EP1578694B1 - Method for high efficiency evaporation operation - Google Patents
Method for high efficiency evaporation operation Download PDFInfo
- Publication number
- EP1578694B1 EP1578694B1 EP03809148A EP03809148A EP1578694B1 EP 1578694 B1 EP1578694 B1 EP 1578694B1 EP 03809148 A EP03809148 A EP 03809148A EP 03809148 A EP03809148 A EP 03809148A EP 1578694 B1 EP1578694 B1 EP 1578694B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- stream
- evaporator
- feed water
- alkalinity
- set forth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 124
- 238000001704 evaporation Methods 0.000 title claims abstract description 37
- 230000008020 evaporation Effects 0.000 title claims abstract description 36
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 137
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 117
- 230000008569 process Effects 0.000 claims abstract description 80
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 56
- 238000012546 transfer Methods 0.000 claims abstract description 28
- 238000011084 recovery Methods 0.000 claims abstract description 16
- 239000007787 solid Substances 0.000 claims abstract description 15
- 239000007864 aqueous solution Substances 0.000 claims abstract description 11
- 239000000243 solution Substances 0.000 claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 7
- 150000001768 cations Chemical class 0.000 claims description 46
- 239000002253 acid Substances 0.000 claims description 35
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 13
- 230000007935 neutral effect Effects 0.000 claims description 13
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical group C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 10
- 238000005342 ion exchange Methods 0.000 claims description 10
- 239000012528 membrane Substances 0.000 claims description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- 238000005341 cation exchange Methods 0.000 claims description 6
- 230000001376 precipitating effect Effects 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- 239000000047 product Substances 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 4
- 150000002430 hydrocarbons Chemical class 0.000 claims description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims description 4
- 239000002244 precipitate Substances 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 4
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 4
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 3
- 239000003245 coal Substances 0.000 claims description 2
- 239000012141 concentrate Substances 0.000 claims description 2
- 150000007530 organic bases Chemical class 0.000 claims description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 claims description 2
- 239000010865 sewage Substances 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000007670 refining Methods 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 150000002500 ions Chemical class 0.000 abstract description 11
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052796 boron Inorganic materials 0.000 abstract description 4
- 239000000470 constituent Substances 0.000 abstract description 2
- 238000004140 cleaning Methods 0.000 description 19
- 241000894007 species Species 0.000 description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 18
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 18
- 239000000126 substance Substances 0.000 description 18
- 239000002351 wastewater Substances 0.000 description 17
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 16
- 238000013461 design Methods 0.000 description 16
- 230000008901 benefit Effects 0.000 description 14
- 239000003643 water by type Substances 0.000 description 14
- 239000004571 lime Substances 0.000 description 13
- 230000002829 reductive effect Effects 0.000 description 13
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 12
- 235000011941 Tilia x europaea Nutrition 0.000 description 12
- 239000011575 calcium Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 description 9
- 238000005755 formation reaction Methods 0.000 description 9
- 235000002639 sodium chloride Nutrition 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 229910021529 ammonia Inorganic materials 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 229910000019 calcium carbonate Inorganic materials 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 239000003513 alkali Substances 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 230000004907 flux Effects 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 238000013459 approach Methods 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000003456 ion exchange resin Substances 0.000 description 5
- 229920003303 ion-exchange polymer Polymers 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008929 regeneration Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910052788 barium Inorganic materials 0.000 description 4
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 4
- 229910052681 coesite Inorganic materials 0.000 description 4
- 229910052906 cristobalite Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000002270 dispersing agent Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 4
- 239000000347 magnesium hydroxide Substances 0.000 description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000002455 scale inhibitor Substances 0.000 description 4
- -1 silicate anions Chemical class 0.000 description 4
- 239000011734 sodium Substances 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 229910052682 stishovite Inorganic materials 0.000 description 4
- 229910052712 strontium Inorganic materials 0.000 description 4
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 4
- 229910052905 tridymite Inorganic materials 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 150000001450 anions Chemical class 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011552 falling film Substances 0.000 description 3
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 3
- 239000000391 magnesium silicate Substances 0.000 description 3
- 229910052919 magnesium silicate Inorganic materials 0.000 description 3
- 235000019792 magnesium silicate Nutrition 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 238000010979 pH adjustment Methods 0.000 description 2
- 230000003134 recirculating effect Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000004065 wastewater treatment Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001669680 Dormitator maculatus Species 0.000 description 1
- 208000035859 Drug effect increased Diseases 0.000 description 1
- 229910003556 H2 SO4 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 1
- 229910001626 barium chloride Inorganic materials 0.000 description 1
- XDFCIPNJCBUZJN-UHFFFAOYSA-N barium(2+) Chemical compound [Ba+2] XDFCIPNJCBUZJN-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- GYZGFUUDAQXRBT-UHFFFAOYSA-J calcium;disodium;disulfate Chemical compound [Na+].[Na+].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GYZGFUUDAQXRBT-UHFFFAOYSA-J 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000005115 demineralization Methods 0.000 description 1
- 230000002328 demineralizing effect Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 125000005456 glyceride group Chemical group 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 235000012204 lemonade/lime carbonate Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910000022 magnesium bicarbonate Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- PWYYWQHXAPXYMF-UHFFFAOYSA-N strontium(2+) Chemical compound [Sr+2] PWYYWQHXAPXYMF-UHFFFAOYSA-N 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- UEUXEKPTXMALOB-UHFFFAOYSA-J tetrasodium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CN(CC([O-])=O)CCN(CC([O-])=O)CC([O-])=O UEUXEKPTXMALOB-UHFFFAOYSA-J 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
- 239000002349 well water Substances 0.000 description 1
- 235000020681 well water Nutrition 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/048—Purification of waste water by evaporation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
- C02F5/083—Mineral agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D1/00—Evaporating
- B01D1/28—Evaporating with vapour compression
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/02—Treatment of water, waste water, or sewage by heating
- C02F1/04—Treatment of water, waste water, or sewage by heating by distillation or evaporation
- C02F1/042—Prevention of deposits
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
- C02F2001/425—Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/02—Non-contaminated water, e.g. for industrial water supply
- C02F2103/023—Water in cooling circuits
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S159/00—Concentrating evaporators
- Y10S159/08—Multieffect or multistage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S159/00—Concentrating evaporators
- Y10S159/901—Promoting circulation
Definitions
- the third step involves pH adjustment by adding acid to the WAC effluent. Acid is added to destroy any alkalinity remaining, after multi-valent cation removal, if any such alkalinity is present.
- various forms of hardness removal may be utilized, including sodium form strong acid cation exchange 65, followed by acidification (see FIG. 4 ) or even the use of a lime 82 (or similar lime/soda) softener as an additional pretreatment step to either sodium form strong acid cation exchange 65 or weak acid cation exchange 22 (see FIGS. 2 and 4 ).
- the direct injection of lime and sodium carbonate into the feed stream can also be utilized and the resulting precipitate filtered out in a membrane separation process, such as ultrafiltration, as a substitute for the lime/lime soda 82 softener.
Landscapes
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Physical Water Treatments (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Description
- This process relates generally to a method and to a water evaporation system for the treatment of waters that contain dissolved organic materials and inorganic salts and in particular to a method that results in a non-scaling heat transfer surface. In various embodiments, this process relates to methods for feed water pretreatment that results in higher design concentration factors (higher recovery), an increase of the on-stream availability of the evaporation system, and an essentially scale free environment at the heat transfer surface.
- In today's world of increased awareness of the environment along with the high costs and regulations that prohibit and/or limit wastewater disposal to publicly owned treatment services or the environment, there is a demand for water treatment equipment that minimizes wastewater, promotes water reuse in the process, and lowers the quantity of fresh water that has to be imported from wells or public water supplies.
- The restraints put on many industries, such as steam-electric power plants, nuclear power plants, and oil production companies, have led to adoption of a Zero Liquid Discharge (ZLD) policy in many instances. A facility can achieve ZLD by collecting and recovering most or all of the water from the wastewater. The resulting highly concentrated wastewater, or dry solids, are then held in ponds on site or the dry solids can be transported to a landfill.
