EP1577370A2 - Power transmission fluids - Google Patents
Power transmission fluids Download PDFInfo
- Publication number
- EP1577370A2 EP1577370A2 EP05075444A EP05075444A EP1577370A2 EP 1577370 A2 EP1577370 A2 EP 1577370A2 EP 05075444 A EP05075444 A EP 05075444A EP 05075444 A EP05075444 A EP 05075444A EP 1577370 A2 EP1577370 A2 EP 1577370A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- composition
- acid
- oil
- amine
- phenate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 85
- 239000012530 fluid Substances 0.000 title claims abstract description 78
- -1 calcium cations Chemical class 0.000 claims abstract description 103
- 239000000203 mixture Substances 0.000 claims abstract description 101
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 claims abstract description 84
- 239000002270 dispersing agent Substances 0.000 claims abstract description 74
- 239000003599 detergent Substances 0.000 claims abstract description 43
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 42
- 239000000654 additive Substances 0.000 claims abstract description 41
- 229960002317 succinimide Drugs 0.000 claims abstract description 38
- 125000001183 hydrocarbyl group Chemical group 0.000 claims abstract description 36
- 239000002199 base oil Substances 0.000 claims abstract description 31
- 230000000996 additive effect Effects 0.000 claims abstract description 29
- 150000002148 esters Chemical class 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims abstract description 22
- 239000002184 metal Substances 0.000 claims abstract description 22
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000001257 hydrogen Substances 0.000 claims abstract description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 13
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 13
- 239000011575 calcium Substances 0.000 claims abstract description 10
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 10
- 239000003921 oil Substances 0.000 claims description 45
- 235000019198 oils Nutrition 0.000 claims description 45
- 239000003795 chemical substances by application Substances 0.000 claims description 35
- 229920000768 polyamine Polymers 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 25
- 239000002253 acid Substances 0.000 claims description 23
- 125000001931 aliphatic group Chemical group 0.000 claims description 19
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 18
- 229910052796 boron Inorganic materials 0.000 claims description 18
- 150000001412 amines Chemical class 0.000 claims description 16
- 239000003607 modifier Substances 0.000 claims description 16
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 16
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 15
- 229910052698 phosphorus Inorganic materials 0.000 claims description 15
- 239000011574 phosphorus Substances 0.000 claims description 15
- 239000011701 zinc Substances 0.000 claims description 15
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 12
- 230000007935 neutral effect Effects 0.000 claims description 12
- 150000003839 salts Chemical class 0.000 claims description 12
- 229940014800 succinic anhydride Drugs 0.000 claims description 12
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 11
- 239000003963 antioxidant agent Substances 0.000 claims description 11
- 239000012141 concentrate Substances 0.000 claims description 11
- 239000011777 magnesium Substances 0.000 claims description 11
- 229910052749 magnesium Inorganic materials 0.000 claims description 11
- 229910052744 lithium Inorganic materials 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- 239000000314 lubricant Substances 0.000 claims description 9
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 claims description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 8
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- 239000011734 sodium Substances 0.000 claims description 8
- 229910052708 sodium Inorganic materials 0.000 claims description 8
- 229920002367 Polyisobutene Polymers 0.000 claims description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 6
- 229910021529 ammonia Inorganic materials 0.000 claims description 6
- 239000002518 antifoaming agent Substances 0.000 claims description 6
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 claims description 6
- 229920005862 polyol Polymers 0.000 claims description 6
- 239000011591 potassium Substances 0.000 claims description 6
- 229910052700 potassium Inorganic materials 0.000 claims description 6
- 150000003141 primary amines Chemical class 0.000 claims description 6
- 229910019142 PO4 Inorganic materials 0.000 claims description 5
- 230000003078 antioxidant effect Effects 0.000 claims description 5
- 239000002480 mineral oil Substances 0.000 claims description 5
- 235000010446 mineral oil Nutrition 0.000 claims description 5
- 229920001281 polyalkylene Polymers 0.000 claims description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 238000005227 gel permeation chromatography Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- ZGJADVGJIVEEGF-UHFFFAOYSA-M potassium;phenoxide Chemical compound [K+].[O-]C1=CC=CC=C1 ZGJADVGJIVEEGF-UHFFFAOYSA-M 0.000 claims description 4
- NESLWCLHZZISNB-UHFFFAOYSA-M sodium phenolate Chemical compound [Na+].[O-]C1=CC=CC=C1 NESLWCLHZZISNB-UHFFFAOYSA-M 0.000 claims description 4
- FPYLHOQPWCQAIJ-UHFFFAOYSA-N 1-dimethoxyphosphoryloctadecane Chemical compound CCCCCCCCCCCCCCCCCCP(=O)(OC)OC FPYLHOQPWCQAIJ-UHFFFAOYSA-N 0.000 claims description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims description 3
- 239000004615 ingredient Substances 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 3
- 239000008158 vegetable oil Substances 0.000 claims description 3
- 239000004711 α-olefin Substances 0.000 claims description 3
- SXSHOZXSCIQJQN-UHFFFAOYSA-N (6-ethyl-5-propylicosan-5-yl)phosphonic acid Chemical compound CCCCCCCCCCCCCCC(CC)C(CCC)(P(O)(O)=O)CCCC SXSHOZXSCIQJQN-UHFFFAOYSA-N 0.000 claims description 2
- XXAUJNCPEFWFHB-UHFFFAOYSA-N 1-dimethoxyphosphorylhexatriacontane Chemical compound CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCP(=O)(OC)OC XXAUJNCPEFWFHB-UHFFFAOYSA-N 0.000 claims description 2
- PCBZMQGILPRUDH-UHFFFAOYSA-N 3-(diethoxyphosphorylmethyl)undecane Chemical compound CCCCCCCCC(CC)CP(=O)(OCC)OCC PCBZMQGILPRUDH-UHFFFAOYSA-N 0.000 claims description 2
- GOCVCBDBQYEFQD-UHFFFAOYSA-N 3-[[2-ethylhexoxy(2-ethylhexyl)phosphoryl]oxymethyl]heptane Chemical compound CCCCC(CC)COP(=O)(CC(CC)CCCC)OCC(CC)CCCC GOCVCBDBQYEFQD-UHFFFAOYSA-N 0.000 claims description 2
- WAROHABBCWRFJR-UHFFFAOYSA-N 3-methylicosan-3-ylphosphonic acid Chemical compound CCCCCCCCCCCCCCCCCC(C)(CC)P(O)(O)=O WAROHABBCWRFJR-UHFFFAOYSA-N 0.000 claims description 2
- 229930185605 Bisphenol Natural products 0.000 claims description 2
- MQHWFIOJQSCFNM-UHFFFAOYSA-L Magnesium salicylate Chemical compound [Mg+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O MQHWFIOJQSCFNM-UHFFFAOYSA-L 0.000 claims description 2
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 claims description 2
- 150000001851 cinnamic acid derivatives Chemical class 0.000 claims description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical class C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 claims description 2
- MFGZXPGKKJMZIY-UHFFFAOYSA-N ethyl 5-amino-1-(4-sulfamoylphenyl)pyrazole-4-carboxylate Chemical compound NC1=C(C(=O)OCC)C=NN1C1=CC=C(S(N)(=O)=O)C=C1 MFGZXPGKKJMZIY-UHFFFAOYSA-N 0.000 claims description 2
- 150000004665 fatty acids Chemical class 0.000 claims description 2
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 claims description 2
- PSBOOKLOXQFNPZ-UHFFFAOYSA-M lithium;2-hydroxybenzoate Chemical compound [Li+].OC1=CC=CC=C1C([O-])=O PSBOOKLOXQFNPZ-UHFFFAOYSA-M 0.000 claims description 2
- 229940072082 magnesium salicylate Drugs 0.000 claims description 2
- 229920000058 polyacrylate Polymers 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- FRMWBRPWYBNAFB-UHFFFAOYSA-M potassium salicylate Chemical compound [K+].OC1=CC=CC=C1C([O-])=O FRMWBRPWYBNAFB-UHFFFAOYSA-M 0.000 claims description 2
- 229960003629 potassium salicylate Drugs 0.000 claims description 2
- 229960004025 sodium salicylate Drugs 0.000 claims description 2
- 150000003512 tertiary amines Chemical class 0.000 claims description 2
- HFVMEOPYDLEHBR-UHFFFAOYSA-N (2-fluorophenyl)-phenylmethanol Chemical class C=1C=CC=C(F)C=1C(O)C1=CC=CC=C1 HFVMEOPYDLEHBR-UHFFFAOYSA-N 0.000 claims 1
- JBIJLHTVPXGSAM-UHFFFAOYSA-N 2-naphthylamine Chemical compound C1=CC=CC2=CC(N)=CC=C21 JBIJLHTVPXGSAM-UHFFFAOYSA-N 0.000 claims 1
- URCJUHKAPABQMW-UHFFFAOYSA-N CCCCCCCCCCCCCCCCC(C)=C(C)OP(O)=O Chemical compound CCCCCCCCCCCCCCCCC(C)=C(C)OP(O)=O URCJUHKAPABQMW-UHFFFAOYSA-N 0.000 claims 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims 1
- 150000008301 phosphite esters Chemical class 0.000 claims 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 27
- 150000001875 compounds Chemical class 0.000 description 16
- PDEDQSAFHNADLV-UHFFFAOYSA-M potassium;disodium;dinitrate;nitrite Chemical compound [Na+].[Na+].[K+].[O-]N=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PDEDQSAFHNADLV-UHFFFAOYSA-M 0.000 description 16
- 229920013639 polyalphaolefin Polymers 0.000 description 13
- 235000011044 succinic acid Nutrition 0.000 description 13
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 12
- 229930195733 hydrocarbon Natural products 0.000 description 12
- 239000003112 inhibitor Substances 0.000 description 12
- 150000002430 hydrocarbons Chemical class 0.000 description 11
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 10
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 10
- 150000001336 alkenes Chemical class 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 229920000098 polyolefin Polymers 0.000 description 10
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 10
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 9
- 239000002585 base Substances 0.000 description 9
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 9
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 9
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical class O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 9
- 239000004215 Carbon black (E152) Substances 0.000 description 8
- 235000006708 antioxidants Nutrition 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- 238000005260 corrosion Methods 0.000 description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 150000002989 phenols Chemical class 0.000 description 7
- 239000001384 succinic acid Substances 0.000 description 7
- 125000001302 tertiary amino group Chemical group 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 6
- 150000001342 alkaline earth metals Chemical class 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 6
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 5
- IGFHQQFPSIBGKE-UHFFFAOYSA-N Nonylphenol Natural products CCCCCCCCCC1=CC=C(O)C=C1 IGFHQQFPSIBGKE-UHFFFAOYSA-N 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 125000003342 alkenyl group Chemical group 0.000 description 5
- 125000000217 alkyl group Chemical group 0.000 description 5
- 150000008064 anhydrides Chemical class 0.000 description 5
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 5
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical compound CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 4
- 239000011976 maleic acid Substances 0.000 description 4
- 150000005673 monoalkenes Chemical class 0.000 description 4
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 235000021317 phosphate Nutrition 0.000 description 4
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 4
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000001361 adipic acid Substances 0.000 description 3
- 235000011037 adipic acid Nutrition 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- UZEFVQBWJSFOFE-UHFFFAOYSA-N dibutyl hydrogen phosphite Chemical compound CCCCOP(O)OCCCC UZEFVQBWJSFOFE-UHFFFAOYSA-N 0.000 description 3
- 150000005690 diesters Chemical class 0.000 description 3
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 3
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001530 fumaric acid Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002530 phenolic antioxidant Substances 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 150000003457 sulfones Chemical class 0.000 description 3
- RMVRSNDYEFQCLF-UHFFFAOYSA-N thiophenol Chemical compound SC1=CC=CC=C1 RMVRSNDYEFQCLF-UHFFFAOYSA-N 0.000 description 3
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 2
- 150000004869 1,3,4-thiadiazoles Chemical class 0.000 description 2
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- RAIPHJJURHTUIC-UHFFFAOYSA-N 1,3-thiazol-2-amine Chemical class NC1=NC=CS1 RAIPHJJURHTUIC-UHFFFAOYSA-N 0.000 description 2
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- ARIWANIATODDMH-AWEZNQCLSA-N 1-lauroyl-sn-glycerol Chemical compound CCCCCCCCCCCC(=O)OC[C@@H](O)CO ARIWANIATODDMH-AWEZNQCLSA-N 0.000 description 2
- RZRNAYUHWVFMIP-KTKRTIGZSA-N 1-oleoylglycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-KTKRTIGZSA-N 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 2
- FKJVYOFPTRGCSP-UHFFFAOYSA-N 2-[3-aminopropyl(2-hydroxyethyl)amino]ethanol Chemical compound NCCCN(CCO)CCO FKJVYOFPTRGCSP-UHFFFAOYSA-N 0.000 description 2
- NFCPRRWCTNLGSN-UHFFFAOYSA-N 2-n-phenylbenzene-1,2-diamine Chemical class NC1=CC=CC=C1NC1=CC=CC=C1 NFCPRRWCTNLGSN-UHFFFAOYSA-N 0.000 description 2
- CMGDVUCDZOBDNL-UHFFFAOYSA-N 4-methyl-2h-benzotriazole Chemical compound CC1=CC=CC2=NNN=C12 CMGDVUCDZOBDNL-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical class ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 2
- ARIWANIATODDMH-UHFFFAOYSA-N Lauric acid monoglyceride Natural products CCCCCCCCCCCC(=O)OCC(O)CO ARIWANIATODDMH-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical group [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229940043237 diethanolamine Drugs 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 2
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 235000011087 fumaric acid Nutrition 0.000 description 2
- RZRNAYUHWVFMIP-HXUWFJFHSA-N glycerol monolinoleate Natural products CCCCCCCCC=CCCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-HXUWFJFHSA-N 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 150000002462 imidazolines Chemical class 0.000 description 2
- 125000005462 imide group Chemical group 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 159000000003 magnesium salts Chemical class 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- 239000010688 mineral lubricating oil Substances 0.000 description 2
- 150000002763 monocarboxylic acids Chemical class 0.000 description 2
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 150000003008 phosphonic acid esters Chemical class 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- 125000005498 phthalate group Chemical class 0.000 description 2
- 229920006389 polyphenyl polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 229940116351 sebacate Drugs 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 150000003444 succinic acids Chemical class 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- 229960001124 trientine Drugs 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical class NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- GGQQNYXPYWCUHG-RMTFUQJTSA-N (3e,6e)-deca-3,6-diene Chemical compound CCC\C=C\C\C=C\CC GGQQNYXPYWCUHG-RMTFUQJTSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- SASYHUDIOGGZCN-ARJAWSKDSA-N (z)-2-ethylbut-2-enedioic acid Chemical compound CC\C(C(O)=O)=C\C(O)=O SASYHUDIOGGZCN-ARJAWSKDSA-N 0.000 description 1
- FLAQPUNKKBKPDE-FPLPWBNLSA-N (z)-2-hexylbut-2-enedioic acid Chemical compound CCCCCC\C(C(O)=O)=C\C(O)=O FLAQPUNKKBKPDE-FPLPWBNLSA-N 0.000 description 1
- LHOVOJWYFIZPCY-UHFFFAOYSA-N 1,2,3-benzothiadiazol-4-amine Chemical compound NC1=CC=CC2=C1N=NS2 LHOVOJWYFIZPCY-UHFFFAOYSA-N 0.000 description 1
- YGTAZGSLCXNBQL-UHFFFAOYSA-N 1,2,4-thiadiazole Chemical compound C=1N=CSN=1 YGTAZGSLCXNBQL-UHFFFAOYSA-N 0.000 description 1
- RDAGYWUMBWNXIC-UHFFFAOYSA-N 1,2-bis(2-ethylhexyl)benzene Chemical class CCCCC(CC)CC1=CC=CC=C1CC(CC)CCCC RDAGYWUMBWNXIC-UHFFFAOYSA-N 0.000 description 1
- YEYQUBZGSWAPGE-UHFFFAOYSA-N 1,2-di(nonyl)benzene Chemical class CCCCCCCCCC1=CC=CC=C1CCCCCCCCC YEYQUBZGSWAPGE-UHFFFAOYSA-N 0.000 description 1
- BIGYLAKFCGVRAN-UHFFFAOYSA-N 1,3,4-thiadiazolidine-2,5-dithione Chemical compound S=C1NNC(=S)S1 BIGYLAKFCGVRAN-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- NSOAQRMLVFRWIT-UHFFFAOYSA-N 1-ethenoxydecane Chemical compound CCCCCCCCCCOC=C NSOAQRMLVFRWIT-UHFFFAOYSA-N 0.000 description 1
- HXQHRUJXQJEGER-UHFFFAOYSA-N 1-methylbenzotriazole Chemical compound C1=CC=C2N(C)N=NC2=C1 HXQHRUJXQJEGER-UHFFFAOYSA-N 0.000 description 1
- OMMKTOYORLTRPN-UHFFFAOYSA-N 1-n'-methylpropane-1,1-diamine Chemical compound CCC(N)NC OMMKTOYORLTRPN-UHFFFAOYSA-N 0.000 description 1
- ZGDGVGVOFIGJIE-UHFFFAOYSA-N 1-n,2-n-di(butan-2-yl)benzene-1,2-diamine Chemical compound CCC(C)NC1=CC=CC=C1NC(C)CC ZGDGVGVOFIGJIE-UHFFFAOYSA-N 0.000 description 1
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- WJFKNYWRSNBZNX-UHFFFAOYSA-N 10H-phenothiazine Chemical compound C1=CC=C2NC3=CC=CC=C3SC2=C1 WJFKNYWRSNBZNX-UHFFFAOYSA-N 0.000 description 1
- IHWDSEPNZDYMNF-UHFFFAOYSA-N 1H-indol-2-amine Chemical class C1=CC=C2NC(N)=CC2=C1 IHWDSEPNZDYMNF-UHFFFAOYSA-N 0.000 description 1
- UNDUSVBXIVZGOQ-UHFFFAOYSA-N 1h-perimidin-2-amine Chemical class C1=CC(NC(N)=N2)=C3C2=CC=CC3=C1 UNDUSVBXIVZGOQ-UHFFFAOYSA-N 0.000 description 1
- QLSWIGRIBOSFMV-UHFFFAOYSA-N 1h-pyrrol-2-amine Chemical class NC1=CC=CN1 QLSWIGRIBOSFMV-UHFFFAOYSA-N 0.000 description 1
- GGQRKYMKYMRZTF-UHFFFAOYSA-N 2,2,3,3-tetrakis(prop-1-enyl)butanedioic acid Chemical compound CC=CC(C=CC)(C(O)=O)C(C=CC)(C=CC)C(O)=O GGQRKYMKYMRZTF-UHFFFAOYSA-N 0.000 description 1
- MFGALGYVFGDXIX-UHFFFAOYSA-N 2,3-Dimethylmaleic anhydride Chemical compound CC1=C(C)C(=O)OC1=O MFGALGYVFGDXIX-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- PFBBCIYIKJWDIN-BUHFOSPRSA-N 2-[(e)-tetradec-1-enyl]butanedioic acid Chemical compound CCCCCCCCCCCC\C=C\C(C(O)=O)CC(O)=O PFBBCIYIKJWDIN-BUHFOSPRSA-N 0.000 description 1
- PAOXFRSJRCGJLV-UHFFFAOYSA-N 2-[4-(2-aminoethyl)piperazin-1-yl]ethanamine Chemical compound NCCN1CCN(CCN)CC1 PAOXFRSJRCGJLV-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- UHGULLIUJBCTEF-UHFFFAOYSA-N 2-aminobenzothiazole Chemical compound C1=CC=C2SC(N)=NC2=C1 UHGULLIUJBCTEF-UHFFFAOYSA-N 0.000 description 1
- KJJPLEZQSCZCKE-UHFFFAOYSA-N 2-aminopropane-1,3-diol Chemical compound OCC(N)CO KJJPLEZQSCZCKE-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- YCIRHAGYEUJTFH-UHFFFAOYSA-N 2-imidazol-1-ylethanamine Chemical compound NCCN1C=CN=C1 YCIRHAGYEUJTFH-UHFFFAOYSA-N 0.000 description 1
- 229940054266 2-mercaptobenzothiazole Drugs 0.000 description 1
- WJQOZHYUIDYNHM-UHFFFAOYSA-N 2-tert-Butylphenol Chemical compound CC(C)(C)C1=CC=CC=C1O WJQOZHYUIDYNHM-UHFFFAOYSA-N 0.000 description 1
- YFHKLSPMRRWLKI-UHFFFAOYSA-N 2-tert-butyl-4-(3-tert-butyl-4-hydroxy-5-methylphenyl)sulfanyl-6-methylphenol Chemical compound CC(C)(C)C1=C(O)C(C)=CC(SC=2C=C(C(O)=C(C)C=2)C(C)(C)C)=C1 YFHKLSPMRRWLKI-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- RSPWVGZWUBNLQU-FOCLMDBBSA-N 3-[(e)-hexadec-1-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCCCCCCC\C=C\C1CC(=O)OC1=O RSPWVGZWUBNLQU-FOCLMDBBSA-N 0.000 description 1
- KQIGMPWTAHJUMN-UHFFFAOYSA-N 3-aminopropane-1,2-diol Chemical compound NCC(O)CO KQIGMPWTAHJUMN-UHFFFAOYSA-N 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- AXGOOCLYBPQWNG-UHFFFAOYSA-N 3-ethylfuran-2,5-dione Chemical compound CCC1=CC(=O)OC1=O AXGOOCLYBPQWNG-UHFFFAOYSA-N 0.000 description 1
- KDHWOCLBMVSZPG-UHFFFAOYSA-N 3-imidazol-1-ylpropan-1-amine Chemical compound NCCCN1C=CN=C1 KDHWOCLBMVSZPG-UHFFFAOYSA-N 0.000 description 1
- AYKYXWQEBUNJCN-UHFFFAOYSA-N 3-methylfuran-2,5-dione Chemical compound CC1=CC(=O)OC1=O AYKYXWQEBUNJCN-UHFFFAOYSA-N 0.000 description 1
- OFNISBHGPNMTMS-UHFFFAOYSA-N 3-methylideneoxolane-2,5-dione Chemical compound C=C1CC(=O)OC1=O OFNISBHGPNMTMS-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- VJTZHXQAZLGBHV-UHFFFAOYSA-N 3-n-phenylbenzene-1,3-diamine Chemical compound NC1=CC=CC(NC=2C=CC=CC=2)=C1 VJTZHXQAZLGBHV-UHFFFAOYSA-N 0.000 description 1
