[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1572335B1 - Static lamination micro mixer - Google Patents

Static lamination micro mixer Download PDF

Info

Publication number
EP1572335B1
EP1572335B1 EP03780105.7A EP03780105A EP1572335B1 EP 1572335 B1 EP1572335 B1 EP 1572335B1 EP 03780105 A EP03780105 A EP 03780105A EP 1572335 B1 EP1572335 B1 EP 1572335B1
Authority
EP
European Patent Office
Prior art keywords
micro
aperture
plate
slot
mixer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03780105.7A
Other languages
German (de)
French (fr)
Other versions
EP1572335A2 (en
Inventor
Wolfgang Ehrfeld
Matthias Kroschel
Till Merkel
Frank Herbstritt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ehrfeld Mikrotechnik BTS GmbH
Original Assignee
Ehrfeld Mikrotechnik BTS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehrfeld Mikrotechnik BTS GmbH filed Critical Ehrfeld Mikrotechnik BTS GmbH
Publication of EP1572335A2 publication Critical patent/EP1572335A2/en
Application granted granted Critical
Publication of EP1572335B1 publication Critical patent/EP1572335B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/422Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path between stacked plates, e.g. grooved or perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/20Jet mixers, i.e. mixers using high-speed fluid streams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3012Interdigital streams, e.g. lamellae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3012Interdigital streams, e.g. lamellae
    • B01F33/30121Interdigital streams, e.g. lamellae the interdigital streams being concentric lamellae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S366/00Agitating
    • Y10S366/03Micromixers: variable geometry from the pathway influences mixing/agitation of non-laminar fluid flow

Definitions

  • the invention relates to a micromixer for mixing, dispersing, emulsifying or suspending at least two fluid phases, which must contain at least one slot plate with slot openings and an aperture plate arranged above it with blind slots.
  • the slot openings in the slot plate (s) and diaphragm plate (s) are designed as through holes.
  • Static micromixers are key elements of microreaction technology.
  • Statistical micromixers exploit the principle of multilamination to achieve rapid mixing of fluid phases by diffusion. By a geometrical configuration of alternately arranged lamellae, it is possible to ensure a good mixing in the microscopic range.
  • Multilamination mixers of structured and periodically stacked thin plates have already been extensively described in the literature; Examples of this can be found in the German patents DE 44 16 343 . DE 195 40 292 . DE 199 17 156 A1 and the German patent application DE 199 28 123 , The German patent application DE 199 27 554 also describes a micromixer for mixing two or more educts, in contrast to the multilamination mixers consisting of structured and periodically stacked thin plates, the micromixer having mixing cells.
  • Each of these mixing cells has a feed chamber to which at least two groups of channel fingers adjoin, which engage in a comb-like manner between the channel fingers to form mixing areas.
  • Above the mixing area are outlet slots that extend perpendicular to the channel fingers and through which the product exits. Due to the parallel connection in two spatial directions, a significantly higher throughput is possible.
  • the advantages achieved by the invention are that the static lamination micro mixing can be manufactured inexpensively, is easy to clean and the fluids to be mixed are mixed together quickly and effectively.
  • the pressure loss is so low that it can also be used for large throughputs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

Die Erfindung betrifft einen Mikrovermischer zum Vermischen, Dispergieren, Emulgieren oder Suspendieren von mindestens zwei fluiden Phasen, wobei dieser mindestens eine Schlitzplatte mit Schlitzöffnungen und eine darüber angeordnete Blendplatte mit Blendschlitzen enthalten muss. Die Schlitzöffnungen in der/den Schlitzplatte(n) und Blendplatte(n) sind als durchgehende Öffnungen ausgeführt.The invention relates to a micromixer for mixing, dispersing, emulsifying or suspending at least two fluid phases, which must contain at least one slot plate with slot openings and an aperture plate arranged above it with blind slots. The slot openings in the slot plate (s) and diaphragm plate (s) are designed as through holes.

