[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1588095B1 - Dampferzeuger - Google Patents

Dampferzeuger Download PDF

Info

Publication number
EP1588095B1
EP1588095B1 EP03780136A EP03780136A EP1588095B1 EP 1588095 B1 EP1588095 B1 EP 1588095B1 EP 03780136 A EP03780136 A EP 03780136A EP 03780136 A EP03780136 A EP 03780136A EP 1588095 B1 EP1588095 B1 EP 1588095B1
Authority
EP
European Patent Office
Prior art keywords
steam generator
steam
piece
flow
flow medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03780136A
Other languages
English (en)
French (fr)
Other versions
EP1588095A1 (de
Inventor
Joachim Franke
Rudolf Kral
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP03780136A priority Critical patent/EP1588095B1/de
Publication of EP1588095A1 publication Critical patent/EP1588095A1/de
Application granted granted Critical
Publication of EP1588095B1 publication Critical patent/EP1588095B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines

Definitions

  • the invention relates to a steam generator, in which an evaporator continuous heating surface is arranged in a flow-through in an approximately horizontal heating gas Schugaskanal comprising a number of parallel to the flow of a flow medium steam generator tubes, and which is designed such that one compared to another Steam generator tube of the same evaporator fürlaufeckization Principal Vector Generator Tube has a higher compared to the other steam generator tube throughput of the flow medium.
  • the heat contained in the relaxed working fluid or heating gas from the gas turbine is used to generate steam for the steam turbine.
  • the heat transfer takes place in a gas turbine downstream heat recovery steam generator, in which usually a number of heating surfaces for water preheating, evaporation of water and steam superheating is arranged.
  • the heating surfaces are connected in the water-steam cycle of the steam turbine.
  • the water-steam cycle usually includes several, z. B. three, pressure levels, each pressure stage may have a Verdampferloom phenomenon.
  • a continuous steam generator In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that fresh steam pressures are possible far above the critical pressure of water (P Kri ⁇ 221 bar) - where there are only slight differences in density between liquid-like and vapor-like medium.
  • a high live steam pressure promotes a high thermal efficiency and thus low CO 2 emissions of a fossil-fired power plant.
  • a continuous steam generator in comparison to a circulating steam generator a simple construction and is thus produced with very little effort.
  • the use of a designed according to the flow principle steam generator as heat recovery steam generator of a gas and steam turbine plant is therefore particularly favorable to achieve a high overall efficiency of the gas and steam turbine plant with a simple design.
  • a steam generator which is suitable for a design in horizontal construction and also has the said advantages of a continuous steam generator.
  • the known steam generator is designed with respect to its evaporator fürlaufsammlung construction such that a more heated compared to another steam generator tube the same evaporator fürlaufsammlung construction steam generator tube has a higher compared to the other steam generator tube throughput of the flow medium.
  • the evaporator fürlaufsammlung Design of the known steam generator thus shows in the nature of the flow characteristics of a BachumlaufverdampferlikTalk Structure (natural circulation) with occurring different heating individual steam generator tubes a self-stabilizing behavior that without the need for external interference to an alignment of the outlet temperatures also on differently heated, flow medium side parallel steam generator tubes leads.
  • the known steam generator in terms of design, in particular with regard to the water and / or vapor distribution of the flow medium, relatively expensive.
  • the invention is therefore based on the object to provide a steam generator of the type mentioned above, which can be produced with very little effort, and which has a particularly high mechanical stability even with different thermal load.
  • one or each of the steam generator tubes in each case an approximately vertically arranged, from the flow medium in the upward direction Maschinenströmbares riser piece, this downstream of the flow medium, approximately vertically arranged and flow medium in the downstream flow-through downpipe and a downcomer downstream of the downcomer downpipe souströmbares further riser pipe piece comprises.
  • the invention is based on the consideration that in a particularly producible with particularly low assembly and manufacturing steam generator for a particularly stable and against differences in thermal stress particularly insensitive performance applied in the known steam generator design principle of a natural circulation characteristic of an evaporator fürlauf redesign Construction consistently developed and should be further improved.
  • the evaporator continuous heating surface should be designed to be exposed to comparatively low mass flow density with comparatively lower friction pressure loss.
  • the heating surface is particularly simple, especially with regard to collection and distribution of the flow medium.
  • the heating surface is suitable for carrying out all process sections of the complete evaporation, that is to say of preheating, evaporation and at least partial overheating, in only a single stage, that is to say without intermediate components for collecting and / or distributing the flow medium. Additional heating surfaces for preheating the feed water or for further overheating are generally provided.
  • each steam generator tube comprises three flow medium side connected segments.
  • a division of the steam generator tubes of the evaporator throughflow heating surface is provided in at least three segments (of parallel tubes), wherein the first segment comprises all the riser tube pieces and flows through in the upward direction. Accordingly, the second segment comprises all downpipe pieces and is flowed through in the downward direction, so that automatically by the weight of the flow medium, the flow is supported.
  • the downpipe pieces of each steam generator tube forming the second segment in the heating gas duct are arranged in the heating gas direction, in each case behind the riser pipe sections assigned to them.
  • the third segment comprises all other riser pieces and is flowed through in the upward direction.
  • the segments of the or each steam generator tube in the heating gas channel are positioned such that the heating requirement of each segment - especially with regard to the respective provided there stage in the evaporation process - is adapted to a special extent to the local heat supply in Walkergaskanal.
  • the further riser pipe sections of each steam generator pipe forming the third segment are expediently arranged in the heating gas duct in the direction of the heating gas, in each case between the riser pipe sections of the first segment and the downpipe sections of the second segment assigned to them.
  • the steam generator tubes are expediently spatially positioned in the heating gas channel such that the first segment or riser piece on the heating medium side is the third segment or further riser piece upstream of the flow medium side and the second segment or downcomer piece downstream of the fluidizing side Seen from the flow medium side third segment or further riser piece is arranged.
  • the respective first riser pipe piece which serves for a partial preheating and for the most part already for an evaporation of the flow medium is exposed to a comparatively strong heating by the heating gas in the "hot flue gas region".
  • the downcomer Due to the arrangement of the downcomer in comparatively cold flue gas range and the arrangement of the second riser between the first riser and the downpipe piece, so smokes gas side of the downpipe piece, a high overall efficiency of the heating surface is thus achieved with high operational safety, the first riser pieces the function a pre-evaporator fulfilled.
  • a particularly simple construction of the evaporator fürlaufsammlung II on the one hand and a particularly low mechanical load on the evaporator fürlaufsammlung configuration even with different thermal loading on the other hand can be achieved by the riser pipe piece of one or each steam generator tube with its associated downpipe piece and the downcomer piece of a further or alternatively advantageous embodiment or each steam generator tube with its associated further riser pipe piece flow medium side is connected via a respective overflow.
  • each overflow is advantageously laid within the Schugaskanals.
  • the overflow piece can also be guided outside the heating gas channel, in particular if a drainage collector is to be connected to the overflow piece for reasons of possibly required dewatering of the evaporator throughflow heating surface.
  • the steam generator tubes can be combined within the Schwarzgaskanals to rows of tubes, each of which comprises a number of perpendicular to the Edelgasraum juxtaposed steam generator tubes.