- UVLSCMIEPPWCHZ-UHFFFAOYSA-N 3-piperazin-1-ylpropan-1-amine Chemical compound NCCCN1CCNCC1 UVLSCMIEPPWCHZ-UHFFFAOYSA-N 0.000 description 1
- URVNZJUYUMEJFZ-UHFFFAOYSA-N 3-tetradec-1-enyloxolane-2,5-dione Chemical compound CCCCCCCCCCCCC=CC1CC(=O)OC1=O URVNZJUYUMEJFZ-UHFFFAOYSA-N 0.000 description 1
- MDWVSAYEQPLWMX-UHFFFAOYSA-N 4,4'-Methylenebis(2,6-di-tert-butylphenol) Chemical compound CC(C)(C)C1=C(O)C(C(C)(C)C)=CC(CC=2C=C(C(O)=C(C=2)C(C)(C)C)C(C)(C)C)=C1 MDWVSAYEQPLWMX-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- OUNGEYCHISFUEC-UHFFFAOYSA-N 4-decyl-2h-triazole Chemical compound CCCCCCCCCCC=1C=NNN=1 OUNGEYCHISFUEC-UHFFFAOYSA-N 0.000 description 1
- JATLSJIWVNJRMN-UHFFFAOYSA-N 4-dodecyl-2h-triazole Chemical compound CCCCCCCCCCCCC1=CNN=N1 JATLSJIWVNJRMN-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- YJKJAYFKPIUBAW-UHFFFAOYSA-N 9h-carbazol-1-amine Chemical class N1C2=CC=CC=C2C2=C1C(N)=CC=C2 YJKJAYFKPIUBAW-UHFFFAOYSA-N 0.000 description 1
- CKLJMWTZIZZHCS-UHFFFAOYSA-N Aspartic acid Chemical class OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- JYFHYPJRHGVZDY-UHFFFAOYSA-N Dibutyl phosphate Chemical compound CCCCOP(O)(=O)OCCCC JYFHYPJRHGVZDY-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- AAHZZGHPCKJNNZ-UHFFFAOYSA-N Hexadecenylsuccinicacid Chemical compound CCCCCCCCCCCCCCC=CC(C(O)=O)CC(O)=O AAHZZGHPCKJNNZ-UHFFFAOYSA-N 0.000 description 1
- KEQFTVQCIQJIQW-UHFFFAOYSA-N N-Phenyl-2-naphthylamine Chemical compound C=1C=C2C=CC=CC2=CC=1NC1=CC=CC=C1 KEQFTVQCIQJIQW-UHFFFAOYSA-N 0.000 description 1
- OUBMGJOQLXMSNT-UHFFFAOYSA-N N-isopropyl-N'-phenyl-p-phenylenediamine Chemical compound C1=CC(NC(C)C)=CC=C1NC1=CC=CC=C1 OUBMGJOQLXMSNT-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- CGBYBGVMDAPUIH-UHFFFAOYSA-N acide dimethylmaleique Natural products OC(=O)C(C)=C(C)C(O)=O CGBYBGVMDAPUIH-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 229950003476 aminothiazole Drugs 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 239000007866 anti-wear additive Substances 0.000 description 1
- 239000013556 antirust agent Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- WLLCYXDFVBWGBU-UHFFFAOYSA-N bis(8-methylnonyl) nonanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC(C)C WLLCYXDFVBWGBU-UHFFFAOYSA-N 0.000 description 1
- FQUNFJULCYSSOP-UHFFFAOYSA-N bisoctrizole Chemical compound N1=C2C=CC=CC2=NN1C1=CC(C(C)(C)CC(C)(C)C)=CC(CC=2C(=C(C=C(C=2)C(C)(C)CC(C)(C)C)N2N=C3C=CC=CC3=N2)O)=C1O FQUNFJULCYSSOP-UHFFFAOYSA-N 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- SNCZNSNPXMPCGN-UHFFFAOYSA-N butanediamide Chemical compound NC(=O)CCC(N)=O SNCZNSNPXMPCGN-UHFFFAOYSA-N 0.000 description 1
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 1
- ZMRQTIAUOLVKOX-UHFFFAOYSA-L calcium;diphenoxide Chemical compound [Ca+2].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 ZMRQTIAUOLVKOX-UHFFFAOYSA-L 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- GTBGXKPAKVYEKJ-UHFFFAOYSA-N decyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCOC(=O)C(C)=C GTBGXKPAKVYEKJ-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000013530 defoamer Substances 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- CGBYBGVMDAPUIH-ARJAWSKDSA-N dimethylmaleic acid Chemical compound OC(=O)C(/C)=C(/C)C(O)=O CGBYBGVMDAPUIH-ARJAWSKDSA-N 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- UPCIBFUJJLCOQG-UHFFFAOYSA-L ethyl-[2-[2-[ethyl(dimethyl)azaniumyl]ethyl-methylamino]ethyl]-dimethylazanium;dibromide Chemical compound [Br-].[Br-].CC[N+](C)(C)CCN(C)CC[N+](C)(C)CC UPCIBFUJJLCOQG-UHFFFAOYSA-L 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- GKQPCPXONLDCMU-CCEZHUSRSA-N lacidipine Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OCC)C1C1=CC=CC=C1\C=C\C(=O)OC(C)(C)C GKQPCPXONLDCMU-CCEZHUSRSA-N 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 239000006078 metal deactivator Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- XMMDVXFQGOEOKH-UHFFFAOYSA-N n'-dodecylpropane-1,3-diamine Chemical compound CCCCCCCCCCCCNCCCN XMMDVXFQGOEOKH-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- ATGUVEKSASEFFO-UHFFFAOYSA-N p-aminodiphenylamine Chemical compound C1=CC(N)=CC=C1NC1=CC=CC=C1 ATGUVEKSASEFFO-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 229950000688 phenothiazine Drugs 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- AQSJGOWTSHOLKH-UHFFFAOYSA-N phosphite(3-) Chemical class [O-]P([O-])[O-] AQSJGOWTSHOLKH-UHFFFAOYSA-N 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000151 polyglycol Polymers 0.000 description 1
- 239000010695 polyglycol Substances 0.000 description 1
- 229920000193 polymethacrylate Chemical class 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- AYNUCZFIHUUAIZ-UHFFFAOYSA-N s-(2h-triazol-4-yl)thiohydroxylamine Chemical class NSC1=CNN=N1 AYNUCZFIHUUAIZ-UHFFFAOYSA-N 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 150000003870 salicylic acids Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003335 secondary amines Chemical group 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- PXQLVRUNWNTZOS-UHFFFAOYSA-N sulfanyl Chemical class [SH] PXQLVRUNWNTZOS-UHFFFAOYSA-N 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 150000003463 sulfur Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical class CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 150000003557 thiazoles Chemical class 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- WQYSXVGEZYESBR-UHFFFAOYSA-N thiophosphoryl chloride Chemical compound ClP(Cl)(Cl)=S WQYSXVGEZYESBR-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M163/00—Lubricating compositions characterised by the additive being a mixture of a compound of unknown or incompletely defined constitution and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M137/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
- C10M137/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
- C10M137/04—Phosphate esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M141/00—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
- C10M141/10—Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
- C10M169/045—Mixtures of base-materials and additives the additives being a mixture of compounds of unknown or incompletely defined constitution and non-macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/026—Butene
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/024—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings having at least two phenol groups but no condensed ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/028—Overbased salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/12—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2207/121—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
- C10M2207/123—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/10—Carboxylix acids; Neutral salts thereof
- C10M2207/14—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/144—Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
- C10M2207/283—Esters of polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
- C10M2215/065—Phenyl-Naphthyl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/08—Amides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/223—Five-membered rings containing nitrogen and carbon only
- C10M2215/224—Imidazoles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/043—Mannich bases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/046—Overbased sulfonic acid salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/088—Neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/08—Thiols; Sulfides; Polysulfides; Mercaptals
- C10M2219/082—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
- C10M2219/087—Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
- C10M2219/089—Overbased salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/041—Triaryl phosphates
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/042—Metal salts thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/049—Phosphite
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2229/00—Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
- C10M2229/02—Unspecified siloxanes; Silicones
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/02—Groups 1 or 11
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2010/00—Metal present as such or in compounds
- C10N2010/04—Groups 2 or 12
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/042—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for automatic transmissions
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/04—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
- C10N2040/045—Oil-bath; Gear-boxes; Automatic transmissions; Traction drives for continuous variable transmission [CVT]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2060/00—Chemical after-treatment of the constituents of the lubricating composition
- C10N2060/12—Chemical after-treatment of the constituents of the lubricating composition by phosphorus or a compound containing phosphorus, e.g. PxSy
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2060/00—Chemical after-treatment of the constituents of the lubricating composition
- C10N2060/14—Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron
Definitions
- the present disclosure relates to power transmission fluids having improved characteristics particularly for extreme pressure applications.
- the power transmission fluids disclosed herein may include fluids suitable for use in an automatic transmission (ATF) and/or a manual transmission.
- Extremely high metal-on-metal pressures are present in newer automatic and manual transmissions such as step automatic transmissions, continuously variable transmissions, manual or automated manual transmissions.
- High pressures are also present in various gear drive components such as automotive differentials and power transmission gear drive components.
- the high pressures present in such transmission and gear drive components mean that lubricants used in these systems must be suitable for such extreme pressure applications to prevent wear and avoid seizure of the rotating and contacting components.
- lubricants used in these systems must be suitable for such extreme pressure applications to prevent wear and avoid seizure of the rotating and contacting components.
- Power transmission fluids formulated according to the present disclosure provide improved high pressure characteristics.
- additives and fluids containing the additives are described which are suitably formulated to protect transmission and drive components in metal-on-metal contact situations.
- a power transmission fluid composition for extreme pressure applications includes a base oil, and an additive composition containing an extreme pressure performance improving amount of an ester of phosphonic acid of the formula: where R 1 is a hydrocarbyl group containing from about 8 to about 24 carbon atoms, R 2 and R 3 are independently selected from hydrogen and a hydrocarbyl group containing from about 1 to about 8 carbon atoms, provided that no more than one of R 2 and R 3 is hydrogen.
- the additive also includes a succinimide dispersant, and, optionally, a metal-based detergent. When used, the detergent component is substantially devoid of calcium cations.
- Another embodiment provides a method of improving extreme pressure characteristics for a transmission fluid.
- the method includes providing a base oil and adding to the base oil an additive composition including (1) from about 0.01 to about 1.0 weight percent based on the total weight of the base oil and additive composition of an ester of phosphonic acid of the formula:
- R 1 is a hydrocarbyl group containing from about 8 to about 24 carbon atoms
- R 2 and R 3 are independently selected from hydrogen and a hydrocarbyl group containing from about 1 to about 8 carbon atoms, provided that no more than one of R 2 and R 3 is hydrogen.
- the additive composition also includes from about 2 to about 5 weight percent based on the total weight of the transmission fluid of a succinimide dispersant and, optionally, from about 0.0 to about 0.2 weight percent based on the total weight of the transmission fluid of a metal-based detergent.
- the detergent is substantially devoid of calcium cations.
- the additive concentrate includes a base oil carrier fluid.
- Another component of the additive concentrate is an extreme pressure performance improving amount of an ester of phosphonic acid of the formula: where R 1 is a hydrocarbyl group containing from about 8 to about 24 carbon atoms, R 2 and R 3 are independently selected from hydrogen and a hydrocarbyl group containing from about 1 to about 8 carbon atoms, provided that no more than one of R 2 and R 3 is hydrogen.
- a succinimide dispersant and an optional metal-based detergent may also be included in the additive concentrate.
- the detergent is substantially devoid of calcium cations.
- Power transmission fluids of the foregoing embodiments are formulated to provide enhanced extreme pressure properties for applications where metal-to-metal contact is made under high pressures, e.g., pressures in excess of 2 GPa.
- Such fluids are suitable for automatic and manual transmissions such as step automatic transmissions, continuously variable transmissions, manual or automated manual transmissions.
- High metal-to-metal contact pressures such as those found in automotive transmissions, for example, may cause damage to transmission parts if a lubricant is used that does not possess sufficient extreme pressure protection characteristics.
- power transmission fluid compositions as described herein have greatly improved extreme pressure performance characteristics.
- hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of a molecule and having a predominantly hydrocarbon character. Examples of hydrocarbyl groups include:
- the oils used to lubricate those transmissions may be formulated to endure higher temperatures and pressures.
- the oil additive packages may be formulated so that important oil properties change as little as possible in the face of these stresses.
- An important characteristic of a power transmission fluid is its extreme pressure properties. High metal-on-metal contact pressures found in newer automotive transmissions and in gear drives can cause damage to transmission parts and gear drives if the lubricant used in the system is not formulated to provide sufficient extreme pressure protective properties.
- a power transmission fluid may include a base oil and an additive composition.
- the additive composition includes an extreme pressure performance improving amount of an ester of phosphonic acid of the formula: where R 1 is a hydrocarbyl group containing from about 8 to about 24 carbon atoms, R 2 and R 3 are independently selected from hydrogen and a hydrocarbyl group containing from about 1 to about 8 carbon atoms, provided that no more than one of R 2 and R 3 is hydrogen.
- the additive also includes a succinimide dispersant, and, optionally, a metal-based detergent. When used, the detergent is substantially devoid of calcium cations.
- the succinimide dispersant used in such fluids may be a post-treated succinimide dispersant.
- the phosphonic acid ester may be a di-organo or tri-organo phosphonate.
- Examples include, but are not limited to, methyloctadecylhydrogen phosphonate, bis(2-ethylhexyl) 2-ethylhexyl phosphonate, ethyloctadecylhydrogen phosphonate, dimethyloctadecylphosphonate, dimethylocta-decenylphosphonate, diethyl-2-ethyldecylphosphonate, ethylpropyl-1-butylhexadecyl-phosphonate, methylethyloctadecylphosphonate, methylbutyl eicosyl-phosphonate, dimethylhexatriacontylphosphonate.
- Methods for making phosphonic acid esters are described in U.S. Patent No. 2,2724,718 to Siles et al., and
- An extreme pressure performance improving amount of the ester of phosphonic acid as described above in combination with a base oil to provide a power transmission fluid may range from about 0.01 to about 1.0 percent by weight of the total weight of the transmission fluid, as a further example, from about 0.03 to about 0.5 weight percent, and as an even further example, from about 0.03 to about 0.25 weight percent.
- Base oils suitable for use in formulating transmission fluid compositions according to the invention may be selected from any of the synthetic or natural oils or mixtures thereof.
- Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil) as well as mineral lubricating oils such as liquid petroleum oils and solvent treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinicnaphthenic types. Oils derived from coal or shale are also suitable.
- the base oil typically has a viscosity of, for example, from about 2 to about 15 cSt and, as a further example, from about 2 to about 10 cSt at 100° C. Further, oils derived from a gas-to-liquid process are also suitable.
- Synthetic oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene isobutylene copolymers, etc.); polyalphaolefins such as poly(1-hexenes), poly-(1-octenes), poly(1-decenes), etc.
- hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene isobutylene copolymers, etc.); polyalphaolefins such as poly(1-hexenes), poly-(1-octenes), poly(1-decenes), etc.
- alkylbenzenes e.g., dodecylbenzenes, tetradecylbenzenes, di-nonylbenzenes, di-(2-ethylhexyl)benzenes, etc.
- polyphenyls e.g., biphenyls, terphenyl, alkylated polyphenyls, etc.
- Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic oils that may be used.
- Such oils are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methylpolyisopropylene glycol ether having an average molecular weight of about 1000, diphenyl ether of polyethylene glycol having a molecular weight of about 500-1000, diethyl ether of polypropylene glycol having a molecular weight of about 1000-1500, etc.) or mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C 3-8 fatty acid esters, or the C 13 Oxo acid diester of tetraethylene glycol.
- esters of dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids, alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malonic acids, etc.
- alcohols e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.
- these esters include dibutyl adipate, di(2-ethylhexyl)sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecy
- Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, etc.
- the base oil used which may be used to make the transmission fluid compositions as described herein may be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
- base oil groups are as follows: 1 Groups I-III are mineral oil base stocks. Base Oil Group 1 Sulfur (wt.%) Saturates (wt.%) Viscosity Index Group I > 0.03 and/or ⁇ 90 80 to 120 Group II ⁇ 0.03 And ⁇ 90 80 to 120 Group II ⁇ 0.03 And ⁇ 90 ⁇ 120 Group IV all polyalphaolefins (PAOs) Group V all others not included in Groups I-IV
- the base oil may be a poly-alpha-olefin (PAO).
- PAO poly-alpha-olefin
- the poly-alpha-olefins are derived from monomers having from about 4 to about 30, or from about 4 to about 20, or from about 6 to about 16 carbon atoms.
- PAOs include those derived from octene, decene, mixtures thereof, and the like.
- PAOs may have a viscosity of from about 2 to about 15, or from about 3 to about 12, or from about 4 to about 8 cSt at 100° C.
- PAOs examples include 4 cSt at 100° C poly-alpha-olefins, 6 cSt at 100° C poly-alpha-olefins, and mixtures thereof. Mixtures of mineral oil with the foregoing poly-alpha-olefins may be used.
- the base oil may be an oil derived from Fischer-Tropsch synthesized hydrocarbons.
- Fischer-Tropsch synthesized hydrocarbons are made from synthesis gas containing H 2 and CO using a Fischer-Tropsch catalyst.
- Such hydrocarbons typically require further processing in order to be useful as the base oil.
- the hydrocarbons may be hydroisomerized using processes disclosed in U.S. Pat. Nos. 6,103,099 or 6,180,575; hydrocracked and hydroisomerized using processes disclosed in U.S. Pat. Nos. 4,943,672 or 6,096,940; dewaxed using processes disclosed in U.S. Pat. No. 5,882,505; or hydroisomerized and dewaxed using processes disclosed in U.S. Pat. Nos. 6,013,171; 6,080,301; or 6,165,949.