Bei statischen Mikrovermischem handelt es sich um Schlüsselelemente der Mikroreaktionstechnik. Statistische Mikrovermischer nutzen das Prinzip der Multilamination aus, um so ein schnelles Vermischen von fluiden Phasen durch Diffusion zu erreichen. Durch eine geometrische Ausgestaltung von abwechselnd angeordneten Lamellen ist es möglich, ein gutes Vermischen im mikroskopischen Bereich zu gewährleisten. Multilaminationsmischer aus strukturierten und periodisch gestapelten dünnen Platten sind bereits in der Literatur ausführlich beschrieben; Beispiele hierfür finden sich in den deutschen Patenten DE 44 16 343 , DE 195 40 292 , DE 199 17 156 A1 und der deutschen Patentanmeldung DE 199 28 123 . Die deutsche Patentanmeldung DE 199 27 554 beschreibt außerdem im Gegensatz zu den Multilaminationsmischern, die aus strukturierten und periodisch gestapelten, dünnen Platten bestehen, einen Mikrovermischer zum Mischen von zwei oder mehr Edukten, wobei der Mikrovermischer Mischzellen aufweist. Jede dieser Mischzellen weist eine Zuführkammer auf, an die mindestens zwei Gruppen von Kanalfingern angrenzen, die zur Bildung von Mischbereichen kammartig zwischen die Kanalfinger eingreifen. Über dem Mischbereich befinden sich Auslassschlitze, die sich senkrecht zu den Kanalfingern erstrecken und durch die das Produkt austritt. Durch die Parallelschaltung in zwei Raumrichtungen ist ein deutlich höherer Durchsatz möglich.Static micromixers are key elements of microreaction technology. Statistical micromixers exploit the principle of multilamination to achieve rapid mixing of fluid phases by diffusion. By a geometrical configuration of alternately arranged lamellae, it is possible to ensure a good mixing in the microscopic range. Multilamination mixers of structured and periodically stacked thin plates have already been extensively described in the literature; Examples of this can be found in the German patents DE 44 16 343 . DE 195 40 292 . DE 199 17 156 A1 and the German patent application DE 199 28 123 , The German patent application DE 199 27 554 also describes a micromixer for mixing two or more educts, in contrast to the multilamination mixers consisting of structured and periodically stacked thin plates, the micromixer having mixing cells. Each of these mixing cells has a feed chamber to which at least two groups of channel fingers adjoin, which engage in a comb-like manner between the channel fingers to form mixing areas. Above the mixing area are outlet slots that extend perpendicular to the channel fingers and through which the product exits. Due to the parallel connection in two spatial directions, a significantly higher throughput is possible.

Gegenstand der vorliegenden Erfindung ist der im Patenanspruch 1 beschriebene statische Laminationsmikrovermischer.The subject matter of the present invention is the static laminating micro-mixer described in patent claim 1.

Die mit der Erfindung erzielten Vorteile bestehen darin, dass der statische Laminationsmikrovermischer kostengünstig gefertigt werden kann, leicht zu reinigen ist und die zu mischenden Fluide schnell und effektiv miteinander vermischt werden. Zudem ist der Druckverlust so gering, dass er auch für große Durchsätze Anwendung finden kann.The advantages achieved by the invention are that the static lamination micro mixing can be manufactured inexpensively, is easy to clean and the fluids to be mixed are mixed together quickly and effectively. In addition, the pressure loss is so low that it can also be used for large throughputs.

Ausführungsbeispiele der Erfindungen sind in den Zeichnungen dargestellt und werden im nachfolgenden näher beschrieben.Embodiments of the invention are illustrated in the drawings and will be described in more detail below.

Es zeigen:

Fig. 1
schematische Darstellung des statischen Mikrovermischers bestehend aus einer Schlitz- und einer Blendplatte;
Fig. 2a
Expolsionsdarstellung eines statischen Laminationsmikrovermisches bestehend aus Gehäuseunterteil (10), Zuführkanälen (11), Schlitzplatte (20) und Blendplatte (30);
Fig. 2b
Darstellung eines statischen Laminationsmikrovermischers bestehend aus Gehäuseunterteil (10), Zuführkanälen (11), Schlitzplatte (20) und Blendplatte (30);
Fig. 3a
Draufsicht auf die Zuführkanälen (11), Schlitzöffnungen (22a, 22b) und Blendschlitzen (31) eines statischen Laminationsmikrovermischers;
Fig. 3b
Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20) eines statischen Laminationsmikrovermischers;
Fig. 3c
Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20) eines statischen Laminationsmikrovermischers;
Fig. 3e:
Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20), wobei die Schlitzöffnungen unterschiedliche Breiten und Formen haben;
Fig. 3f:
Draufsicht auf die Schlitzöffnungen unterschiedlicher Geometrie und Orientierung (22) in einer Schlitzplatte (20), wobei die Schlitzöffnungen, die Blendschlitze (31) und/oder die Zuführkanäle (11) unterschiedliche und variable Breiten und Formen haben;
Fig. 4a
Draufsicht auf einen statischen Laminationsmikrovermischer bestehend aus Gehäuseunterteil (10), Schlitzplatte (20) und Blendplatte (30);
Fig. 4b
Draufsicht auf einen statischen Laminationsmikrovermischer;
Fig. 5
Explosionsdarstellung eines statischen Mikrovermischers;
Fig. 6
Explosionsdarstellung eines statischen Mikrovermischers mit Betrachtungswinkel von unten;
Fig. 7a
schematische Darstellung des Gehäuseunterteils (10);
Fig. 7b
Querschnitt durch Gehäuseunterteil (10) entlang der Ebene B-B;
Fig. 7c
Querschnitt durch Gehäuseunterteil (10) entlang der Ebene C-C;
Fig. 8a
schematische Darstellung eines statischen Mikrovermischers mit zwei unterschiedlichen Schlitzplatten und versetzt zueinander angeordneten Schlitzöffnungen (22, 23);
Fig. 8b
schematische Darstellung eines zusammengesetzten statischen Laminationsmikrovermischers mit zwei unterschiedlichen Schlitzplatten;
Fig. 9a
Explosionsdarstellungen von Laminationsmikrovermischern mit parallel versetzter Anordnung der Kanäle zur Auftrennung der Fluide im Gehäuse;
Fig. 9b
Explosionsdarstellungen von Laminationsmikrovermischern mit radial konzentrischer Anordnung der Kanäle zur Auftrennung der Fluide im Gehäuse;
Fig. 10
Laminationsmikrovermischer (60) (vgl. Fig. 9a) als Bestandteil einer integrierten Prozessanordnung zusammen mit einer Wärmetauscheinheit (70).
  • Fig. 1 zeigt die schematische Darstellung eines statischen Laminationsmikrovermischers bestehend aus Unterteil 10, einer Schlitzplatte 20 und einer Blendplatte 30. Das Unterteil 10 enthält für das Fluid A den Zuführkanal 11a und für das Fluid B den Zuführkanal 11b. Die Schlitzplatte 20 weist für die Fluide A und B Schlitzöffnungen 22a und 22b auf, die aus dem Zuführkanal 11a und 11 b gespeist werden. Oberhalb der Schlitzplatte 20 befindet sich die Blendplatte 30 mit einem Blendschlitz 31. Die Blendplatte 30 deckt hierbei den äußeren Bereich der Schlitzöffnungen 22a und 22b ab, während der mittlere Bereich der Schlitzöffnungen 22a und 22b mit dem Blendschlitz 31 überlappt und dadurch frei bleibt.
  • Fig. 2a zeigt die Explosionsdarstellung eines statischen Mikrovermischers bestehend aus Unterteil 10, Zuführkanälen 11a und 11 b, Schlitzplatte 20 und Blendplatte 30. Die Zuführkanäle 11a und 11b enthalten jeweils die Fluide A und B; über diesen Zuführkanälen befindet sich die Schlitzplatte 20 mit den Schlitzöffnungen 22 a und 22b. Oberhalb dieser befindet sich die Blendplatte 30, deren Blendschlitze in einem Winkel von 90° zu den Schlitzöffnungen 22a und 22b angeordnet sind.
  • Fig. 2b zeigt eine schematische Darstellung eines statischen Mikrovermischer, wie in Fig. 2a dargestellt, bestehend aus Unterteil 10, Schlitzplatte 20 und Blendplatte 30.
  • Fig. 3a zeigt als Doppelreihen angeordnete Schlitzöffnungen 22a und 22b in Form von Schlitzbereichen 21. Diese Schlitzbereiche 21 werden durch die Zuführkanäle 11a und 11 b mit Fluiden gespeist. Die eine Hälfte der Schlitzöffnungen 22a überlappt mit den Zuführkanälen 11a, die andere mit den Zuführkanälen 11b. In mittleren Bereich der Doppelreihen überlappen die Schlitzöffnungen 22 mit dem darüber angebrachten Blendschlitz 31. Die Schlitzöffnungen 22 können, wie hier dargestellt, auch schräg angeordnet sein.
  • Fig. 3b, Fig. 3c, Fig. 3e und Fig. 3f zeigen Schlitzöffnungen 22 mit unterschiedlicher geometrischer Ausgestaltung und Orientierung. Unterhalb der Schlitzöffnungen befinden sich die Zuführkanäle 11. Oberhalb der Schlitzöffnungen befinden sich die Blendschlitze 31. Die Querschnitte der Zuführkanäle 11 und der Blendschlitze 31 können entlang ihres Verlaufs variieren (Fig. 3f). Die Schlitzöffnungen 22 können trichterförmig in erweitert sein. Die Breite und Form der Schlitzöffnungen 22 kann zwischen den Fluiden (Fig. 3e) und innerhalb der Fluide (Fig. 3f) variieren.
  • Fig. 4a zeigt die Draufsicht auf ein Gehäuseunterteil 10. Das Gehäuseunterteil 10 ist mit zahlreichen schlitzförmigen Zuführkanälen 11 a und 11 b versehen, die abwechselnd rechts oder links verlagert dargestellt sind. In der darüber angeordneten Schlitzplatte 20 befinden sich der als schwarze Balken dargestellte Schlitzbereich 21; der Schlitzbereich 21 ist hierbei jeweils zwischen zwei Zuführkanälen 11a und 11 b positioniert, sodass dieser von zwei Zuführkanälen überlappt wird. Die Blendschlitze 31 der darüber liegenden Blendplatte 30 befinden sich mittig über den Schlitzbereichen 21 der Schlitzplatte 20.
  • Fig. 4b zeigt eine schematische Anordnung aus Zuführkanälen 11a und 11 b, Schlitzbereichen 21 und Blendschlitzen 31.