- A variety of technologies have been developed to recover water from wastewater or to reduce the volume of the wastewater. These technologies have limitations of complexity and susceptibility to interruption of service or failure of components due to corrosion, fouling, or scaling by the wastewater constituents, especially when feed waters vary from foreseen conditions.
- A continuing demand exists for a simple and efficient process which can reliably provide water of a desired quality, in equipment that requires a minimum of maintenance. In particular, it would be desirable to improve efficiency of feed water usage, and lower both operating costs and capital costs for high quality water systems as is required for the various industries.
- In most water treatment systems for the aforementioned industries, the plant design and operational parameters generally are tied to final concentrations (usually expressed as total dissolved solids, or "TDS"), which are tolerable in selected equipment with respect to the solubility limits of the sparingly soluble species present. In particular, silica, calcium sulfate, barium sulfate, calcium fluoride, and phosphate salts often limit final concentrations achievable or require operation of the system using the so-called seeded slurry design. To avoid scale formation and resulting decreases in heat throughput, the design and operation of an evaporation based water treatment plant must recognize the possibility of silica and other types of scale formation, and must limit water recovery rates and operational practices accordingly. In fact, typical evaporation plant experience has been that a reduction in distillate flow rates requires chemical cleaning of the evaporator at regular intervals. Such cleaning has been typically required because of scaling, particulate fouling, biofouling, or some combination thereof. Because of the cost, inconvenience, and production losses resulting from such cleaning cycles, it would be advantageous to lengthen the time between required chemical cleaning events as long as possible.
- It would be desirable to reduce the scaling, fouling, and corrosion tendencies of the feed water to the point where concentration factors could be increased in the design, and where flux rates could be increased, compared to limits of conventional scale control methods used in water evaporation systems. Raising the allowable concentration factors and flux rates, along with lowering the corrosion potential, is always important to the end user as these design points result in a lowering of capital costs.
- Present state of the art embodies several different strategies to alleviate the problems associated with scaling and fouling in higher concentration systems. These include the use of chelating agents, dispersants, solubility promoters, filters, silica precipitators, operating at low concentration factors, and the use of preferential deposition in a seeded slurry of calcium sulfate (CaSO4) crystals. In the preferential deposition method, the low solubility precipitating crystals tend to deposit on the seeds that are suspended in the circulating solution rather than on the heat transfer surface.
- It has been common practice in the art to treat raw feed water with ion exchange resins, cationic and ionic, alone or in combination with degasifying or decarbonating units to reduce the hardness and alkalinity in such waters to a minimum.
Riggs, U.S. Patent No. 4,764,438 teaches the cationic exchange/degasification method in the treatment of a water to be used for boiler feed water.Wiegert, US Patent No. 4,235,715 also discusses the demineralization of waste water, including an ion-exchange step. - However, it is also common knowledge in the art that boilers and heat transfer equipment require that the silica (SiO2) content of the feed water be very low to avoid scaling. An anion deionizer, required for the removal of silica, is a complex system with a high time/cost regeneration process. Such a system is not specifically disclosed in the Riggs patent reference, but one skilled in the art would assume that the silica content of the feed water in Riggs is already at a minimum or non-existent level. The system in Riggs would be inadequate if silica were present at moderate to high levels. In contrast, the present invention enables the use of feed water for heat transfer equipment, such as an evaporator, with a high amount of silica without limiting repercussions.
- Membrane separation processes have also been used to obtain reusable water from wastewaters but they are typically limited to low recovery operations due to fouling/scaling limits, frequent cleanings, and replacement intervals of three years or less due, in part, to the frequent cleanings which can cause them to lose their rejection capability as well as productivity. A patented RO technology, HEROtm, utilizes softening and high pH operation to obtain recoveries up to 90 percent but has yet to show an extended membrane life comparable to the 20 years expected of an evaporator. This process is also limited in allowable concentration factor attainable due to osmotic pressure limitations, which currently is around about ten percent total dissolved solids.
- The prior art methods have the following shortcomings: (a) they rely on anti-scaling additives to prevent scale formation, or (b) they rely on seeding techniques for preferential deposition to minimize scaling of the heat transfer and other surfaces. Preferential deposition, while it works well in some applications, is not the final answer as it cannot be expected to pick up every individual crystal that is precipitating and some invariably end up on the heat transfer surface, or sump walls, where they themselves then act as a seed site for scale buildup. In addition, certain feed waters do not have enough calcium sulfate (CaSO4) in solution to serve as a self-renewing seed slurry. These feed waters then require the use of additional chemical treatment systems to supply the needed calcium (Ca) or sulfate (SO4) or both, needed for this type of scale control method. Further complications inherent to the preferential deposition method are, (1) the need to carefully control the amount and size of seed that is circulating at any given time as too small a seed will cause fouling to occur in the laminar flow portion of the stream and too much seed will result in plugging of areas like water distribution trays, and (2) there is a limit to the concentration factor obtainable when the presence of double salts, such as glauberite (NaCa(SO4)2) will form scale as the concentration factor is increased.
- Thus, for the most part, the prior art methods have one or more of the following shortcomings: (a) they rely on anti-scaling or dispersant additives to prevent scale formation, (b) are subject to scaling, fouling, and a short useful life, (c) they rely on seeding techniques to minimize scale deposition, or (d) are not able to concentrate beyond 7 or 8 percent TDS. Thus, the advantages of our treatment process, which exploits (a) multi-valent cation removal to non-precipitating residual levels, and (b) efficient dealkalization, to allow extended trouble free evaporator operation at high pH levels, are important and self-evident.
- As water is becoming increasingly expensive, or in short supply, or both, it would be desirable to increase the ratio of treated product water to raw water feed in evaporator systems. Therefore, it can be appreciated that it would be desirable to achieve reduced costs of water treatment by enabling water treatment at higher overall concentration factors than is commonly achieved today. Finally, it would be clearly desirable to meet such increasingly difficult water treatment objectives with better system availability and longer run times than is commonly achieved today.
- In so far as we are aware, no one heretofore has thought it feasible to operate an evaporator based water treatment system in a scale free environment and at an elevated pH, in continuous, sustainable, long-term operations to produce a high quality water product. The conventional engineering approach has been to design around or battle scale formation, by use of moderate pH, by limiting final concentration factors, by use of chemical additives, or by use of preferential deposition.
- In contrast to prior art methods for water treatment, the method described herein uses the essential design philosophy of virtually eliminating any possible occurrence of scaling phenomenon during evaporator operation at the maximum feasible pH, while maintaining the desired concentration factor, and taking the benefit of water recovery that results.
- The invention is a water treatment method that emphasizes feeding an evaporator with an essentially multi-valent cation free water that allows high pH evaporation in a scale free environment, to produce a high quality distillate at greater cycles of concentration. The method of the invention is defined in claim 1 appended hereto.
- In a unique feed water treatment process, raw feed waters of suitable chemical composition are preferentially treated with a weak acid cation ion exchange resin, operated in the hydrogen form, to simultaneously remove multi-valent cations and alkalinity. The weak acid cation ion exchange resins can be operated at incoming raw feed water hardness and alkalinity levels well above those that would cause conventional ion exchange systems to fail due to hardness breakthrough.
- The preferred treatment train design used in our wastewater treatment plant overcomes a number of important and serious problems. First, the low levels of multi-valent cations, combined with virtual elimination of non-hydroxide alkalinity, substantially eliminates the precipitation of scale forming compounds associated with sulfate, carbonate, or silicate anions. Thus, cleaning requirements are minimized. This is important commercially because it enables a water treatment plant to avoid lost water production, which would otherwise undesirably require increased treatment plant size to accommodate for the lost production during cleaning cycles. Second, the preferred high pH operational conditions enable a high degree of ionization to be achieved in various species which are sparingly ionized at neutral or near neutral pH in aqueous solution, to enable such species to be concentrated to higher levels before precipitation. Third, the method does not have the osmotic pressure limitation of membrane based systems and allows operation and much higher TDS concentrations with resultant higher recovery or water and reduction in final waste quantity. Finally, operation at high pH and heat provides protection against biological contamination, thus preventing undesirable contamination of the distillate stream. At the preferred high operational pH, bacteria and endotoxins are effectively destroyed. In essence, water treatment systems operated according to the process herein normally operate at conditions, which might ordinarily be considered cleaning conditions for conventional evaporation systems.