- Unrefined, refined and rerefined oils either natural or synthetic (as well as mixtures of two or more of any of these) of the type disclosed hereinabove can be used in the base oils.
- Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
- a shale oil obtained directly from retorting operations a petroleum oil obtained directly from primary distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil.
- Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties.
- Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives, contaminants, and oil breakdown products.
- the ashless dispersant used in the transmission fluids as described herein may be selected from any of the ashless dispersants known to those skilled in the art. Suitable ashless dispersants may include ashless dispersants such as succinimide dispersants, Mannich base dispersants, and polymeric polyamine dispersants. Hydrocarbyl-substituted succinic acylating agents are used to make hydrocarbyl-substituted succinimides.
- the hydrocarbyl-substituted succinic acylating agents include, but are not limited to, hydrocarbyl-substituted succinic acids, hydrocarbyl-substituted succinic anhydrides, the hydrocarbyl-substituted succinic acid halides (especially the acid fluorides and acid chlorides), and the esters of the hydrocarbyl-substituted succinic acids and lower alcohols (e.g., those containing up to 7 carbon atoms), that is, hydrocarbyl-substituted compounds which can function as carboxylic acylating agents.
- Hydrocarbyl substituted acylating agents are made as by reacting a polyolefin or chlorinated polyolefin of appropriate molecular weight with maleic anhydride. Similar carboxylic reactants can be used to make the acylating agents. Such reactants may include, but are not limited to, maleic acid, fumaric acid, malic acid, tartaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, ethylmaleic anhydride, dimethylmaleic anhydride, ethylmaleic acid, dimethylmaleic acid, hexylmaleic acid, and the like, including the corresponding acid halides and lower aliphatic esters.
- the molecular weight of the olefin can vary depending upon the intended use of the substituted succinic anhydrides.
- the substituted succinic anhydrides will have a hydrocarbyl group of from 8-500 carbon atoms.
- substituted succinic anhydrides used to make lubricating oil dispersants will typically have a hydrocarbyl group of about 40-500 carbon atoms.
- the olefins used to make these substituted succinic anhydrides may include a mixture of different molecular weight components resulting from the polymerization of low molecular weight olefin monomers such as ethylene, propylene and isobutylene.
- the mole ratio of maleic anhydride to olefin can vary widely. It may vary, for example, from about 5:1 to about 1:5, or for example, from about 1:1 to about 3:1. With olefins such as polyisobutylene having a number average molecular weight of about 500 to about 7000, or as a further example, about 800 to about 3000 or higher and the ethylene-alpha-olefin copolymers, the maleic anhydride may be used in stoichiometric excess, e.g. 1.1 to 3 moles maleic anhydride per mole of olefin. The unreacted maleic anhydride can be vaporized from the resultant reaction mixture.
- olefins such as polyisobutylene having a number average molecular weight of about 500 to about 7000, or as a further example, about 800 to about 3000 or higher and the ethylene-alpha-olefin copolymers
- the maleic anhydride may be used in
- Polyalkenyl succinic anhydrides may be converted to polyalkyl succinic anhydrides by using conventional reducing conditions such as catalytic hydrogenation.
- a suitable catalyst is palladium on carbon.
- polyalkenyl succinimides may be converted to polyalkyl succinimides using similar reducing conditions.
- the polyalkyl or polyalkenyl substituent on the succinic anhydrides employed herein is generally derived from polyolefins which are polymers or copolymers of mono-olefins, particularly 1-mono-olefins, such as ethylene, propylene and butylene.
- the mono-olefm employed may have about 2 to about 24 carbon atoms, or as a further example, about 3 to about 12 carbon atoms.
- Other suitable mono-olefins include propylene, butylene, particularly isobutylene, 1-octene and 1-decene.
- Polyolefins prepared from such mono-olefins include polypropylene, polybutene, polyisobutene, and the polyalphaolefins produced from 1-octene and 1-decene.
- the ashless dispersant may include one or more alkenyl succinimides of an amine having at least one primary amino group capable of forming an imide group.
- the alkenyl succinimides may be formed by conventional methods such as by heating an alkenyl succinic anhydride, acid, acid-ester, acid halide, or lower alkyl ester with an amine containing at least one primary amino group.
- the alkenyl succinic anhydride may be made readily by heating a mixture of polyolefin and maleic anhydride to about 180°-220°C.
- the polyolefin may be a polymer or copolymer of a lower monoolefm such as ethylene, propylene, isobutene and the like, having a number average molecular weight in the range of about 300 to about 3000 as determined by gel permeation chromatography (GPC).
- GPC gel permeation chromatography
- Amines which may be employed in forming the ashless dispersant include any that have at least one primary amino group which can react to form an imide group and at least one additional primary or secondary amino group and/or at least one hydroxyl group.
- a few representative examples are: N-methyl-propanediamine, N-dodecylpropanediamine, N-aminopropyl-piperazine, ethanolamine, N-ethanolethylenediamine, and the like.
- Suitable amines may include alkylene polyamines, such as propylene diamine, dipropylene triamine, di-(1,2-butylene)triamine, and tetra-(1,2-propylene)pentamine.
- alkylene polyamines such as propylene diamine, dipropylene triamine, di-(1,2-butylene)triamine, and tetra-(1,2-propylene)pentamine.
- a further example includes the ethylene polyamines which can be depicted by the formula H 2 N(CH 2 CH 2 NH) n H, wherein n may be an integer from about one to about ten. These include: ethylene diamine, diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), pentaethylene hexamine (PEHA), and the like, including mixtures thereof in which case n is the average value of the mixture.
- DETA diethylene triamine
- TETA triethylene tetramine
- Such ethylene polyamines have a primary amine group at each end so they may form monoalkenylsuccinimides and bis-alkenylsuccinimides.
- Commercially available ethylene polyamine mixtures may contain minor amounts of branched species and cyclic species such as N-aminoethyl piperazine, N,N'-bis(aminoethyl)piperazine, N,N'-bis(piperazinyl)ethane, and like compounds.
- the commercial mixtures may have approximate overall compositions falling in the range corresponding to diethylene triamine to tetraethylene pentamine.
- the molar ratio of polyalkenyl succinic anhydride to polyalkylene polyamines may be from about 1:1 to about 3.0:1.
- the ashless dispersant may include the products of the reaction of a polyethylene polyamine, e.g. triethylene tetramine or tetraethylene pentamine, with a hydrocarbon substituted carboxylic acid or anhydride made by reaction of a polyolefin, such as polyisobutene, of suitable molecular weight, with an unsaturated polycarboxylic acid or anhydride, e.g., maleic anhydride, maleic acid, fumaric acid, or the like, including mixtures of two or more such substances.
- a polyethylene polyamine e.g. triethylene tetramine or tetraethylene pentamine
- a hydrocarbon substituted carboxylic acid or anhydride made by reaction of a polyolefin, such as polyisobutene, of suitable molecular weight
- an unsaturated polycarboxylic acid or anhydride e.g., maleic anhydride, maleic acid, fumaric acid, or the like, including mixtures
- Polyamines that are also suitable in preparing the dispersants described herein include N-arylphenylenediamines, such as N-phenylphenylenediamines, for example, N-phenyl-1,4-phenylenediamine, N-phenyl-1,3-phenylendiamine, and N-phenyl-1,2-phenylenediamine; aminothiazoles such as aminothiazole, aminobenzothiazole, aminobenzothiadiazole and aminoalkylthiazole; aminocarbazoles; aminoindoles; aminopyrroles; amino-indazolinones; aminomercaptotriazoles; aminoperimidines; aminoalkyl imidazoles, such as 1-(2-aminoethyl) imidazole, 1-(3-aminopropyl) imidazole; and aminoalkyl morpholines, such as 4-(3-aminopropyl) morpholine. These polyamines are described in more detail in U.
- Additional polyamines useful in forming the hydrocarbyl-substituted succinimides include polyamines having at least one primary or secondary amino group and at least one tertiary amino group in the molecule as taught in U.S. Pat. Nos. 5,634,951 and 5,725,612.
- suitable polyamines include N,N,N",N"-tetraalkyldialkylenetriamines (two terminal tertiary amino groups and one central secondary amino group), N,N,N',N"-tetraalkyltrialkylenetetramines (one terminal tertiary amino group, two internal tertiary amino groups and one terminal primary amino group), N,N,N',N",N"'-pentaalkyltrialkylenetetramines (one terminal tertiary amino group, two internal tertiary amino groups and one terminal secondary amino group), tris(dialkylaminoalkyl)aminoalkylmethanes (three terminal tertiary amino groups and one terminal primary amino group), and like compounds, wherein the alkyl groups are the same or different and typically contain no more than about 12 carbon atoms each, and which may contain from 1 to 4 carbon atoms each. As a further example, these alkyl groups may be methyl and/or e
- Hydroxyamines suitable for herein include compounds, oligomers or polymers containing at least one primary or secondary amine capable of reacting with the hydrocarbyl-substituted succinic acid or anhydride.
- hydroxyamines suitable for use herein include aminoethylethanolamine (AEEA), aminopropyldiethanolamine (APDEA), ethanolamine, diethanolamine (DEA), partially propoxylated hexamethylene diamine (for example HMDA-2PO or HMDA-3PO), 3-amino-1,2-propanediol, tris(hydroxymethyl)aminomethane, and 2-amino-1,3-propanediol.
- the mole ratio of amine to hydrocarbyl-substituted succinic acid or anhydride may range from 1:1 to about 3.0:1.
- Another example of a mole ratio of amine to hydrocarbyl-substituted succinic acid or anhydride may range from about 1.5:1 to about 2.0:1.
- the foregoing dispersant may also be a post-treated dispersant made, for example, by treating the dispersant with maleic anhydride and boric acid as described, for example, in U.S. Patent No. 5,789,353 to Scattergood, or by treating the dispersant with nonylphenol, formaldehyde and glycolic acid as described, for example, in U.S. Patent No. 5,137,980 to DeGonia, et al.
- the Mannich base dispersants may be a reaction product of an alkyl phenol, typically having a long chain alkyl substituent on the ring, with one or more aliphatic aldehydes containing from 1 to about 7 carbon atoms (especially formaldehyde and derivatives thereof), and polyamines (especially polyalkylene polyamines).
- a Mannich base ashless dispersants may be formed by condensing about one molar proportion of long chain hydrocarbon-substituted phenol with from about 1 to about 2.5 moles of formaldehyde and from about 0.5 to about 2 moles of polyalkylene polyamine.
- Hydrocarbon sources for preparation of the Mannich polyamine dispersants may be those derived from substantially saturated petroleum fractions and olefin polymers, such as polymers of mono-olefins having from 2 to about 6 carbon atoms.
- the hydrocarbon source generally contains, for example, at least about 40 carbon atoms, and as a further example, at least about 50 carbon atoms to provide substantial oil solubility to the dispersant.
- the olefin polymers having a GPC number average molecular weight between about 600 and 5,000 are suitable for reasons of easy reactivity and low cost. However, polymers of higher molecular weight can also be used.
- Especially suitable hydrocarbon sources are isobutylene polymers and polymers made from a mixture of isobutene and a raffinate I stream.
- Suitable Mannich base dispersants may be Mannich base ashless dispersants formed by condensing about one molar proportion of long chain hydrocarbon-substituted phenol with from about 1 to 2.5 moles of formaldehyde and from about 0.5 to 2 moles of polyalkylene polyamine.
- Polymeric polyamine dispersants suitable as the ashless dispersants are polymers containing basic amine groups and oil solubilizing groups (for example, pendant alkyl groups having at least about 8 carbon atoms). Such materials are illustrated by interpolymers formed from various monomers such as decyl methacrylate, vinyl decyl ether or relatively high molecular weight olefins, with aminoalkyl acrylates and aminoalkyl acrylamides. Examples of polymeric polyamine dispersants are set forth in U.S. Pat. Nos. 3,329,658; 3,449,250; 3,493,520; 3,519,565; 3,666,730; 3,687,849; and 3,702,300.
- Polymeric polyamines may include hydrocarbyl polyamines wherein the hydrocarbyl group is composed of the polymerization product of isobutene and a raffinate I stream as described above.
- PIB-amine and PIB-polyamines may also be used.
- Borated dispersants may be formed by boronating (borating) an ashless dispersant having basic nitrogen and/or at least one hydroxyl group in the molecule, such as a succinimide dispersant, succinamide dispersant, succinic ester dispersant, succinic ester-amide dispersant, Mannich base dispersant, or hydrocarbyl amine or polyamine dispersant.
- succinimide dispersant such as a succinimide dispersant, succinamide dispersant, succinic ester dispersant, succinic ester-amide dispersant, Mannich base dispersant, or hydrocarbyl amine or polyamine dispersant.
- the borated dispersant may include a high molecular weight dispersant treated with boron such that the borated dispersant includes up to 2 wt% of boron.
- the borated dispersant may include from about 0.8 wt% or less of boron.
- the borated dispersant may include from about 0.1 to about 0.7 wt% of boron.
- the borated dispersant may include from about 0.25 to about 0.7 wt% of boron.
- the borated dispersant may include from about 0.35 to about 0.7 wt% of boron.
- the dispersant may be dissolved in oil of suitable viscosity for ease of handling. It should be understood that the weight percentages given here are for neat dispersant, without any diluent oil added.
- a dispersant may be further reacted with an organic acid, an anhydride, and/or an aldehyde/phenol mixture. Such a process may enhance compatibility with elastomer seals, for example.
- the borated dispersant may further include a mixture of borated dispersants.
- the borated dispersant may include a nitrogen-containing dispersant and/or may be free of phosphorus.
- a dispersant may be present in the power transmission fluid in an amount of about 0.1 wt% to about 10 wt%. Further, the power transmission fluid may include from about 2 wt% to about 7 wt% of the borated dispersant. Further, the power transmission fluid may include from about 3 wt% to about 5 wt% of the borated dispersant. Further, the power transmission fluid may include an amount of the borated dispersant sufficient to provide up to 1900 parts per million (ppm) by weight of boron in the finished fluid, such as for example, from about 50 to about 500 ppm by weight of boron in the finished fluid.
- ppm parts per million
- Embodiments of the present disclosure may optionally include a metallic detergent, wherein the metallic detergent is substantially devoid of calcium cations.
- a suitable metallic detergent may include an oil-soluble neutral or overbased salt of alkali or alkaline earth metal with one or more of the following acidic substances (or mixtures thereof): (1) a sulfonic acid, (2) a carboxylic acid, (3) a salicylic acid, (4) an alkyl phenol, (5) a sulfurized alkyl phenol, and (6) an organic phosphorus acid characterized by at least one direct carbon-to-phosphorus linkage.
- Such an organic phosphorus acid may include those prepared by the treatment of an olefin polymer (e.g., polyisobutylene having a molecular weight of about 1,000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
- an olefin polymer e.g., polyisobutylene having a molecular weight of about 1,000
- a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
- Suitable salts may include neutral or overbased salts of magnesium or zinc.
- suitable salts may include magnesium sulfonate, zinc sulfonate, magnesium phenate, and or zinc phenate. See, e.g., US 6,482,778.
- Oil-soluble neutral metal-containing detergents are those detergents that contain stoichiometrically equivalent amounts of metal in relation to the amount of acidic moieties present in the detergent. Thus, in general the neutral detergents will have a low basicity when compared to their overbased counterparts.
- the acidic materials utilized in forming such detergents include carboxylic acids, salicylic acids, alkylphenols, sulfonic acids, sulfurized alkylphenols and the like.
- overbased in connection with metallic detergents is used to designate metal salts wherein the metal is present in stoichiometrically larger amounts than the organic radical.
- the commonly employed methods for preparing the overbased salts involve heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature of about 50 °C, and filtering the resultant product.
- a "promoter” in the neutralization step to aid the incorporation of a large excess of metal likewise is known.
- Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkyl phenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octanol, Cellosolve.RTM. alcohol, Carbitol.RTM. alcohol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; and amines such as aniline, phenylene diamine, phenothiazine, phenyl-beta-naphthylamine, and dodecylamine.
- a particularly effective method for preparing the basic salts includes mixing an acid with an excess of a basic alkaline earth metal neutralizing agent and at least one alcohol promoter, and carbonating the mixture at an elevated temperature such as 60 °C to 200 °C.
- suitable metal-containing detergents include, but are not limited to, neutral and overbased salts of such substances as neutral sodium sulfonate, an overbased sodium sulfonate, a sodium carboxylate, a sodium salicylate, a sodium phenate, a sulfurized sodium phenate, a lithium sulfonate, a lithium carboxylate, a lithium salicylate, a lithium phenate, a sulfurized lithium phenate, a magnesium sulfonate, a magnesium carboxylate, a magnesium salicylate, a magnesium phenate, a sulfurized magnesium phenate, a potassium sulfonate, a potassium carboxylate, a potassium salicylate, a potassium phenate, a sulfurized potassium phenate, a zinc sulfonate, a zinc carboxylate, a zinc salicylate, a zinc phenate, and a sulfurized zinc phenate.
- neutral sodium sulfonate an overbased sodium sulfon
- Further examples include a lithium, sodium, potassium, and magnesium salt of a hydrolyzed phosphosulfurized olefin having 10 to 2,000 carbon atoms or of a hydrolyzed phosphosulfurized alcohol and/or an aliphatic-substituted phenolic compound having 10 to 2,000 carbon atoms.
- Even further examples include a lithium, sodium, potassium, and magnesium salt of an aliphatic carboxylic acid and an aliphatic substituted cycloaliphatic carboxylic acid and many other similar alkali and alkaline earth metal salts of oil-soluble organic acids.
- a mixture of a neutral or an overbased salt of two or more different alkali and/or alkaline earth metals can be used.
- a neutral and/or an overbased salt of mixtures of two or more different acids can also be used.
- overbased metal detergents are generally regarded as containing overbasing quantities of inorganic bases, generally in the form of micro dispersions or colloidal suspensions.
- oil-soluble as applied to metallic detergents is intended to include metal detergents wherein inorganic bases are present that are not necessarily completely or truly oil-soluble in the strict sense of the term, inasmuch as such detergents when mixed into base oils behave much the same way as if they were fully and totally dissolved in the oil.
- the various metallic detergents referred to herein above are sometimes called neutral, basic, or overbased alkali metal or alkaline earth metal-containing organic acid salts.
- the metallic detergents utilized in this invention can, if desired, be oil-soluble boronated neutral and/or overbased alkali of alkaline earth metal-containing detergents.
- Methods for preparing boronated metallic detergents are described in, for example, U.S. Pat. Nos. 3,480,548; 3,679,584; 3,829,381; 3,909,691; 4,965,003; and 4,965,004.
- any effective amount of the metallic detergents may be used to enhance the benefits of this invention, typically these effective amounts will range from about 0.01 to about 0.2 wt% in the finished fluid, or as a further example, from about 0.05 to about 0.1 wt% in the fmished fluid.
- the power transmission fluid may also include conventional additives of the type used in automatic transmission fluid formulations and gear lubricants in addition to the extreme pressure performance improving additives described above.
- additives include, but are not limited to, friction modifiers, antioxidants, viscosity index improvers, corrosion inhibitors, antirust additives, antiwear additives, metal deactivators, antifoamants, pour point depressants, air entrainment additives and/or seal swell agents.
- the antiwear agents may include phosphorus-containing antiwear agents which may include an organic ester of phosphoric acid, phosphorous acid, or an amine salt thereof.
- the phosphorus-containing antiwear agent may include one or more of a dihydrocarbyl phosphite, a trihydrocarbyl phosphite, a dihydrocarbyl phosphate, a trihydrocarbyl phosphate, any sulfur analogs thereof, and any amine salts thereof.
- the phosphorus-containing antiwear agent may include at least one of dibutyl hydrogen phosphite (such as HiTEC® 528 antiwear agent available from Ethyl Corporation) and an amine salt of sulfurized dibutyl hydrogen phosphite (such as HiTEC® 833 antiwear agent available from Ethyl Corporation).
- dibutyl hydrogen phosphite such as HiTEC® 528 antiwear agent available from Ethyl Corporation
- an amine salt of sulfurized dibutyl hydrogen phosphite such as HiTEC® 833 antiwear agent available from Ethyl Corporation
- the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 50 to about 500 parts per million by weight of phosphorus in the power transmission fluid.
