EP1593838B1 - Control method for influencing the opening velocity of a control valve of a fuel injector - Google Patents
Control method for influencing the opening velocity of a control valve of a fuel injector Download PDFInfo
- Publication number
- EP1593838B1 EP1593838B1 EP05101339A EP05101339A EP1593838B1 EP 1593838 B1 EP1593838 B1 EP 1593838B1 EP 05101339 A EP05101339 A EP 05101339A EP 05101339 A EP05101339 A EP 05101339A EP 1593838 B1 EP1593838 B1 EP 1593838B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- valve element
- control valve
- fuel injector
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 239000000446 fuel Substances 0.000 title claims description 65
- 238000000034 method Methods 0.000 title description 4
- 238000002347 injection Methods 0.000 claims description 57
- 239000007924 injection Substances 0.000 claims description 57
- 238000002485 combustion reaction Methods 0.000 claims description 22
- 230000004913 activation Effects 0.000 claims description 4
- 230000003111 delayed effect Effects 0.000 claims description 2
- 238000013016 damping Methods 0.000 description 11
- 230000006835 compression Effects 0.000 description 10
- 238000007906 compression Methods 0.000 description 10
- 230000009471 action Effects 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 210000003746 feather Anatomy 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001595 flow curve Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M57/00—Fuel-injectors combined or associated with other devices
- F02M57/02—Injectors structurally combined with fuel-injection pumps
- F02M57/022—Injectors structurally combined with fuel-injection pumps characterised by the pump drive
- F02M57/025—Injectors structurally combined with fuel-injection pumps characterised by the pump drive hydraulic, e.g. with pressure amplification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M45/00—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
- F02M45/12—Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship providing a continuous cyclic delivery with variable pressure
Definitions
- both pressure-controlled and stroke-controlled injection systems can be used.
- fuel injection systems come next pump-nozzle units, pump-line-nozzle units and accumulator injection systems (common rail) are used.
- Storage injection systems advantageously make it possible to adapt the injection pressure to the load and speed of the internal combustion engine. In order to achieve high specific performance and to reduce the emissions of the internal combustion engine, a high injection pressure is generally required.
- WO 02/092997 A1 known fuel injection device is used on an internal combustion engine.
- the combustion chambers of the internal combustion engine are supplied with fuel via fuel injectors.
- the fuel injectors are acted upon by a high pressure source.
- the out WO 02/092997 A1 known fuel injector has a pressure booster with a movable pressure booster piston, which separates a connectable to the high pressure source space from a high-pressure chamber connected to the fuel injector.
- the high-pressure fuel chamber can be varied by filling a back space (differential pressure chamber) of the pressure booster with fuel or by emptying this pressure chamber of fuel.
- a control valve is used with a movable valve member.
- the valve member is actuated by a piezoactuator, which acts by means of a transmission piston on the valve member. Between the piezoelectric actuator and transmission piston, a hydraulic coupler space is arranged.
- the fuel injector comprises a movable closing piston for opening or closing the injection openings facing the combustion chamber.
- the closing piston protrudes into a closing pressure chamber, so that it can be acted upon by fuel pressure. This achieves a force acting on the closing piston in the closing direction.
- the closing pressure room and another room are formed by a common working space, wherein all portions of the working space are permanently interconnected to exchange fuel.
- the piezoelectric actuator is electrically controlled so that the valve member passes quickly from the rest position to the end position, with slow valve actuation, the voltage applied to the piezoelectric actuator voltage is slowly increased, so that the valve member at low speed off the rest position reaches the end position.
- a fuel injector with a pressure booster or a pressure booster, with a control valve and with a delay element for the control valve is known.
- the delay element has a damping piston and is arranged between the control valve and the pressure booster.
- the control valve and the delay element are arranged separately from each other and connected by means of a hydraulic connection. By means of the delay element, the opening speed of the control valve is varied, wherein the control valve both the pressure booster and a control chamber of a nozzle needle is driven so that so that a delay between pre-injection and main injection can be generated.
- DE 102 29 418 A1 refers to a fuel injector for injecting fuel into the combustion chambers of an internal combustion engine.
- the fuel injector includes a high-pressure accumulator, a pressure booster, and a metering valve.
- the pressure booster comprises a working space and a control space, which are separated from each other by an axially movable piston.
- a pressure change in the control chamber of the pressure booster results in a pressure change in a compression space, which acts on a fuel inlet via a nozzle chamber.
- the nozzle chamber surrounds an injection valve member, which may be formed, for example, as a nozzle needle.
- a nozzle spring chamber which acts on the injection valve member can be filled from the compression space of the pressure booster via a line containing an inlet throttle point. On the outlet side, the nozzle spring chamber is connected to a space of the pressure booster via a line which contains an outlet throttle point.
- DE 102 29 415 A1 refers to a device for Nadelhubdämpfung pressure-controlled fuel injectors.
- the device for injecting fuel comprises a fuel injector, which can be acted upon by a high-pressure source with high-pressure fuel and actuated via a metering valve.
- the injection valve is associated with one of these independently movable damping element which limits a damping chamber.
- the damping element has at least one overflow channel for connecting the damping chamber with a further hydraulic space.
- the fuel injector comprises a pressure booster, which is supplied by a pressure source with high-pressure fuel.
- a working space of the pressure booster is separated from a differential pressure chamber of the pressure booster via a booster piston.
- the pressure relief and the pressurization of the differential pressure chamber (back space) of the pressure booster via a switching valve is connected to the differential pressure chamber (back space) of the pressure booster via a control line.
- a pressure chamber on an injection valve is connected via a pressure space supply line to a compression space of the pressure intensifier.
- the switching valve is designed as a direct switching 3/2-way valve, whose valve needle pressure is balanced and has both a sealing seat and a slide seal.
- a direct 3/2-way valve can be used as a control valve, whose opening movement is slowed down via the damping unit.
- the opening speeds can be influenced. Be the control edges of the 3/2 way valve designed accordingly, it can be achieved with different opening speeds of the control valve, a shaping of the injection pressure, ie that pressure which prevails at the combustion chamber end of the Einspritzvenilgliedes.
- the representation according to FIG. 1 is a fuel injector removable, which can be actuated via the proposed driving method of a control valve actuating this.