  • Fig. 5 zeigt die Explosionsansicht eines statischen Laminationsmikrovermischers; der Mikrovermischer besteht aus Gehäuseunterteil 10 und Gehäuseoberteil 40. Zwischen dem Gehäuseunterteil 10 und Gehäuseoberteil 40 befinden sich die Schlitzplatten 20 und die Blendplatten 30. In dem Gehäuseunterteil 10 befindet sich eine Nut 13, in die ein Dichtungsring 50 eingelegt werden kann, um so den Mikrovermischer gegen die Umgebung abzudichten. Das Gehäuseunterteil 10 und das Gehäuseoberteil 40 sind jeweils mit Öffnungen für Befestigungselemente 44 versehen, durch die beide gegeneinander fixiert werden können. Das Gehäuseunterteil 10 enthält an der Außenfläche zwei Fluideinlasskanäle 12a und 12b für die zu mischenden Fluide A und B. Auf der Oberseite des Gehäuseunterteils 10 sind zahlreiche schlitzförmige Zuführkanäle 11a und 11 b eingearbeitet, die abwechselnd zu der einen oder der anderen Seite verlängert ausgestaltet sind und so vom Fluid A oder vom Fluid B gespeist werden können. Die Schlitzplatte 20 enthält zahlreiche Schlitzbereiche 21; oberhalb der Schlitzplatte 20 ist die Blendplatte 30 angebracht, die eine Vielzahl von Blendschlitzen 31 aufweist. Das Gehäuseoberteil 40 enthält einen Fluidauslass 42 zur Ableitung des gewonnenen Gemisches.
  • Fig. 6 zeigt in Analogie zu Fig. 5 eine Explosionsdarstellung eines statischen Laminationsmikrovermischers mit Betrachtungswinkel von der Unterseite. Das Gehäuseoberteil 40 enthält eine große Mischkammer 45, in die alle Blendschlitze 31 der Blendplatte 30 münden. Zur Abstützung der Blendplatte 30 sind mehrere Stützstrukturen 41 im Gehäuseoberteil 40 angebracht.
  • Fig. 7a zeigt die schematische Darstellung des Gehäuseunterteils 10. Das Gehäuseunterteil 10 ist mit Zuführkanälen 11a und 11b für die zu mischenden Fluide A und B versehen. An den Außenseiten des Gehäuseunterteils sind Fluideinlässe 12a und 12b vorhanden. Die Aussparungen 44 an den vier Ecken des Gehäuseunterteils 10 gestatten dessen Fixierung.
  • Fig. 7b zeigt den Querschnitt durch das Gehäuseunterteil 10 entlang der Linie B-B in Fig. 7a. Der Fluideinlass 12a setzt sich in dem Fluideinlasskanal 14 für das Fluid A fort. Auf der Oberseite des Fluideinlasskanals 14 befinden sich die Zufuhrkanäle 11 a für das Fluid. Auf der Oberseite des Gehäuseunterteils 10 befindet sich eine Nut 13 für das Einlegen eines Dichtungsrings.
  • Fig. 7c zeigt den Querschnitt durch das Gehäuseunterteil 10 entlang der Linie C-C in Fig. 7a. Die Zuführkanäle 11a für das Fluid A und 11 b für das Fluid B verlaufen abwechselnd parallel, ohne dass es eine Querverbindung zwischen diesen beiden Zuführkanälen gibt. Auf der Oberseite des Gehäuseunterteils 10 befindet sich wieder eine Nut 13 für das Einlegen eines Dichtungsrings.
  • Fig. 8a zeigt die schematische Darstellung eines statischen Laminationsmikrovermischers mit den zwei unterschiedlichen Schlitzöffnungen 22a/22b und 23a/23b. Die Schlitzöffnungen 22a und 22b der ersten Schlitzplatte bilden die Zuführkanäle für die zweite Schlitzplatte mit kleinen Schlitzöffnungen 23a und 23b. Die Schlitzöffnungen 22a/22b und 23a/23b sind jeweils um 90° zueinander verdreht angeordnet.
  • Fig. 8b zeigt die Draufsicht eines solchen statischen Mikrovermischers nach Fig. 8a bestehend aus zwei unterschiedlichen Schlitzplatten, deren Schlitzöffnungen zueinander um 90° gedreht sind.
  • Fig. 9a und Fig. 9b zeigen zwei Ausführungsbeispiele für Laminationsmikrovermischer in der Explosionsdarstellung. Danach können die Schlitzöffnungen in der Schlitzplatte, die Schlitzöffnungen in der Blendplatte sowie die Kanäle zur Verteilung der Fluide kreisförmig oder parallel versetzt angeordnet sein.
  • Fig. 10 zeigt ein Ausführungsbeispiel zum Einsatz eines Laminationsmikrovermischers als Bestandteil einer integrierten Anordnung zur Durchführung physikalisch-chemischer Umwandlungen. Im aufgeführten Fall wurden Laminationsmikrovermischer (60) und Rohrbündelwärmeübertrager (70) in ein Bauteil integriert.
Show it:
Fig. 1
schematic representation of the static micromixer consisting of a slot and a diaphragm plate;
Fig. 2a
Expolsion representation of a static Lamination Micro mixing consisting of the lower housing part (10), feed channels (11), slotted plate (20) and diaphragm plate (30);
Fig. 2b
Representation of a static Lamination Micro Mixer consisting of lower housing part (10), feed channels (11), slot plate (20) and diaphragm plate (30);
Fig. 3a
Top view of the feed channels (11), slot openings (22a, 22b) and blind slots (31) of a static lamination micro-mixer;
Fig. 3b
Top view of the slot openings of different geometry and orientation (22) in a slot plate (20) of a static lamination micro-mixer;
Fig. 3c
Top view of the slot openings of different geometry and orientation (22) in a slot plate (20) of a static lamination micro-mixer;
3e:
Top view of the slot openings of different geometry and orientation (22) in a slot plate (20), wherein the slot openings have different widths and shapes;
Fig. 3f:
Top view of the slot openings of different geometry and orientation (22) in a slot plate (20), wherein the slot openings, the aperture slots (31) and / or the feed channels (11) have different and variable widths and shapes;
Fig. 4a
Top view of a static lamination micro mixing consisting of housing lower part (10), slot plate (20) and diaphragm plate (30);
Fig. 4b
Top view of a static lamination micro-mixer;
Fig. 5
Exploded view of a static micromixer;
Fig. 6
Exploded view of a static micromixer with viewing angle from below;
Fig. 7a
schematic representation of the housing lower part (10);
Fig. 7b
Cross section through the lower housing part (10) along the plane BB;
Fig. 7c
Cross section through the lower housing part (10) along the plane CC;
Fig. 8a
schematic representation of a static micromixer with two different slotted plates and mutually offset slot openings (22, 23);
Fig. 8b
schematic representation of a composite static laminating micro-mixer with two different slotted plates;
Fig. 9a
Exploded views of lamination micromixers with parallel offset arrangement of the channels for separating the fluids in the housing;
Fig. 9b
Exploded views of lamination micromixers with radially concentric arrangement of the channels for separating the fluids in the housing;
Fig. 10
Lamination Micro Mixer (60) (cf. Fig. 9a ) as part of an integrated process assembly together with a heat exchange unit (70).
  • Fig. 1 shows the schematic representation of a static lamination micromixer consisting of the lower part 10, a slit plate 20 and a diaphragm plate 30. The lower part 10 contains for the fluid A the supply channel 11a and for the fluid B, the supply channel 11b. The slit plate 20 has slits 22a and 22b for the fluids A and B, which are fed from the supply channels 11a and 11b. Above the slotted plate 20 is the diaphragm plate 30 with a blind slit 31. The diaphragm plate 30 covers the outer region of the slit openings 22a and 22b, while the central region of the slit openings 22a and 22b overlaps with the diaphragm slit 31 and thus remains free.