  • the steam generator tubes are advantageously carried out such that the most highly heated row of tubes forming riser sections, so seen in Walkergasraum first row of tubes, the weakest heated or seen in Walkergasraum last row of tubes is associated with the downpipes.
  • the downcomer and riser pieces of several steam generator tubes in the heating gas duct are expediently positioned relative to one another in such a way that a downwardly located downcomer piece viewed in the direction of the heating gas is assigned a further riser pipe piece located comparatively far ahead in the direction of the heating gas.
  • the respective steam generator tube is advantageously designed such that it comprises only a riser piece and this downstream of the flow medium side downpipe piece and a latter downstream of the flow medium side further riser piece.
  • the steam generator is used as a heat recovery steam generator of a gas and steam turbine plant.
  • the steam generator is advantageously followed by a gas turbine on the hot gas side.
  • this circuit can be arranged expediently behind the gas turbine, an additional firing to increase the temperature of the heating gas.
  • the advantages achieved by the invention are in particular that the complete execution of the evaporation, ie partial preheating, by the three-stage design of the steam generator tubes with a flow-through in the upward direction downpipe piece and downstream of this strömungsmediumzusitig downstream, through-flow in the upward direction further riser piece Evaporation and partial overheating, in only one stage and without the interposition of components for collecting or distributing a particularly simple construction can be achieved.
  • both the riser pipe section and the downcomer pipe section and the further riser pipe section of each steam generator pipe connected thereto can each be attached in a suspended construction in the area of the housing cover of the heating gas channel, wherein in each case a free longitudinal expansion in the lower area is permitted.
  • FIG. 1 shows in a simplified representation in longitudinal section a steam generator in horizontal construction.
  • the steam generator 1 is downstream in the manner of a heat recovery steam generator of a gas turbine, not shown, exhaust side.
  • the steam generator 1 has a surrounding wall 2, which forms a in a nearly horizontal, indicated by the arrows 4
  • Studgasraum x fuel gas channel 6 for the exhaust gas from the gas turbine.
  • the Schugaskanal 6 is in each case a number of designed according to the flow principle heating surfaces, also referred to as evaporator fürlauf costumes construction 8, which are provided for the evaporation of the flow medium arranged.
  • evaporator fürlauf costumes In the embodiment according to the figure, only one evaporator continuous heating surface 8 is shown, but it can also be provided a larger number of evaporator fürlaufteilrios inhabit.
  • the evaporator through-flow 8 formed evaporator system is acted upon by flow medium W, which evaporates in a single pass through the evaporator fürlaufsammlung Structure 8 and discharged after exiting the evaporator fürlaufsammlung phenomenon 8 as already superheated steam D and supplied only as needed for further overheating superheater becomes.
  • the evaporator system formed by the evaporator fürlaufsammlung construction 8 is connected in the non-illustrated water-steam cycle of a steam turbine.
  • heating surfaces 10 are connected in the water-steam cycle of the steam turbine.
  • the heating surfaces 10 may be, for example, superheaters, medium-pressure evaporator, low-pressure evaporator and / or preheater.
  • the evaporator fürlaufsammlung configuration 8 of the steam generator 1 comprises in the manner of a tube bundle a plurality of parallel to the flow of the flow medium W steam generator tubes 12.
  • a plurality of steam generator tubes 12 is seen in Walkergascardi x arranged side by side.
  • only one of the juxtaposed steam generator tubes 12 is visible.
  • the so juxtaposed steam generator tubes 12 is in each case a common distributor 16 upstream and a common outlet header 18 downstream of the flow medium side.
  • the distributor 16 are in turn connected on the input side to a main distributor 20, wherein the outlet header 18 are connected on the output side to a common main collector 22.
  • the evaporator pass-through heating surface 8 is designed such that it is suitable for feeding the steam generator tubes 12 with a comparatively low mass flow density, the steam generator tubes 12 having a natural circulation characteristic.
  • a steam boiler tube 12 which is more heated than a further steam generator tube 12 of the same evaporator pass-through heating surface 8, has a higher throughput of the flow medium W than the other steam generator tube 12.
  • the evaporator fürlaufsammlung configuration 8 comprises three flow medium side connected in series segments. In the first segment, each steam generator tube 12 of the evaporator pass-through heating surface 8 comprises an approximately vertically arranged riser piece 24 through which the flow medium W flows.
  • each steam generator tube 12 comprises a riser piece 24 downstream of the riser piece 24, approximately vertical and downstream of the flow medium W. flow-through downpipe piece 26.
  • each steam generator tube 12 comprises a downstream of the downcomer pipe piece 26 downstream, approximately vertically arranged and from the flow medium W in the upward direction through which further riser piece 28th
  • the segment formed by the further riser pieces 28 is arranged between the segment formed by the first riser pieces 24 and the segment formed by the drop pieces 26. This ensures a particularly adapted to the needs of heating the flow medium and the heating conditions in the heating gas duct 6 construction.
  • the downcomer piece 26 is connected to the riser piece 24 associated therewith via an overflow piece 30.
  • the further riser piece 28 is connected to its associated downcomer piece 26 via an overflow piece 30.
  • the overflow 30 are guided within the Schugaskanals 6.
  • the overflow pieces 30 can also be guided outside the heating gas channel 6. This can be advantageous in particular for the case that, for structural or operational reasons, drainage of the evaporator throughflow heating surface 8 should be provided.
  • a downcomer piece 26 with its associated further riser piece 28 and the connecting both overflow piece 30 has a nearly U-shaped shape, wherein the legs of the U through the downcomer piece 26 and the further riser piece 28 and the connecting bow through the Overflow 30 are formed.
  • the geodetic pressure contribution of the flow medium W in the region of the downcomer piece 26-in contrast to the region of the further riser piece 28-produces a flow-promoting and not a flow-inhibiting pressure contribution.
  • the water column located in the downpipe piece 26 of the unvaporized flow medium W "pushes" the flow through the respective steam generator tube 12, instead of impeding it.
  • the steam generator tube 12 as a whole has a comparatively low pressure loss.
  • both riser pieces 24, 28 and the downcomer piece 26 are suspended or fixed in the manner of a suspended construction on the ceiling of the heating gas channel 6.
  • the spatially lower end of the respective riser piece 24 and the lower end of the respective downcomer piece 26 and the further riser piece 28, which are each connected by their overflow piece 30, however, are not directly spatially fixed in the heating gas 6. Length expansions of these segments of the steam generator tubes 12 are thus tolerable without risk of damage, the respective overflow 30 acts as a strain curve.
  • This arrangement of the steam generator tubes 12 is thus mechanically very flexible and insensitive to thermal stresses occurring in relation to differential strains.
  • the downcomer pieces 26 and the further riser pieces 28 of a plurality of steam generator tubes 12 are positioned relative to one another in the heating gas duct 6 such that a riser pipe pieces 24, 28 located comparatively far in front of the downpipe piece 26 seen in the heating gas direction x are respectively associated with the heating gas direction x.
  • comparatively strongly heated riser pieces 24, 28 communicate with a comparatively weakly heated downcomer piece 26.
  • a multiple heating a series of steam generator tubes 12 leads locally to increased supply of flow medium W in this series of steam generator tube 12, so that due to the corresponding Increased cooling effect automatically adjusts the respective temperature values.
  • the fresh steam flowing into the main collector 22 is thus particularly homogeneous with regard to its steam parameters, independently of the individually traversed tube row 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Detergent Compositions (AREA)
  • Drying Of Solid Materials (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Devices For Medical Bathing And Washing (AREA)