- the representation according to FIG. 1 is a pressure accumulator 1 (common rail) refer, which is connected via a high pressure line 2 to a fuel injector 3.
- the fuel injector 3 comprises an injector housing 4 preferably designed in several parts to facilitate assembly, in which a pressure booster 5 is accommodated.
- the pressure booster 5 comprises a working chamber 8, which is permanently connected to the pressure accumulator 1, a compression chamber 12 and a differential pressure chamber 9 (rear chamber), via which the pressure booster is activated or deactivated.
- the pressure booster 5 In the pressure booster 5 is a first piston part 6, which is acted upon by a return spring 7, which resets the first piston part 6 of the booster 5 in its rest position.
- the return spring 7 is supported on a received in the working space 8 of the booster 5 annular stop 10.
- the pressure booster 5 further comprises a second piston part 13, whose end face 14 pressurizes the compression space 12. From the differential pressure chamber 9 (back space) of the pressure booster 5, an overflow line 15, in which a first throttle point 16 is formed, extends.
- the overflow line 15 opens into a pressure chamber 17th
- a damping piston 19 is received, which passes through a bore 20 in which a second throttle body 21 is formed.
- the damping piston 19 is acted upon by a spring 22 which is supported on a wall of the pressure chamber 17 and on an annular stop of the damping piston 19.
- the damping piston 19 has a in the in FIG. 1 illustrated embodiment, a rounded end face, which acts on an upper end face of a one-piece injection valve member 18 here.
- the injection valve member 18 is provided in the region of a nozzle chamber 24 with a pressure stage 25.
- the nozzle chamber 24 is connected via a nozzle chamber inlet 23 with the compression chamber 12 of the booster 5.
- compressed fuel flows in the compression chamber 12 upon actuation of the booster by pressure relief of the differential pressure chamber 9 via the nozzle chamber inlet 23 into the nozzle chamber 24 and from there, along the Einspritzvenilgliedes, 18 injection ports 26 the the combustion chamber end of the fuel injector 3 to.
- the differential pressure chamber 9 (back space) of the pressure booster 5 is connected via the control line 11 with a first hydraulic chamber 28 of a control valve 27 in connection.
- the control valve 27 is preferably designed as a directly controlled 3/2 way valve.
- the control valve 27 comprises, in addition to the first hydraulic chamber 28, a second hydraulic chamber 29, which is attributable to the low-pressure region.
- the control valve 27 further includes a valve member 30.
- a first control edge 31 in the region of a flat seat 33 and a second control edge 32 which is formed on a housing part of the multi-part housing of the control valve 27.
- From the second hydraulic chamber 29 of the control valve 27 branch both a first return 34, and a second return 36 in the low pressure region of the fuel injection system.
- the second hydraulic chamber 29 is in the closed position of the valve member 30, due to the then closed flat seat 33 separated from the first hydraulic chamber 28.
- the valve member 30 of the control valve 27 comprises a piston extension 35, which in the FIG. 1 shown closed position of the flat seat 33 is located in the second hydraulic chamber 29 of the control valve 27.
- a hydraulic damper 40 At the end face, which is opposite to the second hydraulic chamber 29 of the valve member 30, there is a hydraulic damper 40.
- the hydraulic damper 40 is traversed by a through hole 41 and biased by a spring element 42.
- the spring element 42 is located within a damper chamber 43. Controlled fuel volume is discharged therefrom via the third throttle point 44 into the low-pressure region of the fuel injection system.
- the hydraulic damper 40 and the valve member 30 lie along a contact surface 45 in FIG. 1 illustrated switching state of the control valve 27 to each other, however, represent two separate components.
- the control valve 27 In the deactivated state of rest of the booster 5, the control valve 27 is closed due to the action of the closing spring 39. Thus, the first control edge 31 is closed below the flat seat 33 on the valve member 30. Thus, the control line 11 is closed, so that in the differential pressure chamber 9 (back space) of the pressure booster 5, the same pressure level as in the pressure accumulator 1 (common rail) connected working space 8 prevails.
- the pressure booster 5 is deactivated because pressure is balanced and there is no pressure boost. Above the closed flat seat 33, the control line 11 is separated from the first return 34 and the second return 36 in the low-pressure region of the fuel injection system.
- the differential pressure chamber 9 (back space) is pressure relieved.
- the control valve 27 is activated, ie opened.
- the solenoid 38 There is an energization of the solenoid 38, so that the magnet armature 37 against the action of Closing spring 39 is tightened, whereby the flat seat 33 is opened at the first control edge 31 of the control valve 27.
- fuel flowing from the differential pressure chamber 9 (backspace) flows into the first hydraulic chamber 28 and via the opened first control edge 31, the first return 34 and the second return 36 on the low-pressure side of the fuel injection system.
- the control valve 27 is again deactivated, i. closed.
- the valve member 30 moves at the end of the flow of the solenoid 38 of the control valve 27 by the action of the closing spring 39 back into its closed position.
- the first control edge 31 is closed below the flat seat 33.
- the pressure accumulator 1 common rail
- the first hydraulic chamber 28 and the control line 11 a pressure build-up in the differential pressure chamber 9 (back space) of the booster 5, so that it goes back to its rest position.
- the second control edge 32 of the control valve 27 is opened. Due to the building up in the differential pressure chamber 9 (back space) of the booster 5 system pressure, i.
- the pressure booster 5 is deactivated.
- the second piston part 13 moves out of the compression chamber 12 and due to the decreasing pressure in the nozzle chamber 24, the injection valve member 18 is again placed in its closing the injection openings 26 position.
- valve member 30 Above the movable in the vertical direction when energizing the solenoid 38 valve member 30 is the hydraulic damper 40.
- the hydraulic damper 40 performs the displaced amount via the third throttle body 44 in a FIG. 1 not shown low pressure range of the fuel injection system from. Due to the hydraulic damper 40, the opening movement of the valve member 30, when energized, the solenoid 38 is slowed down.
- the closing movement of the valve member 30 of the control valve 27, however, is not affected by the hydraulic damper 40. This is achieved by closing the valve member 30, i. the cancellation of the energization of the solenoid 38 due to the action of the closing spring 39, a quick closing movement of the valve member 30 can be achieved during which the hydraulic damper 40 a contact surface 45 separates from the valve member 30. As a result, the valve member 30 can move unhindered into its closed position, wherein a rapid filling of the damper chamber 43 via the through hole 41 of the hydraulic damper 40 takes place. This means that the hydraulic damper 40 can be reset to its starting position very quickly. This is at high speeds of self-igniting internal combustion engine, in terms of closely spaced injection events of great importance.