- The process involves treatment of a feed water stream, which is characterized by the presence of (i) multi-valent cations, (ii) alkalinity, and (iii) molecular species which are sparingly ionized when in neutral or near neutral pH aqueous solutions, to produce a low solute containing distillate stream and a high solids containing blowdown stream. The process involves effectively eliminating the tendency of the raw feed water to form scale when the raw feed water is concentrated to the desired concentration factor at a selected pH by removing multi-valent cations from the raw feed water stream and by effecting, in any order, one or more of the following: , (i) removing alkalinity from the raw feed water stream, (ii) removing dissolved gases whether initially present or created during the multi-valent cation or alkalinity removal steps, followed by (iii) raising the pH.
- The pH of the feed water is raised to a selected pH in a range between 9 and 10, or otherwise in excess of 10, and more preferably to about 11 to 12 or somewhat more, until the benefits gained by high ionization of silica and other species is outweighed by the additional cost. The pH increase is accomplished by adding a selected base to the softened and degassed feed stream, preferably by direct injection into the feed stream or alternately into the sump of the evaporator. The pH increase urges the molecular species, which are sparingly ionized when in neutral or near neutral pH toward increased ionization. The pH adjusted feed water is then sent through heat transfer evaporation equipment (i.e. an evaporator) to produce a concentrated blowdown stream and a low solute containing distillate stream. The evaporator equipment is typically of the falling film type wherein the heat transfer surface is comprised of a number of tubes with evaporation on either the interior or exterior surface, a plurality of plate style with evaporation on the outer surface, or a forced circulation process. It is important that in our process, the evaporator equipment operates in an essentially scale free environment to produce a distillate stream, which is substantially free of the normally undesirable species while operating at an increased efficiency due to increased solubility limits of sparingly soluble salts at an elevated pH.
- From the foregoing, it will be apparent that one important and primary object of the present invention resides in the provision of a method for treatment of water to reliably and continuously produce, over long operational cycles, a water distillate stream of high quality, suitable for reuse, at a reduced capital and operating cost.
- More specifically, an important object of our invention is to provide an evaporation based water treatment method which is capable of avoiding common scaling and fouling problems, so as to reliably provide a method of high quality water generation when operating at increased efficiency on a variety of wastewaters.
- Other important but more specific objects of the invention reside in the provision of a method for water treatment as described in the preceding paragraphs which:
allows for the removal of multi-valent cations and alkalinity from a selected feed water to be done in a simple, direct manner;
has high efficiency rates, that is, provide high product water outputs relative to the quantity of feed water input to the water treatment plant;
allows operation at pH above 9, which reduces the concentration of hydrogen ion present in the aqueous solution;
allows operation at higher specific heat transfer rates, which reduces the amount of heat transfer surface required;
allows removal of dissolved oxygen from the aqueous solution;
in conjunction with the preceding objects, the reduction of-hydrogen ion and oxygen concentration reduces the corrosiveness of the aqueous solution allowing the use of lower cost materials for most feed waters;
provide lower unit costs to the water treatment plant operator and thus to the water user, than is presently the case;
in conjunction with the just mentioned object, results in less chemical usage than in most water treatment facilities, by virtually eliminating use of some types of heretofore commonly used chemical additives, particularly scale inhibitors or chemicals needed to maintain a seeded slurry, and eliminates expensive physical/chemical scale removal techniques and downtime; - A feature of one embodiment of the present invention is the use of a unique combination of weak acid cation ion exchange with substantially complete hardness and alkalinity removal, and subsequent high pH evaporation operation, thereby enabling the water treatment plant to minimize the percentage of blowdown water. This results in high overall cycle efficiencies.
- Another feature of the present invention is the use of a high pH operation to highly ionize weakly ionizable species such as silica or boron, thus enabling operation with silica or boron concentration limits considerably exceeding the limits of conventional evaporation treatment systems when treating feed waters of comparable chemistry.
- Another feature of the present invention is the capability to remove ammonia from the feed stream as a part of the process instead of another separate process. The ammonium ion (NH4) is very soluble in water with a dissociation constant (pKa) value of 9.24. At a pH of 11.2 in the feed stream, a typical process operating point of the present invention, it is over ninety nine percent (99%) dissociated into the ammonia (NH3) ion and can be removed in the degassifier.
- All the exemplary embodiments shown herein incorporate the Zero Liquid Discharge (ZLD) concept option as a part of the illustration. Those skilled in the art will recognize that merely minimizing the blowdown stream without the use of a dewatering device may, on certain occasions, also qualify the system as ZLD.
- The high efficiency evaporation method is highly site specific wherein individual process steps are customized to fit the specific feed water, and needs of the customer, at the specific site. For that reason, all possible embodiments of this method of water treatment are not illustrated.
- The same identifier will reference identical features depicted in each of the drawings.
-
Figure 1 is a graph illustrating the ionization of silica as a function of pH; -
Figure 2 is a flow diagram illustrating one embodiment of the water treatment method disclosed herein to obtain high efficiency evaporation utilizing a weak acid cation exchange system to remove divalent cations and alkalinity associated with hardness in one step; -
Figure 3 is a flow diagram illustrating another embodiment of the water treatment method disclosed herein to obtain high efficiency evaporation, minimized blowdown, and low solute containing distillate for use as cooling tower or scrubber makeup; -
Figure 4 is a flow diagram illustrating another embodiment of the water treatment method disclosed herein showing the arrangement of equipment wherein sodium zeolite softening is sufficient for high efficiency evaporation. The use of an optional lime or lime/soda softener for hardness removal is also depicted; and -
Figure 5 is a flow diagram illustrating another embodiment of the water treatment method disclosed herein wherein acid addition adequately removes any alkalinity present in the feed stream and where hardness removal, if present, can be optionally accomplished with lime or lime/soda softening. - Since many industrial applications of various types generate large quantities of wastewater that is becoming increasingly expensive and regulated, it has become desirable to process it for internal reuse and limit or eliminate discharge into public utilities. Present day state of the art is limited on how much water can be recovered by scale causing ions, such as hardness and silica, which are inherent in these waste streams. The addition of expensive scale inhibiting agents or scale control methods are beneficial but still have their limits of usefulness. We have designed a process to overcome these limitations and recover more of the wastewater for reuse than was previously possible by providing a scale free environment in the evaporator. As used herein the term "scale" is intended to encompass not only a thin coating, layer or incrustation (usually rich in sulfate or calcium) that is deposited on a surface, but also particulate fouling, biological fouling, or some combination thereof.
- Attributes that characterize the high efficiency evaporator (HEVAP) process design and operation are:
- (1) Very high solubility of weak acid anions such as silica.
- (2) Very high achievable concentration factors (recovery--ninety percent (99%) or higher recovery can be achieved).
- (3) Biological fouling is essentially eliminated.
- (4) Particulate fouling is substantially reduced.
- (5) Cleaning frequency is substantially reduced.
- (6) Addition of scale inhibitors is virtually eliminated.
- (7) Corrosion potential is reduced.
- (8) Higher heat flux is achievable.
- (9) Reduced overall capital cost, compared to conventional evaporation systems.
- (10) Reduced overall operating cost, compared to conventional evaporation systems.
- The HEVAP evaporation system is highly site-specific. Individual process steps are customized to fit the specific feed water at a specific site. Regardless of the difference in the pretreatment process for different sites, one process parameter is common for all applications, namely that the evaporator system is operated at the highest feasible blowdown pH and that the circulating solution provides a scale free environment at the heat transfer surface.
- In order to operate an evaporative system with a pH of at least 9.0, preferably at least 10.5, and most preferably between 11 and 12, or above, several process conditions must be met in order to effectively eliminate the potential for scale formation on the heat transfer surface. Some of those process conditions are also necessary for operating an evaporative system at very high concentration factors. Such process conditions are as follows:
- (1) The calcium, magnesium, strontium, and barium concentration in the evaporator feed must be substantially absent, preferably to near zero, and most preferably, to essentially zero.
