to 0.30% by weight of platinum, and 0.2 to 1% and preferably 0.4 at 0.7% by weight of palladium, deposited on a fluorinated alumina, comprising from 1 to 5% by weight of fluorine. This catalyst makes it possible to operate at high speeds hourly space velocities (VVH), including between 1 and 6 on these charges pyrolysis species. One can also optionally use, in bed of guard, or first reactor in the same unit HD3, a conventional catalyst, by LD 145, a NiMo catalyst (nickel / molybdenum) marketed by the Axens company. Finally, we can, especially when we are not looking for production of de-aromatised solvents, use hydrorefining catalysts in HD3 such as Ni-Mo, Co-Mo (for example type CoMo HR406, HR306C (marketed by Axens) with a guard bed of NiMo type catalyst LD145 (marketed by Axens). We can also use in a guard bed a catalyst at least partially saturating the olefins, for example for example a CoMo hydrodesulfurization catalyst on alumina. We can saturate for example at least 70%, or at least 90%, or at least 95% weight or plus olefins present in the charge of HD3. Residual content of olefins products derived from HD3, according to the invention, in particular solvent, or kerosene, or gas oil, or heating oil, or the base of any of these products, may be reduced to less than 5% by weight, or preferably less than 1% by weight, or very preferred less than 0.5% by weight, or even substantially zero.

    Selon une variante de l'invention, explicitée ci-après, la fraction intermédiaire produite à l'étape a), et la charge de l'unité HD3 ne sont pas limitées à l'essence de pyrolyse, et peuvent avoir un point final ASTM compris entre 230 et 310 °C, et de préférence entre 250 et 280°C.According to a variant of the invention, explained below, the intermediate fraction produced in step a), and the charge of the HD3 unit are not limited to the essence of pyrolysis, and may have an ASTM endpoint between 230 and 310 ° C, and preferably between 250 and 280 ° C.

    L'invention sera explicitée de façon plus précise dans la description des figures 1 et 2.

  • La figure 1 représente la partie principale d'une installation selon le procédé de l'invention, cette partie principale représentant l'installation de traitement d'essence de pyrolyse, ou de la fraction intermédiaire comprenant de l'essence de pyrolyse. La partie amont permettant le fractionnement primaire des effluents de vapocraquage n'est pas représentée. La figure 1 est par ailleurs une représentation simplifiée, comprenant des unités d'hydrotraitement qui n'ont pas été détaillées (notamment les recyclages éventuels de charge hydrotraitée, et les appoints d'hydrogène ne sont pas représentés).
  • La figure 2 représente une représentation plus détaillée d'une unité d'hydrotraitement de l'installation de la figure 1.
  • The invention will be explained more specifically in the description of FIGS. 1 and 2.
  • FIG. 1 represents the main part of an installation according to the process of the invention, this main part representing the pyrolysis gasoline processing plant, or the intermediate fraction comprising pyrolysis gasoline. The upstream part allowing the primary fractionation of the steam cracking effluents is not represented. FIG. 1 is also a simplified representation, comprising hydrotreatment units that have not been detailed (notably the possible recycling of hydrotreated feedstock, and hydrogen additions are not shown).
  • FIG. 2 represents a more detailed representation of a hydrotreatment unit of the installation of FIG. 1.
  • Selon la figure 1, la charge, appelée également fraction intermédiaire, selon l'invention, est alimentée par la ligne 1 et traitée dans une unité d'hydrotraitement HD1 pour réaliser notamment une dédiénisation préalable. La charge dédiénisée circule par la ligne 2 et est fractionnée dans une colonne de distillation 3 en une fraction C5 circulant par la ligne 4, typiquement recyclée au vapocraquage, et une coupe C6+ circulant par la ligne 5. Cette coupe C6+ est fractionnée dans la colonne de distillation 6 en une fraction C6-C8 (C6-C7-C8), alimentant par la ligne 7 une deuxième unité d'hydrotraitement HD2 qui réalise une désulfuration poussée de la coupe C6-C8, et une conversion profonde des oléfines. On peut par exemple utiliser un catalyseur de type LD 265 commercialisé par la société Axens. La coupe C6-C8 traitée, évacuée par la ligne 9 peut avoir par exemple moins de 1 ppm poids de soufre et moins de 50 ppm poids d'oléfines. On cherche généralement à minimiser la perte en aromatiques dans l'unité HD2, pour maximiser leur récupération ultérieure. La coupe C9+ sortant du fond de la colonne 6 par la ligne 8 alimente alors une troisième unité d'hydrotraitement HD3 pour produire une coupe désulfurée à basse teneur en aromatiques évacuée par la ligne 11. La coupe produite est selon l'invention typiquement soit un kérosène ou un gazole, ( ou une base de kérosène ou gazole), dont la teneur en aromatiques est inférieure à 30% volume, généralement inférieure à 20% volume, soit un solvant ou une base de solvant, de teneur en aromatiques est inférieure à 5% volume. Lorsque la coupe produite est un solvant (ou base de solvant), celui-ci peut éventuellement comprendre des quantités substantielles d'hydrocarbures en C6-C8 alimentés également à l'unité HD3 via la ligne 10. La coupe produite en sortie de HD3 peut également être un fuel domestique, ou une base de fuel domestique, de teneur en aromatiques typiquement inférieure à 50% volume, généralement inférieure à 30% volume, ou même inférieure à 20% volume. According to FIG. 1, the charge, also called intermediate fraction, according to the invention is fed by line 1 and treated in a hydrotreatment unit HD1 to realize in particular a preliminary dediénisation. The dedienized charge circulates through line 2 and is fractionated in a distillation column 3 into a fraction C5 flowing through line 4, typically recycled to steam cracking, and a C6 + section flowing through line 5. This C6 + cut is split in the column 6 in a C6-C8 fraction (C6-C7-C8), feeding via line 7 a second hydrotreatment unit HD2 which carries out a thorough desulfurization of the C6-C8 cut, and a deep conversion of olefins. For example, we can use a type of catalyst LD 265 marketed by the company Axens. The C6-C8 cut treated, evacuated via line 9 may have for example less than 1 ppm weight of sulfur and less than 50 ppm by weight of olefins. We generally seek to minimize the loss of aromatics in the unit HD2, to maximize their recovery higher. The C9 + cut coming out of the bottom of the column 6 by the line 8 then feeds a third hydrotreatment unit HD3 to produce a desulphurized section at low aromatic content evacuated by line 11. The cut produced is according to the invention typically is a kerosene or a diesel fuel (or a kerosene base or diesel), the aromatic content of which is less than 30% by volume, generally less than 20% by volume, either a solvent or a solvent base, Aromatic content is less than 5% volume. When the cut produced is a solvent (or solvent base), this may optionally include substantial amounts of C6-C8 hydrocarbons also fed to the HD3 unit via the line 10. The cut produced at the output of HD3 can also be a fuel domestic fuel oil or base, of aromatic content typically less than 50% volume, generally less than 30% volume, or even less than 20% volume.