  • Fig. 2a shows the exploded view of a static micromixer consisting of the lower part 10, feed channels 11a and 11b, slit plate 20 and diaphragm plate 30. The feed channels 11a and 11b contain the fluids A and B, respectively; The slotted plate 20 with the slot openings 22 a and 22 b is located above these feed channels. Above this is the diaphragm plate 30, whose diaphragm slots are arranged at an angle of 90 ° to the slot openings 22a and 22b.
  • Fig. 2b shows a schematic representation of a static micromixer, as in Fig. 2a represented, consisting of lower part 10, slit plate 20 and diaphragm plate 30th
  • Fig. 3a shows slit openings 22a and 22b arranged as double rows in the form of slit regions 21. These slit regions 21 are fed by the supply channels 11a and 11b with fluids. One half of the slit openings 22a overlap with the supply channels 11a, the other with the supply channels 11b. In the middle region of the double rows, the slot openings 22 overlap with the overlay slot 31 mounted above. The slot openings 22 can, as shown here, also be arranged obliquely.
  • Fig. 3b, Fig. 3c, Fig. 3e and Fig. 3f show slot openings 22 with different geometric configuration and orientation. Below the slot openings are the feed channels 11. Above the slot openings are the blind slots 31. The cross sections of the feed channels 11 and the blind slots 31 can vary along their course ( Fig. 3f ). The slot openings 22 may be funnel-shaped in expanded. The width and shape of the slot openings 22 may be between the fluids ( Fig. 3e ) and within the fluids ( Fig. 3f ) vary.
  • Fig. 4a shows the top view of a lower housing part 10. The lower housing part 10 is provided with numerous slot-shaped feed channels 11 a and 11 b, which are shown alternately shifted right or left. In the slot plate 20 disposed above there are the slot area 21 shown as a black bar; the slot area 21 is in each case positioned between two feed channels 11a and 11b, so that it is overlapped by two feed channels. The blind slots 31 of the overlying diaphragm plate 30 are located centrally above the slot areas 21 of the slot plate 20.
  • Fig. 4b shows a schematic arrangement of feed channels 11a and 11b, slot portions 21 and blind slots 31st
  • Fig. 5 shows the exploded view of a static lamination micro-mixer; the micromixer consists of lower housing part 10 and upper housing part 40. Between the lower housing part 10 and the upper housing part 40 are the slit plates 20 and the diaphragm plates 30. In the lower housing part 10 is a groove 13 into which a sealing ring 50 can be inserted, so as to the micromixer seal against the environment. The lower housing part 10 and the upper housing part 40 are each provided with openings for fastening elements 44, by which both can be fixed against each other. The lower housing part 10 contains on the outer surface two fluid inlet channels 12a and 12b for the fluids A and B to be mixed. On the upper side of the housing lower part 10 numerous slot-shaped supply channels 11a and 11b are incorporated, which are alternately designed extended to one side or the other and can be fed from the fluid A or the fluid B. The slit plate 20 includes a plurality of slit portions 21; above the slotted plate 20, the diaphragm plate 30 is mounted, which has a plurality of blind slots 31. The upper housing part 40 includes a fluid outlet 42 for discharging the recovered mixture.
  • Fig. 6 shows in analogy to Fig. 5 an exploded view of a static lamination Mischmischers with viewing angle from the bottom. The upper housing part 40 includes a large mixing chamber 45 into which all the blind slots 31 of the diaphragm plate 30 open. To support the diaphragm plate 30 a plurality of support structures 41 are mounted in the housing upper part 40.
  • Fig. 7a shows the schematic representation of the lower housing part 10. The lower housing part 10 is provided with supply channels 11a and 11b for the fluids A and B to be mixed. On the outer sides of the housing lower part fluid inlets 12a and 12b are present. The recesses 44 at the four corners of the housing base 10 allow its fixation.
  • Fig. 7b shows the cross section through the lower housing part 10 along the line BB in Fig. 7a , The fluid inlet 12a continues in the fluid inlet channel 14 for the fluid A. On the top of the fluid inlet channel 14 are the Feed channels 11 a for the fluid. On the upper side of the housing lower part 10 there is a groove 13 for inserting a sealing ring.
  • Fig. 7c shows the cross section through the housing lower part 10 along the line CC in Fig. 7a , The supply channels 11a for the fluid A and 11b for the fluid B run alternately parallel, without there being a cross-connection between these two supply channels. On the top of the lower housing part 10 is again a groove 13 for the insertion of a sealing ring.
  • Fig. 8a shows the schematic representation of a static lamination micro-mixer with the two different slot openings 22a / 22b and 23a / 23b. The slot openings 22a and 22b of the first slot plate form the feed slots for the second slot plate with small slot openings 23a and 23b. The slot openings 22a / 22b and 23a / 23b are each rotated by 90 ° to each other.
  • Fig. 8b shows the top view of such a static micromixer after Fig. 8a consisting of two different slotted plates whose slot openings are rotated by 90 ° to each other.
  • Fig. 9a and Fig. 9b show two embodiments of Lamination Micro Mixer in the exploded view. Thereafter, the slot openings in the slot plate, the slot openings in the diaphragm plate and the channels for distributing the fluids can be arranged offset in a circle or in parallel.
  • Fig. 10 shows an embodiment of the use of a lamination Mikromischers as part of an integrated arrangement for performing physico-chemical transformations. In this case, lamination micro mixers (60) and tube bundle heat exchangers (70) were integrated into one component.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