- (2) Aluminum, iron, manganese, and other multi-valent cation content including organically bound species, as well as the presence of colloidal particles containing such materials, should be substantially absent, and preferably to near zero.
- (3) Buffering anions (specifically bicarbonate, or carbonate, and/or phosphate species) should be reduced to as low of a level as can be practically achieved.
- (4) Dissolved and suspended gasses such as oxygen, ammonia, and others should be minimized.
- The selection of specific operations and control points, to fulfill the above process condition requirements, is influenced by the characteristics of each specific feed water. The concentration factor needed (or desired for a specific application) also affects the operations and control point criteria as well.
FIG. 2 represents a highly effective evaporator unit process sequence. - The first step is to adjust the hardness-to-alkalinity ratio of the feed water, if needed. Optimizing this ratio, which is typically done by alkali addition, makes complete hardness removal feasible in a weak acid cation ion exchange process operated in the hydrogen form as described in the next process step.
- The second step in the evaporator process train involves the utilization of a weak acid cation (WAC) resin (e.g. DOWEX®.RTM. MAC-3, or Lewatit CNP-80, Amberlite®.RTM. IRC-86). Operated in either the hydrogen or sodium form, the WAC resins remove multi-valent cations and, in the hydrogen form removes any alkalinity associated with hardness.
- The third step involves pH adjustment by adding acid to the WAC effluent. Acid is added to destroy any alkalinity remaining, after multi-valent cation removal, if any such alkalinity is present.
- In a fourth step, the acidified effluent, containing virtually zero alkalinity, is then treated for carbon dioxide removal. This removal can be accomplished in any of various type degasifiers. The degasified feed water stream with multi-valent cation levels below the limits required for scale free operation and essentially zero alkalinity, is then injected with a soluble alkali, preferably for adjusting pH to 9.0 or higher, more preferably 10.5 or higher, and most preferably 11.0 or above.
- In other embodiments where ammonia is a concern, a variation of the steps is required. Alkali is added to the feed stream to decrease ammonia solubility at elevated pH prior to removing it as a gas in a degassifier. In applications where both alkalinity and ammonia are present, two degassifiers are required, one for removing any gases such as carbon dioxide at low pH and one for ammonia removal at high pH. In cases where there is no alkalinity due to a very low pH in the feed stream, the ammonia can be removed by injecting alkali prior to a single degassifier after reducing the multi-valent cations to a non-scaling level in the feed stream.
- Feed waters utilized for production of reusable water, especially those encountered in wastewater treatment, include the presence of silicon dioxide (also known as silica or SiO2) in one form or another, depending upon pH and the other species present in the water. For evaporator systems, scaling of the heat transfer surface with silica is to be religiously avoided. This is because (a) silica forms a relatively hard scale that reduces productivity of the evaporator, (b) is usually rather difficult to remove, (c) the scale removal process produces undesirable quantities of spent cleaning chemicals, and (d) cleaning cycles result in undesirable and unproductive off-line periods for the equipment. Therefore, regardless of the level of silica in the incoming raw feed water, operation of conventional evaporation processes, without a preferential deposition seeded slurry process, generally involves concentration of SiO2 in the high solids stream to a level not appreciably in excess of 150 ppm of SiO2 (as SiO2). This requires that evaporator systems be operated at lowered concentration factors (recovery rates) to prevent silica concentration in the blowdown stream from exceeding solubility limits. Seeded slurry systems can be taken to concentration factors that surpass the solubility of silica but rely on seed management procedures and are still prone to scaling of the evaporator.
- Scaling due to various scale forming compounds, such as calcium sulfate, calcium carbonate, and the like, can be predicted by those of ordinary skill in the art and to whom this specification is directed, by use of the Langelier Saturation - Index (LSI) or the Stiff-Davis Index (S&DI), or other available solubility data. Operating parameters, including temperature, pH, distillate and blowdown flow rates, must be properly accounted for, as well as the various species of ions in the raw feed water, and those species added during pretreatment. The Nalco Water Handbook, copyright 1979, by McGraw-Hill details the procedure for use of the indexes.
- With reference to
Figure 2 ,wastewater stream 20 of this invention will typically contain, soluble and insoluble, organic and inorganic components. The inorganic components can be salts such as sodium chloride, sodium sulfate, calcium chloride, calcium carbonate, calcium phosphate, barium chloride, barium sulfate, and other like compounds. Metals such as copper, nickel, lead, zinc, arsenic, iron, cobalt, cadmium, strontium, magnesium, boron, chromium, and the like may also be included. When treating a wastewater stream from an oil refinery, organic components will be present and are typically dissolved and emulsified hydrocarbons such as benzene, toluene, phenol, and the like. - It is commonly understood that the solubility of silica increases with increasing pH, and that silica is quite soluble in high pH aqueous solution. Along with solubility, the degree of ionization of silica also increases with increasing pH. While the increase in silica solubility is not directly proportional to the degree of ionization, the rate of increase in silica solubility is basically proportional to the rate of change in ionization as increased ionization results in the soluble silicate ion being the dominant species. This discrepancy between solubility and ionization is explained by the fact that even undissociated silica exhibits some solubility in aqueous solutions, typically up to about one hundred twenty (120) ppm to one hundred sixty (160) ppm, depending upon temperature and other factors. In comparison, it has been demonstrated that silica solubility at pH 10.5 is in excess of one thousand five hundred (1,500) ppm at ambient temperature; silica is increasingly soluble as temperature and/or pH increases.
- Silica is very weakly ionized when in neutral or near neutral aqueous solutions and is generally considered to exist as undissociated (meta/ortho-) silicic acid (H4 SiO4) in most naturally occurring waters with a pH of up to about 8. The dissociation constant (pKa) value for the first stage of dissociation of silica has been reported at approximately 9.7, which indicates that silica is approximately fifty percent (50%) ionized at a pH of 9.7; the other fifty percent (50%) remains as undissociated (ortho) silicic acid at that pH. A graphical representation of the relationship between pH and the percent silica ionization is shown in
FIG. 1 . Clearly, it would be advantageous, where silica ionization is desired, to operate at a pH in excess of 10, and more preferably, in excess of 11, and yet more preferably, in excess of 12 where all of the silica molecule is present as a soluble silicate ion. - Therefore, increasing the pH of the evaporator operation thus provides the major benefit of increased silica solubility. To gain maximum benefit from silica ionization at high pH, the evaporator system should be operated at a pH as high as possible. Preferably, the evaporator system is operated at a pH of about 10.5 or above, and more preferably, at a pH of 11 or higher. This contrasts with typical evaporator operation practice, where operating pH has been maintained at less than 9 in order to avoid scale formation, particularly silica and carbonate scales.
- Referring to
FIG. 2 , one embodiment of this process for evaporation equipment operation is shown. In this method,raw water 20 is first treated in a weak acid cation (WAC)ion exchange unit 22, where hardness and bicarbonate alkalinity are simultaneously removed. For those cases whereraw water 20 hardness is greater than alkalinity, operation of the weak acid cationion exchange unit 22 must be facilitated by addition of a source of alkalinity 21, such as by addition of an aqueous solution of sodium carbonate (Na2 CO3). Preferably, theWAC unit 22 is operated in the hydrogen form for ease of operation and regeneration. However, it would also work in the sodium form, followed by acid addition. In any case, in the just mentioned case and otherwise optionally where appropriate,acid 23 is added to the effluent 27 from the WAC unit(s) 22 to enhance bicarbonate destruction. Sufficient acid is added to lower the pH where bound carbonates are converted to a free gas carbon dioxide. Then, thecarbon dioxide 32 that has been created in the WAC (and/or by acid addition) is removed, along with other non-condensable gasses such as oxygen and nitrogen, preferably in an atmospheric pressure or vacuum/flash degasifier 30. Finally, an alkali 31 (base) is added, preferably by pumped injection of liquid solution, to increase the pH of thefeed water 34 to a selected level. Any of a variety of conveniently available and cost effective base products may be used, provided that no appreciable scaling tendency is introduced. Besides use of common sodium hydroxide, other chemicals such as sodium carbonate, potassium hydroxide, or potassium carbonate might be selected. In fact, in certain cases, an organic base, such as a pyridine type compound, may be used effectively to carry out this process. - The pH of the feed water is raised to a selected pH of at least 9.0, or up to 10, or preferably to a range between 10 and 11, or otherwise in excess of 11, and more preferably to 12 or more, and most preferably, to 13 or more.