- the opening speed of the valve member 30 of the control valve can be adjusted by the dimensioning of the third throttle body 44 which is associated with the damper chamber 43.
- the opening speed of the valve member 30, which adjusts itself continues to be dependent on the magnetic force which is achieved in the energization of the solenoid 38 of the control valve 27.
- the magnetic force of the magnetic coil 38 of the control valve 27 can be adjusted via the Bestromungsmony.
- FIG. 2 are different Bestromungs. the control valve to operate the fuel injector.
- the current flow curve 50 of the magnetic coil 38 is plotted over time [t].
- a triggering time 53 the energization of the magnetic coil 38, either with the first Anticianstrommony 51 or the second - dashed lines - Anberichtstromis 52 take place.
- FIG. 3 are the corresponding to the Bestromungsclude resulting Hubverrise the control valve removed.
- valve member 30 of the control valve 27 When the valve member 30 of the control valve 27 is driven at the first drive current level 51, i. if the magnetic coil 38 is energized with a lower current level, a slower opening of the valve member 30 of the control valve 27 results. In this case, a first ramp 63 with a lower gradient curve is established.
- FIG. 4 shows adjusting pressure curves at the injection valve member.
- FIG. 5 Hubverrise the injection valve member are shown.
- FIG. 5 shows the first Anticianstromto 51 of the solenoid 38 of the control valve 27 corresponding first stroke profile 81 of the integrally formed injection valve member 18th
- FIG. 2 also shows the Bestromungsverlauf 50 of the solenoid 38 when a second Anêtstromrium 52 - dashed line - is set.
- a second stroke profile 62 which is characterized by a second ramp 64, which differs by a significantly higher slope compared to the first ramp 63 at the first drive current level 61 of the solenoid 38. Because of this arises according to FIG. 4 the second pressure curve 72 at the injection nozzle, resulting in an approximately rectangular injection rate.
- FIG. 5 also shows the adjusting during the energization of the solenoid 38 with the second An Griffinstromographic 52 second stroke profile 82, which differs only slightly from the first stroke profile 81, apart from a stronger increase at the beginning.
- the opening speed of the valve member 30 can be adjusted via the third throttle body 44.
- the deceleration of the opening speed is also achieved by the hydraulic damper 40 according to the invention, which is accommodated in the upper region of the control valve 27, but does not affect the closing of the injection valve member 18 due to the separation from the valve member 30.
- FIGS. 3 to 5 illustrated injection rate with respect to the present invention proposed driving method of a control valve 27 achievable injection rates, can also vary over the self-igniting internal combustion engine associated control unit and adjust within appropriate maps in each optimal manner to the requirements of the internal combustion engine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
Description
Zur Versorgung von Brennräumen selbstzündender Verbrennungskraftmaschinen mit Kraftstoff, können sowohl druckgesteuerte als auch hubgesteuerte Einspritzsysteme eingesetzt werden. Als Kraftstoffeinspritzsysteme kommen neben Pumpen-Düsen-Einheiten, Pumpe-Leitung-Düse-Einheiten auch Speichereinspritzsysteme (Common-Rail) zum Einsatz. Speichereinspritzsysteme ermöglichen in vorteilhafter Weise, den Einspritzdruck an Last und Drehzahl der Verbrennungskraftmaschine anzupassen. Zur Erzielung hoher spezifischer Leistungen und zur Reduktion der Emissionen der Verbrennungskraftmaschine ist generell ein hoher Einspritzdruck erforderlich.To supply combustion chambers of self-igniting internal combustion engines with fuel, both pressure-controlled and stroke-controlled injection systems can be used. As fuel injection systems come next pump-nozzle units, pump-line-nozzle units and accumulator injection systems (common rail) are used. Storage injection systems advantageously make it possible to adapt the injection pressure to the load and speed of the internal combustion engine. In order to achieve high specific performance and to reduce the emissions of the internal combustion engine, a high injection pressure is generally required.
Eine aus
Der Kraftstoffinjektor umfasst einen beweglichen Schließkolben zum Öffnen bzw. Verschließen der dem Brennraum zuweisenden Einspritzöffnungen. Der Schließkolben ragt in einem Schließdruckraum hinein, so dass dieser mit Kraftstoffdruck beaufschlagbar ist. Dadurch wird eine dem Schließkolben in Schließrichtung beaufschlagende Kraft erzielt. Der Schließdruckraum und ein weiterer Raum werden durch einen gemeinsamen Arbeitsraum gebildet, wobei sämtliche Teilbereiche des Arbeitsraumes permanent zum Austausch von Kraftstoff miteinander verbunden sind.The fuel injector comprises a movable closing piston for opening or closing the injection openings facing the combustion chamber. The closing piston protrudes into a closing pressure chamber, so that it can be acted upon by fuel pressure. This achieves a force acting on the closing piston in the closing direction. The closing pressure room and another room are formed by a common working space, wherein all portions of the working space are permanently interconnected to exchange fuel.
Mit der aus
Mit der aus
Aus
Schließlich ist aus der
Die Druckentlastung und die Druckbeaufschlagung des Differenzdruckraumes (Rückraum) des Druckverstärkers erfolgen über ein Schaltventil. Dieses Schaltventil ist mit dem Differenzdruckraum (Rückraum) des Druckverstärkers über eine Steuerleitung verbunden. Ein Druckraum an einem Einspritzventil ist über eine Druckraumzuleitung mit einem Kompressionsraum des Druckverstärkers verbunden. Das Schaltventil wird als direkt schaltendes 3/2 Wege-Ventil ausgeführt, dessen Ventilnadeldruck ausgeglichen ist und sowohl einen Dichtsitz als auch eine Schieberdichtung aufweist.The pressure relief and the pressurization of the differential pressure chamber (back space) of the pressure booster via a switching valve. This switching valve is connected to the differential pressure chamber (back space) of the pressure booster via a control line. A pressure chamber on an injection valve is connected via a pressure space supply line to a compression space of the pressure intensifier. The switching valve is designed as a direct switching 3/2-way valve, whose valve needle pressure is balanced and has both a sealing seat and a slide seal.