- the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 150 to about 300 parts per million by weight of phosphorus in the power transmission fluid.
- the power transmission fluid may include from about 0.01 wt% to about 1.0 wt% of the phosphorus-containing antiwear agent. As a further example, the power transmission fluid may include from about 0.2 wt% to about 0.3 wt% of the phosphorus-containing antiwear agent. As an example, the power transmission fluid may include from about 0.1 wt% to about 0.2 wt% of a dibutyl hydrogen phosphite or 0.3 wt% to about 0.4 wt% an amine salt of a sulfurized dibutyl hydrogen phosphate.
- Friction modifiers are used in automatic transmission fluids to decrease friction between surfaces (e.g., the members of a torque converter clutch or a shifting clutch) at low sliding speeds.
- surfaces e.g., the members of a torque converter clutch or a shifting clutch
- the result is a friction-vs.-velocity ( ⁇ -v) curve that has a positive slope, which in turn leads to smooth clutch engagements and minimizes "stick-slip” behavior (e.g., shudder, noise, and harsh shifts).
- Friction modifiers include such compounds as aliphatic amines or ethoxylated aliphatic amines, ether amines, alkoxylated ether amines, aliphatic fatty acid amides, acylated amines, aliphatic carboxylic acids, aliphatic carboxylic esters, polyol esters, aliphatic carboxylic ester-amides, imidazolines, tertiary amines, aliphatic phosphonates, aliphatic phosphates, aliphatic thiophosphonates, aliphatic thiophosphates, etc., wherein the aliphatic group usually contains one or more carbon atoms so as to render the compound suitably oil soluble.
- the aliphatic group may contain about 8 or more carbon atoms.
- aliphatic substituted succinimides formed by reacting one or more aliphatic succinic acids or anhydrides with ammonia or primary amines.
- the succinimide may include the reaction product of a succinic anhydride and ammonia or primary amine.
- the alkenyl group of the alkenyl succinic acid may be a short chain alkenyl group, for example, the alkenyl group may include from about 12 to about 36 carbon atoms.
- the succinimide may include a C 12 to about C 36 aliphatic hydrocarbyl succinimide.
- the succinimide may include a C 16 to about C 28 aliphatic hydrocarbyl succinimide.
- the succinimide may include a C 18 to about C 24 aliphatic hydrocarbyl succinimide.
- the succinimide may be prepared from a succinic anhydride and ammonia as described in European Patent Application No. 0 020 037, herein incorporated by reference. Further, the succinimide may include HiTEC® 3191 friction modifier, available from Ethyl Corporation. In some embodiments, no non-metallic friction modifier other than the succinimide disclosed herein is included.
- the succinimide may include one or more of a compound having the following structure: wherein Z may have the structure: wherein either R 1 or R 2 may be hydrogen, but not both, and wherein R 1 and R 2 may be independently straight or branched chain hydrocarbon groups containing from about 1 to about 34 carbon atoms such that the total number of carbon atoms in R 1 and R 2 is from about 11 to about 35; X is an amino group derived from ammonia or a primary amine; and wherein, in addition to or in the alternative, the parent succinic anhydride may be formed by reacting maleic acid, anhydride, or ester with an internal olefin containing about 12 to about 36 carbon atoms, said internal olefm being formed by isomerizing the olefinic double bond of a linear ⁇ -olefin or mixture thereof to obtain a mixture of internal olefins. The reaction may involve an equimolar amount of ammonia and may be carried out at elevated temperatures with the removal of water.
- One group of friction modifiers includes the N-aliphatic hydrocarbyl-substituted diethanol amines in which the N-aliphatic hydrocarbyl-substituent is at least one straight chain aliphatic hydrocarbyl group free of acetylenic unsaturation and having in the range of about 14 to about 20 carbon atoms.
- An example of a suitable friction modifier system is composed of a combination of at least one N-aliphatic hydrocarbyl-substituted diethanol amine and at least one N-aliphatic hydrocarbyl-substituted trimethylene diamine in which the N-aliphatic hydrocarbyl-substituent is at least one straight chain aliphatic hydrocarbyl group free of acetylenic unsaturation and having in the range of about 14 to about 20 carbon atoms. Further details concerning this friction modifier system are set forth in U.S. Pat. Nos. 5,372,735 and 5,441,656.
- Another friction modifier system is based on the combination of (i) at least one di(hydroxyalkyl) aliphatic tertiary amine in which the hydroxyalkyl groups, being the same or different, each contain from 2 to about 4 carbon atoms, and in which the aliphatic group is an acyclic hydrocarbyl group containing from about 10 to about 25 carbon atoms, and (ii) at least one hydroxyalkyl aliphatic imidazoline in which the hydroxyalkyl group contains from 2 to about 4 carbon atoms, and in which the aliphatic group is an acyclic hydrocarbyl group containing from about 10 to about 25 carbon atoms.
- GMO glycerol monooleate
- GML glycerol monolaurate
- compositions may contain up to about 1.25 wt%, or, as a further example, from about 0.05 to about 1 wt% of one or more friction modifiers.
- antioxidant compounds may be included in the compositions.
- Antioxidants include phenolic antioxidants, aromatic amine antioxidants, sulfurized phenolic antioxidants, and organic phosphites, among others.
- phenolic antioxidants include 2,6-di-tert-butylphenol, liquid mixtures of tertiary butylated phenols, 2,6-di-tert-butyl-4-methylphenol, 4,4'-methylenebis(2,6-di-tert-butylphenol),2,2'-methylenebis(4-methyl6-ter t-butylphenol), mixed methylene-bridged polyalkyl phenols, and 4,4'-thiobis(2-methyl-6-tert-butylphenol).
- examples include the sterically hindered tertiary butylated phenols, bisphenols and cinnamic acid derivatives and combinations thereof.
- the amount of antioxidant in the transmission fluid compositions described herein may range from about 0.01 to about 3.0 wt% based on the total weight of the fluid formulation. As a further example, antioxidant may be present in an amount from about 0.1 wt% to about 1.0 wt%.
- copper corrosion inhibitors may constitute another class of additives suitable for inclusion in the compositions.
- Such compounds include thiazoles, triazoles and thiadiazoles.
- examples of such compounds include benzotriazole, tolyltriazole, octyltriazole, decyltriazole, dodecyltriazole, 2-mercapto benzothiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio-1,3,4-thiadiazoles, 2-mercapto-5- hydrocarbyldithio-1,3,4-thiadiazoles, 2,5-bis(hydrocarbylthio)- 1,3,4-thiadiazoles, and 2,5-bis(hydrocarbyldithio)-1,3,4-thiadiazoles.
- Suitable compounds include the 1,3,4-thiadiazoles, a number of which are available as articles of commerce, and also combinations of triazoles such as tolyltriazole with a 1,3,5-thiadiazole such as a 2,5-bis(alkyldithio)-1,3,4-thiadiazole.
- Materials of these types that are available on the open market include COBRATEC TT-100 and HiTEC® 4313 additive (Ethyl Corporation).
- the 1,3,4-thiadiazoles are generally synthesized from hydrazine and carbon disulfide by known procedures. See, for example, U.S. Pat. Nos. 2,765,289; 2,749,311; 2,760,933; 2,850,453; 2,910,439; 3,663,561; 3,862,798; and 3,840,549.
- Rust or corrosion inhibitors are another type of inhibitor additive for use in embodiments of the present disclosure.
- Such materials include monocarboxylic acids and polycarboxylic acids.
- suitable monocarboxylic acids are octanoic acid, decanoic acid and dodecanoic acid.
- Suitable polycarboxylic acids include dimer and trimer acids such as are produced from such acids as tall oil fatty acids, oleic acid, linoleic acid, or the like. Products of this type are currently available from various commercial sources, such as, for example, the dimer and trimer acids sold under the HYSTRENE trademark by the Humko Chemical Division of Witco Chemical Corporation and under the EMPOL trademark by Henkel Corporation.
- rust inhibitor may comprise alkenyl succinic acid and alkenyl succinic anhydride corrosion inhibitors such as, for example, tetrapropenylsuccinic acid, tetrapropenylsuccinic anhydride, tetradecenylsuccinic acid, tetradecenylsuccinic anhydride, hexadecenylsuccinic acid, hexadecenylsuccinic anhydride, and the like.
- alkenyl succinic acid and alkenyl succinic anhydride corrosion inhibitors such as, for example, tetrapropenylsuccinic acid, tetrapropenylsuccinic anhydride, tetradecenylsuccinic acid, tetradecenylsuccinic anhydride, hexadecenylsuccinic acid, hexadecenylsuccinic anhydride, and the like
- Suitable rust or corrosion inhibitors include ether amines; acid phosphates; amines; polyethoxylated compounds such as ethoxylated amines, ethoxylated phenols, and ethoxylated alcohols; imidazolines; aminosuccinic acids or derivatives thereof, and the like. Materials of these types are available as articles of commerce. Mixtures of such rust or corrosion inhibitors can be used.
- the amount of corrosion inhibitor in the transmission fluid formulations described herein may range from about 0.01 to about 2.0 wt% based on the total weight of the formulation.
- Viscosity index improvers for use in the above described fluid transmission and gear lubricant compositions may be selected from polyisoalkylene compounds, polymethacrylate compounds, and any conventional viscosity index improvers.
- An example of a suitable polyisoalkylene compound for use as a viscosity index improver includes polyisobutylene having a weight average molecular weight ranging from about 700 to about 2,500.
- Embodiments may include a mixture of one or more viscosity index improvers of the same or different molecular weight.
- Suitable commercially available viscosity index improvers may include styrenemaleic esters such as are available under the trade designation LUBRIZOL® 3702, LUBRIZOL® 3706 and LUBRIZOL® 3715 available from The Lubrizol Corporation; polyalkylmethacrylates such as those available from ROHM GmbH (Darmstadt, Germany) under the trade designations: VISCOPLEX® 5543, VISCOPLEX® 5548, VISCOPLEX® 5549, VISCOPLEX® 5550, VISCOPLEX® 5551 and VISCOPLEX® 5151, from Rohm & Haas Company (Philadelphia, Pa.) under the trade designations ACRYLOID® 1277, ACRYLOID® 1265 and ACRYLOID® 1269, and from Ethyl Corporation (Richmond, Va.) under the trade designation HiTEC® 5710, HiTEC® 5738, HiTEC® 5739, and HiTEC® 5742; and olefin copolymer viscosity index
- a foam inhibitor may form another component suitable for use in the compositions.
- Foam inhibitors may be selected from silicones, polyacrylates, surfactants, and the like.
- One suitable acrylic defoamer material is PC-1244 available from Monsanto Company.
- the amount of antifoam agent in the transmission fluid formulations described herein may range from about 0.01 wt% to about 0.5 wt% based on the total weight of the formulation.
- antifoam agent may be present in an amount from about 0.01 wt% to about 0.1 wt%.
- the seal swell agent used in the transmission fluid compositions described herein is selected from oil-soluble diesters, oil-soluble sulfones, and mixtures thereof.
- the most suitable diesters include the adipates, azelates, and sebacates of C 8 -C 13 alkanols (or mixtures thereof), and the phthalates of C 4 -C 13 alkanols (or mixtures thereof).
- Mixtures of two or more different types of diesters e.g., dialkyl adipates and dialkyl azelates, etc. can also be used.
- Such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid.
- esters which may give generally equivalent performance are polyol esters such as EMERY 2935, 2936, and 2939 esters from the Emery Group of Henkel Corporation and HATCOL 2352, 2962, 2925, 2938, 2939, 2970, 3178, and 4322 polyol esters from Hatco Corporation.
- Suitable sulfone seal swell agents are described in U.S. Pat. Nos. 3,974,081 and 4,029,587.
- Lubrizol 730 additive (The Lubrizol Corporation) is understood to be a commercially-available sulfone type seal swell agent.
- these products are employed at levels in the range of about 0.25 wt% to about 5 wt % in the finished transmission fluid. As a further example, they may be provided in an amount of about 0.25 wt% to about 1 wt%.
- Suitable seal swell agents are the oil-soluble dialkyl esters of (i) adipic acid, (ii) sebacic acid, or (iii) phthalic acid.
- the adipates and sebacates should be used in amounts in the range of from about 1 to about 15 wt% in the finished fluid. In the case of the phthalates, the levels in the transmission fluid should fall in the range of from about 1.5 to about 10 wt%.
- the higher the molecular weight of the adipate, sebacate or phthalate the higher should be the treat rate within the foregoing ranges.
- Additives used in formulating the compositions described herein can be blended into the base oil individually or in various sub-combinations. However, it is suitable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent).
- an additive concentrate i.e., additives plus a diluent, such as a hydrocarbon solvent.
- the use of an additive concentrate takes advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate. Also, the use of a concentrate reduces blending time and lessens the possibility of blending errors.
- the power transmission fluids disclosed herein may include fluids suitable for any power transmitting application, such as a step automatic transmission or a manual transmission. Further, the power transmission fluids of the present disclosure are suitable for use in transmissions with a slipping torque converter, a lock-up torque converter, a starting clutch, and/or one or more shifting clutches. Such transmissions include four-, five-, six-, and seven-speed transmissions, and continuously variable transmissions (chain, belt, or disk type). They may also be used in manual transmissions, including automated manual and dual-clutch transmissions.
- the standard test pin is AISI 3135 Steel, HRB 87 and the standard Vee Blocks are AISI C-1137 Steel, HRC 20 to 24.
- the lubricant compositions were tested at 100°C and 150°C. Higher loads to seizure signify better extreme pressure (EP) performance.
- the baseline fluid contained the following components:
- a baseline fluid absent an extreme pressure performance improving amount of ester of phosphonic acid had a seizure load of 1250 pounds at 100°C and 1000 pounds at 150°C (Fluid No. 1).
- Much higher seizure loads were obtained with a baseline fluid containing an ester of phosphonic acid (Fluid Nos. 5 and 7) in the absence of a detergent containing calcium cations.
- the fluids containing a detergent having a calcium cation (Fluid Nos. 3 and 8) gave worse performance, i.e., lower seizure loads, than the baseline fluid.
- succinimide dispersant In the next set of experiments, the effect of use of a post-treated succinimide dispersant on the extreme pressure performance of a fluid was evaluated.
- Three succinimides were prepared from 2100 molecular weight polyisobutylene succinic acid and tetraethylenepentamine in a 2.4:1 molar ratio. The succinimides were post-treated with the capping agents indicated in Table 2.
- Succinimide No. 1 was treated with 0.1 wt % amount of boron.
- Succinimide No. 2 was treated with the same amount of boron and 1.3 wt % amount of nonyphenol and formaldehyde.
- succinimide post-treated with boron, nonylphenol/formaldehyde, and glycolic acid gave significantly higher Falex EP values than the succinimide treated with boron alone (Succinimide No. 1) and the succinimide treated with boron and nonylphenol/formaldehyde (Succinimide No. 2). It is expected that a post-treated succinimide treated with boron, nonlyphenol/formaldehyde, and glycolic acid, combined with a phosphonate according to the invention will achieve superior extreme pressure performance in a lubricant composition containing these components.
- each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Abstract
Description
- The present disclosure relates to power transmission fluids having improved characteristics particularly for extreme pressure applications. The power transmission fluids disclosed herein may include fluids suitable for use in an automatic transmission (ATF) and/or a manual transmission.
- New and advanced transmission systems are being developed by the automotive industry. These new systems often involve high energy requirements. Therefore, component protection technology must be developed to meet the increasing energy requirements of these advanced systems.
- Extremely high metal-on-metal pressures are present in newer automatic and manual transmissions such as step automatic transmissions, continuously variable transmissions, manual or automated manual transmissions. High pressures are also present in various gear drive components such as automotive differentials and power transmission gear drive components. The high pressures present in such transmission and gear drive components mean that lubricants used in these systems must be suitable for such extreme pressure applications to prevent wear and avoid seizure of the rotating and contacting components. Thus, there continues to be a need for additives which reduce wear and prevent seizure under extremely high pressure operating conditions.
- Power transmission fluids formulated according to the present disclosure provide improved high pressure characteristics. In particular additives and fluids containing the additives are described which are suitably formulated to protect transmission and drive components in metal-on-metal contact situations.
- In an embodiment, a power transmission fluid composition for extreme pressure applications is provided. The power transmission fluid includes a base oil, and an additive composition containing an extreme pressure performance improving amount of an ester of phosphonic acid of the formula: where R1 is a hydrocarbyl group containing from about 8 to about 24 carbon atoms, R2 and R3 are independently selected from hydrogen and a hydrocarbyl group containing from about 1 to about 8 carbon atoms, provided that no more than one of R2 and R3 is hydrogen. The additive also includes a succinimide dispersant, and, optionally, a metal-based detergent. When used, the detergent component is substantially devoid of calcium cations.
- Another embodiment provides a method of improving extreme pressure characteristics for a transmission fluid. The method includes providing a base oil and adding to the base oil an additive composition including (1) from about 0.01 to about 1.0 weight percent based on the total weight of the base oil and additive composition of an ester of phosphonic acid of the formula:
- In the formula, R1 is a hydrocarbyl group containing from about 8 to about 24 carbon atoms, R2 and R3 are independently selected from hydrogen and a hydrocarbyl group containing from about 1 to about 8 carbon atoms, provided that no more than one of R2 and R3 is hydrogen. The additive composition also includes from about 2 to about 5 weight percent based on the total weight of the transmission fluid of a succinimide dispersant and, optionally, from about 0.0 to about 0.2 weight percent based on the total weight of the transmission fluid of a metal-based detergent. The detergent is substantially devoid of calcium cations.
- Yet another embodiment provides an additive concentrate for a transmission fluid or gear lubricant. The additive concentrate includes a base oil carrier fluid. Another component of the additive concentrate is an extreme pressure performance improving amount of an ester of phosphonic acid of the formula: where R1 is a hydrocarbyl group containing from about 8 to about 24 carbon atoms, R2 and R3 are independently selected from hydrogen and a hydrocarbyl group containing from about 1 to about 8 carbon atoms, provided that no more than one of R2 and R3 is hydrogen. A succinimide dispersant and an optional metal-based detergent may also be included in the additive concentrate. The detergent is substantially devoid of calcium cations.
- Power transmission fluids of the foregoing embodiments are formulated to provide enhanced extreme pressure properties for applications where metal-to-metal contact is made under high pressures, e.g., pressures in excess of 2 GPa. Such fluids are suitable for automatic and manual transmissions such as step automatic transmissions, continuously variable transmissions, manual or automated manual transmissions. High metal-to-metal contact pressures such as those found in automotive transmissions, for example, may cause damage to transmission parts if a lubricant is used that does not possess sufficient extreme pressure protection characteristics. However, power transmission fluid compositions as described herein have greatly improved extreme pressure performance characteristics.
- Both the foregoing general description and the following detailed description are exemplary and explanatory only and are intended to provide further explanation of the present invention, as claimed.
- As used herein, the term "hydrocarbyl substituent" or "hydrocarbyl group" is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of a molecule and having a predominantly hydrocarbon character. Examples of hydrocarbyl groups include:
- (1) hydrocarbon substituents, that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form an alicyclic radical);
- (2) substituted hydrocarbon substituents, that is, substituents containing non-hydrocarbon groups which, in the context of the description herein, do not alter the predominantly hydrocarbon substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, allcylmercapto, nitro, nitroso, and sulfoxy);
- (3) hetero-substituents, that is, substituents which, while having a predominantly hydrocarbon character, in the context of this description, contain other than carbon in a ring or chain otherwise composed of carbon atoms. Hetero-atoms include sulfur, oxygen, nitrogen, and encompass substituents such as pyridyl, furyl, thienyl and imidazolyl. In general, no more than two, or as a further example, no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non-hydrocarbon substituent in the hydrocarbyl group.
-
- As power transmission fluids operate under increasingly severe conditions, the oils used to lubricate those transmissions may be formulated to endure higher temperatures and pressures. To reduce equipment problems and increase the interval between transmission oil changes, the oil additive packages may be formulated so that important oil properties change as little as possible in the face of these stresses. An important characteristic of a power transmission fluid is its extreme pressure properties. High metal-on-metal contact pressures found in newer automotive transmissions and in gear drives can cause damage to transmission parts and gear drives if the lubricant used in the system is not formulated to provide sufficient extreme pressure protective properties.