- The weak acid cation ("WAC") ion-exchange resins used in the first step of the preferred embodiment of the method defined herein, as illustrated in
FIG. 2 , are quite efficient in the removal of hardness associated with alkalinity. Such a reaction proceeds as follows:
Ca+++2RCOOH→7(RCOO)2 Ca+2H+
- Then, the hydrogen combines with the bicarbonate to form carbonic acid, which when depressurized, forms water and carbon dioxide, as follows:
H+ +HC03 -→H2 CO3→H2 O+CO2
- Regeneration of the resin is accomplished by use of conveniently available and cost effective acid. It is well known by those in the art that regeneration of WAC ion-exchange resins may proceed quite efficiently, at near stoichiometric levels (generally, not more than about one hundred and twenty percent (120%) of ideal levels). Preferably, hydrochloric acid may be used, since in such cases highly soluble calcium chloride would be produced, and the regeneration process would not pose the potential danger of formation of insoluble sulfate precipitates, such as calcium sulfate, even with high strength acids. However, by use of a staged regeneration procedure, i.e., by using a low concentration acid followed by a higher concentration acid, it is possible to reliably utilize other acids, including sulfuric acid (H2 SO4), while still avoiding undesirable precipitates on the resin. In this manner, hardness ions are solubilized to form soluble salts, which are eluted from the resin bed and are typically sewered.
- Other polyvalent cations, most commonly iron (Fe++/Fe+++), magnesium (Mg++), barium (Ba++), strontium (Sr++), aluminum (Al+++), and manganese (Mn++ /Mn++++), are also removed by the WAC resin. Since the presence of even very small quantities of hardness or other species of decreasing solubility at increasing pH will result in precipitation of sparingly soluble salts under the process conditions present in our process, care must be taken to prevent precipitation on the heat transfer surface of the substances such as calcium carbonate, calcium hydroxide, magnesium hydroxide, and magnesium silicate. One precaution that should be observed is that both hardness and non-hydroxide forms of alkalinity should be aggressively reduced in the feed water, prior to upward pH adjustment to selected evaporator operating conditions. Once the multi-valent cations and non-hydroxide forms of alkalinity have been removed, then the desired pH increase may be accomplished with any convenient alkali source, such as sodium or potassium alkali. Once this pretreatment has been thoroughly accomplished, then an evaporator system can be safely operated at very high pH levels, in order to take advantage of the aforementioned silica solubility.
- The treated and conditioned
feed water 34 is directed into theevaporator 40 where it mixes with and dilutes the concentrated high solids stream 43. This stream is recirculated with pump 42 and a small portion is removed as evaporator blowdown 47 on each pass through theevaporator 40. In theevaporator 40 the solutes in thefeed water 34 are concentrated by removing water from the diluted recirculating solution 43 as it passes over the heat transfer surface. As depicted inFigure 2 , the evaporator utilizes falling thin film evaporation wherein the recirculated stream 43 is thinly spread across the inner surface of a plurality of heat transfer tubes. A small portion of water is removed from the thin recirculating stream in the form ofsteam 45 driven by heated,compressed steam 48 which is condensing on the outside of the heat transfer tubes. The water that has been removed, in the form ofsteam 45, is compressed through the compressor 46, and thecompressed steam 48 is condensed on the outer surface of the heat transfer tubes to generatemore steam 45, and keep the evaporation process going. The condensingsteam 48 is known as distillate or condensate, as is known to those skilled in the art of evaporation, and contains a low level of non-volatile solutes, typically, in some embodiments, less than 10 parts per million (ppm). It should be noted that the use of a tubular fallingfilm evaporator 40 design is provided only for purposes of enabling the reader to understand the evaporation process and is not intended to limit the process to the use of the same. Those familiar with the art will recognize that other designs, such as, for example, a rising film evaporator, or a forced circulation evaporator, or a plate style evaporator may be alternately utilized with the accompanying benefits and/or drawbacks that may be inherent in the alternative designs. - The condensing
steam 48 descends by gravity to the bottom of the tubular heat transfer surface and is collected as distillate stream 44. A small portion of the distillate 44 may be sent to the earlier discusseddegasser 30 vialine 100 for use in mass transfer, i.e., adding heat to thefeed water stream 27 to remove non-condensable gasses such ascarbon dioxide 32. However, the bulk of the distillate 44 is directed to the terminal point of the evaporator where it is available for use in any process that requires high quality water as a makeup stream. Typical, but not limiting, uses include those shown in theFigure 4 embodiment of the high efficiency evaporation process in which the distillate can be used as makeup to a cooling tower or scrubber. Other uses would include low-pressure boilers and, in the hydrocarbon recovery field (produced water), as feed water to a once through steam generator (OTSG) that generates steam for injection into oil-bearing formations. - The evaporator blowdown 47 containing the concentrated solutes originally present in the
feed water 34 along with any chemicals used to raise the pH and/or regenerate post ion exchange systems can be disposed of by the standard approach used at individual sites. This includes holding on-site in waste evaporation ponds, trucking to a waste site, or injection into deep wells. - Alternatively, the blowdown stream 47 can be directed to a
crystallizer 55 that further processes the concentrated stream to recover low solute distillate 53 and a high-suspendedsolids stream 60. The distillate stream 53 is then combined with the falling film evaporator distillate stream 44 to effect increased recovery of theevaporator feed stream 34. The high-suspendedsolids containing stream 60 can then be directed to a dewatering device 50, typically a belt filter but alternatively a filter press or even a spray drier. The final product is a dried solid that is suitable for landfill or possibly even reused within the originating process. The two different filter methods generate a high solute/low suspended solids stream 52 that is directed back to thecrystallizer 55 for further processing. - In other embodiments, and as suited to meet the particularized needs of a selected raw feed water chemistry, various forms of hardness removal may be utilized, including sodium form strong
acid cation exchange 65, followed by acidification (seeFIG. 4 ) or even the use of a lime 82 (or similar lime/soda) softener as an additional pretreatment step to either sodium form strongacid cation exchange 65 or weak acid cation exchange 22 (seeFIGS. 2 and4 ). The direct injection of lime and sodium carbonate into the feed stream can also be utilized and the resulting precipitate filtered out in a membrane separation process, such as ultrafiltration, as a substitute for the lime/lime soda 82 softener. - For particularly soft waters, the lime or lime/
soda softener 82 may be totally inappropriate, and this method may proceed with no softening of the raw water, and only asimple acid 24 feed before degasifying, as can be seen in FIG. 6. On the other hand, where softening is appropriate, some raw feed waters can be appropriately treated for reductions in hardness and alkalinity to a desired extent bysoftener 82. - In still other embodiments and for a selected feed water, the use of softening membranes for partial removal of hardness may be incorporated into the process as a replacement for
sodium zeolite 65 orweak acid cation 22 softening. - In cases where raw water composition is such that sodium zeolite softening is advantageous, as is depicted in
FIG. 4 , elimination of calcium hardness proceeds as follows:
Ca+2 +Na2 X→CaX+2Na+
- Then, bicarbonate alkalinity is converted to carbon dioxide, with a selected acid, in a manner similar to the following:
NaHCO3 +HCl.→NaCl+H2 O+CO2
- For those waters where lime softening may be an acceptable or preferred method for initial hardness and alkalinity reduction, the addition of lime to the water reduces calcium and magnesium hardness, and associated bicarbonate alkalinity, as follows:
Ca(HCO3)2 +Ca(OH)2 →2 CaCO3↓+2H2
Mg(HCO3)2 +2Ca(OH)2→Mg(OH)2↓+2 CaCO3+2H2O
- Regardless of the equipment configuration selected for treatment of a particular raw water chemistry, the key process parameters are (a) to remove those cations which, in combination with other species present at high pH, would tend to precipitate sparingly soluble salts on the heat transfer surfaces, and (b) eliminate non-hydroxide alkalinity to the maximum extent feasible, to further protect against precipitation of scales on the heat transfer surfaces when operating at an elevated pH.