    Selon la figure 2, représentant de façon plus détaillée l'unité d'hydrotraitement HD3, la coupe C9+ alimentée par la ligne 8 est additionnée d'une fraction recyclée de produit hydrotraité, circulant dans la ligne 8f, et d'un courant de gaz de recyclage riche en hydrogène, circulant dans la ligne 8c. Ce courant comprend de l'hydrogène d'appoint alimenté par une ligne non représentée. Le courant global issu du mélange alimente alors le réacteur d'hydrotraitement R3. L'effluent de R3 circule dans la ligne 8a ou il est refroidi par des moyens non représentés, et rentre dans le ballon séparateur S3. Le gaz séparé dans S3 est principalement recyclé par la ligne 8c, une fraction étant purgée par la ligne 8d. Le produit liquide issu de S3 circule dans la ligne 8b, pour être partiellement recyclé par la ligne 8e et partiellement évacué par la ligne 11. Le produit hydrotraité évacué par la ligne 11, qui peut typiquement être un solvant, ou une coupe ou base de kérosène ou gazole ou fuel domestique, est typiquement stabilisé (dans des moyens non représentés) avant son stockage, pour éliminer des fractions légères et de l'H2S. Une partie du liquide recyclé dans la ligne 8e est injecté en inter-lits dans le réacteur R3, comme liquide de trempe.According to FIG. 2, representing in more detail the hydrotreating unit HD3, the C9 + cut fed by line 8 is added with a recycled fraction of hydrotreated product, circulating in line 8f, and a stream of recycle gas rich in hydrogen, circulating in line 8c. This stream includes hydrogen booster powered by a line not shown. The overall current from the mixture then feeds the hydrotreating reactor R3. The effluent of R3 circulates in the line 8a or it is cooled by means not shown, and enters the balloon separator S3. The gas separated in S3 is mainly recycled by line 8c, a fraction being purged by the line 8d. The liquid product from S3 circulates in the line 8b, to be partially recycled by line 8e and partially evacuated by the line 11. The hydrotreated product discharged through line 11, which can typically be a solvent, or a cut or base of kerosene or diesel fuel or domestic fuel, is typically stabilized (in means not shown) prior to storage, for remove light fractions and H2S. Some of the recycled liquid in the line 8e is injected interbed in the reactor R3, as a quenching liquid.

    Selon l'invention, l'unité HD3 comprend au moins un catalyseur permettant d'atteindre de façon très efficace, dans une seule unité les spécifications en soufre et aromatiques recherchées.According to the invention, the unit HD3 comprises at least one catalyst enabling to achieve very efficiently, in a single unit the specifications in sulfur and sought after aromatics.

    Selon l'une des variantes de l'invention, le catalyseur de l'unité HD3 comprend notamment au moins un lit de catalyseur au platine/palladium sur un support de type alumine fluorée. Le support peut être composé essentiellement d'alumine gamma et comprendre de 1 à 10, de préférence entre 1 et 7, et de façon très préférée entre 3 et 5% poids de fluor. L'unité HD3 peut donc comprendre un tel catalyseur sur support d'alumine fluorée, disposé selon un ou plusieurs lits, et optionnellement un premier lit, ou lit de garde avec un catalyseur conventionnel de type Ni/Mo agissant en prétraitement.According to one of the variants of the invention, the catalyst of the unit HD3 comprises in particular at least one bed of platinum / palladium catalyst on a support of the type fluorinated alumina. The support can be composed essentially of gamma-alumina and comprise from 1 to 10, preferably from 1 to 7, and very preferably from 3 to and 5% by weight of fluorine. The unit HD3 can therefore include such a catalyst on fluorinated alumina support arranged in one or more beds and optionally first bed, or guard bed with a conventional catalyst of Ni / Mo type acting in pretreatment.