Description

  • Die Erfindung betrifft einen Dampferzeuger, bei dem in einem in einer annähernd horizontalen Heizgasrichtung durchströmbarem Heizgaskanal eine Verdampfer-Durchlaufheizfläche angeordnet ist, die eine Anzahl von zur Durchströmung eines Strömungsmediums parallel geschalteten Dampferzeugerrohren umfasst, und die derart ausgelegt ist, dass ein im Vergleich zu einem weiteren Dampferzeugerrohr der selben Verdampfer-Durchlaufheizfläche mehrbeheiztes Dampferzeugerrohr einen im Vergleich zum weiteren Dampferzeugerrohr höheren Durchsatz des Strömungsmediums aufweist.
  • Bei einer Gas- und Dampfturbinenanlage wird die im entspannten Arbeitsmittel oder Heizgas aus der Gasturbine enthaltene Wärme zur Erzeugung von Dampf für die Dampfturbine genutzt. Die Wärmeübertragung erfolgt in einem der Gasturbine nachgeschalteten Abhitzedampferzeuger, in dem üblicherweise eine Anzahl von Heizflächen zur Wasservorwärmung, zur Verdampfung des Wassers und zur Dampfüberhitzung angeordnet ist. Die Heizflächen sind in den Wasser-Dampf-Kreislauf der Dampfturbine geschaltet. Der Wasser-Dampf-Kreislauf umfasst üblicherweise mehrere, z. B. drei, Druckstufen, wobei jede Druckstufe eine Verdampferheizfläche aufweisen kann.
  • Für den der Gasturbine als Abhitzedampferzeuger heizgasseitig nachgeschalteten Dampferzeuger kommen mehrere alternative Auslegungskonzepte, nämlich die Auslegung als Durchlaufdampferzeuger oder die Auslegung als Umlaufdampferzeuger, in Betracht. Bei einem Durchlaufdampferzeuger führt die Beheizung von als Verdampferrohren vorgesehenen Dampferzeugerrohren zu einer Verdampfung des Strömungsmediums in den Dampferzeugerrohren in einem einmaligen Durchlauf. Im Gegensatz dazu wird bei einem Natur- oder Zwangumlaufdampferzeuger das im Umlauf geführte Wasser bei einem Durchlauf durch die Verdampferrohre nur teilweise verdampft. Das dabei nicht verdampfte Wasser wird nach einer Abtrennung des erzeugten Dampfes für eine weitere Verdampfung den selben Verdampferrohren erneut zugeführt.
  • Ein Durchlaufdampferzeuger unterliegt im Gegensatz zu einem Natur- oder Zwangumlaufdampferzeuger keiner Druckbegrenzung, so dass Frischdampfdrücke weit über dem kritischen Druck von Wasser (PKri ≈221 bar) - wo es nur noch geringe Dichteunterschiede gibt zwischen flüssigkeitsähnlichem und dampfähnlichem Medium - möglich sind. Ein hoher Frischdampfdruck begünstigt einen hohen thermischen Wirkungsgrad und somit niedrige CO2-Emissionen eines fossilbeheizten Kraftwerks. Zudem weist ein Durchlaufdampferzeuger im Vergleich zu einem Umlaufdampferzeuger eine einfache Bauweise auf und ist somit mit besonders geringem Aufwand herstellbar. Die Verwendung eines nach dem Durchlaufprinzip ausgelegten Dampferzeugers als Abhitzedampferzeuger einer Gas- und Dampfturbinenanlage ist daher zur Erzielung eines hohen Gesamtwirkungsgrades der Gas- und Dampfturbinenanlage bei einfacher Bauweise besonders günstig.
  • Besondere Vorteile hinsichtlich des Herstellungsaufwands, aber auch hinsichtlich erforderlicher Wartungsarbeiten bietet ein Abhitzedampferzeuger in liegender Bauweise, bei dem das beheizende Medium oder Heizgas, also das Abgas aus der Gasturbine, in annähernd horizontaler Strömungsrichtung durch den Dampferzeuger geführt ist. Bei einem Durchlaufdampferzeuger in liegender Bauweise können die Dampferzeugerrohre einer Heizfläche jedoch je nach ihrer Positionierung einer stark unterschiedlichen Beheizung ausgesetzt sein. Insbesondere bei ausgangsseitig mit einem gemeinsamen Sammler verbundenen Dampferzeugerrohren kann eine unterschiedliche Beheizung einzelner Dampferzeugerrohre zu einer Zusammenführung von Dampfströmen mit stark voneinander abweichenden Dampfparametern und somit zu unerwünschten Wirkungsgradverlusten, insbesondere zu einer vergleichsweise verringerten Effektivität der betroffenen Heizfläche und einer dadurch reduzierten Dampferzeugung, führen. Eine unterschiedliche Beheizung benachbarter Dampferzeugerrohre kann zudem, insbesondere im Einmündungsbereich von Sammlern, zu Schäden an den Dampferzeugerrohren oder dem Sammler führen. Die an sich wünschenswerte Verwendung eines in liegender Bauweise ausgeführten Durchlaufdampferzeugers als Abhitzedampferzeuger für eine Gasturbine kann somit erhebliche Probleme hinsichtlich einer ausreichend stabilisierten Strömungsführung mit sich bringen.
  • Aus der EP 0 944 801 B1 ist ein Dampferzeuger bekannt, der für eine Auslegung in liegender Bauweise geeignet ist und zudem die genannten Vorteile eines Durchlaufdampferzeugers aufweist. Dazu ist der bekannte Dampferzeuger hinsichtlich seiner Verdampfer-Durchlaufheizfläche derart ausgelegt, dass ein im Vergleich zu einem weiteren Dampferzeugerrohr derselben Verdampfer-Durchlaufheizfläche mehrbeheiztes Dampferzeugerrohr einen im Vergleich zum weiteren Dampferzeugerrohr höheren Durchsatz des Strömungsmediums aufweist. Die Verdampfer-Durchlaufheizfläche des bekannten Dampferzeugers zeigt somit in der Art der Strömungscharakteristik einer Naturumlaufverdampferheizfläche (Naturumlaufcharakteristik) bei auftretender unterschiedlicher Beheizung einzelner Dampferzeugerrohre ein selbststabilisierendes Verhalten, das ohne das Erfordernis äußerer Einflussnahme zu einer Angleichung der austrittsseitigen Temperaturen auch an unterschiedlich beheizten, strömungsmediumsseitig parallel geschalteten Dampferzeugerrohren führt. Allerdings ist der bekannte Dampferzeuger in konstruktiver Hinsicht, insbesondere im Hinblick auf die wasser- und/oder dampfseitige Verteilung des Strömungsmediums, vergleichsweise aufwendig.
  • Der Erfindung liegt daher die Aufgabe zugrunde, einen Dampferzeuger der oben genannten Art anzugeben, der mit besonders geringem Aufwand herstellbar ist, und der auch bei unterschiedlicher thermischer Belastung eine besonders hohe mechanische Stabilität aufweist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass eines oder jedes der Dampferzeugerrohre jeweils ein annähernd vertikal angeordnetes, vom Strömungsmedium in Aufwärtsrichtung durchströmbares Steigrohrstück, ein diesem strömungsmediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium in Abwärtsrichtung durchströmbares Fallrohrstück und ein dem Fallrohrstück strömungsmediumsseitig nachgeschaltetes, in Aufwärtsrichtung durchströmbares weiteres Steigrohrstück umfasst.
  • Die Erfindung geht dabei von der Überlegung aus, dass in einem mit besonders geringem Montage- und Fertigungsaufwand herstellbaren Dampferzeuger für ein besonders stabiles und gegenüber Unterschieden in der thermischen Belastung besonders unempfindliches Betriebsverhalten das bei dem bekannten Dampferzeuger angewandte Auslegungsprinzip einer Naturumlaufcharakteristik für eine Verdampfer-Durchlaufheizfläche konsequent ausgebaut und weiter verbessert werden sollte. Die Verdampfer-Durchlaufheizfläche sollte dabei für eine Beaufschlagung mit vergleichsweise geringer Massenstromdichte mit vergleichsweise geringerem Reibungsdruckverlust ausgelegt sein.