10, 10a10, 10a GehäuseunterteilHousing bottom 11a11a Zuführkanal für Fluid AFeed channel for fluid A 11b11b Zuführkanal für Fluid BFeed channel for fluid B 12a12a Fluideinlass für Fluid AFluid inlet for fluid A 12b12b Fluideinlass für Fluid BFluid inlet for fluid B 1313 Nut für DichtungsringGroove for sealing ring 1414 FluideinlasskanalFluid inlet channel 2020 Schlitzplatteslot plate 2121 Schlitzbereichslot area 22a22a Schlitzöffnung für Fluid ASlot opening for fluid A 22b22b Schlitzöffnung für Fluid BSlot opening for fluid B 23a23a Schlitzöffnung für Fluid ASlot opening for fluid A 23b23b Schlitzöffnung für Fluid BSlot opening for fluid B 3030 Blendplattediaphragm plate 3131 Blendschlitzblend slot 40, 40a40, 40a GehäuseoberteilHousing top 4141 Stützstruktursupport structure 4242 Fluidauslassfluid outlet 4444 Öffnung für BefestigungselementOpening for fastening element 4545 Mischkammermixing chamber 5050 Dichtungsringsealing ring 6060 Mikrovermischermicromixer 7070 RohrbündelwärmeübertragerShell and tube heat exchanger