    Ce catalyseur au platine/palladium peut comprendre de préférence entre 0,10 et 0,30%, de façon préférée entre 0,15 et 0,30%, et de façon très préférée entre 0,20 et 0,30% poids de platine, ainsi que généralement de 0,2 à 1,0%, et de préférence entre 0,4 et 0,7% poids de palladium. Le rapport molaire palladium sur platine peut notamment être compris entre 3 et 8, de préférence entre 3,5 et 6. This platinum / palladium catalyst may preferably comprise between 0.10 and 0.30%, preferably between 0.15 and 0.30%, and very preferably between 0.20 and 0.30% by weight of platinum, as well as usually from 0.2 to 1.0%, and preferably between 0.4 and 0.7% by weight of palladium. The molar ratio of palladium to platinum can in particular be between 3 and 8, preferably between 3.5 and 6.

    Selon une autre variante de l'invention, le point final de la coupe traitée est modifié, et augmenté par rapport à une coupe conventionnelle d'essence de pyrolyse, dont le point final est souvent compris entre 205 et 220°C. Le point final de la coupe traitée peut, dans cette variante de l'invention, être plus élevé du fait que la coupe C9+ est alors typiquement destinée à être transformée en d'autres produits que de l'essence. En effet, certains solvants, ainsi que des fractions kérosène, gazole ou fuel domestique, peuvent avoir des points de distillation finaux (distillation ASTM) supérieurs à 220°C.According to another variant of the invention, the end point of the cut treated is modified, and increased compared to a conventional cut of pyrolysis gasoline, the end point is often between 205 and 220 ° C. The end point of the cut treated in this variant of the invention may be higher because the C9 + cut is then typically intended to be transformed into products other than gasoline. Indeed, some solvents, as well as fractions kerosene, diesel or fuel oil, may have final distillation points (ASTM distillation) above 220 ° C.

    La fraction traitée peut donc être une fraction longue allant au dela de l'essence, ayant un point de distillation final supérieur à 220°C, par exemple compris entre 230 et 310 °C, notamment entre 240 et 280 °C. Ceci peut être obtenu en modifiant, lors du fractionnement des effluents de vapocraquage dans la distillation primaire, le point de coupe entre la fraction essence et la fraction fuel de pyrolyse, pour laisser des fractions bouillant au dessus de 220°C environ dans la fraction dite "essence", qui devient une fraction intermédiaire "essence + distillat moyen".The fraction treated can therefore be a long fraction going beyond gasoline, having a final distillation point greater than 220 ° C, for example between 230 and 310 ° C, especially between 240 and 280 ° C. This can be achieved by modifying the fractionation of steam cracking effluents in primary distillation, the cutting point between the petrol fraction and the fuel fraction of pyrolysis, to leave fractions boiling above about 220 ° C in the so-called "gasoline" fraction, which becomes an intermediate fraction "gasoline + middle distillate".

    On peut donc réduire de 5 à 50 %, et souvent de 10 à 40% la quantité de fuel de pyrolyse produite. Ceci est intéressant lorsqu'on craque du naphta ou des condensats, et plus encore lorsqu'on craque des charges plus lourdes.We can reduce from 5 to 50%, and often from 10 to 40% the amount of fuel oil pyrolysis produced. This is interesting when you crack naphtha or condensate, and even more when cracking heavier loads.

    Le procédé selon l'invention permet donc de produire notamment un ou plusieurs des produits suivants:

    • un solvant (ou une base de solvant), d'intervalle de distillation ASTM typiquement compris à l'intérieur, environ, de l'intervalle [65°C-250°C], ou de l'intervalle [90°C-240°C] ou de l'intervalle [130°C-230°C], de taux d'aromatiques très bas, généralement inférieur à 5% volume, ou à 3% volume ou même à 1% volume, de teneur en soufre typiquement inférieure à 10 ppm poids, voire à 5 ppm ou même à 1 ppm.
    • un kérosène ou un gazole (ou une base de kérosène ou de gazole), d'intervalle de distillation ASTM typiquement compris à l'intérieur de l'intervalle [120°C-310°C], ou de l'intervalle [130°C-280°C], ou de l'intervalle [140°C-250°C], de taux d'aromatiques très bas, généralement inférieur à 30% volume, ou même à 20% volume, de teneur en soufre typiquement inférieure à 300 ppm poids, notamment inférieure à 50 ppm poids, voire inférieure à 10 ppm poids,
    • un fuel domestique (ou une base de fuel domestique), d'intervalle de distillation ASTM typiquement compris à l'intérieur de l'intervalle [120°C-310°C], ou de l'intervalle [130°C-280°C], ou de l'intervalle [140°C-250°C], de taux d'aromatiques généralement inférieur à 50% volume, ou à 30% volume ou même à 20% volume, de teneur en soufre typiquement inférieure à 300 ppm poids, notamment inférieure à 50 ppm poids.
    The method according to the invention therefore makes it possible to produce in particular one or more of the following products:
    • a solvent (or a solvent base) of ASTM distillation range typically within about the range [65 ° C-250 ° C], or the range [90 ° C-240 ° C] or the range [130 ° C-230 ° C], very low aromatics, generally less than 5% volume, or 3% volume or even 1% volume, typically sulfur content less than 10 ppm by weight, or even 5 ppm or even 1 ppm.
    • a kerosene or a gas oil (or a kerosene or diesel base) of ASTM distillation range typically within the range [120 ° C-310 ° C], or the range [130 ° C-280 ° C], or the range [140 ° C-250 ° C], very low aromatics, generally less than 30% volume, or even 20% volume, typically lower sulfur content at 300 ppm weight, especially less than 50 ppm by weight, or even less than 10 ppm by weight,
    • a domestic fuel (or a heating oil base) of ASTM distillation range typically within the range [120 ° C-310 ° C], or the range [130 ° C-280 ° C], or the range [140 ° C-250 ° C], of aromatics content generally less than 50% volume, or 30% volume or even 20% volume, sulfur content typically less than 300 ppm weight, especially less than 50 ppm by weight.