- In an embodiment, a power transmission fluid may include a base oil and an additive composition. The additive composition includes an extreme pressure performance improving amount of an ester of phosphonic acid of the formula: where R1 is a hydrocarbyl group containing from about 8 to about 24 carbon atoms, R2 and R3 are independently selected from hydrogen and a hydrocarbyl group containing from about 1 to about 8 carbon atoms, provided that no more than one of R2 and R3 is hydrogen. The additive also includes a succinimide dispersant, and, optionally, a metal-based detergent. When used, the detergent is substantially devoid of calcium cations. The succinimide dispersant used in such fluids may be a post-treated succinimide dispersant.
- The phosphonic acid ester may be a di-organo or tri-organo phosphonate. Examples include, but are not limited to, methyloctadecylhydrogen phosphonate, bis(2-ethylhexyl) 2-ethylhexyl phosphonate, ethyloctadecylhydrogen phosphonate, dimethyloctadecylphosphonate, dimethylocta-decenylphosphonate, diethyl-2-ethyldecylphosphonate, ethylpropyl-1-butylhexadecyl-phosphonate, methylethyloctadecylphosphonate, methylbutyl eicosyl-phosphonate, dimethylhexatriacontylphosphonate. Methods for making phosphonic acid esters are described in U.S. Patent No. 2,2724,718 to Siles et al., and U.S. Patent No. 3,812,222 to Kleiner et al., for example.
- An extreme pressure performance improving amount of the ester of phosphonic acid as described above in combination with a base oil to provide a power transmission fluid may range from about 0.01 to about 1.0 percent by weight of the total weight of the transmission fluid, as a further example, from about 0.03 to about 0.5 weight percent, and as an even further example, from about 0.03 to about 0.25 weight percent.
- Base oils suitable for use in formulating transmission fluid compositions according to the invention may be selected from any of the synthetic or natural oils or mixtures thereof. Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil) as well as mineral lubricating oils such as liquid petroleum oils and solvent treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinicnaphthenic types. Oils derived from coal or shale are also suitable. The base oil typically has a viscosity of, for example, from about 2 to about 15 cSt and, as a further example, from about 2 to about 10 cSt at 100° C. Further, oils derived from a gas-to-liquid process are also suitable.
- Synthetic oils include hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene isobutylene copolymers, etc.); polyalphaolefins such as poly(1-hexenes), poly-(1-octenes), poly(1-decenes), etc. and mixtures thereof; alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, di-nonylbenzenes, di-(2-ethylhexyl)benzenes, etc.); polyphenyls (e.g., biphenyls, terphenyl, alkylated polyphenyls, etc.); alkylated diphenyl ethers and alkylated diphenyl sulfides and the derivatives, analogs and homologs thereof and the like.
- Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of known synthetic oils that may be used. Such oils are exemplified by the oils prepared through polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methylpolyisopropylene glycol ether having an average molecular weight of about 1000, diphenyl ether of polyethylene glycol having a molecular weight of about 500-1000, diethyl ether of polypropylene glycol having a molecular weight of about 1000-1500, etc.) or mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C3-8 fatty acid esters, or the C13 Oxo acid diester of tetraethylene glycol.
- Another class of synthetic oils that may be used includes the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids, alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebacic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkyl malonic acids, alkenyl malonic acids, etc.) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol, etc.) Specific examples of these esters include dibutyl adipate, di(2-ethylhexyl)sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid and the like.
- Esters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols and polyol ethers such as neopentyl glycol, trimethylol propane, pentaerythritol, dipentaerythritol, tripentaerythritol, etc.
- Hence, the base oil used which may be used to make the transmission fluid compositions as described herein may be selected from any of the base oils in Groups I-V as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines. Such base oil groups are as follows:
1Groups I-III are mineral oil base stocks. Base Oil Group1 Sulfur (wt.%) Saturates (wt.%) Viscosity Index Group I > 0.03 and/or < 90 80 to 120 Group II ≤ 0.03 And ≥ 90 80 to 120 Group II ≤ 0.03 And ≥ 90 ≥ 120 Group IV all polyalphaolefins (PAOs) Group V all others not included in Groups I-IV - As set forth above, the base oil may be a poly-alpha-olefin (PAO). Typically, the poly-alpha-olefins are derived from monomers having from about 4 to about 30, or from about 4 to about 20, or from about 6 to about 16 carbon atoms. Examples of useful PAOs include those derived from octene, decene, mixtures thereof, and the like. PAOs may have a viscosity of from about 2 to about 15, or from about 3 to about 12, or from about 4 to about 8 cSt at 100° C. Examples of PAOs include 4 cSt at 100° C poly-alpha-olefins, 6 cSt at 100° C poly-alpha-olefins, and mixtures thereof. Mixtures of mineral oil with the foregoing poly-alpha-olefins may be used.
- The base oil may be an oil derived from Fischer-Tropsch synthesized hydrocarbons. Fischer-Tropsch synthesized hydrocarbons are made from synthesis gas containing H2 and CO using a Fischer-Tropsch catalyst. Such hydrocarbons typically require further processing in order to be useful as the base oil. For example, the hydrocarbons may be hydroisomerized using processes disclosed in U.S. Pat. Nos. 6,103,099 or 6,180,575; hydrocracked and hydroisomerized using processes disclosed in U.S. Pat. Nos. 4,943,672 or 6,096,940; dewaxed using processes disclosed in U.S. Pat. No. 5,882,505; or hydroisomerized and dewaxed using processes disclosed in U.S. Pat. Nos. 6,013,171; 6,080,301; or 6,165,949.
- Unrefined, refined and rerefined oils, either natural or synthetic (as well as mixtures of two or more of any of these) of the type disclosed hereinabove can be used in the base oils. Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment. For example, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from primary distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil. Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Many such purification techniques are known to those skilled in the art such as solvent extraction, secondary distillation, acid or base extraction, filtration, percolation, etc. Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques directed to removal of spent additives, contaminants, and oil breakdown products.
- The ashless dispersant used in the transmission fluids as described herein may be selected from any of the ashless dispersants known to those skilled in the art. Suitable ashless dispersants may include ashless dispersants such as succinimide dispersants, Mannich base dispersants, and polymeric polyamine dispersants. Hydrocarbyl-substituted succinic acylating agents are used to make hydrocarbyl-substituted succinimides. The hydrocarbyl-substituted succinic acylating agents include, but are not limited to, hydrocarbyl-substituted succinic acids, hydrocarbyl-substituted succinic anhydrides, the hydrocarbyl-substituted succinic acid halides (especially the acid fluorides and acid chlorides), and the esters of the hydrocarbyl-substituted succinic acids and lower alcohols (e.g., those containing up to 7 carbon atoms), that is, hydrocarbyl-substituted compounds which can function as carboxylic acylating agents.
- Hydrocarbyl substituted acylating agents are made as by reacting a polyolefin or chlorinated polyolefin of appropriate molecular weight with maleic anhydride. Similar carboxylic reactants can be used to make the acylating agents. Such reactants may include, but are not limited to, maleic acid, fumaric acid, malic acid, tartaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, ethylmaleic anhydride, dimethylmaleic anhydride, ethylmaleic acid, dimethylmaleic acid, hexylmaleic acid, and the like, including the corresponding acid halides and lower aliphatic esters.
- The molecular weight of the olefin can vary depending upon the intended use of the substituted succinic anhydrides. Typically, the substituted succinic anhydrides will have a hydrocarbyl group of from 8-500 carbon atoms. However, substituted succinic anhydrides used to make lubricating oil dispersants will typically have a hydrocarbyl group of about 40-500 carbon atoms. With high molecular weight substituted succinic anhydrides, it is more accurate to refer to number average molecular weight (Mn) since the olefins used to make these substituted succinic anhydrides may include a mixture of different molecular weight components resulting from the polymerization of low molecular weight olefin monomers such as ethylene, propylene and isobutylene.
- The mole ratio of maleic anhydride to olefin can vary widely. It may vary, for example, from about 5:1 to about 1:5, or for example, from about 1:1 to about 3:1. With olefins such as polyisobutylene having a number average molecular weight of about 500 to about 7000, or as a further example, about 800 to about 3000 or higher and the ethylene-alpha-olefin copolymers, the maleic anhydride may be used in stoichiometric excess, e.g. 1.1 to 3 moles maleic anhydride per mole of olefin. The unreacted maleic anhydride can be vaporized from the resultant reaction mixture.
- Polyalkenyl succinic anhydrides may be converted to polyalkyl succinic anhydrides by using conventional reducing conditions such as catalytic hydrogenation. For catalytic hydrogenation, a suitable catalyst is palladium on carbon. Likewise, polyalkenyl succinimides may be converted to polyalkyl succinimides using similar reducing conditions.
- The polyalkyl or polyalkenyl substituent on the succinic anhydrides employed herein is generally derived from polyolefins which are polymers or copolymers of mono-olefins, particularly 1-mono-olefins, such as ethylene, propylene and butylene. The mono-olefm employed may have about 2 to about 24 carbon atoms, or as a further example, about 3 to about 12 carbon atoms. Other suitable mono-olefins include propylene, butylene, particularly isobutylene, 1-octene and 1-decene. Polyolefins prepared from such mono-olefins include polypropylene, polybutene, polyisobutene, and the polyalphaolefins produced from 1-octene and 1-decene.
- In some embodiments, the ashless dispersant may include one or more alkenyl succinimides of an amine having at least one primary amino group capable of forming an imide group. The alkenyl succinimides may be formed by conventional methods such as by heating an alkenyl succinic anhydride, acid, acid-ester, acid halide, or lower alkyl ester with an amine containing at least one primary amino group. The alkenyl succinic anhydride may be made readily by heating a mixture of polyolefin and maleic anhydride to about 180°-220°C. The polyolefin may be a polymer or copolymer of a lower monoolefm such as ethylene, propylene, isobutene and the like, having a number average molecular weight in the range of about 300 to about 3000 as determined by gel permeation chromatography (GPC).
- Amines which may be employed in forming the ashless dispersant include any that have at least one primary amino group which can react to form an imide group and at least one additional primary or secondary amino group and/or at least one hydroxyl group. A few representative examples are: N-methyl-propanediamine, N-dodecylpropanediamine, N-aminopropyl-piperazine, ethanolamine, N-ethanolethylenediamine, and the like.
- Suitable amines may include alkylene polyamines, such as propylene diamine, dipropylene triamine, di-(1,2-butylene)triamine, and tetra-(1,2-propylene)pentamine. A further example includes the ethylene polyamines which can be depicted by the formula H2N(CH2CH2NH)nH, wherein n may be an integer from about one to about ten. These include: ethylene diamine, diethylene triamine (DETA), triethylene tetramine (TETA), tetraethylene pentamine (TEPA), pentaethylene hexamine (PEHA), and the like, including mixtures thereof in which case n is the average value of the mixture. Such ethylene polyamines have a primary amine group at each end so they may form monoalkenylsuccinimides and bis-alkenylsuccinimides. Commercially available ethylene polyamine mixtures may contain minor amounts of branched species and cyclic species such as N-aminoethyl piperazine, N,N'-bis(aminoethyl)piperazine, N,N'-bis(piperazinyl)ethane, and like compounds. The commercial mixtures may have approximate overall compositions falling in the range corresponding to diethylene triamine to tetraethylene pentamine. The molar ratio of polyalkenyl succinic anhydride to polyalkylene polyamines may be from about 1:1 to about 3.0:1.
- In some embodiments, the ashless dispersant may include the products of the reaction of a polyethylene polyamine, e.g. triethylene tetramine or tetraethylene pentamine, with a hydrocarbon substituted carboxylic acid or anhydride made by reaction of a polyolefin, such as polyisobutene, of suitable molecular weight, with an unsaturated polycarboxylic acid or anhydride, e.g., maleic anhydride, maleic acid, fumaric acid, or the like, including mixtures of two or more such substances.
- Polyamines that are also suitable in preparing the dispersants described herein include N-arylphenylenediamines, such as N-phenylphenylenediamines, for example, N-phenyl-1,4-phenylenediamine, N-phenyl-1,3-phenylendiamine, and N-phenyl-1,2-phenylenediamine; aminothiazoles such as aminothiazole, aminobenzothiazole, aminobenzothiadiazole and aminoalkylthiazole; aminocarbazoles; aminoindoles; aminopyrroles; amino-indazolinones; aminomercaptotriazoles; aminoperimidines; aminoalkyl imidazoles, such as 1-(2-aminoethyl) imidazole, 1-(3-aminopropyl) imidazole; and aminoalkyl morpholines, such as 4-(3-aminopropyl) morpholine. These polyamines are described in more detail in U.S. Pat. Nos. 4,863,623 and 5,075,383. Such polyamines can provide additional benefits, such as anti-wear and antioxidancy, to the final products.
- Additional polyamines useful in forming the hydrocarbyl-substituted succinimides include polyamines having at least one primary or secondary amino group and at least one tertiary amino group in the molecule as taught in U.S. Pat. Nos. 5,634,951 and 5,725,612. Examples of suitable polyamines include N,N,N",N"-tetraalkyldialkylenetriamines (two terminal tertiary amino groups and one central secondary amino group), N,N,N',N"-tetraalkyltrialkylenetetramines (one terminal tertiary amino group, two internal tertiary amino groups and one terminal primary amino group), N,N,N',N",N"'-pentaalkyltrialkylenetetramines (one terminal tertiary amino group, two internal tertiary amino groups and one terminal secondary amino group), tris(dialkylaminoalkyl)aminoalkylmethanes (three terminal tertiary amino groups and one terminal primary amino group), and like compounds, wherein the alkyl groups are the same or different and typically contain no more than about 12 carbon atoms each, and which may contain from 1 to 4 carbon atoms each. As a further example, these alkyl groups may be methyl and/or ethyl groups. Polyamine reactants of this type may include dimethylaminopropylamine (DMAPA) and N-methyl piperazine.
- Hydroxyamines suitable for herein include compounds, oligomers or polymers containing at least one primary or secondary amine capable of reacting with the hydrocarbyl-substituted succinic acid or anhydride. Examples of hydroxyamines suitable for use herein include aminoethylethanolamine (AEEA), aminopropyldiethanolamine (APDEA), ethanolamine, diethanolamine (DEA), partially propoxylated hexamethylene diamine (for example HMDA-2PO or HMDA-3PO), 3-amino-1,2-propanediol, tris(hydroxymethyl)aminomethane, and 2-amino-1,3-propanediol.
- The mole ratio of amine to hydrocarbyl-substituted succinic acid or anhydride may range from 1:1 to about 3.0:1. Another example of a mole ratio of amine to hydrocarbyl-substituted succinic acid or anhydride may range from about 1.5:1 to about 2.0:1.
- The foregoing dispersant may also be a post-treated dispersant made, for example, by treating the dispersant with maleic anhydride and boric acid as described, for example, in U.S. Patent No. 5,789,353 to Scattergood, or by treating the dispersant with nonylphenol, formaldehyde and glycolic acid as described, for example, in U.S. Patent No. 5,137,980 to DeGonia, et al.
- The Mannich base dispersants may be a reaction product of an alkyl phenol, typically having a long chain alkyl substituent on the ring, with one or more aliphatic aldehydes containing from 1 to about 7 carbon atoms (especially formaldehyde and derivatives thereof), and polyamines (especially polyalkylene polyamines). For example, a Mannich base ashless dispersants may be formed by condensing about one molar proportion of long chain hydrocarbon-substituted phenol with from about 1 to about 2.5 moles of formaldehyde and from about 0.5 to about 2 moles of polyalkylene polyamine.
- Hydrocarbon sources for preparation of the Mannich polyamine dispersants may be those derived from substantially saturated petroleum fractions and olefin polymers, such as polymers of mono-olefins having from 2 to about 6 carbon atoms. The hydrocarbon source generally contains, for example, at least about 40 carbon atoms, and as a further example, at least about 50 carbon atoms to provide substantial oil solubility to the dispersant. The olefin polymers having a GPC number average molecular weight between about 600 and 5,000 are suitable for reasons of easy reactivity and low cost. However, polymers of higher molecular weight can also be used. Especially suitable hydrocarbon sources are isobutylene polymers and polymers made from a mixture of isobutene and a raffinate I stream.
- Suitable Mannich base dispersants may be Mannich base ashless dispersants formed by condensing about one molar proportion of long chain hydrocarbon-substituted phenol with from about 1 to 2.5 moles of formaldehyde and from about 0.5 to 2 moles of polyalkylene polyamine.
- Polymeric polyamine dispersants suitable as the ashless dispersants are polymers containing basic amine groups and oil solubilizing groups (for example, pendant alkyl groups having at least about 8 carbon atoms). Such materials are illustrated by interpolymers formed from various monomers such as decyl methacrylate, vinyl decyl ether or relatively high molecular weight olefins, with aminoalkyl acrylates and aminoalkyl acrylamides. Examples of polymeric polyamine dispersants are set forth in U.S. Pat. Nos. 3,329,658; 3,449,250; 3,493,520; 3,519,565; 3,666,730; 3,687,849; and 3,702,300. Polymeric polyamines may include hydrocarbyl polyamines wherein the hydrocarbyl group is composed of the polymerization product of isobutene and a raffinate I stream as described above. PIB-amine and PIB-polyamines may also be used.
- Methods for the production of ashless dispersants as described above are known to those skilled in the art and are reported in the patent literature. For example, the synthesis of various ashless dispersants of the foregoing types is described in such patents as U.S. Patent Nos. 2,459,112; 2,962,442, 2,984,550; 3,036,003; 3,163,603; 3,166,516; 3,172,892; 3,184,474; 3,202,678; 3,215,707; 3,216,936; 3,219,666; 3,236,770; 3,254,025; 3,271,310; 3,272,746; 3,275,554; 3,281,357; 3,306,908; 3,311,558; 3,316,177; 3,331,776; 3,340,281; 3,341,542; 3,346,493; 3,351,552; 3,355,270; 3,368,972; 3,381,022; 3,399,141; 3,413,347; 3,415,750; 3,433,744; 3,438,757; 3,442,808; 3,444,170; 3,448,047; 3,448,048; 3,448,049; 3,451,933; 3,454,497; 3,454,555; 3,454,607; 3,459,661; 3,461,172; 3,467,668; 3,493,520; 3,501,405; 3,522,179; 3,539,633; 3,541,012; 3,542,680; 3,543,678; 3,558,743; 3,565,804; 3,567,637; 3,574,101; 3,576,743; 3,586,629; 3,591,598; 3,600,372; 3,630,904; 3,632,510; 3,632,511; 3,634,515; 3,649,229; 3,697,428; 3,697,574; 3,703,536; 3,704,308; 3,725,277; 3,725,441; 3,725,480; 3,726,882; 3,736,357; 3,751,365; 3,756,953; 3,793,202; 3,798,165; 3,798,247; 3,803,039; 3,804,763; 3,836,471; 3,862,981; 3,872,019; 3,904,595; 3,936,480; 3,948,800; 3,950,341; 3,957,746; 3,957,854; 3,957,855; 3,980,569; 3,985,802; 3,991,098; 4,006,089; 4,011,380; 4,025,451; 4,058,468; 4,071,548; 4,083,699; 4,090,854; 4,173,540; 4,234,435; 4,354,950; 4,485,023; 5,137,980, and Re 26,433, herein incorporated by reference.
- An example of a suitable ashless dispersant is a borated dispersant. Borated dispersants may be formed by boronating (borating) an ashless dispersant having basic nitrogen and/or at least one hydroxyl group in the molecule, such as a succinimide dispersant, succinamide dispersant, succinic ester dispersant, succinic ester-amide dispersant, Mannich base dispersant, or hydrocarbyl amine or polyamine dispersant. Methods that can be used for boronating the various types of ashless dispersants described above are described in U.S. Pat. Nos. 3,087,936; 3,254,025; 3,281,428; 3,282,955; 2,284,409; 2,284,410; 3,338,832; 3,344,069; 3,533,945; 3,658,836; 3,703,536; 3,718,663; 4,455,243; and 4,652,387.