Claims (13)

  1. Static lamination micro-mixer for mixing, dispersing, emulsifying or suspending at least two fluid phases, comprising a lower housing part (10) with separate feed channels (11a/b), which are open towards the upper side of the lower housing part, for at least two fluids,
    a slotted plate (20) which rests on the housing lower part and which has arranged therein in paired fashion slot openings (22a/b) which are formed as continuous openings with a closed edge and with a width of less than 500 micrometers,
    an aperture plate (30) which rests on the slotted plate and which has at least one slot-shaped aperture opening (31) which is formed as a continuous opening with a closed edge and with a width of less than 500 micrometers, and
    a mixing chamber (45) situated above the aperture plate,
    wherein, within a pair of slot openings in the slotted plate (20), in each case one slot opening of the pair overlaps, with one end thereof, one of the feed channels (11) in the lower housing part (10), whereas the other slot opening of the pair overlaps, with one end thereof, another feed channel (11) in the lower housing part (10), and both slot openings of the pair form in each case exactly one area of overlap with the same aperture opening (31) in the aperture plate.
  2. Micro-mixer according to Claim 1, characterized in that the cross section of the slot openings in the plate is configured in the shape of a funnel or lobe.
  3. Micro-mixer according to either of Claims 1 and 2, characterized in that the aperture slots in the aperture plate are offset parallel to one another and/or are arranged in a periodic pattern in relation to one another.
  4. Micro-mixer according to Claims 1 to 3, characterized in that the slot openings in the slotted plate and the aperture slots in the aperture plate are arranged at an angle of 90° to one another.
  5. Micro-mixer according to Claims 1 to 4, characterized in that the slot openings in the slotted plate and the aperture slots in the aperture plate have a width of less than 100 µm.
  6. Micro-mixer according to Claims 1 to 5, characterized in that the slotted and aperture plates consist, partly or completely, of metal, glass, ceramic and plastic or of a combination of these materials.
  7. Micro-mixer according to Claims 1 to 6, characterized in that the slotted and aperture plates have been produced by punching, embossing, milling, erosion, etching, plasma etching, laser cutting, laser ablation or by the LIGA technique but preferably by laser cutting or the LIGA technique.
  8. Micro-mixer according to Claims 1 to 7, characterized in that the slotted and aperture plates comprise a stack of micro-structured thin plates.
  9. Micro-mixer according to Claim 8, characterized in that the thin micro-structured plates are connected materially by means of soldering, welding, diffusion welding or adhesive bonding or with a force fit by means of screwing, pressing or riveting.
  10. Micro-mixer according to Claims 1 to 9, characterized in that the micro-mixer is accommodated in a housing provided for the purpose.
  11. Micro-mixer according to Claims 1 to 10, characterized in that the housing contains channels which permit spatial distribution of the fluid phases.
  12. Micro-mixer according to Claims 1 to 11, characterized in that the channels are arranged offset parallel from one another, radially, concentrically or behind one another in order to distribute the fluids in the housing.
  13. Method for mixing, dispersing, emulsifying or suspending at least two fluid phases, characterized in that at least one static lamination micro-mixer is used according to one of Claims 1 to 12.
EP03780105.7A 2002-12-07 2003-12-03 Static lamination micro mixer Expired - Lifetime EP1572335B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE20218972U DE20218972U1 (en) 2002-12-07 2002-12-07 Static lamination micro mixer
DE20218972U 2002-12-07
PCT/EP2003/013603 WO2004052518A2 (en) 2002-12-07 2003-12-03 Static lamination micro mixer