    Ces produits sont destinés aux utilisations explicitées et ne sont donc ni des bases d'essence, ni des produits destinés à être vendus pour être transformés en bases d'essence, - par exemple par désulfuration complémentaire. Cette production nouvelle nécessite un investissement, mais permet d'avoir des débouchés nouveaux et importants, pour des produits de valorisation élevée, pour lesquels une réduction notable de la teneur en aromatiques et oléfines ne présente pas d'inconvénients, et est même souhaitable, et peut typiquement être obtenue grâce à l'hydrogène excédentaire du vapocraqueur.These products are intended for explicit uses and are therefore not bases of gasoline, nor products intended to be sold for of gasoline, for example by additional desulfurization. This production new investment requires, but allows new opportunities and important, for high recovery products, for which a reduction significant content of aromatics and olefins does not present disadvantages, and is even desirable, and can typically be achieved through hydrogen surplus steam cracker.

    EXEMPLES :EXAMPLES

    Les exemples suivants explicitent, de façon non limitative, des catalyseurs et conditions opératoires utilisables dans le procédé selon l'invention :The following examples explain, in a non-limiting way, catalysts and operating conditions that can be used in the process according to the invention:

    Exemple 1 :Example 1 Charge traitée :Treated load:

    On fractionne des effluents de vapocraquage de naphta dans une installation de traitement de ces effluents, comprenant une distillation primaire, pour produire notamment une coupe d'essence de pyrolyse, comprenant la coupe C5 et des hydrocarbures plus lourds jusqu'à un point final ASTM de 210°C.Steam cracking effluents of naphtha are fractionated in a plant of treatment of these effluents, comprising a primary distillation, to produce including a pyrolysis gasoline cut, including the C5 cut and heavier hydrocarbons to an ASTM endpoint of 210 ° C.

    Cette coupe est la "fraction intermédiaire" du procédé selon l'invention, et possède les caractéristiques suivantes:

  • Intervalle de distillation ASTM : 20 - 219 °C
  • Densité : 0,82
  • Teneur en soufre : 400 ppm poids
  • Composition (%poids) :
  • mono-aromatiques: 65%
  • di-aromatiques: 1%
  • di-oléfines (composés dièniques): 15%
  • mono-oléfines: 6%
  • composés saturés: solde.
  • This section is the "intermediate fraction" of the process according to the invention, and has the following characteristics:
  • ASTM distillation interval: 20 - 219 ° C
  • Density: 0.82
  • Sulfur content: 400 ppm by weight
  • Composition (% weight):
  • mono-aromatic: 65%
  • di-aromatic: 1%
  • di-olefins (dienic compounds): 15%
  • mono-olefins: 6%
  • saturated compounds: balance.
  • Cette charge d'essence de pyrolyse est traitée selon le schéma de procédé décrit à la figure 1. La charge alimentée à l'unité d'hydrotraitement HD3 est la charge C9+, sans apport de coupe C6/C8 provenant de HD2, la ligne 10 n'étant pas utilisée.This pyrolysis gasoline charge is treated according to the process scheme described in Figure 1. The feed fed to the hydrotreating unit HD3 is the C9 + feed, without C6 / C8 cutting from HD2, line 10 not being used.

    Catalyseur et conditions opératoires de la première unité d'hydrotraitement HD1:Catalyst and operating conditions of the first hydrotreatment unit HD1:

    Catalyseur : catalyseur de type palladium sur alumine, comprenant 0,30% poids de palladium.Catalyst: palladium on alumina catalyst, comprising 0.30% by weight of palladium.

    Le catalyseur est disposé en deux lits dans un réacteur, avec un dispositif permettant d'injecter un fluide destiné notamment à refroidir le mélange réactionnel entre les deux lits.

  • Température de sortie réacteur: 110°C
  • Pression sortie réacteur: 3,0 MPa
  • VVH (vitesse spatiale horaire): 2,4 h-1
  • The catalyst is placed in two beds in a reactor, with a device for injecting a fluid intended in particular to cool the reaction mixture between the two beds.
  • Reactor outlet temperature: 110 ° C
  • Reactor outlet pressure: 3.0 MPa
  • VVH (hourly space velocity): 2.4 h -1
  • Taux d'hydrogène (gaz total entrée réacteur) : 90 Nm3 d'hydrogène / m3 de charge. Le gaz non consommé est séparé puis envoyé comme appoint à la deuxième unité HD2.Hydrogen content (total reactor inlet gas): 90 Nm 3 of hydrogen / m 3 of feedstock. The unused gas is separated and sent as an add-on to the second unit HD2.

    Taux de recycle de la charge : 2 (on recycle 2 volumes de produit hydrotraité sortant de HD1 pour un volume de charge fraíche alimentée à HD1, pour limiter l'augmentation de température due à l'exothermicité de la réaction).Recycle rate of the load: 2 (we recycle 2 volumes of hydrotreated product leaving of HD1 for a fresh charge volume fed to HD1, to limit the increase in temperature due to the exothermicity of the reaction).

    Catalyseur et conditions opératoires de la deuxième unité d'hydrotraitement HD2:Catalyst and operating conditions of the second hydrotreating unit HD2:

    Catalyseur : 2 lits de catalyseur sont utilisés. Le premier lit contient un catalyseur de type Ni/Mo sur alumine: LD 145, commercialisé par la société AXENS. Le second lit contient un catalyseur de type Co/Mo sur alumine: HR 306 C, commercialisé par la société AXENS.