Nachteilig an den oben skizzierten Ausführungen gemäß des Standes der Technik mit lediglich einem Ventil, ist die fehlende Flexibilität des Einspritzdruckverlaufes (rateshaping) solcher Kraftstoffinjektoren, gegenüber Kraftstoffinjektoren, die zwei voneinander unabhängige Aktoren aufweisen.A disadvantage of the above-outlined embodiments according to the prior art with only one valve, is the lack of flexibility of the injection pressure curve (rateshaping) of such fuel injectors, compared to fuel injectors having two independent actuators.
Mit dem erfindungsgemäßen Kraftstoffinjektor wird erreicht, dass zur Steuerung des Kraftstoffinjektors ein direktes 3/2-Wegeventil als Steuerventil eingesetzt werden kann, dessen Öffnungsbewegung über die Dämpfungseinheit verlangsamt wird.With the fuel injector according to the invention it is achieved that for controlling the fuel injector, a direct 3/2-way valve can be used as a control valve, whose opening movement is slowed down via the damping unit.
Durch unterschiedlich gewählte Aktivierungs-Stromniveaus eines Magnetventils, können die Öffnungsgeschwindigkeiten beeinflusst werden. Werden die Steuerkanten des 3/2 Wegeventils entsprechend ausgelegt, so lässt sich mit unterschiedlichen Öffnungsgeschwindigkeiten des Steuerventils eine Formung des Einspritzdruckes, d.h. desjenigen Druckes erreichen, welcher am brennraumseitigen Ende des Einspritzvenilgliedes herrscht.By varying the activation current levels of a solenoid valve, the opening speeds can be influenced. Be the control edges of the 3/2 way valve designed accordingly, it can be achieved with different opening speeds of the control valve, a shaping of the injection pressure, ie that pressure which prevails at the combustion chamber end of the Einspritzvenilgliedes.
Da weiterhin lediglich ein Steuerventil für den Kraftstoffinjektor eingesetzt wird, erhöht sich der fertigungstechnische Aufwand zur Herstellung und zur Montage des mit dem erfindungsgemäß vorgeschlagenen Ansteuerungsverfahren betriebenen Kraftstoffinjektors nicht. Ebenfalls bleibt der Aufwand hinsichtlich einer Modifikation des in einer Verbrennungskraftmaschine eingesetzten Steuergerätes gering, da pro an der Verbrennungskraftmaschine eingesetzten Kraftstoffinjektor lediglich eine Endstufe benötigt wird.Furthermore, since only one control valve is used for the fuel injector, the manufacturing expense for the production and assembly of the operated according to the invention proposed driving method fuel injector does not increase. Likewise, the effort with regard to a modification of the control unit used in an internal combustion engine remains low since only one final stage is required per fuel injector used on the internal combustion engine.
Anhand der Zeichnung wird die Erfindung nachfolgend eingehender beschrieben.Reference to the drawings, the invention will be described below in more detail.
Es zeigt:
Figur 1- das hydraulische Schaltschema eines Kraftstoffinjektors, der mit dem erfindungsgemäß vorgeschlagenen hydraulischen Dämpfer betreibbar ist,
Figur 2- dass an einem Magnetventil einstellbare Stromniveau zur Erzielung unterschiedlicher Öffnungsgeschwindigkeiten,
Figur 3- den Hubverlauf eines Ventilgliedes eines Steuerventils,
Figur 4- das sich am brennraumseitigen Ende einstellenden Druckniveau eines Einspritzventilgliedes,
Figur 5- den Hubverlauf des Einspritzventilgliedes des Kraftstoffinjektors gemäß
.Figur 1
- FIG. 1
- the hydraulic circuit diagram of a fuel injector, which is operable with the hydraulic damper proposed according to the invention,
- FIG. 2
- that adjustable current level at a solenoid valve to achieve different opening speeds,
- FIG. 3
- the stroke course of a valve member of a control valve,
- FIG. 4
- the pressure level of an injection valve member which adjusts at the combustion chamber end,
- FIG. 5
- the stroke course of the injection valve member of the fuel injector according to
FIG. 1 ,
Der Darstellung gemäß
Der Darstellung gemäß
Im Druckverstärker 5 befindet sich ein erstes Kolbenteil 6, welches über eine Rückstellfeder 7 beaufschlagt ist, welche das erste Kolbenteil 6 des Druckverstärkers 5 in seine Ruhelage zurückstellt. Die Rückstellfeder 7 stützt sich an einem im Arbeitsraum 8 des Druckverstärkers 5 aufgenommenen ringförmigen Anschlag 10 ab. Der Druckverstärker 5 umfasst darüber hinaus einen zweiten Kolbenteil 13, dessen Stirnfläche 14 den Kompressionsraum 12 druckbeaufschlagt. Vom Differenzdruckraum 9 (Rückraum) des Druckverstärkers 5 aus, erstreckt sich eine Überströmleitung 15, in der eine erste Drosselstelle 16 ausgebildet ist. Die Überströmleitung 15 mündet in einen Druckraum 17.In the
Im Druckraum 17 ist ein Dämpfungskolben 19 aufgenommen, den eine Bohrung 20 durchzieht, in der eine zweite Drosselstelle 21 ausgebildet ist. Der Dämpfungskolben 19 ist über eine Feder 22 beaufschlagt, die sich an einer Wand des Druckraumes 17 und an einem ringförmigen Anschlag des Dämpfungskolbens 19 abstützt. Der Dämpfungskolben 19 weist ein in der in