- The borated dispersant may include a high molecular weight dispersant treated with boron such that the borated dispersant includes up to 2 wt% of boron. As another example the borated dispersant may include from about 0.8 wt% or less of boron. As a further example, the borated dispersant may include from about 0.1 to about 0.7 wt% of boron. As an even further example, the borated dispersant may include from about 0.25 to about 0.7 wt% of boron. As a further example, the borated dispersant may include from about 0.35 to about 0.7 wt% of boron. The dispersant may be dissolved in oil of suitable viscosity for ease of handling. It should be understood that the weight percentages given here are for neat dispersant, without any diluent oil added.
- A dispersant may be further reacted with an organic acid, an anhydride, and/or an aldehyde/phenol mixture. Such a process may enhance compatibility with elastomer seals, for example. The borated dispersant may further include a mixture of borated dispersants. As a further example, the borated dispersant may include a nitrogen-containing dispersant and/or may be free of phosphorus.
- A dispersant may be present in the power transmission fluid in an amount of about 0.1 wt% to about 10 wt%. Further, the power transmission fluid may include from about 2 wt% to about 7 wt% of the borated dispersant. Further, the power transmission fluid may include from about 3 wt% to about 5 wt% of the borated dispersant. Further, the power transmission fluid may include an amount of the borated dispersant sufficient to provide up to 1900 parts per million (ppm) by weight of boron in the finished fluid, such as for example, from about 50 to about 500 ppm by weight of boron in the finished fluid.
- Embodiments of the present disclosure may optionally include a metallic detergent, wherein the metallic detergent is substantially devoid of calcium cations. A suitable metallic detergent may include an oil-soluble neutral or overbased salt of alkali or alkaline earth metal with one or more of the following acidic substances (or mixtures thereof): (1) a sulfonic acid, (2) a carboxylic acid, (3) a salicylic acid, (4) an alkyl phenol, (5) a sulfurized alkyl phenol, and (6) an organic phosphorus acid characterized by at least one direct carbon-to-phosphorus linkage. Such an organic phosphorus acid may include those prepared by the treatment of an olefin polymer (e.g., polyisobutylene having a molecular weight of about 1,000) with a phosphorizing agent such as phosphorus trichloride, phosphorus heptasulfide, phosphorus pentasulfide, phosphorus trichloride and sulfur, white phosphorus and a sulfur halide, or phosphorothioic chloride.
- Suitable salts may include neutral or overbased salts of magnesium or zinc. As a further example, suitable salts may include magnesium sulfonate, zinc sulfonate, magnesium phenate, and or zinc phenate. See, e.g., US 6,482,778.
- Oil-soluble neutral metal-containing detergents are those detergents that contain stoichiometrically equivalent amounts of metal in relation to the amount of acidic moieties present in the detergent. Thus, in general the neutral detergents will have a low basicity when compared to their overbased counterparts. The acidic materials utilized in forming such detergents include carboxylic acids, salicylic acids, alkylphenols, sulfonic acids, sulfurized alkylphenols and the like.
- The term "overbased" in connection with metallic detergents is used to designate metal salts wherein the metal is present in stoichiometrically larger amounts than the organic radical. The commonly employed methods for preparing the overbased salts involve heating a mineral oil solution of an acid with a stoichiometric excess of a metal neutralizing agent such as the metal oxide, hydroxide, carbonate, bicarbonate, or sulfide at a temperature of about 50 °C, and filtering the resultant product. The use of a "promoter" in the neutralization step to aid the incorporation of a large excess of metal likewise is known. Examples of compounds useful as the promoter include phenolic substances such as phenol, naphthol, alkyl phenol, thiophenol, sulfurized alkylphenol, and condensation products of formaldehyde with a phenolic substance; alcohols such as methanol, 2-propanol, octanol, Cellosolve.RTM. alcohol, Carbitol.RTM. alcohol, ethylene glycol, stearyl alcohol, and cyclohexyl alcohol; and amines such as aniline, phenylene diamine, phenothiazine, phenyl-beta-naphthylamine, and dodecylamine. A particularly effective method for preparing the basic salts includes mixing an acid with an excess of a basic alkaline earth metal neutralizing agent and at least one alcohol promoter, and carbonating the mixture at an elevated temperature such as 60 °C to 200 °C.
- Examples of suitable metal-containing detergents include, but are not limited to, neutral and overbased salts of such substances as neutral sodium sulfonate, an overbased sodium sulfonate, a sodium carboxylate, a sodium salicylate, a sodium phenate, a sulfurized sodium phenate, a lithium sulfonate, a lithium carboxylate, a lithium salicylate, a lithium phenate, a sulfurized lithium phenate, a magnesium sulfonate, a magnesium carboxylate, a magnesium salicylate, a magnesium phenate, a sulfurized magnesium phenate, a potassium sulfonate, a potassium carboxylate, a potassium salicylate, a potassium phenate, a sulfurized potassium phenate, a zinc sulfonate, a zinc carboxylate, a zinc salicylate, a zinc phenate, and a sulfurized zinc phenate. Further examples include a lithium, sodium, potassium, and magnesium salt of a hydrolyzed phosphosulfurized olefin having 10 to 2,000 carbon atoms or of a hydrolyzed phosphosulfurized alcohol and/or an aliphatic-substituted phenolic compound having 10 to 2,000 carbon atoms. Even further examples include a lithium, sodium, potassium, and magnesium salt of an aliphatic carboxylic acid and an aliphatic substituted cycloaliphatic carboxylic acid and many other similar alkali and alkaline earth metal salts of oil-soluble organic acids. A mixture of a neutral or an overbased salt of two or more different alkali and/or alkaline earth metals can be used. Likewise, a neutral and/or an overbased salt of mixtures of two or more different acids can also be used.
- As is well known, overbased metal detergents are generally regarded as containing overbasing quantities of inorganic bases, generally in the form of micro dispersions or colloidal suspensions. Thus the term "oil-soluble" as applied to metallic detergents is intended to include metal detergents wherein inorganic bases are present that are not necessarily completely or truly oil-soluble in the strict sense of the term, inasmuch as such detergents when mixed into base oils behave much the same way as if they were fully and totally dissolved in the oil. Collectively, the various metallic detergents referred to herein above, are sometimes called neutral, basic, or overbased alkali metal or alkaline earth metal-containing organic acid salts.
- Methods for the production of oil-soluble neutral and overbased metallic detergents and alkaline earth metal-containing detergents are well known to those skilled in the art, and extensively reported in the patent literature. See, for example, U.S. Pat. Nos. 2,001,108; 2,081,075; 2,095,538; 2,144,078; 2,163,622; 2,270,183; 2,292,205; 2,335,017; 2,399,877; 2,416,281; 2,451,345; 2,451,346; 2,485,861; 2,501,731; 2,501,732; 2,585,520; 2,671,758; 2,616,904; 2,616,905; 2,616,906; 2,616,911; 2,616,924; 2,616,925; 2,617,049; 2,695,910; 3,178,368; 3,367,867; 3,496,105; 3,629,109; 3,865,737; 3,907,691; 4,100,085; 4,129,589; 4,137,184; 4,184,740; 4,212,752; 4,617,135; 4,647,387; and 4,880,550.
- The metallic detergents utilized in this invention can, if desired, be oil-soluble boronated neutral and/or overbased alkali of alkaline earth metal-containing detergents. Methods for preparing boronated metallic detergents are described in, for example, U.S. Pat. Nos. 3,480,548; 3,679,584; 3,829,381; 3,909,691; 4,965,003; and 4,965,004.
- While any effective amount of the metallic detergents may be used to enhance the benefits of this invention, typically these effective amounts will range from about 0.01 to about 0.2 wt% in the finished fluid, or as a further example, from about 0.05 to about 0.1 wt% in the fmished fluid.
- The power transmission fluid may also include conventional additives of the type used in automatic transmission fluid formulations and gear lubricants in addition to the extreme pressure performance improving additives described above. Such additives include, but are not limited to, friction modifiers, antioxidants, viscosity index improvers, corrosion inhibitors, antirust additives, antiwear additives, metal deactivators, antifoamants, pour point depressants, air entrainment additives and/or seal swell agents.
- The antiwear agents may include phosphorus-containing antiwear agents which may include an organic ester of phosphoric acid, phosphorous acid, or an amine salt thereof. For example, the phosphorus-containing antiwear agent may include one or more of a dihydrocarbyl phosphite, a trihydrocarbyl phosphite, a dihydrocarbyl phosphate, a trihydrocarbyl phosphate, any sulfur analogs thereof, and any amine salts thereof. As a further example, the phosphorus-containing antiwear agent may include at least one of dibutyl hydrogen phosphite (such as HiTEC® 528 antiwear agent available from Ethyl Corporation) and an amine salt of sulfurized dibutyl hydrogen phosphite (such as HiTEC® 833 antiwear agent available from Ethyl Corporation).
- The phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 50 to about 500 parts per million by weight of phosphorus in the power transmission fluid. As a further example, the phosphorus-containing antiwear agent may be present in an amount sufficient to provide about 150 to about 300 parts per million by weight of phosphorus in the power transmission fluid.
- The power transmission fluid may include from about 0.01 wt% to about 1.0 wt% of the phosphorus-containing antiwear agent. As a further example, the power transmission fluid may include from about 0.2 wt% to about 0.3 wt% of the phosphorus-containing antiwear agent. As an example, the power transmission fluid may include from about 0.1 wt% to about 0.2 wt% of a dibutyl hydrogen phosphite or 0.3 wt% to about 0.4 wt% an amine salt of a sulfurized dibutyl hydrogen phosphate.
- Friction modifiers are used in automatic transmission fluids to decrease friction between surfaces (e.g., the members of a torque converter clutch or a shifting clutch) at low sliding speeds. The result is a friction-vs.-velocity (µ-v) curve that has a positive slope, which in turn leads to smooth clutch engagements and minimizes "stick-slip" behavior (e.g., shudder, noise, and harsh shifts).
- Friction modifiers include such compounds as aliphatic amines or ethoxylated aliphatic amines, ether amines, alkoxylated ether amines, aliphatic fatty acid amides, acylated amines, aliphatic carboxylic acids, aliphatic carboxylic esters, polyol esters, aliphatic carboxylic ester-amides, imidazolines, tertiary amines, aliphatic phosphonates, aliphatic phosphates, aliphatic thiophosphonates, aliphatic thiophosphates, etc., wherein the aliphatic group usually contains one or more carbon atoms so as to render the compound suitably oil soluble. As a further example, the aliphatic group may contain about 8 or more carbon atoms. Also suitable are aliphatic substituted succinimides formed by reacting one or more aliphatic succinic acids or anhydrides with ammonia or primary amines.
- The succinimide may include the reaction product of a succinic anhydride and ammonia or primary amine. The alkenyl group of the alkenyl succinic acid may be a short chain alkenyl group, for example, the alkenyl group may include from about 12 to about 36 carbon atoms. Further, the succinimide may include a C12 to about C36 aliphatic hydrocarbyl succinimide. As a further example, the succinimide may include a C16 to about C28 aliphatic hydrocarbyl succinimide. As an even further example, the succinimide may include a C18 to about C24 aliphatic hydrocarbyl succinimide.
- The succinimide may be prepared from a succinic anhydride and ammonia as described in European Patent Application No. 0 020 037, herein incorporated by reference. Further, the succinimide may include HiTEC® 3191 friction modifier, available from Ethyl Corporation. In some embodiments, no non-metallic friction modifier other than the succinimide disclosed herein is included.
- The succinimide may include one or more of a compound having the following structure: wherein Z may have the structure: wherein either R1 or R2 may be hydrogen, but not both, and wherein R1 and R2 may be independently straight or branched chain hydrocarbon groups containing from about 1 to about 34 carbon atoms such that the total number of carbon atoms in R1 and R2 is from about 11 to about 35; X is an amino group derived from ammonia or a primary amine; and
wherein, in addition to or in the alternative, the parent succinic anhydride may be formed by reacting maleic acid, anhydride, or ester with an internal olefin containing about 12 to about 36 carbon atoms, said internal olefm being formed by isomerizing the olefinic double bond of a linear α-olefin or mixture thereof to obtain a mixture of internal olefins. The reaction may involve an equimolar amount of ammonia and may be carried out at elevated temperatures with the removal of water. - One group of friction modifiers includes the N-aliphatic hydrocarbyl-substituted diethanol amines in which the N-aliphatic hydrocarbyl-substituent is at least one straight chain aliphatic hydrocarbyl group free of acetylenic unsaturation and having in the range of about 14 to about 20 carbon atoms.
- An example of a suitable friction modifier system is composed of a combination of at least one N-aliphatic hydrocarbyl-substituted diethanol amine and at least one N-aliphatic hydrocarbyl-substituted trimethylene diamine in which the N-aliphatic hydrocarbyl-substituent is at least one straight chain aliphatic hydrocarbyl group free of acetylenic unsaturation and having in the range of about 14 to about 20 carbon atoms. Further details concerning this friction modifier system are set forth in U.S. Pat. Nos. 5,372,735 and 5,441,656.
- Another friction modifier system is based on the combination of (i) at least one di(hydroxyalkyl) aliphatic tertiary amine in which the hydroxyalkyl groups, being the same or different, each contain from 2 to about 4 carbon atoms, and in which the aliphatic group is an acyclic hydrocarbyl group containing from about 10 to about 25 carbon atoms, and (ii) at least one hydroxyalkyl aliphatic imidazoline in which the hydroxyalkyl group contains from 2 to about 4 carbon atoms, and in which the aliphatic group is an acyclic hydrocarbyl group containing from about 10 to about 25 carbon atoms. For further details concerning this friction modifier system, reference should be had to U.S. Pat. No. 5,344,579.
- Another suitable group of friction modifiers include polyolesters, for example, glycerol monooleate (GMO), glycerol monolaurate (GML), and the like.
- Generally speaking, the compositions may contain up to about 1.25 wt%, or, as a further example, from about 0.05 to about 1 wt% of one or more friction modifiers.
- In some embodiments, antioxidant compounds may be included in the compositions. Antioxidants include phenolic antioxidants, aromatic amine antioxidants, sulfurized phenolic antioxidants, and organic phosphites, among others. Examples of phenolic antioxidants include 2,6-di-tert-butylphenol, liquid mixtures of tertiary butylated phenols, 2,6-di-tert-butyl-4-methylphenol, 4,4'-methylenebis(2,6-di-tert-butylphenol),2,2'-methylenebis(4-methyl6-ter t-butylphenol), mixed methylene-bridged polyalkyl phenols, and 4,4'-thiobis(2-methyl-6-tert-butylphenol). N,N'-di-sec-butylphenylenediamine, 4-isopropylaminodiphenylamine, phenyl-.alpha.-naphthyl amine, phenyl-.alpha.-naphthyl amine, and ring-alkylated diphenylamines. Examples include the sterically hindered tertiary butylated phenols, bisphenols and cinnamic acid derivatives and combinations thereof. The amount of antioxidant in the transmission fluid compositions described herein may range from about 0.01 to about 3.0 wt% based on the total weight of the fluid formulation. As a further example, antioxidant may be present in an amount from about 0.1 wt% to about 1.0 wt%.
- In some embodiments, copper corrosion inhibitors may constitute another class of additives suitable for inclusion in the compositions. Such compounds include thiazoles, triazoles and thiadiazoles. Examples of such compounds include benzotriazole, tolyltriazole, octyltriazole, decyltriazole, dodecyltriazole, 2-mercapto benzothiazole, 2,5-dimercapto-1,3,4-thiadiazole, 2-mercapto-5-hydrocarbylthio-1,3,4-thiadiazoles, 2-mercapto-5- hydrocarbyldithio-1,3,4-thiadiazoles, 2,5-bis(hydrocarbylthio)- 1,3,4-thiadiazoles, and 2,5-bis(hydrocarbyldithio)-1,3,4-thiadiazoles. Suitable compounds include the 1,3,4-thiadiazoles, a number of which are available as articles of commerce, and also combinations of triazoles such as tolyltriazole with a 1,3,5-thiadiazole such as a 2,5-bis(alkyldithio)-1,3,4-thiadiazole. Materials of these types that are available on the open market include COBRATEC TT-100 and HiTEC® 4313 additive (Ethyl Corporation). The 1,3,4-thiadiazoles are generally synthesized from hydrazine and carbon disulfide by known procedures. See, for example, U.S. Pat. Nos. 2,765,289; 2,749,311; 2,760,933; 2,850,453; 2,910,439; 3,663,561; 3,862,798; and 3,840,549.
- Rust or corrosion inhibitors are another type of inhibitor additive for use in embodiments of the present disclosure. Such materials include monocarboxylic acids and polycarboxylic acids. Examples of suitable monocarboxylic acids are octanoic acid, decanoic acid and dodecanoic acid. Suitable polycarboxylic acids include dimer and trimer acids such as are produced from such acids as tall oil fatty acids, oleic acid, linoleic acid, or the like. Products of this type are currently available from various commercial sources, such as, for example, the dimer and trimer acids sold under the HYSTRENE trademark by the Humko Chemical Division of Witco Chemical Corporation and under the EMPOL trademark by Henkel Corporation. Another useful type of rust inhibitor may comprise alkenyl succinic acid and alkenyl succinic anhydride corrosion inhibitors such as, for example, tetrapropenylsuccinic acid, tetrapropenylsuccinic anhydride, tetradecenylsuccinic acid, tetradecenylsuccinic anhydride, hexadecenylsuccinic acid, hexadecenylsuccinic anhydride, and the like. Also useful are the half esters of alkenyl succinic acids having 8 to 24 carbon atoms in the alkenyl group with alcohols such as the polyglycols. Other suitable rust or corrosion inhibitors include ether amines; acid phosphates; amines; polyethoxylated compounds such as ethoxylated amines, ethoxylated phenols, and ethoxylated alcohols; imidazolines; aminosuccinic acids or derivatives thereof, and the like. Materials of these types are available as articles of commerce. Mixtures of such rust or corrosion inhibitors can be used. The amount of corrosion inhibitor in the transmission fluid formulations described herein may range from about 0.01 to about 2.0 wt% based on the total weight of the formulation.
- Viscosity index improvers for use in the above described fluid transmission and gear lubricant compositions may be selected from polyisoalkylene compounds, polymethacrylate compounds, and any conventional viscosity index improvers. An example of a suitable polyisoalkylene compound for use as a viscosity index improver includes polyisobutylene having a weight average molecular weight ranging from about 700 to about 2,500. Embodiments may include a mixture of one or more viscosity index improvers of the same or different molecular weight.
- Suitable commercially available viscosity index improvers may include styrenemaleic esters such as are available under the trade designation LUBRIZOL® 3702, LUBRIZOL® 3706 and LUBRIZOL® 3715 available from The Lubrizol Corporation; polyalkylmethacrylates such as those available from ROHM GmbH (Darmstadt, Germany) under the trade designations: VISCOPLEX® 5543, VISCOPLEX® 5548, VISCOPLEX® 5549, VISCOPLEX® 5550, VISCOPLEX® 5551 and VISCOPLEX® 5151, from Rohm & Haas Company (Philadelphia, Pa.) under the trade designations ACRYLOID® 1277, ACRYLOID® 1265 and ACRYLOID® 1269, and from Ethyl Corporation (Richmond, Va.) under the trade designation HiTEC® 5710, HiTEC® 5738, HiTEC® 5739, and HiTEC® 5742; and olefin copolymer viscosity index improvers such as HiTEC® 5747, HiTEC® 5751, HiTEC® 5770, and HiTEC® 5772, available from Ethyl Corporation and SHELLVIS® 200 available from Shell Chemical Company. Mixtures of the foregoing products can also be used as well as dispersant and dispersant-antioxidant viscosity index improvers.
- In some embodiments, a foam inhibitor may form another component suitable for use in the compositions. Foam inhibitors may be selected from silicones, polyacrylates, surfactants, and the like. One suitable acrylic defoamer material is PC-1244 available from Monsanto Company. The amount of antifoam agent in the transmission fluid formulations described herein may range from about 0.01 wt% to about 0.5 wt% based on the total weight of the formulation. As a further example, antifoam agent may be present in an amount from about 0.01 wt% to about 0.1 wt%.