  • Eine besonders einfache und somit auch robuste Bauweise ist dabei erreichbar, indem die Heizfläche besonders im Hinblick auf Sammlung und Verteilung des Strömungsmediums besonders einfach ausgeführt ist. Dabei ist die Heizfläche für die Durchführung von allen Prozessabschnitten der vollständigen Verdampfung, also von Vorwärmung, Verdampfung und zumindest teilweise Überhitzung, in lediglich einer einzigen Stufe, also ohne zwischengeschaltete Komponenten zum Sammeln und/oder Verteilen des Strömungsmediums, geeignet ausgebildet. Zusätzliche Heizflächen zur Vorwärmung des Speisewassers oder zur weiteren Überhitzung sind im Allgemeinen vorgesehen. Um dabei einerseits überhaupt alle die genannten Prozessabschnitte vollständig im jeweiligen Dampferzeugerrohr vornehmen zur können und andererseits ausreichende Flexibilität bei der Anpassung der Dampferzeugerrohre an die Erfordernisse dieser Prozessabschnitte und die Verfahren im Heizgaskanal zu ermöglichen, umfasst jedes Dampferzeugerrohr drei strömungsmediumsseitig hintereinandergeschaltete Segmente.
  • Um die bei dieser Auslegung zudem angestrebte Naturumlaufcharakteristik der Durchströmung zu unterstützen, ist eine Aufteilung der Dampferzeugerrohre der Verdampfer-Durchlaufheizfläche in jeweils zumindest drei Segmente (von parallelen Rohren) vorgesehen, wobei das erste Segment alle Steigrohrstücke umfasst und in Aufwärtsrichtung durchströmt wird. Entsprechend umfasst das zweite Segment alle Fallrohrstücke und wird in Abwärtsrichtung durchströmt, so dass selbsttätig durch das Eigengewicht des Strömungsmediums die Strömung unterstützt wird. Dabei sind die das zweite Segment bildenden Fallrohrstücke jedes Dampferzeugerrohrs im Heizgaskanal in Heizgasrichtung gesehen jeweils hinter den ihnen zugeordneten Steigrohrstücken angeordnet. Das dritte Segment umfasst alle weiteren Steigrohrstücke und wird in Aufwärtsrichtung durchströmt.
  • In besonders vorteilhafter Ausgestaltung sind die Segmente des oder jedes Dampferzeugerrohrs im Heizgaskanal derart positioniert, dass der Beheizungsbedarf jedes Segments - insbesondere im Hinblick auf die dort jeweils vorgesehene Stufe im Verdampfungsprozess - in besonderen Maße an das lokale Wärmeangebot im Heizgaskanal angepasst ist. Dazu sind die das dritte Segment bildenden weiteren Steigrohrstücke jedes Dampferzeugerrohrs zweckmäßigerweise im Heizgaskanal in Heizgasrichtung gesehen jeweils zwischen den ihnen zugeordneten Steigrohrstücken des ersten und den Fallrohrstücken des zweiten Segments angeordnet. Mit anderen Worten: Zweckmäßigerweise sind die Dampferzeugerrohre im Heizgaskanal räumlich derart positioniert, dass das strömungsmediumsseitig gesehen erste Segment oder Steigrohrstück heizgasseitig stromaufwärts vom strömungsmediumsseitig gesehen dritten Segment oder weiteren Steigrohrstück und das strömungsmediumsseitig gesehen zweite Segment oder Fallrohrstück heizgasseitig stromabwärts vom strömungsmediumsseitig gesehen dritten Segment oder weiteren Steigrohrstück angeordnet ist.
  • Bei einer derartigen Anordnung ist somit das jeweils erste Steigrohrstück, das einer teilweisen Vorwärmung und zum großen Teil bereits einer Verdampfung des Strömungsmediums dient, einer vergleichsweise starken Beheizung durch das Heizgas im "heißen Rauchgasgebiet" ausgesetzt. Dadurch ist sichergestellt, dass im gesamten Lastbereich aus dem jeweiligen ersten Steigrohrstück Strömungsmedium mit vergleichsweise hohen Dampfanteil abströmt. Dies führt bei der nachfolgenden Einleitung in das nachgeschaltete Fallrohrstück dazu, dass im Fallrohrstück ein für die Strömungsstabilität ungünstiges Aufsteigen von Dampfblasen entgegen der Strömungsrichtung des Strömungsmediums konsequent vermieden wird. Durch die Anordnung des Fallrohrstücks im vergleichsweise kalten Rauchgasbereich und die Anordnung des zweiten Steigrohrstücks zwischen dem ersten Steigrohrstück und dem Fallrohrstück, also rauchgasseitig vor dem Fallrohrstück, wird somit bei hoher betrieblicher Sicherheit ein besonders hoher Wirkungsgrad der Heizfläche insgesamt erreicht, wobei das erste Steigrohrstücke die Funktion eines Vorverdampfers erfüllt.
  • Ein besonders einfacher Aufbau der Verdampfer-Durchlaufheizfläche einerseits sowie eine besonders geringe mechanische Belastung der Verdampfer-Durchlaufheizfläche auch bei unterschiedlicher thermischer Beaufschlagung andererseits ist erreichbar, indem in weiterer oder alternativer vorteilhafter Ausgestaltung das Steigrohrstück eines oder jedes Dampferzeugerrohrs mit dem ihm zugeordneten Fallrohrstück sowie das Fallrohrstück eines oder jedes Dampferzeugerrohres mit dem ihm zugeordneten weiteren Steigrohrstück strömungsmediumsseitig über je ein Überströmstück verbunden ist.
  • Eine derartige Anordnung ist besonders zur Dehnungskompensation bei thermischer Wechselbelastung geeignet; dass das Steigrohrstück und das Fallrohrstück beziehungsweise das Fallrohrstück und das weitere Steigrohrstück verbindende Überströmstück dient hierbei nämlich als Dehnungsbogen, der relative Längenänderungen des Steigrohrstücks und/oder des Fallrohrstücks und/oder des weiteres Steigrohrstücks ohne weiteres kompensieren kann. Durch das Überströmstück ist somit eine Umlenkung der Dampferzeugerrohre im oberen Bereich einer durch die Steigrohrstücke gegebenen ersten Verdampferstufe mit direkter Weiterführung und erneuter Umlenkung im unteren Bereich einer durch die Fallrohrstücke gebildeten zweiten Verdampferstufe sowie eine Umlenkung und Weiterführung der Dampferzeugerrohre im unteren Bereich der zweiten Verdampferstufe in eine durch die weiteren Steigrohrstücke gebildeten dritten Verdampferstufe gegeben.
  • Das oder jedes Überströmstück ist vorteilhafterweise innerhalb des Heizgaskanals verlegt. Alternativ kann das Überströmstück aber auch außerhalb des Heizgaskanals geführt sein, insbesondere wenn aus Gründen einer möglicherweise erforderlichen Entwässerung der Verdampfer-Durchlaufheizfläche ein Entwässerungssammler an das Überströmstück angeschlossen sein soll.