Das Einspritzventilglied 18 ist im Bereich eines Düsenraumes 24 mit einer Druckstufe 25 versehen. Der Düsenraum 24 ist über einen Düsenraumzulauf 23 mit dem Kompressionsraum 12 des Druckverstärkers 5 verbunden. Entsprechend des Druckübersetzungsverhältnisses des Druckverstärkers 5, was von dessen Auslegung abhängig ist, strömt im Kompressionsraum 12 komprimierter Kraftstoff bei Aktivierung des Druckverstärkers durch Druckentlastung des Differenzdruckraumes 9 über den Düsenraumzulauf 23 in den Düsenraum 24 ein und von dort, entlang des Einspritzvenilgliedes, 18 Einspritzöffnungen 26 dem brennraumseitigen Ende des Kraftstoffinjektors 3 zu.The
Der Differenzdruckraum 9 (Rückraum) des Druckverstärkers 5 steht über die Steuerleitung 11 mit einem ersten hydraulischen Raum 28 eines Steuerventils 27 in Verbindung. Das Steuerventil 27 wird bevorzugt als direkt gesteuertes 3/2 Wege-Ventil ausgebildet. Das Steuerventil 27 umfasst neben dem ersten hydraulischen Raum 28 einen zweiten hydraulischen Raum 29, der dem Niederdruckbereich zuzurechnen ist. Das Steuerventil 27 umfasst darüber hinaus ein Ventilglied 30. Im mehrteiligen ausgebildeten Gehäuse des Steuerventils 27 befinden sich eine erste Steuerkante 31 im Bereich eines Flachsitzes 33 sowie eine zweite Steuerkante 32, die an einem Gehäuseteil des mehrteilig ausgebildeten Gehäuses des Steuerventils 27 ausgebildet ist. Vom zweiten hydraulischen Raum 29 des Steuerventils 27 zweigen sowohl ein erster Rücklauf 34, als auch ein zweiter Rücklauf 36 in den Niederdruckbereich des Kraftstoffeinspritzsystemes ab. Der zweite hydraulische Raum 29 ist in der Schließstellung des Ventilgliedes 30, aufgrund des dann geschlossenen Flachsitzes 33 vom ersten hydraulischen Raum 28 getrennt. Das Ventilglied 30 des Steuerventils 27 umfasst einen Kolbenfortsatz 35, der in der
Am in vertikaler Richtung bewegbaren Ventilglied 30 des Steuerventils 27, befindet sich eine ringförmig ausgebildete Magnetankerplatte 37, die einer bestrombaren Magnetspule 38 gegenüberliegt. Das Ventilglied 30 ist in Schließrichtung durch eine Schließfeder 39 beaufschlagt, so dass sichergestellt ist, dass im nicht bestromten Zustand der Magnetspule 38 des Steuerventils 27 der Flachsitz 33 zum zweiten niederdruckseitigen hydraulischen Raum 29 geschlossen ist.At the vertically
An der Stirnfläche, die dem zweiten hydraulischen Raum 29 des Ventilgliedes 30 gegenüberliegt, befindet sich ein hydraulischer Dämpfer 40. Der hydraulische Dämpfer 40 ist von einer Durchgangsbohrung 41 durchzogen und über eine Federelement 42 vorgespannt. Das Federelement 42 befindet sich innerhalb eines Dämpferraumes 43. Abgesteuertes Kraftstoffvolumen wird aus diesem über die dritte Drosselstelle 44 in den Niederdruckbereich des Kraftstoffeinspritzsystems abgeführt. Der hydraulische Dämpfer 40 und das Ventilglied 30 liegen entlang einer Anlagefläche 45 im in
Im deaktivierten Ruhezustand des Druckverstärkers 5 ist das Steuerventil 27 aufgrund der Wirkung der Schließfeder 39 geschlossen. Damit ist die erste Steuerkante 31 unterhalb des Flachsitzes 33 am Ventilglied 30 geschlossen. Somit ist auch die Steuerleitung 11 geschlossen, so dass im Differenzdruckraum 9 (Rückraum) des Druckverstärkers 5, dasselbe Druckniveau wie in dem Druckspeicher 1 (Common-Rail) verbundenen Arbeitsraum 8 herrscht. Der Druckverstärker 5 ist deaktiviert da Druck ausgeglichen und es findet keine Druckverstärkung statt. Über dem geschlossenen Flachsitz 33 ist die Steuerleitung 11 vom ersten Rücklauf 34 und vom zweiten Rücklauf 36 in dem Niederdruckbereich des Kraftstoffeinspritzsystems getrennt.In the deactivated state of rest of the
Zur Ansteuerung des Druckverstärkers 5 wird der Differenzdruckraum 9 (Rückraum) druckentlastet. Dazu wird das Steuerventil 27 aktiviert, d.h. geöffnet. Es erfolgt eine Bestromung der Magnetspule 38, so dass der Magnetanker 37 entgegen der Wirkung der Schließfeder 39 angezogen wird, wodurch der Flachsitz 33 an der ersten Steuerkante 31 des Steuerventils 27 geöffnet wird. Über die Steuerleitung 11 strömt vom Differenzdruckraum 9 (Rückraum) abströmender Kraftstoff in den ersten hydraulischen Raum 28 ein und über die geöffnete ersten Steuerkante 31, dem ersten Rücklauf 34 sowie dem zweiten Rücklauf 36 auf der Niederdruckseite des Kraftstoffeinspritzsystems zu. Dadurch erfolgt eine Abkopplung des Differenzdruckraumes 9 (Rückraum) des Druckverstärkers 5 vom Druckspeicher 1 (Common-Rail) und dessen Druckentlastung in die Rückläufe 34, 36 im Niederdruckbereich. Durch dass nunmehr in den Kompressionsraum 12 einfahrende zweite Kolbenteil 13 des Druckverstärkers, steigt dort der Druck entsprechend des Übersetzungsverhältnisses des Druckverstärkers 5 an und strömt über den Düsenraumzulauf 23, dem Düsenraum 24 zu. An der im Bereich des Düsenraumes 24 am einteilig ausbildbaren Einspritzventilgliedes ausgebildeten Druckstufen 25 umgreifenden hydraulischen Kraft, öffnet das Einspritzventilglied 18 und gibt die Einspritzöffnungen 26 am brennraumseitigen Ende des Kraftstoffinjektors 3 frei, so dass über diese Kraftstoff, in einem in