- The seal swell agent used in the transmission fluid compositions described herein is selected from oil-soluble diesters, oil-soluble sulfones, and mixtures thereof. Generally speaking the most suitable diesters include the adipates, azelates, and sebacates of C8-C13 alkanols (or mixtures thereof), and the phthalates of C4-C13 alkanols (or mixtures thereof). Mixtures of two or more different types of diesters (e.g., dialkyl adipates and dialkyl azelates, etc.) can also be used. Examples of such materials include the n-octyl, 2-ethylhexyl, isodecyl, and tridecyl diesters of adipic acid, azelaic acid, and sebacic acid, and the n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, and tridecyl diesters of phthalic acid.
- Other esters which may give generally equivalent performance are polyol esters such as EMERY 2935, 2936, and 2939 esters from the Emery Group of Henkel Corporation and HATCOL 2352, 2962, 2925, 2938, 2939, 2970, 3178, and 4322 polyol esters from Hatco Corporation.
- Suitable sulfone seal swell agents are described in U.S. Pat. Nos. 3,974,081 and 4,029,587. Lubrizol 730 additive (The Lubrizol Corporation) is understood to be a commercially-available sulfone type seal swell agent. Typically these products are employed at levels in the range of about 0.25 wt% to about 5 wt % in the finished transmission fluid. As a further example, they may be provided in an amount of about 0.25 wt% to about 1 wt%.
- Suitable seal swell agents are the oil-soluble dialkyl esters of (i) adipic acid, (ii) sebacic acid, or (iii) phthalic acid. The adipates and sebacates should be used in amounts in the range of from about 1 to about 15 wt% in the finished fluid. In the case of the phthalates, the levels in the transmission fluid should fall in the range of from about 1.5 to about 10 wt%. Generally speaking, the higher the molecular weight of the adipate, sebacate or phthalate, the higher should be the treat rate within the foregoing ranges.
- Additives used in formulating the compositions described herein can be blended into the base oil individually or in various sub-combinations. However, it is suitable to blend all of the components concurrently using an additive concentrate (i.e., additives plus a diluent, such as a hydrocarbon solvent). The use of an additive concentrate takes advantage of the mutual compatibility afforded by the combination of ingredients when in the form of an additive concentrate. Also, the use of a concentrate reduces blending time and lessens the possibility of blending errors.
- The power transmission fluids disclosed herein may include fluids suitable for any power transmitting application, such as a step automatic transmission or a manual transmission. Further, the power transmission fluids of the present disclosure are suitable for use in transmissions with a slipping torque converter, a lock-up torque converter, a starting clutch, and/or one or more shifting clutches. Such transmissions include four-, five-, six-, and seven-speed transmissions, and continuously variable transmissions (chain, belt, or disk type). They may also be used in manual transmissions, including automated manual and dual-clutch transmissions.
- The following tables illustrate the steel-on-steel extreme pressure characteristics of transmission fluids as described herein evaluated using a Falex extreme pressure (EP) test according to ASTM D 3233. The Falex EP test measures the load carrying ability of an oil. According to the test, a 1/4 inch (6.35 mm) diameter test journal or pin is rotated at 290 rpm between two Vee Blocks immersed in the oil preheated to 51.7°C. Procedure A employs a constant increase in load applied by an automatic ratchet until failure as indicated by seizure of the test coupon or rapid loss of load caused by excessive wear. Procedure B employs load increments of 250 lbs with running for 1 minute at each increment until failure. The standard test pin is AISI 3135 Steel, HRB 87 and the standard Vee Blocks are AISI C-1137 Steel, HRC 20 to 24. The lubricant compositions were tested at 100°C and 150°C. Higher loads to seizure signify better extreme pressure (EP) performance. The baseline fluid contained the following components:
- (a) Friction modifiers - from about 0.01 to about 0.5 wt.%
- (b) Sulfur agents - from about 0.01 to about 1.0 wt.%
- (c) Anti-oxidants - from about 0.01 to about 2.0 wt.%
- (d) Anti-rust Agents - from about 0.01 to about 0.3 wt.%
- (e) Dispersants - from about 0.5 to about 10.0 wt.%
- (f) Anti-foam agents - from about 0.0001 to about 0.5 wt.%
- (g) base oil (mineral or synthetic) - balance of baseline fluid
-
- The fluids listed in Table 1 contained the baseline fluid and the indicated amounts of the following components:
- HiTEC® 611 detergent is an overbased calcium sulfonate available from Ethyl Corporation of Richmond, Virginia.
- Zn phenate is zinc phenate.
- HiTEC® 059 is a dimethyloctadecylphosphonate available from Ethyl
Corporation.
Fluid No. HiTEC® 611 detergent (wt.%) Zn Phenate (wt.%) HiTEC® 059 (wt.%) Falex EP Fail load (lbs) @ 100°C Falex EP Fail load (lbs) @ 150°C 1 0.00 0.00 0.00 1250 1000 2 0.20 0.20 0.25 1250 1250 3 0.20 0.20 0.00 750 750 4 0.20 0.00 0.25 1000 750 5 0.00 0.00 0.25 2125 2000 6 0.00 0.20 0.00 750 500 7 0.00 0.20 0.25 2000 2000 8 0.20 0.00 0.00 1250 625 -
- As shown by the foregoing table, a baseline fluid absent an extreme pressure performance improving amount of ester of phosphonic acid had a seizure load of 1250 pounds at 100°C and 1000 pounds at 150°C (Fluid No. 1). Much higher seizure loads were obtained with a baseline fluid containing an ester of phosphonic acid (Fluid Nos. 5 and 7) in the absence of a detergent containing calcium cations. The fluids containing a detergent having a calcium cation (Fluid Nos. 3 and 8) gave worse performance, i.e., lower seizure loads, than the baseline fluid. An analysis of the variance of the foregoing results indicated that the overbased calcium sulfonate had a strong negative effect on the Falex EP value, the phosphonate had a strong positive effect on the Falex EP value, and the zinc phenate had little or no effect on the Falex EP value. A strong negative interaction between the detergent component and the phosphonate component was also observed (Fluid Nos. 2 and 4). Separate experiments have shown that a low-base calcium phenate detergent also negatively impacts the Falex EP performance values.
- In the next set of experiments, the effect of use of a post-treated succinimide dispersant on the extreme pressure performance of a fluid was evaluated. Three succinimides were prepared from 2100 molecular weight polyisobutylene succinic acid and tetraethylenepentamine in a 2.4:1 molar ratio. The succinimides were post-treated with the capping agents indicated in Table 2. Succinimide No. 1 was treated with 0.1 wt % amount of boron. Succinimide No. 2 was treated with the same amount of boron and 1.3 wt % amount of nonyphenol and formaldehyde. Succinimide No. 3 was treated the same as succinimide No.2 and additionally with 1.0 wt % amount glycolic acid. Each of the post-treated succinimides was added to the same baseline fluid as described above in an amount of 2.5 wt.%. The Falex EP values were determined as above and the results are as follows:
Succinimde No. Post-Treatment Falex EP Fail load (lbs) @ 100°C Falex EP Fail load (lbs) @ 150°C 1 Boron only 1000 1000 2 Boron and nonylphenol/formaldehyde 1250 1000 3 Boron and nonylphenol/formaldehyde and glycolic acid 1500 1250 - As shown in the foregoing table, the succinimide post-treated with boron, nonylphenol/formaldehyde, and glycolic acid (Succinimide No. 3) gave significantly higher Falex EP values than the succinimide treated with boron alone (Succinimide No. 1) and the succinimide treated with boron and nonylphenol/formaldehyde (Succinimide No. 2). It is expected that a post-treated succinimide treated with boron, nonlyphenol/formaldehyde, and glycolic acid, combined with a phosphonate according to the invention will achieve superior extreme pressure performance in a lubricant composition containing these components.
- At numerous places throughout this specification, reference has been made to a number of U.S. Patents. All such cited documents are expressly incorporated in full into this disclosure as if fully set forth herein.
- Other embodiments of the present invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. As used throughout the specification and claims, "a" and/or "an" may refer to one or more than one. Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, percent, ratio, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Claims (28)
- A composition including: where R1 is a hydrocarbyl group containing from about 8 to about 24 carbon atoms, R2 and R3 are independently selected from hydrogen and a hydrocarbyl group containing from about 1 to about 8 carbon atoms, provided that no more than one of R2 and R3 is hydrogen, a succinimide dispersant, and, optionally, a metal-based detergent, wherein the detergent is substantially devoid of calcium cations.
- The composition of claim 1, wherein the base oil includes one or more of a natural oil, a mixture of natural oils, a synthetic oil, a mixture of synthetic oils, and a mixture of natural and synthetic oils.
- The composition of claim 2, wherein the natural oil includes one or more of a mineral oil, a vegetable oil, and a mixture of mineral oil and vegetable oil.
- The composition of claim 2, wherein the synthetic oil includes one or more of an oligomer of an alphaolefin, an ester, an oil derived from a Fischer-Tropsch process, an oil derived from a gas-to-liquid process, and a mixture thereof.
- The composition of any one of claims 1-4, wherein the base oil has a kinematic viscosity of from 2 centistokes to 10 centistokes at 100° C.
- The composition of any one of claims 1-5, wherein the succinimide dispersant includes a dispersant derived from a polyisobutenyl succinic anhydride (PIBSA) having a number average molecular weight ranging from 200 to 2100, as determined by gel permeation chromatography, and a polyalkylene polyamine.
- The composition of claim 6, wherein the succinimide dispersant is derived from PIBSA and an amine in a molar ratio of PIBSA to amine ranging from 1:1 to 3:1.
- The composition of claim 7, wherein the succinimide dispersant is post treated with one or more of a phosphorus-based acid, a boron-based acid, a carboxylic acid, an alkylphenol/aldehyde mixture, and a mixture of two or more of the foregoing.
- The composition of any one of claims 1-8, wherein the composition includes from 0.03 to 0.25 percent by weight of the ester of phosphonic acid.
- The composition of any one of claims 1-9, wherein the composition includes from 2 to 5 percent by weight of the succinimide dispersant.
- The composition of any one of claims 1-10, wherein the optional metal-based detergent includes a detergent selected from one or more of a neutral sodium sulfonate, an overbased sodium sulfonate, a sodium carboxylate, a sodium salicylate, a sodium phenate, a sulfurized sodium phenate, a lithium sulfonate, a lithium carboxylate, a lithium salicylate, a lithium phenate, a sulfurized lithium phenate, a magnesium sulfonate, a magnesium carboxylate, a magnesium salicylate, a magnesium phenate, a sulfurized magnesium phenate, a potassium sulfonate, a potassium carboxylate, a potassium salicylate, a potassium phenate, a sulfurized potassium phenate, a zinc sulfonate, a zinc carboxylate, a zinc salicylate, a zinc phenate, and a sulfurized zinc phenate.
- The composition of any one of claims 1-11, wherein the ester of phosphonic acid includes one or more of dimethyloctadecylphosphonate, methyloctadecylhydrogen phosphonate, bis(2-ethylhexyl) 2-ethylhexyl phosphonate, dimethyloctadecenyl phosphonate, diethyl-2-ethyldecylphosphonate, ethylpropyl-1-butylhexadecylphosphonate, methylethyloctadecylphosphonate, methylbutyl eicosylphosphonate, and dimethylhexatriacontylphosphonate.
- The composition of any one of claims 1-12, wherein the additive composition further includes one or more of a friction modifier, an antioxidant, an antiwear agent, an antifoam agent, and a viscosity index improver.
- The composition of claim 13, wherein the friction modifier includes one or more of an aliphatic fatty amine, an ether amine, an alkoxylated aliphatic fatty amine, an alkoxylated ether amine, an oil-soluble aliphatic carboxylic acid, a polyol ester, a fatty acid amide, an imidazoline, a tertiary amine, and a hydrocarbyl succinic anhydride or acid reacted with an ammonia or a primary amine.
- The composition of any one of claims 13-14, wherein the antioxidant includes one or more of a bis-alkylated diphenyl amine, a phenyl alpha amine, a beta naphthyl amine, a sterically hindered phenol, a bisphenol, and a cinnamic acid derivative.
- The composition of any one of claims 13-15, wherein the antiwear agent includes one or more of a phosphate ester and salts thereof, a phosphite ester and salts thereof, and a dialkyldithiophosphoric acid esters and salts thereof.
- The composition of any one of claims 13-16, wherein the antifoam agent is one or more of a silicone and a polyacrylate.
- The composition of any one of claims 13-17, wherein the viscosity index improver includes polyisobutylene having a weight average molecular weight ranging from 700 to 2,500.
- The composition of any one of claims 1-18, wherein the composition is a power transmission fluid.
- The composition of claim 19, wherein the composition is suitable for use in a transmission employing one or more of a slipping torque converter, a lock-up torque converter, a starting clutch, and one or more shifting clutches.
- The composition of claim 19, wherein the composition is suitable for use in a belt, chain, or disk-type continuously variable transmission.
- An automatic transmission containing the power transmission fluid of claim 19.
- The automatic transmission of claim 22, wherein the automatic transmission is a continuously variable transmission.
- The composition of any one of claims 1-18, wherein the composition is an additive concentrate wherein the base oil is a carrier fluid.
- A method of improving extreme pressure characteristics of a transmission fluid including the step of:mixing the ingredients of a composition as claimed in any one of claims 1-18, wherein the composition includes from 0.01 to 1.0 weight percent of the ester of phosphonic acid, based on a total weight of the base oil and additive composition; from 2 to 5 weight percent of the succinimide dispersant, based on the total weight of the base oil and additive composition; and from 0.0 to 0.2 weight percent of the metal-based detergent, based on the total weight of the base oil and additive composition.
- An automatic transmission fluid including a base oil and from about 5 to 20 wt. % of the additive concentrate of claim 24, based on a total weight of the fluid.
- A vehicle including an engine and a transmission, the transmission including the automatic transmission fluid of claim 26.
- A vehicle including a differential, the differential including a lubricant containing an additive concentrate of claim 24.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55188604P | 2004-03-10 | 2004-03-10 | |
US551886P | 2004-03-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1577370A2 true EP1577370A2 (en) | 2005-09-21 |
EP1577370A3 EP1577370A3 (en) | 2008-06-04 |
Family
ID=34837583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05075444A Withdrawn EP1577370A3 (en) | 2004-03-10 | 2005-02-24 | Power transmission fluids |
Country Status (8)
Country | Link |
---|---|
US (1) | US20050202979A1 (en) |
EP (1) | EP1577370A3 (en) |
JP (1) | JP2005255996A (en) |
KR (1) | KR100702883B1 (en) |
CN (1) | CN1667103A (en) |
AU (1) | AU2005200695A1 (en) |
CA (1) | CA2496100A1 (en) |
SG (1) | SG115747A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2444131A (en) * | 2006-11-22 | 2008-05-28 | Afton Chemical Corp | Lubricant compositions |
EP2143781A1 (en) * | 2008-06-23 | 2010-01-13 | Afton Chemical Corporation | Friction modifiers for slideway applications |
WO2010075103A3 (en) * | 2008-12-22 | 2010-10-21 | Chevron Oronite Company Llc | A lubricating oil additive composition and method of making the same |
WO2011102835A1 (en) * | 2010-02-19 | 2011-08-25 | Toyota Jidosha Kabushiki Kaisha | Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents |
US9365794B2 (en) | 2010-02-19 | 2016-06-14 | Infineum International Limited | Wet friction clutch—lubricant systems providing high dynamic coefficients of friction through the use of borated detergents |
EP3676358A4 (en) * | 2017-08-29 | 2021-05-12 | Basf Se | Transmission lubricant composition |
EP3805342A4 (en) * | 2018-05-30 | 2022-01-19 | Idemitsu Kosan Co.,Ltd. | LUBRICATING OIL COMPOSITION FOR DRIVE SYSTEM DEVICE, METHOD FOR PRODUCTION THEREOF, METHOD FOR LUBRICATING DRIVE SYSTEM DEVICE AND DRIVE SYSTEM DEVICE |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4919555B2 (en) * | 2001-08-30 | 2012-04-18 | Jx日鉱日石エネルギー株式会社 | Lubricating oil composition for automatic transmission |
US20070142660A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Salt of a sulfur-containing, phosphorus-containing compound, and methods thereof |
US20070142237A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Lubricant composition |
US8299003B2 (en) | 2005-11-09 | 2012-10-30 | Afton Chemical Corporation | Composition comprising a sulfur-containing, phosphorus-containing compound, and/or its salt, and uses thereof |
US20070105728A1 (en) * | 2005-11-09 | 2007-05-10 | Phillips Ronald L | Lubricant composition |
US20070142659A1 (en) * | 2005-11-09 | 2007-06-21 | Degonia David J | Sulfur-containing, phosphorus-containing compound, its salt, and methods thereof |
CA2648664C (en) * | 2006-04-12 | 2014-09-09 | The Lubrizol Corporation | Hydroxy-containing tertiary amines as friction modifiers for automatic transmission fluids |
US20070245620A1 (en) * | 2006-04-25 | 2007-10-25 | Malfer Dennis J | Diesel fuel compositions |
EP2049635A2 (en) * | 2006-07-28 | 2009-04-22 | ExxonMobil Research and Engineering Company | Lubricant compositions, their preparation and use |
CA2658631A1 (en) * | 2006-07-28 | 2008-01-31 | Exxonmobil Research And Engineering Company | Novel application of thickeners to achieve favorable air release in lubricants |
US8389451B2 (en) * | 2006-07-28 | 2013-03-05 | Exxonmobil Research And Engineering Company | Lubricant air release rates |
US20080040968A1 (en) * | 2006-08-17 | 2008-02-21 | Malfer Dennis J | Fuel additive compounds and method of making the compounds |
JP2008280536A (en) * | 2007-05-09 | 2008-11-20 | Afton Chemical Corp | Composition comprising at least one friction improving compound, and use of the same |
CN101311254B (en) * | 2007-05-24 | 2010-12-22 | 中国石油化工股份有限公司 | Automatic transmission fluid composition using mineral oil as base oil |
US7770914B2 (en) * | 2007-07-31 | 2010-08-10 | Autoliv Asp, Inc. | Passenger airbag mounting apparatus |
JP5431860B2 (en) * | 2009-10-15 | 2014-03-05 | Jx日鉱日石エネルギー株式会社 | Continuously variable transmission oil composition |