  • Die Dampferzeugerrohre können innerhalb des Heizgaskanals zu Rohrreihen zusammengefasst sein, von den jede jeweils eine Anzahl von senkrecht zur Heizgasrichtung nebeneinander angeordneten Dampferzeugerrohren umfasst. Bei einer derartigen Ausgestaltung sind die Dampferzeugerrohre vorteilhafterweise derart geführt, dass den die am stärksten beheizte Rohrreihe bildenden Steigrohrstücken, also der in Heizgasrichtung gesehen ersten Rohrreihe, die am schwächsten beheizte oder in Heizgasrichtung gesehen letzte Rohrreihe der Fallrohrstücke zugeordnet ist. Zudem sind zweckmäßigerweise die Fallrohr-und Steigrohrstücke mehrerer Dampferzeugerrohre im Heizgaskanal relativ zueinander derart positioniert, dass einem in Heizgasrichtung gesehen vergleichsweise weit hinten liegenden Fallrohrstück ein in Heizgasrichtung -gesehen vergleichsweise weit vorn liegendes weiteres Steigrohrstück zugeordnet ist.
  • Durch eine derartige Anordnung werden die vergleichsweise stark beheizten weiteren Steigrohrstücke mit vergleichsweise schwach vorbeheiztem, aus den Fallrohrstücken abströmendem Strömungsmedium bespeist.
  • Um die für eine sterile Durchströmung der Rohre erwünschte Naturumlaufcharakteristik sicher zu stellen, ist das jeweilige Dampferzeugerrohr vorteilhafterweise derart ausgestaltet, dass es lediglich ein Steigrohrstück sowie ein diesem strömungsmediumsseitig nachgeschaltetes Fallrohrstück sowie ein letzterem strömungsmediumsseitig nachgeschaltetes weiteres Steigrohrstück umfasst.
  • Zweckmäßigerweise wird der Dampferzeuger als Abhitzedampferzeuger einer Gas- und Dampfturbinenanlage verwendet. Dabei ist der Dampferzeuger vorteilhafterweise heizgasseitig einer Gasturbine nachgeschaltet. Bei dieser Schaltung kann zweckmäßigerweise hinter der Gasturbine eine Zusatzfeuerung zur Erhöhung der Heizgastemperatur angeordnet sein.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die dreistufige Ausgestaltung der Dampferzeugerrohre mit einem in Aufwärtsrichtung durchströmbaren Steigrohrstück, einem in Abwärtsrichtung durchströmbaren Fallrohrstück und einem diesem strömungsmediumsseitig nachgeschalteten, in Aufwärtsrichtung durchströmbaren weiteren Steigrohrstück die vollständige Durchführung der Verdampfung, also teilweise Vorwärmung, Verdampfung und eine teilweise Überhitzung, in lediglich einer Stufe und ohne Zwischenschaltung von Komponenten zum Sammeln oder Verteilen eine besonders einfachen Bauweise erreichbar ist. Dabei ist beispielsweise eine Auslegung ohne Wasserabscheider möglich, wobei beim Anfahren ein unerwünschter Wasserausstoß in den Überhitzer vermieden oder gering gehalten werden kann, indem zu Beginn des Anfahrprozesses ausschließlich das jeweilige erste Steigrohrstück mit Wasser gefüllt wird, das nach Beginn des Anfahrvorgangs beim Durchtritt durch die nachfolgenden Rohrstücke vollständig oder zu einem ausreichend hohen Teil verdampft wird.
  • Zwar führen abwärts durchströmte beheizte Verdampfersysteme üblicherweise zu Strömungsinstabilitäten, die gerade beim Einsatz in Zwangdurchlaufverdampfern nicht tolerabel sind. Bei einer Durchströmung mit vergleichsweise niedriger Massenstromdichte ist durch den vergleichsweise geringen Reibungsdruckverlust aber in zuverlässiger Weise eine Naturumlaufcharakteristik des Dampferzeugerrohrs erzielbar, die bei einer Mehrbeheizung eines Dampferzeugerrohrs im Vergleich zu einem weiteren Dampferzeugerrohr zu einem vergleichsweise höheren Durchsatz des Strömungsmediums im mehrbeheizten Dampferzeugerrohr führt. Diese Naturumlaufcharakteristik gewährleistet auch bei Verwendung der abwärts durchströmten Segmente eine ausreichend stabile und zuverlässige Durchströmung der Dampferzeugerrohre.
  • Eine derartige Charakteristik ist zudem mit besonders geringem baulichen und Montageaufwand erreichbar, indem das Fallrohrstück dem ihm jeweils zugeordneten Steigrohrstück beziehungsweise das weitere Steigrohrstück dem ihm jeweils zugeordneten Fallrohrstück direkt und ohne Zwischenschaltung eines aufwendigen Sammler- oder Verteilersystems nachgeschaltet ist. Der Dampferzeuger weist somit bei besonders stabilem Strömungsverhalten eine vergleichsweise geringe Anlagenkomplexität auf. Darüber hinaus können sowohl das Steigrohrstück als auch das Fallrohrstück und das diesem nachgeschaltete weitere Steigrohrstück jedes Dampferzeugerrohrs jeweils in hängender Bauweise im Bereich der Gehäusedecke des Heizgaskanals befestigt sein, wobei jeweils eine freie Längsdehnung im unteren Bereich zugelassen ist. Derartige, durch thermische Effekte bedingte Längsdehnungen werden nunmehr durch dass das jeweilige Fallrohrstück mit dem Steigrohrstück beziehungsweise durch dass das weitere Steigrohrstück mit dem Fallrohrstück verbindende Überströmstück kompensiert, so dass aufgrund thermischer Effekte keine Verspannungen auftreten.
  • Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert. Darin zeigt die Figur in vereinfachter Darstellung im Längsschnitt einen Dampferzeuger in liegender Bauweise.
  • Der Dampferzeuger 1 gemäß der Figur ist in der Art eines Abhitzedampferzeugers einer nicht näher dargestellten Gasturbine abgasseitig nachgeschaltet. Der Dampferzeuger 1 weist eine Umfassungswand 2 auf, die einen in einer annähernd horizontalen, durch die Pfeile 4 angedeuteten Heizgasrichtung x durchströmbaren Heizgaskanal 6 für das Abgas aus der Gasturbine bildet. Im Heizgaskanal 6 ist jeweils eine Anzahl von nach dem Durchlaufprinzip ausgelegten Heizflächen, auch als Verdampfer-Durchlaufheizfläche 8 bezeichnet, die für die Verdampfung des Strömungsmediums vorgesehen sind, angeordnet. Im Ausführungsbeispiel gemäß der Figur ist lediglich eine Verdampfer-Durchlaufheizfläche 8 gezeigt, es kann aber auch eine größere Anzahl von Verdampfer-Durchlaufheizflächen vorgesehen sein.
  • Das aus der Verdampfer-Durchlaufheizfläche 8 gebildete Verdampfersystem ist mit Strömungsmedium W beaufschlagbar, das bei einmaligem Durchlauf durch die Verdampfer-Durchlaufheizfläche 8 verdampft und nach dem Austritt aus der Verdampfer-Durchlaufheizfläche 8 als bereits überhitzter Dampf D abgeführt und lediglich bedarfsweise zur weiteren Überhitzung Überhitzerheizflächen zugeführt wird. Das aus der Verdampfer-Durchlaufheizfläche 8 gebildete Verdampfersystem ist in den nicht näher dargestellten Wasser-Dampf-Kreislauf einer Dampfturbine geschaltet. Zusätzlich zu dem Verdampfersystem sind in den Wasser-Dampf-Kreislauf der Dampfturbine eine Anzahl weiterer, in FIG 1 schematisch angedeuteter Heizflächen 10 geschaltet. Bei den Heizflächen 10 kann es sich beispielsweise um Überhitzer, Mitteldruckverdampfer, Niederdruckverdampfer und/oder um Vorwärmer handeln.
  • Die Verdampfer-Durchlaufheizfläche 8 des Dampferzeugers 1 nach der Figur umfasst in der Art eines Rohrbündels eine Mehrzahl von zur Durchströmung des Strömungsmediums W parallel geschalteten Dampferzeugerrohren 12. Dabei ist jeweils eine Mehrzahl von Dampferzeugerrohren 12 in Heizgasrichtung x gesehen nebeneinander angeordnet. Dabei ist jeweils lediglich eines der so nebeneinander angeordneten Dampferzeugerrohre 12 sichtbar. Den so nebeneinander angeordneten Dampferzeugerrohren 12 ist dabei strömungsmediumsseitig jeweils ein gemeinsamer Verteiler 16 vor- und ein gemeinsamer Austrittssammler 18 nachgeschaltet. Die Verteiler 16 sind dabei ihrerseits eingangsseitig mit einem Hauptverteiler 20 verbunden, wobei die Austrittssammler 18 ausgangsseitig an einen gemeinsamen Hauptsammler 22 angeschlossen sind.