Zur Beendigung der Einspritzung wird das Steuerventil 27 wieder deaktiviert, d.h. geschlossen. Das Ventilglied 30 bewegt sich bei Beendigung der Beströmung der Magnetspule 38 des Steuerventils 27 durch die Wirkung der Schließfeder 39 wieder in seiner Schließstellung. In der Schließstellung wird die erste Steuerkante 31 unterhalb des Flachsitzes 33 geschlossen. Dadurch erfolgt über die sich vom Druckspeicher 1 (Common-Rail) erstreckende Hochdruckleitung 2, den ersten hydraulischen Raum 28 und die Steuerleitung 11 ein Druckaufbau im Differenzdruckraum 9 (Rückraum) des Druckverstärkers 5, so dass dieser wieder in seine Ruhestellung fährt. Während der Schließbewegung des Ventilgliedes 30 des Steuerventils 27 wird die zweite Steuerkante 32 des Steuerventils 27 geöffnet. Aufgrund des sich im Differenzdruckraum 9 (Rückraum) des Druckverstärkers 5 aufbauenden Systemdruckes, d.h. dem Druckniveau, welches im Druckspeicher 1 (Common-Rail) herrscht, wird der Druckverstärker 5 deaktiviert. Der zweite Kolbenteil 13 fährt aus dem Kompressionsraum 12 aus und aufgrund des im Düsenraum 24 abnehmenden Druckes wird das Einspritzventilglied 18 wieder in seinen die Einspritzöffnungen 26 verschließende Position gestellt.To complete the injection, the
Oberhalb des in vertikale Richtung bei Bestromung der Magnetspule 38 bewegbaren Ventilgliedes 30 befindet sich der hydraulische Dämpfer 40. Durch diesen wird eine langsame, näherungsweise lineare Öffnungsbewegung des in der Darstellung gemäß
Die Schließbewegung des Ventilgliedes 30 des Steuerventils 27 hingegen wird durch den hydraulischen Dämpfer 40 nicht beeinflusst. Dies wird dadurch erreicht, dass sich beim Schließen des Ventilgliedes 30, d.h. der Aufhebung der Bestromung der Magnetspule 38 aufgrund der Wirkung der Schließfeder 39, eine schnelle Schließbewegung des Ventilgliedes 30 erreichen lässt, während der sich der hydraulische Dämpfer 40 einer Anlagefläche 45 vom Ventilglied 30 trennt. Dadurch kann das Ventilglied 30 ungehindert in seine Schließstellung verfahren, wobei eine schnelle Befüllung des Dämpferraumes 43 über die Durchgangsbohrung 41 des hydraulischen Dämpfers 40 erfolgt. Dies bedeutet, dass der hydraulische Dämpfer 40 sehr schnell in seine Ausgangslage rückstellbar ist. Dies ist bei hohen Drehzahlen von selbstzündender Verbrennungskraftmaschine, hinsichtlich dicht aufeinander folgender Einspritzvorgänge von hoher Bedeutung.The closing movement of the
Die Öffnungsgeschwindigkeit des Ventilgliedes 30 des Steuerventils, kann über die Dimensionierung der dritten Drosselstelle 44, die dem Dämpferraum 43 zugeordnet ist, eingestellt werden. Die Öffnungsgeschwindigkeit des Ventilgliedes 30, welche sich einstellt ist auch weiterhin von der Magnetkraft abhängig, die bei der Bestromung der Magnetspule 38 des Steuerventils 27 erreicht wird. Die Magnetkraft der Magnetspule 38 des Steuerventils 27 lässt sich über deren Bestromungsniveau einstellen.The opening speed of the
Bei einem niedrigeren Bestromungsniveau der Magnetspule 38 ergibt sich ein langsameres Öffnen des Steuerventils 27, d.h. ein langsameres Öffnen des Ventilgliedes 30. Dadurch lässt sich ein verzögerter, allmählich erfolgender Druckaufbau zu Beginn einer Einspritzphase erreichen, wodurch sich ein im Wesentlichen rampenförmiger Verlauf der Einspritzrate einstellt.At a lower energization level of the
Wird hingegen die Magnetspule 38 des Steuerventils 27 mit einem zweiten höheren Aktivierungsstrom bestromt, erfolgt ein schnelles Öffnen des Steuerventils 27. Dadurch lässt sich ein schnellerer Druckaufbau zu Beginn einer jeweiligen Einspritzung erreichen, was in einer zu rechteckförmig verlaufenden Einspritzrate resultiert.If, however, the
Gemäß
Wird das Ventilglied 30 des Steuerventils 27 mit dem ersten Ansteuerstromniveau 51 angesteuert, d.h. wird die Magnetspule 38 mit einem niedrigeren Stromniveau bestromt, ergibt sich ein langsameres Öffnen des Ventilgliedes 30 des Steuerventils 27. Dabei stellt sich eine erste Rampe 63 mit einem niedrigeren Steigungsverlauf ein.When the
Wird die Magnetspule 38 mit dem in
In
In diesem Falle stellt sich gemäß
Zusätzlich zu den sich voneinander unterscheidenden Ansteuerstromniveaus 51 bzw. 52, mit dem die Magnetspule 38 des Steuerventils 27 bestrombar ist, kann die Öffungsgeschwindigkeit des Ventilgliedes 30 auch über die dritte Drosselstelle 44 eingestellt werden. Die Verlangsamung der Öffnungsgeschwindigkeit wird zudem durch den erfindungsgemäßen, hydraulischen Dämpfer 40 erreicht, der im oberen Bereich des Steuerventils 27 untergebracht ist, das Schließen des Einspritzventilsgliedes 18 jedoch aufgrund der Trennung vom Ventilglied 30 nicht beeinflusst.In addition to the mutually differing
Die in den
- 11
- Druckspeicher (Common-Rail)Accumulator (common rail)
- 22
- HochdruckleitungHigh-pressure line
- 33
- Kraftstoffinjektorfuel injector
- 44
- Injektorgehäuseinjector
- 55
- Druckverstärkerbooster
- 66
- Erstes KolbenteilFirst piston part
- 77
- RückstellfederReturn spring
- 88th
- Arbeitsraumworking space
- 99
- DifferenzdruckraumDifferential pressure chamber
- 1010
- Anschlagattack
- 1111
- Steuerleitungcontrol line
- 1212
- Kompressionsraumcompression chamber