  • Température de sortie réacteur : 300 °C
  • Pression sortie réacteur 2,5 MPa
  • VVH (vitesse spatiale horaire): 2 h-1
  • Catalyst: 2 catalyst beds are used. The first bed contains a catalyst of the Ni / Mo type on alumina: LD 145, marketed by AXENS. The second bed contains a catalyst of Co / Mo type on alumina: HR 306 C, sold by AXENS.
  • Reactor outlet temperature: 300 ° C
  • 2.5 MPa reactor outlet pressure
  • VVH (hourly space velocity): 2 hr -1
  • Taux d'hydrogène d'appoint : 40 Nm3/m3 de charge, taux de recycle d'hydrogène 400 Nm3/m3 gaz Aucun refroidissement intermédiaire n'est réalisé.Additional hydrogen content: 40 Nm 3 / m 3 load, hydrogen recycle rate 400 Nm 3 / m 3 gas No intermediate cooling is performed.

    Catalyseur et conditions opératoires de la troisième unité d'hydrotraitement HD3:Catalyst and operating conditions of the third hydrotreatment unit HD3:

    On effectue un traitement poussé de la charge de HD3, pour obtenir en une seule étape une coupe à très basse teneur en aromatiques, ayant les spécifications d'un solvant commercial.

  • La charge de HD3 a la composition suivante:
  • Intervalle de distillation ASTM : 145 - 218 °C
  • Densité : 0,9
  • Teneur en soufre : 500 ppm poids
  • Composition : 53 % poids d'aromatiques dont 3 % de diaromatiques, 35% d'oléfines ,le reste étant des composés saturés.
  • Catalyseur : de type platine/palladium sur alumine fluorée, contenant en % poids: 0,2% de platine; 0,4% de palladium; 1,1% de chlore; 4,0% de fluor.
  • Advanced treatment of the HD3 feed is carried out to obtain in a single step a cut with a very low aromatic content, having the specifications of a commercial solvent.
  • The charge of HD3 has the following composition:
  • Distillation range ASTM: 145 - 218 ° C
  • Density: 0.9
  • Sulfur content: 500 ppm
  • Composition: 53% by weight of aromatics including 3% of diaromatics, 35% of olefins, the rest being saturated compounds.
  • Catalyst: platinum / palladium on fluorinated alumina, containing% by weight: 0.2% platinum; 0.4% palladium; 1.1% chlorine; 4.0% of fluorine.
  • Des méthodes de préparation de catalyseurs de type platine/palladium sur alumine fluorée sont décrites dans la demande de brevet européen EP 1 099 477 A1.

  • Température d'entrée du réacteur : 290°C,
  • Température de sortie du réacteur : 330 °C,
  • Pression sortie réacteur : 4,0 MPa
  • VVH: 2 h-1
  • Methods for preparing platinum / palladium catalysts on fluorinated alumina are described in European Patent Application EP 1 099 477 A1.
  • Reactor inlet temperature: 290 ° C,
  • Reactor outlet temperature: 330 ° C,
  • Reactor outlet pressure: 4.0 MPa
  • VVH: 2 h -1
  • Taux d'hydrogène de recyclage incluant l'hydrogène d'appoint (gaz total riche en hydrogène: entrée + trempe) : 400 Nm3/m3 de charge de l'unité HD3.Recycling hydrogen content including make-up hydrogen (hydrogen-rich total gas: inlet + quench): 400 Nm 3 / m 3 of charge of unit HD3.

    Taux de recyclage de l'unité : 5 (recyclage d'effluent liquide en ratio massique par rapport à la charge). 90% du recyclage est mélangé avec la charge, et 10% est injecté en inter-lits catalytiques afin d'ajuster le profil thermique. Le recyclage de liquide est en effet rendu nécessaire par la chaleur dégagée durant l'hydrogénation.Recycling rate of the unit: 5 (recycling of liquid effluent in mass ratio by relation to the charge). 90% of the recycling is mixed with the load, and 10% is injected in catalytic inter-beds in order to adjust the thermal profile. Recycling liquid is indeed required by the heat released during hydrogenation.

    Les résultats après hydrotraitement dans l'unité HD3 sont les suivants :

  • On obtient un solvant de teneur en aromatiques égale à 5% volume, et d'intervalle de distillation: 143 - 208 °C.
  • Teneur en soufre du solvant : <10 ppm poids.
  • The results after hydrotreating in unit HD3 are as follows:
  • A solvent having an aromatic content of 5% by volume and a distillation range of 143-208 ° C. is obtained.
  • Sulfur content of the solvent: <10 ppm by weight.
  • Exemple 2 :Example 2

    On reproduit l'exemple 1 mais avec une charge longue, de point final ASTM 250 °C. Ceci est obtenu en modifiant les paramètres opératoires du traitement des effluents de vapocraquage, pour que le fractionnement laisse avec l'essence de pyrolyse des fractions un peu plus lourdes que l'essence.Example 1 is repeated but with a long charge, end point ASTM 250 ° C. This is achieved by modifying the operating parameters of the effluent treatment of steam cracking, so that the fractionation leaves with the pyrolysis gasoline fractions a little heavier than gasoline.

    On peut notamment utiliser une température un peu plus élevée dans la tour de fractionnement primaire et/ou augmenter un peu le stripage.In particular, it is possible to use a slightly higher temperature in the tower of primary fractionation and / or increase the stripping.