US20140057818A1 (en) * | 2010-12-21 | 2014-02-27 | The Lubrizol Corporation | Lubricating Composition Containing an Antiwear Agent |
CN103725372B (en) * | 2012-10-15 | 2015-12-09 | 中国石油化工股份有限公司 | Lubricant composition for internal combustion engines |
CN103725357B (en) * | 2012-10-15 | 2015-07-01 | 中国石油化工股份有限公司 | Low-alkali detergent, preparation method of detergent and lubricating oil composition containing detergent |
CN103725353B (en) * | 2012-10-15 | 2015-07-01 | 中国石油化工股份有限公司 | Low-base number lubricating oil additive, preparation method and lubricating oil composition |
JP6776495B2 (en) * | 2015-03-20 | 2020-10-28 | 出光興産株式会社 | Lubricating oil composition |
US9816044B2 (en) | 2016-03-22 | 2017-11-14 | Afton Chemical Corporation | Color-stable transmission fluid compositions |
US10113131B2 (en) | 2017-01-11 | 2018-10-30 | The Boeing Company | Phosphono paraffins |
US11072757B2 (en) * | 2018-05-18 | 2021-07-27 | Afton Chemical Corporation | Slideway lubricants |
US11046908B2 (en) * | 2019-01-11 | 2021-06-29 | Afton Chemical Corporation | Oxazoline modified dispersants |
US11008527B2 (en) * | 2019-01-18 | 2021-05-18 | Afton Chemical Corporation | Engine oils for soot handling and friction reduction |
CN110343132B (en) * | 2019-07-03 | 2021-09-03 | 太原理工大学 | Preparation method and application of branched alkyl phosphonic acid dialkyl ester |
CN112694928B (en) * | 2019-10-23 | 2022-07-15 | 中国石油化工股份有限公司 | Aviation lubricating oil composition and preparation method thereof |
CN113388432B (en) * | 2020-03-11 | 2022-07-12 | 中国石油化工股份有限公司 | Gear oil composition and preparation method and application thereof |
EP4211210B1 (en) * | 2020-09-14 | 2024-11-06 | Chevron Japan Ltd. | Lubricating oil containing alkyl phosphonic acid |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486300A (en) * | 1991-04-19 | 1996-01-23 | The Lubrizol Corporation | Lubricating compositions |
WO2000014187A2 (en) * | 1998-09-04 | 2000-03-16 | Exxon Research And Engineering Company | Premium synthetic lubricants |
US6096691A (en) * | 1993-04-09 | 2000-08-01 | Ethyl Corporation | Gear oil additive concentrates and lubricants containing them |
US6127323A (en) * | 1997-04-21 | 2000-10-03 | Exxon Chemical Patents Inc. | Power transmission fluids containing alkyl phosphonates |
DE10320817A1 (en) * | 2002-05-08 | 2004-01-08 | Ethyl Japan Corp. | Power transmission fluids for automatic transmissions with improved torque performance and anti-shock resistance |
Family Cites Families (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2001108A (en) * | 1931-07-06 | 1935-05-14 | Standard Oil Co California | Stabilized hydrocarbon oil |
US2163622A (en) * | 1936-02-07 | 1939-06-27 | Standard Oil Co California | Compounded lubricating oil |
US2081075A (en) * | 1936-07-06 | 1937-05-18 | Sinclair Refining Co | Lubricating oil composition |
US2144078A (en) * | 1937-05-11 | 1939-01-17 | Standard Oil Co | Compounded mineral oil |
US2284409A (en) * | 1940-03-08 | 1942-05-26 | Pittsburgh Corning Corp | Fitting for tempered glass panels |
US2284410A (en) * | 1940-08-22 | 1942-05-26 | John F Farmer | Adjustable end slide grille |
US2270183A (en) * | 1941-03-13 | 1942-01-13 | American Cyanamid Co | Dialkylphenol sulphides |
US2416281A (en) * | 1944-06-09 | 1947-02-25 | Socony Vacuum Oil Co Inc | Mineral oil composition |
US2399877A (en) * | 1944-07-07 | 1946-05-07 | Standard Oil Dev Co | Chemical process, etc. |
US2459112A (en) * | 1945-07-06 | 1949-01-11 | Socony Vacuum Oil Co Inc | Mineral oil composition |
US2501731A (en) * | 1946-10-14 | 1950-03-28 | Union Oil Co | Modified lubricating oil |
US2501732A (en) * | 1946-10-14 | 1950-03-28 | Union Oil Co | Modified lubricating oil |
US2585520A (en) * | 1948-12-03 | 1952-02-12 | Shell Dev | Lubricating compositions containing highly basic metal sulfonates |
US2671758A (en) * | 1949-09-27 | 1954-03-09 | Shell Dev | Colloidal compositions and derivatives thereof |
US2749311A (en) * | 1952-12-04 | 1956-06-05 | Standard Oil Co | Corrosion inhibitors and compositions containing the same |
US2984550A (en) * | 1956-09-06 | 1961-05-16 | Nalco Chemical Co | Color stabilization of petroleum oils and compositions therefor |
US3036003A (en) * | 1957-08-07 | 1962-05-22 | Sinclair Research Inc | Lubricating oil composition |
US3444170A (en) * | 1959-03-30 | 1969-05-13 | Lubrizol Corp | Process which comprises reacting a carboxylic intermediate with an amine |
US3236770A (en) * | 1960-09-28 | 1966-02-22 | Sinclair Research Inc | Transaxle lubricant |
US3166516A (en) * | 1960-10-28 | 1965-01-19 | Nalco Chemical Co | Process for breaking petroleum emulsions |
US3087936A (en) * | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
US3449250A (en) * | 1962-05-14 | 1969-06-10 | Monsanto Co | Dispersency oil additives |
US3178368A (en) * | 1962-05-15 | 1965-04-13 | California Research Corp | Process for basic sulfurized metal phenates |
US3184474A (en) * | 1962-09-05 | 1965-05-18 | Exxon Research Engineering Co | Reaction product of alkenyl succinic acid or anhydride with polyamine and polyhydricmaterial |
DE1271877B (en) * | 1963-04-23 | 1968-07-04 | Lubrizol Corp | Lubricating oil |
US3381022A (en) * | 1963-04-23 | 1968-04-30 | Lubrizol Corp | Polymerized olefin substituted succinic acid esters |
US3172982A (en) * | 1963-07-25 | 1965-03-09 | Sensing Devices Inc | Sensing brush assembly |
US3306908A (en) * | 1963-12-26 | 1967-02-28 | Lubrizol Corp | Reaction products of high molecular weight hydrocarbon succinic compounds, amines and heavy metal compounds |
US3658836A (en) * | 1964-04-16 | 1972-04-25 | Monsanto Co | Hydroxyboroxin-amine salts |
NL130536C (en) * | 1964-05-19 | |||
US3316177A (en) * | 1964-12-07 | 1967-04-25 | Lubrizol Corp | Functional fluid containing a sludge inhibiting detergent comprising the polyamine salt of the reaction product of maleic anhydride and an oxidized interpolymer of propylene and ethylene |
US3368972A (en) * | 1965-01-06 | 1968-02-13 | Mobil Oil Corp | High molecular weight mannich bases as engine oil additives |
US3574576A (en) * | 1965-08-23 | 1971-04-13 | Chevron Res | Distillate fuel compositions having a hydrocarbon substituted alkylene polyamine |
US3798165A (en) * | 1965-10-22 | 1974-03-19 | Standard Oil Co | Lubricating oils containing high molecular weight mannich condensation products |
US3736357A (en) * | 1965-10-22 | 1973-05-29 | Standard Oil Co | High molecular weight mannich condensation products from two different alkyl-substituted hydroxy-aromatic compounds |
US3367867A (en) * | 1966-01-04 | 1968-02-06 | Chevron Res | Low-foaming overbased phenates |
US3413347A (en) * | 1966-01-26 | 1968-11-26 | Ethyl Corp | Mannich reaction products of high molecular weight alkyl phenols, aldehydes and polyaminopolyalkyleneamines |
US3442808A (en) * | 1966-11-01 | 1969-05-06 | Standard Oil Co | Lubricating oil additives |
US3433744A (en) * | 1966-11-03 | 1969-03-18 | Lubrizol Corp | Reaction product of phosphosulfurized hydrocarbon and alkylene polycarboxylic acid or acid derivatives and lubricating oil containing the same |
US3448048A (en) * | 1967-01-23 | 1969-06-03 | Lubrizol Corp | Lubricant containing a high molecular weight acylated amine |
US3448047A (en) * | 1967-04-05 | 1969-06-03 | Standard Oil Co | Lube oil dispersants |
US3496105A (en) * | 1967-07-12 | 1970-02-17 | Lubrizol Corp | Anion exchange process and composition |
US3451933A (en) * | 1967-08-11 | 1969-06-24 | Rohm & Haas | Formamido-containing alkenylsuccinates |
US3501405A (en) * | 1967-08-11 | 1970-03-17 | Rohm & Haas | Lubricating and fuel compositions comprising copolymers of n-substituted formamide-containing unsaturated esters |
US3519565A (en) * | 1967-09-19 | 1970-07-07 | Lubrizol Corp | Oil-soluble interpolymers of n-vinylthiopyrrolidones |
US3448049A (en) * | 1967-09-22 | 1969-06-03 | Rohm & Haas | Polyolefinic succinates |
US3718663A (en) * | 1967-11-24 | 1973-02-27 | Standard Oil Co | Preparation of oil-soluble boron derivatives of an alkylene polyamine-urea or thiourea-succinic anhydride addition product |
US3574101A (en) * | 1968-04-29 | 1971-04-06 | Lubrizol Corp | Acylating agents,their salts,and lubricants and fuels containing the same |
US3725441A (en) * | 1968-04-29 | 1973-04-03 | Lubrizol Corp | Acylating agents, their salts, and lubricants and fuels containing the same |
US3493520A (en) * | 1968-06-04 | 1970-02-03 | Sinclair Research Inc | Ashless lubricating oil detergents |
US3558743A (en) * | 1968-06-04 | 1971-01-26 | Joseph A Verdol | Ashless,oil-soluble detergents |
US3586629A (en) * | 1968-09-16 | 1971-06-22 | Mobil Oil Corp | Metal salts as lubricant additives |
US3725480A (en) * | 1968-11-08 | 1973-04-03 | Standard Oil Co | Ashless oil additives |
US3726882A (en) * | 1968-11-08 | 1973-04-10 | Standard Oil Co | Ashless oil additives |
US3634515A (en) * | 1968-11-08 | 1972-01-11 | Standard Oil Co | Alkylene polyamide formaldehyde |
US3567637A (en) * | 1969-04-02 | 1971-03-02 | Standard Oil Co | Method of preparing over-based alkaline earth long-chain alkenyl succinates |
US3576743A (en) * | 1969-04-11 | 1971-04-27 | Lubrizol Corp | Lubricant and fuel additives and process for making the additives |
US3632511A (en) * | 1969-11-10 | 1972-01-04 | Lubrizol Corp | Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same |
IL35844A (en) * | 1969-12-16 | 1973-11-28 | Hoechst Ag | Process for the manufacture of alkane phosphonic acid diesters |
US3649229A (en) * | 1969-12-17 | 1972-03-14 | Mobil Oil Corp | Liquid hydrocarbon fuels containing high molecular weight mannich bases |
US3663561A (en) * | 1969-12-29 | 1972-05-16 | Standard Oil Co | 2-hydrocarbyldithio - 5 - mercapto-1,3,4-thiadiazoles and their preparation |
US3803039A (en) * | 1970-07-13 | 1974-04-09 | Standard Oil Co | Oil solution of aliphatic acid derivatives of high molecular weight mannich condensation product |
US3798247A (en) * | 1970-07-13 | 1974-03-19 | Standard Oil Co | Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products |
US3957854A (en) * | 1971-06-11 | 1976-05-18 | The Lubrizol Corporation | Ester-containing compositions |
US3957855A (en) * | 1971-06-11 | 1976-05-18 | The Lubrizol Corporation | Ester-containing compositions |
US3804763A (en) * | 1971-07-01 | 1974-04-16 | Lubrizol Corp | Dispersant compositions |
BE786032A (en) * | 1971-07-08 | 1973-01-08 | Rhone Progil | NEW ADDITIVES FOR LUBRICATING OILS |
US3936480A (en) * | 1971-07-08 | 1976-02-03 | Rhone-Progil | Additives for improving the dispersing properties of lubricating oil |
US4071548A (en) * | 1971-11-30 | 1978-01-31 | Toa Nenryo Kogyo Kabushiki Kaisha | Lubricating oil additive, process for the synthesis thereof and lubricating oil additive composition |
US3793202A (en) * | 1972-03-01 | 1974-02-19 | Standard Oil Co | Oil solution of aliphatic acid and aliphatic aldehyde modified high molecular weight mannich reaction products |
US3872019A (en) * | 1972-08-08 | 1975-03-18 | Standard Oil Co | Oil-soluble lubricant bi-functional additives from mannich condensation products of oxidized olefin copolymers, amines and aldehydes |
US3950341A (en) * | 1973-04-12 | 1976-04-13 | Toa Nenryo Kogyo Kabushiki Kaisha | Reaction product of a polyalkenyl succinic acid or its anhydride, a hindered alcohol and an amine |
US3865737A (en) * | 1973-07-02 | 1975-02-11 | Continental Oil Co | Process for preparing highly-basic, magnesium-containing dispersion |
US3904595A (en) * | 1973-09-14 | 1975-09-09 | Ethyl Corp | Lubricating oil dispersant |
FR2246626B1 (en) * | 1973-10-04 | 1979-05-04 | Lubrizol Corp | |
US3862798A (en) * | 1973-11-19 | 1975-01-28 | Charles L Hopkins | Automatic rear view mirror adjuster |
US3957746A (en) * | 1974-10-04 | 1976-05-18 | Ethyl Corporation | Phospho-sulfurized phenolic aldehyde amine alkylene oxide condensation product |
AR206439A1 (en) * | 1974-10-07 | 1976-07-23 | Celanese Corp | A METHOD FOR THE RECOVERY OF A CRUDE ACRYLIC ACID |
US4006089A (en) * | 1974-11-19 | 1977-02-01 | Mobil Oil Corporation | Polyoxyethylene polyamine Mannich base products and use of same in fuels and lubricants |
DE2551256A1 (en) * | 1974-11-29 | 1976-08-12 | Lubrizol Corp | MANNICH CONDENSATION PRODUCTS CONTAINING SULFUR AND LIQUID FUELS AND FUELS AND LUBRICANTS CONTAINING THESE COMPOUNDS |
US4029587A (en) * | 1975-06-23 | 1977-06-14 | The Lubrizol Corporation | Lubricants and functional fluids containing substituted sulfolanes as seal swelling agents |
US4089790A (en) * | 1975-11-28 | 1978-05-16 | Chevron Research Company | Synergistic combinations of hydrated potassium borate, antiwear agents, and organic sulfide antioxidants |
US4011380A (en) * | 1975-12-05 | 1977-03-08 | Standard Oil Company (Indiana) | Oxidation of polymers in presence of benzene sulfonic acid or salt thereof |
FR2366588A1 (en) * | 1976-10-01 | 1978-04-28 | Thomson Csf | MULTI-CHANNEL COUPLER FOR OPTICAL FIBER LINK |
US4137184A (en) * | 1976-12-16 | 1979-01-30 | Chevron Research Company | Overbased sulfonates |
US4325827A (en) * | 1981-01-26 | 1982-04-20 | Edwin Cooper, Inc. | Fuel and lubricating compositions containing N-hydroxymethyl succinimides |
US4455243A (en) * | 1983-02-24 | 1984-06-19 | Chevron Research Company | Succinimide complexes of borated fatty acid esters of glycerol and lubricating oil compositions containing same |
US4647387A (en) * | 1985-04-11 | 1987-03-03 | Witco Chemical Corp. | Succinic anhydride promoter overbased magnesium sulfonates and oils containing same |
US4652387A (en) * | 1986-07-30 | 1987-03-24 | Mobil Oil Corporation | Borated reaction products of succinic compounds as lubricant dispersants and antioxidants |
US5725612A (en) * | 1996-06-07 | 1998-03-10 | Ethyl Corporation | Additives for minimizing intake valve deposits, and their use |
US5882505A (en) * | 1997-06-03 | 1999-03-16 | Exxon Research And Engineering Company | Conversion of fisher-tropsch waxes to lubricants by countercurrent processing |
US6013171A (en) * | 1998-02-03 | 2000-01-11 | Exxon Research And Engineering Co. | Catalytic dewaxing with trivalent rare earth metal ion exchanged ferrierite |
US6180575B1 (en) * | 1998-08-04 | 2001-01-30 | Mobil Oil Corporation | High performance lubricating oils |
KR100298035B1 (en) | 1999-02-04 | 2001-09-13 | 이계안 | Composition of manual transmission gear oil for car |
JP3599231B2 (en) | 1999-06-04 | 2004-12-08 | 出光興産株式会社 | Fluid for traction drive |
US6482778B2 (en) * | 1999-08-11 | 2002-11-19 | Ethyl Corporation | Zinc and phosphorus containing transmission fluids having enhanced performance capabilities |
US6534451B1 (en) * | 2002-04-05 | 2003-03-18 | Infineum International Ltd. | Power transmission fluids with improved extreme pressure lubrication characteristics and oxidation resistance |
-
2005
- 2005-02-04 CA CA002496100A patent/CA2496100A1/en not_active Abandoned
- 2005-02-16 AU AU2005200695A patent/AU2005200695A1/en not_active Abandoned
- 2005-02-24 EP EP05075444A patent/EP1577370A3/en not_active Withdrawn
- 2005-03-02 JP JP2005058076A patent/JP2005255996A/en active Pending
- 2005-03-09 SG SG200501480A patent/SG115747A1/en unknown
- 2005-03-09 US US11/075,569 patent/US20050202979A1/en not_active Abandoned
- 2005-03-10 KR KR1020050020215A patent/KR100702883B1/en not_active IP Right Cessation
- 2005-03-10 CN CNA2005100543691A patent/CN1667103A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486300A (en) * | 1991-04-19 | 1996-01-23 | The Lubrizol Corporation | Lubricating compositions |
US6096691A (en) * | 1993-04-09 | 2000-08-01 | Ethyl Corporation | Gear oil additive concentrates and lubricants containing them |
US6127323A (en) * | 1997-04-21 | 2000-10-03 | Exxon Chemical Patents Inc. | Power transmission fluids containing alkyl phosphonates |
WO2000014187A2 (en) * | 1998-09-04 | 2000-03-16 | Exxon Research And Engineering Company | Premium synthetic lubricants |
DE10320817A1 (en) * | 2002-05-08 | 2004-01-08 | Ethyl Japan Corp. | Power transmission fluids for automatic transmissions with improved torque performance and anti-shock resistance |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2444131A (en) * | 2006-11-22 | 2008-05-28 | Afton Chemical Corp | Lubricant compositions |
GB2444131B (en) * | 2006-11-22 | 2011-04-27 | Afton Chemical Corp | Lubricant compositions |
EP2143781A1 (en) * | 2008-06-23 | 2010-01-13 | Afton Chemical Corporation | Friction modifiers for slideway applications |
WO2010075103A3 (en) * | 2008-12-22 | 2010-10-21 | Chevron Oronite Company Llc | A lubricating oil additive composition and method of making the same |
WO2011102835A1 (en) * | 2010-02-19 | 2011-08-25 | Toyota Jidosha Kabushiki Kaisha | Wet friction clutch-lubricant systems providing high dynamic coefficients of friction through the use of sodium detergents |
US9365794B2 (en) | 2010-02-19 | 2016-06-14 | Infineum International Limited | Wet friction clutch—lubricant systems providing high dynamic coefficients of friction through the use of borated detergents |
EP3676358A4 (en) * | 2017-08-29 | 2021-05-12 | Basf Se | Transmission lubricant composition |
EP3805342A4 (en) * | 2018-05-30 | 2022-01-19 | Idemitsu Kosan Co.,Ltd. | LUBRICATING OIL COMPOSITION FOR DRIVE SYSTEM DEVICE, METHOD FOR PRODUCTION THEREOF, METHOD FOR LUBRICATING DRIVE SYSTEM DEVICE AND DRIVE SYSTEM DEVICE |
Also Published As
Publication number | Publication date |
---|---|
KR20060043843A (en) | 2006-05-15 |
US20050202979A1 (en) | 2005-09-15 |
KR100702883B1 (en) | 2007-04-04 |
JP2005255996A (en) | 2005-09-22 |
CA2496100A1 (en) | 2005-09-10 |
SG115747A1 (en) | 2005-10-28 |
CN1667103A (en) | 2005-09-14 |
EP1577370A3 (en) | 2008-06-04 |
AU2005200695A1 (en) | 2005-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050202979A1 (en) | Power transmission fluids with enhanced extreme pressure characteristics | |
US20050148478A1 (en) | Power transmission fluids with enhanced anti-shudder characteristics | |
US11326122B2 (en) | Fluorinated polyacrylates antifoams in ultra-low viscosity (<5 CST) finished fluids | |
EP1624043B1 (en) | Power transmission fluids with enhanced extreme pressure and antiwear characteristics | |
US20200017794A1 (en) | Fluorinated polyacrylate antifoam components for lubricating compositions | |
JP2005524758A (en) | Continuously variable transmission fluid containing a combination of calcium and magnesium overbased surfactants | |
CA3037495A1 (en) | Polyacrylate antifoam components with improved thermal stability | |
US10808199B2 (en) | Seal swell agents for lubricating compositions | |
US11174449B2 (en) | Seal swell agents for lubricating compositions | |
EP1710295A1 (en) | Tractor fluids | |
US20130102511A1 (en) | Additive Concentrate and a Method of Lubricating Transmissions | |
US9340746B1 (en) | Low viscosity transmission fluids with enhanced gear fatigue and frictional performance | |
CA2810482C (en) | Multi-vehicle automatic transmission fluid | |
EP1645616A1 (en) | Power transmission fluids with enhanced antishudder durability | |
WO2016144639A1 (en) | Lubricating compositions comprising an anti-wear/friction modifying agent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20080926 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20090701 |