- 1313
- zweites Kolbenteilsecond piston part
- 1414
- Stirnflächeface
- 1515
- Überströmleitungoverflow
- 1616
- erste Drosselstellefirst throttle point
- 1717
- Druckraumpressure chamber
- 1818
- EinspritzventilgliedInjection valve member
- 1919
- Dämpfungskolbendamping piston
- 2020
- Bohrungdrilling
- 2121
- zweite Drosselstellesecond throttle point
- 2222
- Federfeather
- 2323
- DüsenraumzulaufNozzle chamber inlet
- 2424
- Düsenraumnozzle chamber
- 2525
- Druckstufepressure stage
- 2626
- EinspritzöffnungenInjection ports
- 2727
- Steuerventil (3/2)Control valve (3/2)
- 2828
- erster hydraulischer Raumfirst hydraulic room
- 2929
- zweiter hydraulischer Raum (Niederdruck)second hydraulic chamber (low pressure)
- 3030
- Ventilgliedvalve member
- 3131
- erste Steuerkantefirst control edge
- 3232
- zweite Steuerkantesecond control edge
- 3333
- Flachsitzflat seat
- 3434
- erster Rücklauf (ND)first return (ND)
- 3535
- KolbenfortsatzPiston extension
- 3636
- zweiter Rücklauf (ND)second return (ND)
- 3737
- Magnetankerarmature
- 3838
- Magnetspulesolenoid
- 3939
- Schließfederclosing spring
- 4040
- hydraulischer Dämpferhydraulic damper
- 4141
- DurchgangsbohrungThrough Hole
- 4242
- Federfeather
- 4343
- Dämpferraumdamper space
- 4444
- dritte Drosselstellethird throttle point
- 4545
- Auflagefläche (Trennstelle)Support surface (separation point)
- 5050
- Bestromungsverlauf MagnetspuleCurrent flow magnetic coil
- 5151
- erstes Ansteuerstromniveaufirst drive current level
- 5252
- zweites Ansteuerstromniveausecond drive current level
- 5353
- Ansteuerzeitpunktcontrol time
- 6060
- Hub SteuerventilHub control valve
- 6161
- erster Hubverlauffirst stroke course
- 6262
- zweiter Hubverlaufsecond stroke course
- 6363
- erster Rampefirst ramp
- 6464
- zweite Rampesecond ramp
- 7070
- DüsendruckverlaufNozzle pressure curve
- 7171
- erster Druckverlauffirst pressure gradient
- 7272
- zweiter Druckverlaufsecond pressure curve
- 8080
- Hubverlauf EinspritzventilgliedStroke course injection valve member
- 8181
- erster Hubverlauffirst stroke course
- 8282
- zweiter Hubverlaufsecond stroke course
Claims (9)
- Fuel injector (3) for injecting fuel into combustion chambers of an internal combustion engine having a pressure booster (5), having a control valve (27) with a valve element (30) and having a hydraulic damper (40) which is assigned to the valve element (30), with the pressure booster (5) being connected to a pressure accumulator (1) for the supply with highly pressurized fuel, which pressure accumulator (1) is activated and deactivated by means of the control valve (27) which is of direct-switching design, with the opening speed of the valve element (30) of the control valve (27) being varied in order to form an injection pressure profile (7), and with the opening speed of the valve element (30) of the control valve (27) being slowed by the hydraulic damper (40) which is assigned to the valve element (30), and with the hydraulic damper (40) and the valve element (30) being two separate components, characterized in that the hydraulic damper (40) has a through bore (41) which opens out into a control space (43) which can be relieved of pressure via a throttle point (44), wherein during the opening of the valve element (30), a displaced quantity is discharged via the throttle point (44).
- Fuel injector according to Claim 1, characterized in that, during the closing of the valve element (30) of the control valve (27), the hydraulic damper (40) and the valve element (30) are separable from one another along the contact face (45).
- Fuel injector according to Claim 1, characterized in that, during the closing of the valve element (30) of the control valve (27), the damper space (43) can be filled via the through bore (41) formed in the hydraulic damper (40).
- Fuel injector according to Claim 1, characterized in that the valve element (30) of the control valve (27) is acted on in the closing direction by means of a closing spring (39).
- Fuel injector according to Claim 1, characterized in that the hydraulic damper (40) is loaded against the valve element (30) by means of a spring (42).
- Fuel injector according to Claim 1, characterized in that a magnet armature plate (37) is formed on the valve element (30) of the control valve (27) below a magnet coil (38), and the valve element (30) contains a seat (33) which has a seat (33) for closing off a second hydraulic space (29).
- Fuel injector according to Claim 6, characterized in that, at a first activation current level (51), the magnet coil (38) of the control valve (27) sets a slow opening of the valve element (30) and a delayed pressure build-up at the start of the fuel injection, and therefore a first ramp-shaped injection rate (63, 71).
- Fuel injector according to Claim 6, characterized in that, when the magnet coil (38) is supplied with current with a second activation current level (52), a fast opening of the valve element (30) is set and a fast pressure build-up at the start of the injection and a rectangularly-running injection rate (64, 72) is set.