  • Die Verdampfer-Durchlaufheizfläche 8 ist derart ausgelegt, dass sie für eine Bespeisung der Dampferzeugerrohre 12 mit vergleichsweise niedriger Massenstromdichte geeignet ist, wobei die Dampferzeugerrohre 12 eine Naturumlaufcharakteristik aufweisen. Bei dieser Naturumlaufcharakteristik weist ein im Vergleich zu einem weiteren Dampferzeugerrohr 12 derselben Verdampfer-Durchlaufheizfläche 8 mehrbeheiztes Dampferzeugerrohr 12 einen im Vergleich zum weiteren Dampferzeugerrohr 12 höheren Durchsatz des Strömungsmediums W auf. Um dies mit besonders einfachen konstruktiven Mitteln auf besonders zuverlässige Weise sicherzustellen, umfasst die Verdampfer-Durchlaufheizfläche 8 drei strömungsmediumsseitig in Reihe geschaltete Segmente. Im ersten Segment umfasst jedes Dampferzeugerrohr 12 der Verdampfer-Durchlaufheizfläche 8 dabei ein annähernd vertikal angeordnetes, vom Strömungsmedium W in Aufwärtsrichtung durchströmbares Steigrohrstück 24. Im zweiten Segment umfasst jedes Dampferzeugerrohr 12 ein dem Steigrohrstück 24 strömungsmediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium W in Abwärtsrichtung durchströmbares Fallrohrstück 26. Im dritten Segment umfasst jedes Dampferzeugerrohr 12 ein dem Fallrohrstück 26 strömungsmediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium W in Aufwärtsrichtung durchströmbares weiteres Steigrohrstück 28.
  • In Heizgasrichtung x gesehen ist dabei das von den weiteren Steigrohrstücken 28 gebildete Segment zwischen dem von den ersten Steigrohrsstücken 24 gebildeten Segment und dem von den Fallrohrstücken 26 gebildeten Segment angeordnet. Dadurch ist eine im besonderem Maße an die Bedürfnisse bei der Beheizung des Strömungsmediums und an die Beheizungsverhältnisse im Heizgaskanal 6 angepasste Bauweise gewährleistet.
  • Das Fallrohrstück 26 ist mit dem ihm zugeordneten Steigrohrstück 24 dabei über ein Überströmstück 30 verbunden. In derselben Weise ist das weitere Steigrohrstück 28 mit dem ihm zugeordneten Fallrohrstück 26 über ein Überströmstück 30 verbunden. Im Ausführungsbeispiel sind die Überströmstücke 30 innerhalb des Heizgaskanals 6 geführt. Alternativ können die Überströmstücke 30 auch außerhalb des Heizgaskanals 6 geführt sein. Dies kann insbesondere für den Fall günstig sein, dass aus konstruktiven oder betrieblichen Gründen eine Entwässerung der Verdampfer-Durchlaufheizfläche 8 vorgesehen sein soll.
  • Wie in der Figur erkennbar ist weist ein Fallrohrstück 26 mit dem ihm zugeordneten weiteren Steigrohrstück 28 und dem beide verbindenden Überströmstück 30 eine nahezu u-förmige Form auf, wobei die Schenkel des U durch das Fallrohrstück 26 und das weitere Steigrohrstück 28 und der Verbindungsbogen durch das Überströmstück 30 gebildet sind. Bei einem derartig ausgestalteten Dampferzeugerrohr 12 erzeugt der geodätische Druckbeitrag des Strömungsmediums W im Bereich des Fallrohrstücks 26 - im Gegensatz zum Bereich des weiteren Steigrohrstücks 28 - einen strömungsfördernden und nicht einen strömungshemmenden Druckbeitrag. Mit anderen Worten: Die im Fallrohrstück 26 befindliche Wassersäule an unverdampftem Strömungsmedium W "schiebt" die Durchströmung des jeweiligen Dampferzeugerrohrs 12 noch mit an, statt diese zu behindern.
  • Dadurch weist das Dampferzeugerrohr 12 insgesamt gesehen einen vergleichsweise geringen Druckverlust auf.
  • Bei dieser Bauweise sind beide Steigrohrstücke 24, 28 und das Fallrohrstück 26 in der Art einer hängenden Bauweise an der Decke des Heizgaskanals 6 aufgehängt oder befestigt. Das räumlich gesehen untere Ende des jeweiligen Steigrohrstückes 24 und das untere Ende des jeweiligen Fallrohrstücks 26 und des weiteren Steigrohrstückes 28, die jeweils durch ihr Überströmstück 30 miteinander verbunden sind, sind hingegen nicht unmittelbar räumlich im Heizgaskanal 6 fixiert. Längendehnungen dieser Segmente der Dampferzeugerrohre 12 sind somit ohne Schadensrisiko tolerierbar, wobei das jeweilige Überströmstück 30 als Dehnungsbogen wirkt. Diese Anordnung der Dampferzeugerrohre 12 ist somit mechanisch besonders flexibel und hinsichtlich thermischer Spannungen unempfindlich gegenüber auftretenden Differenzdehnungen.
  • Eine Mehrbeheizung eines Dampferzeugerrohrs 12, insbesondere in seinem Steigrohrstück 24, führt dabei dort zunächst zur Erhöhung der Verdampfungsrate, wobei bereits aufgrund der Dimensionierung des Dampferzeugerrohrs 12 infolge dieser Mehrbeheizung eine Erhöhung der Durchströmungsrate durch das mehrbeheizte Dampferzeugerrohr 12 eintritt.
  • Zudem sind die Fallrohrstücke 26 und die weiteren Steigrohrstücke 28 mehrerer Dampferzeugerrohre 12 im Heizgaskanal 6 relativ zueinander derart positioniert, dass einem in Heizgasrichtung x gesehen vergleichsweise hinten liegenden Fallrohrstück 26 jeweils in Heizgasrichtung x gesehen vergleichsweise weit vorn liegende Steigrohrstücke 24, 28 zugeordnet sind. Durch diese Anordnung kommunizieren vergleichsweise stark beheizte Steigrohrstücke 24, 28 mit einem vergleichsweise schwach beheizten Fallrohrstück 26. Durch diese relative Positionierung ist bezüglich der Durchströmung auch zwischen den Rohrreihen 14 ein selbsttätig ausgleichender Effekt erreicht.
  • Aufgrund der besonders ausgeprägten Naturumlaufcharakteristik der Dampferzeugerrohre 12 weisen diese in besonderem Maße ein selbststabilisierendes Verhalten gegenüber lokal unterschiedlicher Beheizung auf: Eine Mehrbeheizung einer Reihe von Dampferzeugerrohren 12 führt dabei lokal zur erhöhten Zufuhr von Strömungsmedium W in diese Reihe von Dampferzeugerrohr 12, so dass aufgrund der entsprechend vergrößerten Kühlwirkung selbsttätig eine Angleichung der jeweiligen Temperaturwerte einsetzt. Der in den Hauptsammler 22 einströmende Frischdampf ist somit hinsichtlich seiner Dampfparameter, unabhängig von der individuell durchlaufenen Rohrreihe 14, besonders homogen.
  • Ein besonderer Vorteil der Bauweise der Verdampfer-Durchlaufheizfläche 8, deren Austritt in Form der weiteren Steigrohrstücke 28 gasseitig zwischen den ersten Steigrohrstücken 24 einerseits und den Fallrohrstücken 26 andererseits und damit ein einem mittleren Gas-Temperaturbereich der Verdampfer-Durchlaufheizfläche 8 positioniert ist, besteht darin, dass durch diese Positionierung eine zu starke Überhitzung des Strömungsmediums auch in einzelnen Dampferzeugerrohren 12 am Austritt der Verdampfer-Durchlaufheizfläche 8 auf natürliche Weise vermieden ist.