    On peut alors augmenter la fraction C9+ alimentant HD3, et utiliser, avec le même catalyseur, des conditions plus douces que dans l'exemple 1, notamment:

  • Température d'entrée du réacteur : 290 °C,
  • Température de sortie du réacteur : 330 °C,
  • Pression sortie réacteur : 4,0 MPa
  • VVH : 4 h-1
  • We can then increase the C9 + fraction feeding HD3, and use, with the same catalyst, milder conditions than in Example 1, in particular:
  • Reactor inlet temperature: 290 ° C,
  • Reactor outlet temperature: 330 ° C,
  • Reactor outlet pressure: 4.0 MPa
  • VVH: 4 h -1
  • Taux d'hydrogène de recycle incluant l'hydrogène d'appoint (gaz total riche en hydrogène: entrée + trempe) : 400 Nm3/m3 de charge de l'unité HD3.Recycle hydrogen content including make-up hydrogen (hydrogen-rich total gas: inlet + quench): 400 Nm 3 / m 3 of charge of unit HD3.

    Taux de recyclage (recyclage d'effluent liquide avec la charge et en inter-lits afin d'ajuster le profil thermique) : 3 en masse, dont 0,45 en inter-lits.Recycling rate (liquid effluent recycling with the load and between beds to adjust the thermal profile): 3 en masse, of which 0.45 in inter-beds.

    Les résultats après hydrotraitement dans l'unité HD3 sont les suivants :

  • Teneur en aromatiques du produit obtenu: 19,5% volume.
  • Intervalle de distillation ASTM: 144 - 241 °C
  • Teneur en soufre : <10 ppm poids.
  • The results after hydrotreating in unit HD3 are as follows:
  • Aromatic content of the product obtained: 19.5% volume.
  • ASTM Distillation Interval: 144 - 241 ° C
  • Sulfur content: <10 ppm by weight.
  • On peut ainsi obtenir une base de kérosène, de gazole ou de fuel domestique, et réduire la production de fuel de pyrolyse.It is thus possible to obtain a base of kerosene, diesel or heating oil, and reduce the production of pyrolysis fuel.

    L'invention pourra également utiliser d'autres catalyseurs d'hydrotraitement, et/ou d'autres conditions opérations opératoires, ou autres caractéristiques non décrites mais évidentes pour l'homme du métier.The invention may also use other hydrotreatment catalysts, and / or other operating conditions, or other undescribed characteristics but obvious to the skilled person.

    Claims (10)