- Fuel injector according to Claim 1, characterized in that the control of the pressure booster (5) and of the injection valve element (18) takes place by means of the control valve (27), with the pressure booster (5) being activated or deactivated by means of the release of pressure from or pressurization of its differential pressure space (9), and the working space (8) of the pressure booster (5) being permanently connected to the pressure accumulator (1).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004022268A DE102004022268A1 (en) | 2004-05-06 | 2004-05-06 | A driving method for influencing the opening speed of a control valve on a fuel injector |
DE102004022268 | 2004-05-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1593838A1 EP1593838A1 (en) | 2005-11-09 |
EP1593838B1 true EP1593838B1 (en) | 2008-04-16 |
Family
ID=34938785
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05101339A Not-in-force EP1593838B1 (en) | 2004-05-06 | 2005-02-22 | Control method for influencing the opening velocity of a control valve of a fuel injector |
Country Status (4)
Country | Link |
---|---|
US (1) | US20050247290A1 (en) |
EP (1) | EP1593838B1 (en) |
DE (2) | DE102004022268A1 (en) |
ES (1) | ES2302123T3 (en) |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100370453B1 (en) * | 1994-02-15 | 2003-04-10 | 인벤트 엔지니어링 피티와이. 엘티디. | Hydraulically actuated electronic fuel injection system |
US5597118A (en) * | 1995-05-26 | 1997-01-28 | Caterpillar Inc. | Direct-operated spool valve for a fuel injector |
US5967413A (en) * | 1998-02-11 | 1999-10-19 | Caterpillar Inc. | Damped solenoid actuated valve and fuel injector using same |
US6119960A (en) * | 1998-05-07 | 2000-09-19 | Caterpillar Inc. | Solenoid actuated valve and fuel injector using same |
GB2339271A (en) * | 1998-07-06 | 2000-01-19 | Caterpillar Inc | Damped valve |
DE19837332A1 (en) * | 1998-08-18 | 2000-02-24 | Bosch Gmbh Robert | Control unit for controlling the build up of pressure in a pump unit such as an internal combustion engine fuel pump |
US6286483B1 (en) * | 1999-04-19 | 2001-09-11 | International Truck And Engine Corporation | Fuel injector with actuation pressure delay device |
DE19937713C1 (en) * | 1999-08-10 | 2001-03-15 | Siemens Ag | Control valve arrangement for use in a fuel injector for internal combustion engines |
JP2001304072A (en) * | 2000-04-20 | 2001-10-31 | Toyota Industries Corp | Common rail type fuel injector |
DE10218904A1 (en) * | 2001-05-17 | 2002-12-05 | Bosch Gmbh Robert | Fuel injection system |
US6805101B2 (en) * | 2001-05-17 | 2004-10-19 | Robert Bosch Gmbh | Fuel injection device |
US6830202B2 (en) * | 2002-03-22 | 2004-12-14 | Caterpillar Inc | Two stage intensifier |
DE10229418A1 (en) * | 2002-06-29 | 2004-01-29 | Robert Bosch Gmbh | Device for damping the needle stroke on fuel injectors |
DE10229412A1 (en) * | 2002-06-29 | 2004-01-29 | Robert Bosch Gmbh | Fuel injector with pressure intensifier for multiple injection |
DE10229413A1 (en) * | 2002-06-29 | 2004-01-29 | Robert Bosch Gmbh | Pressure intensifier control by moving an injection valve member |
DE10229419A1 (en) * | 2002-06-29 | 2004-01-29 | Robert Bosch Gmbh | Pressure-translated fuel injector with rapid pressure reduction at the end of injection |
DE10247903A1 (en) * | 2002-10-14 | 2004-04-22 | Robert Bosch Gmbh | Pressure-reinforced fuel injection device for internal combustion engine has central control line acting on pressure transmission piston |
DE10315016A1 (en) * | 2003-04-02 | 2004-10-28 | Robert Bosch Gmbh | Fuel injector with a leak-free servo valve |
DE10315015B4 (en) * | 2003-04-02 | 2005-12-15 | Robert Bosch Gmbh | Fuel injector with pressure booster and servo valve with optimized control quantity |
DE102004022267A1 (en) * | 2004-05-06 | 2005-12-01 | Robert Bosch Gmbh | Method and device for shaping the injection pressure at a fuel injector |
DE102004022270A1 (en) * | 2004-05-06 | 2005-12-01 | Robert Bosch Gmbh | Fuel injector for internal combustion engines with multi-stage control valve |
-
2004
- 2004-05-06 DE DE102004022268A patent/DE102004022268A1/en not_active Withdrawn
-
2005
- 2005-02-22 DE DE502005003700T patent/DE502005003700D1/en active Active
- 2005-02-22 EP EP05101339A patent/EP1593838B1/en not_active Not-in-force
- 2005-02-22 ES ES05101339T patent/ES2302123T3/en active Active
- 2005-05-06 US US11/123,707 patent/US20050247290A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
DE102004022268A1 (en) | 2005-12-01 |
ES2302123T3 (en) | 2008-07-01 |
EP1593838A1 (en) | 2005-11-09 |
DE502005003700D1 (en) | 2008-05-29 |
US20050247290A1 (en) | 2005-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1654455B1 (en) | Control valve for a fuel injector that contains a pressure intensifier | |
DE102005028866A1 (en) | Fuel injection method for engine, involves closing nozzle valve while fuel pressure is maintained above valve opening pressure, and reopening valve for main injection, and reducing fuel pressure in fuel injector | |
EP1593839B1 (en) | Fuel injector for combustion engines with a multi-stage control valve | |
WO2000055496A1 (en) | Fuel injection system | |
EP1520096A1 (en) | Common rail injection system comprising a variable injector and booster device | |
DE112006002281T5 (en) | Injection device for a single fluid with rate forming capability | |
EP1613855B1 (en) | Fuel injector provided with a servo leakage free valve | |
DE102004022267A1 (en) | Method and device for shaping the injection pressure at a fuel injector | |
WO2004003377A1 (en) | Device for attenuating the stroke of the needle in pressure-controlled fuel injectors | |
DE69824860T2 (en) | HYDRAULICALLY ACTUATED ELECTRONIC INJECTION SYSTEM | |
EP1651862A1 (en) | Control valve for a fuel injector comprising a pressure exchanger | |
WO2005015000A1 (en) | Control valve with pressure compensation for a fuel injector comprising a pressure intensifier | |
WO2004040117A1 (en) | Fuel injection system for internal combustion engines | |
EP1682769A1 (en) | Fuel injector with a multipart, directly controlled injection valve element | |
DE10141221B4 (en) | Pressure-stroke controlled injector for fuel injection systems | |
EP1236884A2 (en) | Fuel injection device for internal combustion engines | |
EP1362179A1 (en) | Injection valve | |
EP1593838B1 (en) | Control method for influencing the opening velocity of a control valve of a fuel injector | |
WO2003067073A1 (en) | Method and device for detecting operating states of a pump-nozzle unit | |
EP1310666A2 (en) | Fuel injection system for internal combustion engine | |
EP2204570B1 (en) | Fuel injector | |
DE10205749A1 (en) | Fuel injection device for an internal combustion engine | |
EP1472455B1 (en) | Method and device for controlling a control valve of a pump-nozzle unit | |
DE10124510B4 (en) | A method for driving a solenoid valve controlled fuel pump of an internal combustion engine | |
DE10059399B4 (en) | Device for improving the injection sequence in fuel injection systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20060509 |
|
AKX | Designation fees paid |
Designated state(s): DE ES GB IT |
|
17Q | First examination report despatched |
Effective date: 20061023 |
|
17Q | First examination report despatched |
Effective date: 20061023 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES GB IT |
|
REF | Corresponds to: |
Ref document number: 502005003700 Country of ref document: DE Date of ref document: 20080529 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2302123 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090119 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090222 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090222 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160426 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005003700 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170901 |