-
FIG. 3 illustrates the use of our method of evaporator system operation for cooling tower makeup water or for scrubber makeup water. Theevaporator unit 40 and various pretreatment equipment are operated according to the methods set forth hereinabove, to produce a high quality distillate 44. Although the cooling tower 95 andscrubber 90 could be fed with distillate 44, more typically, the cooling tower 95 andscrubber 90, for example in a steam-electric power plant, would be supplied by usualraw water 20 supplies, such as municipal or well water. Therefore, cooling tower blowdown 96 andscrubber blowdown 91 are typically high in both hardness and alkalinity. Likewise, this system may be used to treat water having intimate contact with ash, such as ash pond water or ash-sluicing water from coal fired steam-electric power plants. In our evaporation process, a significant amount of reusable water can usually be obtained by our method of evaporation pretreatment and operation, unlike the case with conventional evaporative systems. - Another advantage, since an evaporator system when operated as described herein will not be subject to scaling or fouling conditions, wastewaters from refineries, hydrocarbon recovery operations, pulping and papermaking operations, membrane concentration systems, and municipal sewage treatment plants, are candidates as suppliers of
raw water 20. Typical industrial uses where water of sufficient quality may be attained when treating wastewaters include cooling towers, boiler makeup, scrubber makeup, and the like. - Many exemplary and desirable process benefits provided by the HEVAP evaporation system process design and operation were listed above. Detailed explanation of such benefits include:
- It has been documented by others that silica solubility in water at 25°C. approaches 6000 milligram per liter (mg/l)at a pH of 11 and at a pH of 12, the solubility approaches 60,000 mg/l when in equilibrium with amorphous silica. It has also been documented that the solubility of silica in water goes up with an increase in temperature leading to the conclusion that evaporator operation at temperatures in excess of 100°C. at an elevated pH and silica levels up to 6000 mg/l is feasible. However, this is only possible if precipitating species such as calcium and magnesium and the like have been removed from the feed stream so that they cannot encourage the polymerization of silica and subsequent scaling on the heat transfer surface. The novel process disclosed herein wherein an aggressive approach to multi-valent cation and alkalinity removal is practiced, allows operation at much higher levels of silica concentration than were previously possible in normal evaporators. Since the high pH utilized by this novel process assures increased silica solubility, a concentration factor (i.e., ratio of
feed rate 34 to blowdown rate 47) for theevaporator 40 can be selected so that silica solubility is not exceeded. - Since multi-valent ions such as calcium, magnesium, barium, strontium, aluminum, iron, manganese, etc., have been removed prior to concentration in the evaporator, undesirable precipitation of species such as calcium carbonate, calcium fluoride, calcium sulfate, barium sulfate, magnesium hydroxide, aluminum/magnesium silicate, etc., does not occur in the high efficiency evaporator process, and thus that type of precipitation no longer limits the recovery achievable by an evaporator system. Importantly, silica solubility is increased dramatically at the normal high efficiency brand evaporator operating pH (preferably at approximately 11 or above). Since silica usually represents the ultimate limiting criterion, in terms of maximum allowable concentration in an evaporator system, increased silica solubility along with essentially total absence of species such as calcium, barium, etc., in the evaporator feed, will allow evaporator operation at very high recovery rates (98 to greater than 99 percent) with the vast majority of feed waters.
- Most commonly occurring microbial species are completely lysed (physically destroyed by wall rupture) at the high operating pH. In fact, even virus, spores, and endotoxins are either destroyed or rendered incapable of reproduction/proliferation at very high pH levels. Saponification of lipids (fat) is expected to play a role in the process as well since fatty acids and their corresponding glycerides will form soluble 'soaps' at the high operating pH. This characteristic of the new process can be of significant benefit for sites with known biofouling problems or for the treatment of bio-contaminated/bio-active wastewater.
- The HEVAP process, which utilizes aggressive removal of multi-valent cations and alkalinity along with a high pH in the evaporator, lengthens the time between shutdowns to clean the equipment. Typically, two weeks per year are used to clean heat transfer surfaces and sumps by opening them up to allow access for expensive high pressure hydro-blasting procedures to remove the bulk scaling material. This is then followed by time-consuming washes with costly proprietary chemicals to remove any scale not removed by hydro blasting.
- In contrast, the HEVAP process, by removing essentially all minimal solubility ions and alkalinity, incurs only minimal scaling due to small leakage from the softeners used. The result of this is that cleaning intervals can be extended and that they can be simply and effectively accomplished by commodity cleaning chemicals, such as hydrochloric acid solutions, tetra-sodium EDTA, and sodium hydroxide. Expensive proprietary chemical cleaning agents are not required. The scales that could occur would be predominantly calcium carbonate, magnesium hydroxide, magnesium silicate, and the like, all of which can be removed with a simple acid wash.
- The increased system availability, with minimal scaling and virtually non-existent bio-fouling, is clearly another important benefit of this novel operational method.
- The use of antiscalants, scale dispersants, scale inhibitors, or scale control methods, while not harmful or incompatible with the new process, can be minimized, if not completely eliminated, due to the aggressive removal of multi-valent cations along with virtually all non-hydroxide alkalinity as practiced by the HEVAP pretreatment process.
- Present day state of the art evaporators are heat flux (flow) limited due to the presence of low solubility scale causing ions such as calcium carbonate, calcium sulfate, silica and the like. A higher flux can be incorporated into the evaporator design when these ions are absent in the feed stream and that is what is accomplished with the process described herein.
- The lowered corrosion potential that results from operating the evaporator with a high pH in the concentrated circulating solution allows the use of lower cost materials for heat transfer tubes or plates and other wetted surfaces that are contacted by the concentrated solution, such as sump walls. This is an important advantage since the costs of these materials have a substantial impact on the capital cost of an evaporator. In most cases the use of high cost duplex and AL6XN (6 percent minimum molybdenum) type stainless steels, which are normally used in high chloride salt solutions, can be eliminated in favor of a lower grade stainless such as 316.
- Water plant operating costs can be reduced due to minimizing, or eliminating, costly proprietary antiscalants and/or dispersants. Additional savings can be found by eliminating the need for seeded slurry operation at installations where the multi-valent ions are at a low level in the feed stream but are accompanied by high silica levels. Along with the cost of seeding the evaporator with calcium sulfate crystals, there is also incurred costs associated with calcium chloride and/or sodium sulfate injected chemicals to provide enough precipitating ions to maintain the seed bed at many installations. Further savings can be realized by the reduction in frequency of cleaning operations, less expensive cleaning chemicals, less downtime for cleaning, and no requirement for costly physical cleaning operations. Still further, if the ZLD option is incorporated, the cost of sending the blowdown to a public utility company is eliminated.
Claims (20)
- A process for treatment of a silica-containing aqueous feed stream using an evaporator, said process comprising:(a) providing a feed water stream containing soluble and insoluble inorganic and organic species therein, said species comprising:(I) multi-valent metal cations,(II) alkalinity,(III) at least one molecular species which is at low ionization levels when in solution at around neutral pH;(b) removing a portion or substantially all multi-valent metal cations from said feed stream to a non-precipitating residual level, and(c) processing the feed water stream by:(I) removing substantially all non-hydroxide alkalinity from said feed water stream; and(II) raising the pH thereof to at least 9 or higher;(d) passing the product from step (c) into said evaporator, wherein said evaporator:(I) contains a plurality of heat transfer surfaces,(II) contains a circulating high solids solution, and(III) wherein the pH of said circulating solution is maintained to at least 9, or higher; and(e) condensing the vapor produced by the evaporator to produce a low solute containing distillate stream, the evaporator also producing a high solute/solids containing blowdown stream.