    Procédé de traitement d'effluents de vapocraquage d'hydrocarbures, comprenant: a) la séparation de ces effluents pour produire une fraction intermédiaire comprenant la plus grande partie au moins de l'essence de pyrolyse comprise dans ces effluents, et composée pour sa plus grande partie de composés ayant au moins 5 atomes de carbone et un point d'ébullition final inférieur à 310 °C, b) un premier hydrotraitement de cette fraction intermédiaire dans une unité HD1, c) un fractionnement d'une partie au moins de l'effluent de l'unité HD1, pour produire une coupe C5 et une coupe C6+, d) un fractionnement d'une partie au moins de la coupe C6+, pour produire une coupe C6-C8 et une coupe C9+, e) un deuxième hydrotraitement d'une partie au moins de la coupe C6-C8 dans une unité HD2, pour produire une coupe C6-C8 hydrotraitée, f) un troisième hydrotraitement d'une charge comprenant une partie au moins de la coupe C9+, et optionnellement une partie au moins de la coupe C6-C8 ou de la coupe C6-C8 hydrotraitée, dans une unité HD3 pour saturer au moins 20% volume des aromatiques compris dans la charge de l'unité HD3 avec, en partie ou en totalité, de l'hydrogène excédentaire produit par ledit vapocraquage, et produire en sortie de HD3 au moins un produit final du groupe constitué par les solvants comprenant moins de 5% d'aromatiques, les coupes kérosène, ou gazole, ou fuel domestique, ou les bases pour la fabrication de ces produits.A process for treating hydrocarbon steam cracking effluents, comprising: a) the separation of these effluents to produce an intermediate fraction comprising at least the major part of the pyrolysis gasoline contained in these effluents, and composed for the most part of compounds having at least 5 carbon atoms and a point d final boiling below 310 ° C, b) a first hydrotreatment of this intermediate fraction in an HD1 unit, c) a fractionation of at least a portion of the effluent of the unit HD1, to produce a C5 cut and a C6 + cut, d) a fractionation of at least a portion of the C6 + cut, to produce a C6-C8 cut and a C9 + cut, e) a second hydrotreatment of at least a portion of the C6-C8 cut in a unit HD2, to produce a hydrotreated C6-C8 cut, f) a third hydrotreatment of a feed comprising at least a portion of the C9 + cut, and optionally at least a portion of the C6-C8 cut or hydrotreated C6-C8 cut, in an HD3 unit to saturate at least 20% the volume of aromatics included in the feed of unit HD3 with, in part or in full, excess hydrogen produced by said steam-cracking, and producing at the output of HD3 at least one final product from the group consisting of solvents comprising less than 5% of aromatics, kerosene or diesel cuts, or domestic fuel, or bases for the manufacture of these products. Procédé selon la revendication 1 dans lequel on limite le débit de charge de l'unité HD3, et/ou le degré de saturation des aromatiques dans cette unité, pour que la consommation d'hydrogène dans HD3 soit inférieure ou égale à la quantité d'hydrogène excédentaire produit par le vapocraquage, et que l'hydrogène alimentant HD3 soit pourvu en totalité par cet hydrogène excédentaire. The method of claim 1 wherein the load flow rate of the unit is limited HD3, and / or the degree of saturation of the aromatics in this unit, so that the hydrogen consumption in HD3 is less than or equal to the amount excess hydrogen produced by steam cracking, and that hydrogen feeding HD3 is provided in full by this excess hydrogen. Procédé selon l'une des revendications 1 et 2, dans lequel on produit en sortie de HD3 un solvant ou une base de solvant ayant au moins 60% volume de naphtènes, au plus 5% volume d'aromatiques, et au plus 10 ppm poids de soufre.Process according to one of Claims 1 and 2, in which the output of HD3 a solvent or a solvent base having at least 60% by volume of naphthenes, not more than 5% by volume of aromatics, and not more than 10 ppm by weight of sulfur. Procédé selon l'une des revendications 1 et 2, dans lequel on produit en sortie de HD3 un kérosène ou un gazole ou une base de kérosène ou de gazole ayant moins de 30% volume d'aromatiques, au plus 300 ppm poids de soufre, et un intervalle de distillation ASTM compris à l'intérieur de l'intervalle [120°C-310°C].Process according to one of Claims 1 and 2, in which the output of HD3 a kerosene or a diesel or a base of kerosene or diesel having less 30% by volume of aromatics, not more than 300 ppm by weight of sulfur, and a range of ASTM distillation within the range [120 ° C-310 ° C]. Procédé selon l'une des revendications 1 et 2, dans lequel on produit en sortie de HD3 un fuel domestique ou une base de fuel domestique ayant moins de 50% volume d'aromatiques, au plus 300 ppm poids de soufre, et un intervalle de distillation ASTM compris à l'intérieur de l'intervalle [120°C-310°C].Process according to one of Claims 1 and 2, in which the output of HD3 a domestic fuel oil or a heating oil base with less than 50% volume of aromatics, not more than 300 ppm by weight of sulfur, and a range of ASTM distillation within the range [120 ° C-310 ° C]. Procédé selon l'une des revendications 1 à 6, dans lequel l'unité HD3 utilise au moins un catalyseur comprenant du platine et du palladium déposés sur un support.Method according to one of claims 1 to 6, wherein the unit HD3 uses the minus a catalyst comprising platinum and palladium deposited on a support. Procédé selon la revendication 6, dans lequel L'unité HD3 utilise au moins un catalyseur comprenant de 0,10 à 0,30 % poids de platine et de 0,2 à 1 % poids de palladium déposés sur une alumine fluorée, comprenant de 1 à 5 % poids de fluor.The method of claim 6, wherein the HD3 unit uses at least one catalyst comprising from 0.10 to 0.30% by weight of platinum and from 0.2 to 1% by weight of palladium deposited on a fluorinated alumina, comprising from 1 to 5% by weight of fluorine. Procédé selon l'une des revendications 1 à 6, dans lequel la fraction intermédiaire produite à l'étape a), et la charge de l'unité HD3 ont un point final ASTM compris entre 230 et 310°C.Process according to one of Claims 1 to 6, in which the intermediate fraction produced in step a), and the load of the HD3 unit have an ASTM endpoint included between 230 and 310 ° C. Procédé selon l'une des revendications précédentes, dans lequel ledit produit final a une teneur en oléfines inférieure à 1% poids. Method according to one of the preceding claims, wherein said final product has an olefin content of less than 1% by weight. Produit final du groupe constitué par les solvants comprenant moins de 5% d'aromatiques, les coupes kérosène, ou gazole, ou fuel domestique, ou les bases pour la fabrication de ces produits, ce produit final ayant été obtenu par le procédé selon l'une des revendications 1 à 9.Final product of the group consisting of solvents comprising less than 5% aromatics, kerosene, diesel or domestic fuel oil, or for the manufacture of these products, this final product having been obtained by the process according to one of claims 1 to 9.
    EP20040291954 2003-08-19 2004-07-29 Method for treating the middle fraction of a steam cracking effluent Expired - Lifetime EP1508609B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0310028 2003-08-19
    FR0310028A FR2858981B1 (en) 2003-08-19 2003-08-19 PROCESS FOR TREATING AN INTERMEDIATE FRACTION FROM VAPOCRACKING EFFLUENTS

    Publications (2)

    Publication Number Publication Date
    EP1508609A1 true EP1508609A1 (en) 2005-02-23
    EP1508609B1 EP1508609B1 (en) 2008-10-22

    Family

    ID=34043784

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP20040291954 Expired - Lifetime EP1508609B1 (en) 2003-08-19 2004-07-29 Method for treating the middle fraction of a steam cracking effluent

    Country Status (3)

    Country Link
    EP (1) EP1508609B1 (en)
    DE (1) DE602004017261D1 (en)
    FR (1) FR2858981B1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN1948441B (en) * 2006-10-08 2010-05-12 广东省茂名华粤集团有限公司 Petroleum hydrocarbon cracking carbon nine cut fraction hydrogenation technology

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2913692B1 (en) 2007-03-14 2010-10-15 Inst Francais Du Petrole PROCESS FOR DESULFURIZING HYDROCARBONIC FRACTIONS RESULTING FROM VAPOCRACKING EFFLUENTS

    Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR1315477A (en) * 1961-02-20 1963-01-18 Exxon Research Engineering Co Hydrocarbon conversion process
    US3271297A (en) * 1960-12-15 1966-09-06 Bayer Ag Recycle of monoolefines to a hydrocarbon pyrolysis process
    US4138325A (en) * 1977-12-22 1979-02-06 Gulf Research & Development Company Process for conversion of gas oil to ethylene and needle coke
    US4244808A (en) * 1978-09-21 1981-01-13 Linde Aktiengesellschaft Method of processing a high-boiling fraction obtained in the cracking of hydrocarbons
    US20030141220A1 (en) * 2002-01-31 2003-07-31 O'rear Dennis J. Upgrading fischer-tropsch and petroleum-derived naphthas and distillates

    Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3271297A (en) * 1960-12-15 1966-09-06 Bayer Ag Recycle of monoolefines to a hydrocarbon pyrolysis process
    FR1315477A (en) * 1961-02-20 1963-01-18 Exxon Research Engineering Co Hydrocarbon conversion process
    US4138325A (en) * 1977-12-22 1979-02-06 Gulf Research & Development Company Process for conversion of gas oil to ethylene and needle coke
    US4244808A (en) * 1978-09-21 1981-01-13 Linde Aktiengesellschaft Method of processing a high-boiling fraction obtained in the cracking of hydrocarbons
    US20030141220A1 (en) * 2002-01-31 2003-07-31 O'rear Dennis J. Upgrading fischer-tropsch and petroleum-derived naphthas and distillates

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN1948441B (en) * 2006-10-08 2010-05-12 广东省茂名华粤集团有限公司 Petroleum hydrocarbon cracking carbon nine cut fraction hydrogenation technology

    Also Published As

    Publication number Publication date
    FR2858981A1 (en) 2005-02-25
    EP1508609B1 (en) 2008-10-22
    FR2858981B1 (en) 2006-02-17
    DE602004017261D1 (en) 2008-12-04

    Similar Documents

    Publication Publication Date Title
    EP2256179B1 (en) Method for producing a hydrocarbon cut with a high octane level and low sulphur content
    EP2106431B1 (en) Method for converting loads from renewable sources for producing diesel fuel bases having low-sulphur and enhanced-ketane contents
    KR101629047B1 (en) Hydrotreatment and dewaxing treatments for improving freezing point of jet fuels
    EP1849850B1 (en) Method of desulphurating olefin gasolines comprising at least two distinct hydrodesulphuration steps
    EP1451269B1 (en) Two-step method for middle distillate hydrotreatment comprising two hydrogen recycling loops
    CA2724939A1 (en) Process integrating a process of high pressure hydroconversion and a method of middle distillate hydrotreating average pressure with the two processes being independent
    FR2964388A1 (en) METHOD FOR CONVERTING RESIDUE INTEGRATING A DISASPHALTAGE STEP AND A HYDROCONVERSION STEP WITH RECYCLING OF DESASPHALTEE OIL
    WO2014013153A1 (en) Method for producing a light petrol with a low sulphur content
    EP1063275B1 (en) Process for hydrotreatment of middle distillate in two stages with intermediate stripping
    FR2734575A1 (en) CARBUREACTOR AND PROCESS FOR PREPARING SAID CARBIDE
    EP0851020A1 (en) Process and apparatus for hydrotreatment of hydrocarbon feeds
    EP0661371B1 (en) Process for the production of an internal combustion engine fuel by hydrotreatment and extraction
    FR2993571A1 (en) METHOD OF DESULFURIZING A GASOLINE
    EP3087160B1 (en) Improved method for the removal of aromatics from petroleum fractions
    EP3312260B1 (en) Method for hydrodesulphurisation of olefinic gasoline
    EP3228683B1 (en) Method for treating a gasoline
    EP1508609B1 (en) Method for treating the middle fraction of a steam cracking effluent
    WO2014108612A1 (en) Process for producing a petrol with a low sulphur content
    FR2895417A1 (en) Desulfurization of hydrocarbon feed by diene hydrogenation, solvent extraction and solvent regeneration comprises performing at least two of steps conjointly
    CA2440189C (en) Method for producing desulphurised petrol from a petroleum fraction containing cracked petrol
    EP1310544B1 (en) Process for the conversion of heavy petroleum fractions for the production of a feedstock for a catalytic cracking process and low sulfur middle distillates
    EP1312661B1 (en) Process for the conversion of heavy petroleum fractions comprising an ebullated bed for the production of low sulfur middle distillates
    FR2970478A1 (en) Pre-refining and hydroconversion in fixed-bed of a heavy crude oil of hydrocarbons, comprises removing metals in hydrodemetallation section, hydrocracking at least part of the effluent, and fractionating a portion of the effluent
    EP1370629B1 (en) Method for producing low-sulphur petrol
    WO2024126788A1 (en) Method for processing a feedstock from a renewable source, for the production of bio-based olefins

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL HR LT LV MK

    17P Request for examination filed

    Effective date: 20050823

    AKX Designation fees paid

    Designated state(s): BE DE FR GB NL

    17Q First examination report despatched

    Effective date: 20060524

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE FR GB NL

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 602004017261

    Country of ref document: DE

    Date of ref document: 20081204

    Kind code of ref document: P

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20090723

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 602004017261

    Country of ref document: DE

    Owner name: IFP ENERGIES NOUVELLES, FR

    Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

    Effective date: 20110331

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20110801

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20110719

    Year of fee payment: 8

    Ref country code: DE

    Payment date: 20110804

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20110726

    Year of fee payment: 8

    Ref country code: BE

    Payment date: 20110801

    Year of fee payment: 8

    BERE Be: lapsed

    Owner name: INSTITUT FRANCAIS DU PETROLE

    Effective date: 20120731

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20130201

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20120729

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130329

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130201

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120731

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120729

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130201

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 602004017261

    Country of ref document: DE

    Effective date: 20130201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120731