Claims (7)

  1. Dampferzeuger (1), bei dem in einem in einer annähernd horizontalen Heizgasrichtung (x) durchströmbaren Heizgaskanal (6) eine Verdampfer-Durchlaufheizfläche (8) angeordnet ist, die eine Anzahl von zur Durchströmung eines Strömungsmediums (W) parallel geschalteten Dampferzeugerrohren (12) umfasst, und die derart ausgelegt ist, dass ein im Vergleich zu einem weiteren Dampferzeugerrohr (12) derselben Verdampfer-Durchlaufheizfläche (8) mehrbeheiztes Dampferzeugerrohr (12) einen im Vergleich zum weiteren Dampferzeugerrohr (12) höheren Durchsatz des Strömungsmediums (W) aufweist,
    dadurch gekennzeichnet , dass
    ein oder jedes Dampferzeugerrohr (12) jeweils ein annähernd vertikal angeordnetes, vom Strömungsmedium (W) in Aufwärtsrichtung durchströmbares Steigrohrstück (24), ein diesem strömungsmediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium (W) in Abwärtsrichtung durchströmbares Fallrohrstück (26) und ein letzterem strömungsmediumsseitig nachgeschaltetes, annähernd vertikal angeordnetes und vom Strömungsmedium (W) in Aufwärtsrichtung durchströmbares weiteres Steigrohrstück (28) umfasst.
  2. Dampferzeuger (1) nach Anspruch 1, bei dem das weitere Steigrohrstück (28) des jeweiligen Dampferzeugerrohrs (12) im Heizgaskanal (6) in Heizgasrichtung (x) gesehen zwischen dem ihm zugeordneten Steigrohrstück (24) und dem ihm zugeordneten Fallrohrstück (26) angeordnet ist.
  3. Dampferzeuger (1) nach Anspruch 1 oder 2, bei dem das Steigrohrstück (24) eines oder jedes Dampferzeugerrohrs (12) mit dem ihm zugeordneten Fallrohrstück (26) und das Fallrohrstück (26) mit dem ihm zugeordneten weiteren Steigrohrstück (28) jeweils strömungsmediumsseitig über ein Überströmstück (30) verbunden ist.
  4. Dampferzeuger (1) nach Anspruch 3, bei dem die jeweiligen Überströmstücke (30) innerhalb des Heizgaskanals (6) angeordnet sind.
  5. Dampferzeuger (1) nach einem der Ansprüche 1 bis 4, bei dem die weiteren Steigrohrstücke (28) und die Fallrohrstücke (26) mehrerer Dampferzeugerrohre (12) im Heizgaskanal (6) relativ zueinander derart positioniert sind, dass einem in Heizgasrichtung (x) gesehen vergleichsweise weit hinten liegenden weiteren Steigrohrstück (28) ein in Heizgasrichtung (x) gesehen vergleichsweise weit vorn liegendes Fallrohrstück (26) zugeordnet ist.
  6. Dampferzeuger (1) nach einem der Ansprüche 1 bis 5, bei dem eine Anzahl der Dampferzeugerrohre (12) jeweils eine Mehrzahl von strömungsmediumsseitig alternierend hintereinandergeschalteten Steigrohr- (24), Fallrohr- (26) und weiteren Steigrohrstücken (28) umfasst.
  7. Dampferzeuger (1) nach einem der Ansprüche 1 bis 6, dem heizgasseitig eine Gasturbine vorgeschaltet ist.
EP03780136A 2003-01-31 2003-12-08 Dampferzeuger Expired - Lifetime EP1588095B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03780136A EP1588095B1 (de) 2003-01-31 2003-12-08 Dampferzeuger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP03002243A EP1443268A1 (de) 2003-01-31 2003-01-31 Dampferzeuger
EP03002243 2003-01-31
EP03780136A EP1588095B1 (de) 2003-01-31 2003-12-08 Dampferzeuger
PCT/EP2003/013879 WO2004068032A1 (de) 2003-01-31 2003-12-08 Dampferzeuger

Publications (2)

Publication Number Publication Date
EP1588095A1 EP1588095A1 (de) 2005-10-26
EP1588095B1 true EP1588095B1 (de) 2006-11-15

Family

ID=32605295

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03002243A Withdrawn EP1443268A1 (de) 2003-01-31 2003-01-31 Dampferzeuger
EP03780136A Expired - Lifetime EP1588095B1 (de) 2003-01-31 2003-12-08 Dampferzeuger

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03002243A Withdrawn EP1443268A1 (de) 2003-01-31 2003-01-31 Dampferzeuger

Country Status (17)