- The process as set forth in claim 1, wherein the step of said multi-valent cation removal is accomplished in a weak acid cation ion exchange system operated in a hydrogen form.
- The process as set forth in claim 1, wherein the step of said multi-valent cation removal is accomplished in a weak acid cation ion exchange system that is operated in a sodium form.
- The process as set forth in claim 2, wherein said feed water stream contains more multi-valent cations than alkalinity, and further comprising, before feeding said feed water to said weak acid cation exchange system, the step of adjusting the ratio of multi-valent cations to alkalinity by adding a base to said feed water, so as to raise the alkalinity of said feed water.
- The process as set forth in claim 2, wherein said feed water stream contains more alkalinity than multi-valent cations, and further comprising, before feeding said feed water to said weak acid cation exchange system, the step of addition of acid to said feed water, so as to remove the excess alkalinity in said feed water.
- The process as set forth in claim 1, wherein the step of multi-valent cation removal is accomplished by passing said feed water through a sodium form strong acid cation ion exchange system.
- The process as set forth in claim 1, wherein after removing substantially all non-hydroxide alkalinity from said feed water stream dissolved gas is removed from said feed water stream.
- The process as set forth in claim 1, wherein said evaporator is operated without limitation of the concentration of silica (SiO2) present in said blowdown stream.
- The process according to claim 1, wherein said evaporator comprises falling thin film evaporation equipment operating as a single unit or in series or parallel, or comprises forced circulation evaporation equipment or natural circulation evaporation equipment which operates as a single unit or in parallel to generate said distillate stream and a high solids blowdown stream.
- The process as set forth in claim 9, wherein said evaporator is operated in one of a steam driven multiple effect mode, a mechanical vapor recompression mode, a thermal compression mode, and as a multiple stage flash evaporator.
- The process as set forth in claim 1, further comprising heating said acidified feed water stream to enhance gas removal in a degasifier prior to entering said evaporator.
- The process according to claim 1, wherein the step of raising the pH is accomplished by addition of a base in aqueous solution, said base selected from the group consisting of (a) sodium hydroxide, (b) sodium carbonate, (c) potassium hydroxide, and (d) potassium carbonate.
- The process according to claim 1, wherein the step of raising the pH is accomplished by addition of an aqueous organic base.
- The process according to claim 1, wherein said feed water stream comprises one of cooling tower blowdown, scrubber blowdown, water utilized in ash transport in a coal fired steam-electric power plant, ash pond water, ash-sluicing water, effluent from sewage treatment, effluent from a food processing treatment, boiler blowdown, a concentrated stream from membrane separation equipment, effluent from oil refining operations, and effluents from hydrocarbon recovery operations.
- The process as set forth in claim 1, wherein the step of multi-valent cation removal is partially accomplished by passing said feed water stream through membrane softening equipment, or by increasing the pH to at least 10 in said feed water stream and passing the pH adjusted stream through membrane separation equipment to filter out hardness precipitate.
- The process as set forth in claim 1 further comprising, during the step of removing alkalinity, the additional step of removing substantially all non-hydroxide alkalinity not associated with hardness.
- The process as set forth in claim 1, wherein the steps of (b) removing multi-valent cations, and (c) removing alkalinity and increasing pH are accomplished prior to a membrane process to pre-concentrate the feed stream upstream of said evaporator described under step (d).
- The process as set forth in claim 1, wherein said low ionized species when in neutral or near neutral pH aqueous feed stream comprises silica (SiO2).
- The process as set forth in claim 1, wherein said low ionized species when in neutral or near neutral pH aqueous feed stream comprises meta/ortho silicic acid (H4SiO4)
- The process as set forth in claim 1, wherein after step (c) (II) and prior to step (d), the process further comprises the step of removing dissolved gas in a degasifier.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US41955202P | 2002-10-18 | 2002-10-18 | |
US41954902P | 2002-10-18 | 2002-10-18 | |
US419552P | 2002-10-18 | ||
US419549P | 2002-10-18 | ||
PCT/US2003/033066 WO2004035479A1 (en) | 2002-10-18 | 2003-10-17 | Method and apparatus for high efficiency evaporation operation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1578694A1 EP1578694A1 (en) | 2005-09-28 |
EP1578694B1 true EP1578694B1 (en) | 2011-02-23 |
Family
ID=32110255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03809148A Expired - Lifetime EP1578694B1 (en) | 2002-10-18 | 2003-10-17 | Method for high efficiency evaporation operation |
Country Status (9)
Country | Link |
---|---|
US (1) | US8092656B2 (en) |
EP (1) | EP1578694B1 (en) |
AT (1) | ATE499322T1 (en) |
AU (1) | AU2003301447B2 (en) |
CA (1) | CA2502643C (en) |
DE (1) | DE60336171D1 (en) |
IL (1) | IL168079A0 (en) |
MX (1) | MXPA05004534A (en) |
WO (1) | WO2004035479A1 (en) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7438129B2 (en) * | 1999-05-07 | 2008-10-21 | Ge Ionics, Inc. | Water treatment method for heavy oil production using calcium sulfate seed slurry evaporation |
US7681643B2 (en) * | 1999-05-07 | 2010-03-23 | Ge Ionics, Inc. | Treatment of brines for deep well injection |
US7428926B2 (en) | 1999-05-07 | 2008-09-30 | Ge Ionics, Inc. | Water treatment method for heavy oil production |
US9168469B2 (en) * | 2004-12-22 | 2015-10-27 | Chemtor, Lp | Method and system for production of a chemical commodity using a fiber conduit reactor |
US10526299B2 (en) | 2004-12-22 | 2020-01-07 | Chemtor, Lp | Fiber conduit reactor with a heat exchange medium inlet and a heat exchange medium outlet |
US7270796B2 (en) * | 2005-08-11 | 2007-09-18 | Castion Corporation | Ammonium/ammonia removal from a stream |
JP2008057888A (en) * | 2006-08-31 | 2008-03-13 | Mitsubishi Heavy Ind Ltd | Water treatment method for steam plant |
US8746336B2 (en) * | 2009-02-06 | 2014-06-10 | Keith Minnich | Method and system for recovering oil and generating steam from produced water |
PL2456721T3 (en) * | 2009-07-21 | 2014-01-31 | Linde Ag | Process for cleaning a process condensate |
US8603301B2 (en) * | 2009-10-05 | 2013-12-10 | General Electric Company | Method for reduction of contaminants in evaporator distillate |
US8425636B2 (en) * | 2009-11-12 | 2013-04-23 | General Electric Company | Gasification plant with total zero discharge of plant process waters |
JP5510123B2 (en) * | 2010-06-30 | 2014-06-04 | 三浦工業株式会社 | Operation method of steam boiler |
US9221701B2 (en) * | 2010-11-19 | 2015-12-29 | Chemtreat, Inc. | Methods for reducing scale formation on and removing deposits from heat transfer surfaces |
CN102512984B (en) * | 2011-12-29 | 2014-02-05 | 武汉大学 | Preparation method for oxygen removal polymer film for water supplied for boiler |
US9738553B2 (en) * | 2012-03-16 | 2017-08-22 | Aquatech International, Llc | Process for purification of produced water |
US20140034475A1 (en) * | 2012-04-06 | 2014-02-06 | Deka Products Limited Partnership | Water Vapor Distillation Apparatus, Method and System |
US9737827B2 (en) * | 2012-08-13 | 2017-08-22 | Enviro Water Minerals Company, Inc. | System for removing high purity salt from a brine |
US9403698B2 (en) * | 2012-09-17 | 2016-08-02 | De Nora Water Technologies, Inc. | Method and system for treating produced water |
GB2510159B (en) * | 2013-01-27 | 2015-04-22 | Ide Technologies Ltd | Evaporator array for a water treatment system |
EP3002258A4 (en) | 2013-07-05 | 2016-08-03 | Water treatment method, and water treatment system | |