Country Link
US (1) US7270086B2 (de)
EP (2) EP1443268A1 (de)
JP (1) JP4549868B2 (de)
KR (1) KR20050095781A (de)
CN (2) CN101684937B (de)
AT (1) ATE345471T1 (de)
AU (1) AU2003288240B2 (de)
BR (1) BR0318082A (de)
CA (1) CA2514871C (de)
DE (1) DE50305717D1 (de)
DK (1) DK1588095T3 (de)
ES (1) ES2276138T3 (de)
PL (1) PL207513B1 (de)
RU (1) RU2310121C2 (de)
TW (1) TWI245866B (de)
WO (1) WO2004068032A1 (de)
ZA (1) ZA200505452B (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1512906A1 (de) * 2003-09-03 2005-03-09 Siemens Aktiengesellschaft Durchlaufdampferzeuger in liegender Bauweise und Verfahren zum Betreiben des Durchlaufdampferzeugers
CA2715989C (en) 2008-03-27 2013-07-09 Alstom Technology Ltd Continuous steam generator with equalizing chamber
EP2194320A1 (de) * 2008-06-12 2010-06-09 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Durchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
EP2180250A1 (de) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Durchlaufdampferzeuger
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009012320A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009012322B4 (de) * 2009-03-09 2017-05-18 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009024587A1 (de) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009036064B4 (de) * 2009-08-04 2012-02-23 Alstom Technology Ltd. rfahren zum Betreiben eines mit einer Dampftemperatur von über 650°C operierenden Zwangdurchlaufdampferzeugers sowie Zwangdurchlaufdampferzeuger
NL2003596C2 (en) * 2009-10-06 2011-04-07 Nem Bv Cascading once through evaporator.
JP5739229B2 (ja) * 2010-12-10 2015-06-24 大阪瓦斯株式会社 過熱蒸気発生器
DE102011004270A1 (de) * 2011-02-17 2012-08-23 Siemens Aktiengesellschaft Durchlaufdampferzeuger für die indirekte Verdampfung insbesondere in einem Solarturm-Kraftwerk
US9151488B2 (en) 2012-01-17 2015-10-06 Alstom Technology Ltd Start-up system for a once-through horizontal evaporator
WO2013109769A2 (en) 2012-01-17 2013-07-25 Alstom Technology Ltd Tube and baffle arrangement in a once-through horizontal evaporator
DE102012218542B4 (de) * 2012-10-11 2016-07-07 Siemens Aktiengesellschaft Verfahren zum flexiblen Betrieb einer Kraftwerksanlage
US9739478B2 (en) 2013-02-05 2017-08-22 General Electric Company System and method for heat recovery steam generators
US9097418B2 (en) * 2013-02-05 2015-08-04 General Electric Company System and method for heat recovery steam generators
CN105579774B (zh) * 2013-09-26 2018-05-22 努特埃里克森公司 用于热回收蒸汽发生器的热交换系统和方法
US20160102926A1 (en) * 2014-10-09 2016-04-14 Vladimir S. Polonsky Vertical multiple passage drainable heated surfaces with headers-equalizers and forced circulation
CN110094709B (zh) * 2019-05-28 2024-04-26 上海锅炉厂有限公司 一种直流式蒸发器及其设计方法
CN112569373B (zh) * 2019-09-30 2022-10-25 湖北智权专利技术应用开发有限公司 一种红外热及蒸汽合成高温消毒厨具设备
EP3842723A1 (de) * 2019-12-23 2021-06-30 Hamilton Sundstrand Corporation Zweistufiger fraktaler wärmetauscher
EP4160091B1 (de) * 2021-09-30 2024-09-04 NEM Energy B.V. Dampfgenerator zur wärmerückgewinnung mit einem wärmetauscherrohrbündel

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1176155B (de) * 1959-02-28 1964-08-20 Buckau Wolf Maschf R Steilrohrkessel mit oberem, gekuehltem Rueckwandvorsprung
AT392683B (de) * 1988-08-29 1991-05-27 Sgp Va Energie Umwelt Abhitze-dampferzeuger
JPH03221702A (ja) * 1990-01-29 1991-09-30 Toshiba Corp 複圧式排熱回収熱交換器
US5311844A (en) * 1992-03-27 1994-05-17 Foster Wheeler Energy Corporation Internested superheater and reheater tube arrangement for heat recovery steam generator
BE1005793A3 (fr) * 1992-05-08 1994-02-01 Cockerill Mech Ind Sa Chaudiere de recuperation de chaleur a circulation induite.
DE19651678A1 (de) * 1996-12-12 1998-06-25 Siemens Ag Dampferzeuger
DE19700350A1 (de) * 1997-01-08 1998-07-16 Steinmueller Gmbh L & C Durchlaufdampferzeuger mit einem Gaszug zum Anschließen an eine Heißgas abgebende Vorrichtung
US6092490A (en) * 1998-04-03 2000-07-25 Combustion Engineering, Inc. Heat recovery steam generator
US6019070A (en) * 1998-12-03 2000-02-01 Duffy; Thomas E. Circuit assembly for once-through steam generators
DE10127830B4 (de) * 2001-06-08 2007-01-11 Siemens Ag Dampferzeuger
US6957630B1 (en) * 2005-03-31 2005-10-25 Alstom Technology Ltd Flexible assembly of once-through evaporation for horizontal heat recovery steam generator

Also Published As

Publication number Publication date
JP2006514253A (ja) 2006-04-27
PL207513B1 (pl) 2010-12-31
US20060075977A1 (en) 2006-04-13
RU2310121C2 (ru) 2007-11-10
EP1443268A1 (de) 2004-08-04
PL376303A1 (en) 2005-12-27
ATE345471T1 (de) 2006-12-15
EP1588095A1 (de) 2005-10-26
JP4549868B2 (ja) 2010-09-22
KR20050095781A (ko) 2005-09-30
WO2004068032A1 (de) 2004-08-12
DE50305717D1 (de) 2006-12-28
AU2003288240B2 (en) 2009-04-23
TW200416368A (en) 2004-09-01
BR0318082A (pt) 2005-12-20
CA2514871A1 (en) 2004-08-12
RU2005127352A (ru) 2006-06-10
CN101684937B (zh) 2012-03-21
CN101684937A (zh) 2010-03-31
ES2276138T3 (es) 2007-06-16
CA2514871C (en) 2012-05-01
DK1588095T3 (da) 2007-02-26
ZA200505452B (en) 2006-02-22
AU2003288240A1 (en) 2004-08-23
US7270086B2 (en) 2007-09-18
CN1745277A (zh) 2006-03-08
TWI245866B (en) 2005-12-21

Similar Documents

Publication Publication Date Title
EP1588095B1 (de) Dampferzeuger
DE10127830B4 (de) Dampferzeuger
EP0993581B1 (de) Abhitzedampferzeuger
EP1848925B1 (de) Dampferzeuger in liegender bauweise
EP0944801B1 (de) Dampferzeuger
EP1512907A1 (de) Verfahren zum Anfahren eines Durchlaufdampferzeugers und Durchlaufdampferzeuger zur Durchführung des Verfahrens
EP1926934A2 (de) Dampferzeuger
EP2438351B1 (de) Durchlaufverdampfer
EP2321578B1 (de) Durchlaufdampferzeuger
DE69733812T2 (de) Heizkessel
EP1660812B1 (de) Durchlaufdampferzeuger sowie verfahren zum betreiben des durchlaufdampferzeugers
EP2438352B1 (de) Durchlaufverdampfer
WO2015039831A2 (de) Gas-und-dampf-kombikraftwerk mit einem abhitzedampferzeuger
EP1554522B1 (de) Verfahren zum betreiben eines dampferzeugers in liegender bauweise
EP1537358B1 (de) Dampferzeuger in liegender bauweise
EP2409078B1 (de) Verfahren zur Auslegung eines Durchlaufverdampfers
EP1512906A1 (de) Durchlaufdampferzeuger in liegender Bauweise und Verfahren zum Betreiben des Durchlaufdampferzeugers
DE4126631C2 (de) Gasbeheizter Abhitzedampferzeuger
EP2564117B1 (de) Dampferzeuger
DE2446357A1 (de) Dampfkessel zur erzeugung von hochgespanntem ueberhitztem wasserdampf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050729

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50305717

Country of ref document: DE

Date of ref document: 20061228

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070215

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070416

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2276138

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070817

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070516

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101110

Year of fee payment: 8

Ref country code: DK

Payment date: 20101207

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20101209

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101210

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101229

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20111202

Year of fee payment: 9

Ref country code: FR

Payment date: 20111227

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120117

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121208

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 345471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121208

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121208

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 1390

Country of ref document: SK

Effective date: 20121208

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121208

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121208

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305717

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121208

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121209