EA031635B1 (en) * | 2013-09-13 | 2019-01-31 | Дженерал Электрик Компани | Treatment of produced water for supercritical dense phase fluid generation and injection into geological formations for the purpose of hydrocarbon production |
CN103936091B (en) * | 2013-12-26 | 2015-09-02 | 重庆宜化化工有限公司 | A kind of light liquid distil process method |
GB2537392B (en) * | 2015-04-15 | 2017-09-20 | Ide Technologies Ltd | Improved evaporator |
KR101781503B1 (en) | 2015-05-07 | 2017-09-25 | 두산중공업 주식회사 | Multi-effect distillator with partial acid dosing and desalination method using the same |
WO2018089848A2 (en) | 2016-11-10 | 2018-05-17 | Ecovap, Inc. | Evaporation panels |
WO2019028478A2 (en) | 2017-08-04 | 2019-02-07 | Ecovap, Inc. | Evaporation panel systems and methods |
USD864366S1 (en) | 2017-09-21 | 2019-10-22 | Ecovap, Inc. | Evaporation panel |
US11505475B2 (en) | 2017-11-01 | 2022-11-22 | Ecovap, Inc. | Evaporation panel assemblies, systems, and methods |
CN113461088A (en) * | 2020-03-31 | 2021-10-01 | 国家能源投资集团有限责任公司 | Natural evaporation, concentration and crystallization system and method for strong brine |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2807582A (en) * | 1954-04-05 | 1957-09-24 | Cochrane Corp | Method and apparatus for water treatment |
US4036749A (en) * | 1975-04-30 | 1977-07-19 | Anderson Donald R | Purification of saline water |
US4235715A (en) * | 1979-02-16 | 1980-11-25 | Water Refining Company, Inc. | Process for removing alkalinity and hardness from waters |
US4323430A (en) * | 1981-03-16 | 1982-04-06 | United States Steel Corporation | Process for separating ammonia and acid gases from streams containing fixed ammonia salts |
US4764438A (en) | 1983-12-01 | 1988-08-16 | The United States Of America As Represented By The Secretary Of The Air Force | Solid state tetrachloroaluminate storage battery having a transition metal chloride cathode |
US4756888A (en) * | 1983-12-29 | 1988-07-12 | Union Oil Company Of California | Recovery of silver-containing scales from aqueous media |
DE3419171A1 (en) * | 1984-05-23 | 1985-11-28 | Fried. Krupp Gmbh, 4300 Essen | METHOD FOR CONTINUOUSLY GENERATING BOILER FEED WATER |
US4746438A (en) * | 1987-10-01 | 1988-05-24 | Kerr-Mcgee Chemical Corporation | Method for purifying contaminated waters |
US5945170A (en) * | 1992-03-06 | 1999-08-31 | Henkel Corporation | Process for separating multivalent metal Ions from autodeposition compositions and process for regenerating ion exchange resins useful therewith |
US20020153319A1 (en) * | 1997-08-12 | 2002-10-24 | Debasish Mukhopadhyay | Method and apparatus for high efficiency reverse osmosis operation |
CN1142808C (en) * | 1997-01-14 | 2004-03-24 | 阿卡纯风险投资公司 | Distillation process with reduced fouling |
CA2307819C (en) * | 1999-05-07 | 2005-04-19 | Ionics, Incorporated | Water treatment method for heavy oil production |
US6468389B1 (en) * | 1999-11-09 | 2002-10-22 | James Jeffrey Harris | Undulating membrane surface for evaporative processes |
US20040050794A1 (en) * | 2001-08-24 | 2004-03-18 | Ahmed Bashir M | Method for separating multivalent metal ions |
US20030127391A1 (en) * | 2001-07-26 | 2003-07-10 | Craft Frank S. | Method for treatment of circulating cooling water |
-
2003
- 2003-10-17 EP EP03809148A patent/EP1578694B1/en not_active Expired - Lifetime
- 2003-10-17 AT AT03809148T patent/ATE499322T1/en not_active IP Right Cessation
- 2003-10-17 DE DE60336171T patent/DE60336171D1/en not_active Expired - Lifetime
- 2003-10-17 WO PCT/US2003/033066 patent/WO2004035479A1/en not_active Application Discontinuation
- 2003-10-17 CA CA2502643A patent/CA2502643C/en not_active Expired - Lifetime
- 2003-10-17 US US10/531,752 patent/US8092656B2/en active Active
- 2003-10-17 AU AU2003301447A patent/AU2003301447B2/en not_active Ceased
- 2003-10-17 MX MXPA05004534A patent/MXPA05004534A/en active IP Right Grant
-
2005
- 2005-04-14 IL IL168079A patent/IL168079A0/en unknown
Also Published As
Publication number | Publication date |
---|---|
DE60336171D1 (en) | 2011-04-07 |
WO2004035479A1 (en) | 2004-04-29 |
CA2502643A1 (en) | 2004-04-29 |
US8092656B2 (en) | 2012-01-10 |
IL168079A0 (en) | 2009-02-11 |
EP1578694A1 (en) | 2005-09-28 |
MXPA05004534A (en) | 2005-09-12 |
CA2502643C (en) | 2012-12-18 |
ATE499322T1 (en) | 2011-03-15 |
US20080099154A1 (en) | 2008-05-01 |
AU2003301447B2 (en) | 2008-07-10 |
AU2003301447A1 (en) | 2004-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1578694B1 (en) | Method for high efficiency evaporation operation | |
AU2004294555B2 (en) | Method for production of high pressure steam from produced water | |
US5961837A (en) | Process for treatment of industrial waste | |
US7967955B2 (en) | Water treatment method for heavy oil production | |
US6537456B2 (en) | Method and apparatus for high efficiency reverse osmosis operation | |
US9073763B2 (en) | Method for high efficiency reverse osmosis operation | |
US5925255A (en) | Method and apparatus for high efficiency reverse osmosis operation | |
US4532045A (en) | Bleed-off elimination system and method | |
US8758720B2 (en) | High purity water produced by reverse osmosis | |
EP0946268A4 (en) | Method and apparatus for high efficiency reverse osmosis operation | |
US20070095759A1 (en) | Method and apparatus for treating water to reduce boiler scale formation | |
JP2005539196A (en) | Method and system for heat transfer | |
CN100513324C (en) | Pre-treatment method for sea salt water | |
JP2014128764A (en) | Device and method for treating oil-containing wastewater | |
Hamed | Thermal Desalination: Performance and Challenges | |
CA2799710A1 (en) | Method and apparatus for high efficiency evaporation operation | |
JP2003136094A (en) | Method and apparatus for treating boiler supply water | |
Asano et al. | Evaluation of industrial cooling systems using reclaimed municipal wastewater | |
Bresnahan | Water reuse in oil refineries | |
Жумалиева et al. | The CLEANING OF WATER SUPPLIED TO THERMAL POWER PLANTS AND BOILERS | |
Abd Askar | Pretreatment of Water for Industrial Boilers Purposes, Alexandria | |
Aerts et al. | Strategies for Water Reuse. | |
Amjad et al. | Technology: Fundomentols ond Uoter Rpplicotions | |
Matson | Industrial waste-water reuse by selective silica removal over activated alumina | |
Fleming et al. | Membrane Process Offers Improved Water Recovery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050518 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20071114 |
|
RTI1 | Title (correction) |
Free format text: METHOD FOR HIGH EFFICIENCY EVAPORATION OPERATION |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60336171 Country of ref document: DE Date of ref document: 20110407 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60336171 Country of ref document: DE Effective date: 20110407 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110603 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E011789 Country of ref document: HU |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20110929 Year of fee payment: 9 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BG Payment date: 20111006 Year of fee payment: 9 Ref country code: HU Payment date: 20110930 Year of fee payment: 9 Ref country code: CZ Payment date: 20111006 Year of fee payment: 9 |
|
26N | No opposition filed |
Effective date: 20111124 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60336171 Country of ref document: DE Effective date: 20111124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110223 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20111017 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120629 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120501 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111031 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60336171 Country of ref document: DE Effective date: 20120501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111017 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111017 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20130501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20111017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130501 Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110623 Ref country code: BG Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20170922 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181017 |