Publications (2)

Publication Number Publication Date
EP1572335A2 EP1572335A2 (en) 2005-09-14
EP1572335B1 true EP1572335B1 (en) 2013-05-29

Family

ID=7977747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03780105.7A Expired - Lifetime EP1572335B1 (en) 2002-12-07 2003-12-03 Static lamination micro mixer

Country Status (8)

Country Link
US (1) US7909502B2 (en)
EP (1) EP1572335B1 (en)
JP (2) JP4847700B2 (en)
KR (1) KR100806401B1 (en)
CN (1) CN100360218C (en)
AU (1) AU2003288216A1 (en)
DE (1) DE20218972U1 (en)
WO (1) WO2004052518A2 (en)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7014835B2 (en) 2002-08-15 2006-03-21 Velocys, Inc. Multi-stream microchannel device
DE20218972U1 (en) 2002-12-07 2003-02-13 Ehrfeld Mikrotechnik AG, 55234 Wendelsheim Static lamination micro mixer
US7294734B2 (en) 2003-05-02 2007-11-13 Velocys, Inc. Process for converting a hydrocarbon to an oxygenate or a nitrile
US7485671B2 (en) 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US7220390B2 (en) 2003-05-16 2007-05-22 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
US8580211B2 (en) 2003-05-16 2013-11-12 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
DE10333922B4 (en) * 2003-07-25 2005-11-17 Wella Ag Components for static micromixers, micromixers constructed therefrom and their use for mixing, dispersing or for carrying out chemical reactions
US7250074B2 (en) 2003-08-29 2007-07-31 Velocys, Inc. Process for separating nitrogen from methane using microchannel process technology
US7029647B2 (en) 2004-01-27 2006-04-18 Velocys, Inc. Process for producing hydrogen peroxide using microchannel technology
US7084180B2 (en) 2004-01-28 2006-08-01 Velocys, Inc. Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
US9023900B2 (en) 2004-01-28 2015-05-05 Velocys, Inc. Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor
US8747805B2 (en) 2004-02-11 2014-06-10 Velocys, Inc. Process for conducting an equilibrium limited chemical reaction using microchannel technology
KR101186708B1 (en) 2004-02-17 2012-09-27 에어펠트 미크로테크니크 베테에스 게엠베하 Micromixer
DE102005003965A1 (en) * 2005-01-27 2006-08-10 Ehrfeld Mikrotechnik Gmbh Micro-mixer for precipitation and/or crystallization reactions comprises reverse flow prevention unit placed between mixing and reaction zone and at least one channel for introducing partial stream
CN1984709A (en) 2004-03-02 2007-06-20 维洛塞斯公司 Microchannel polymerization reactor
US20070140042A1 (en) * 2004-06-04 2007-06-21 Gerhard Schanz Multicomponent packaging with static micromixer
DE102004035462A1 (en) * 2004-07-22 2006-03-16 Ehrfeld Mikrotechnik Bts Gmbh Apparatus and method for the continuous performance of chemical processes
US7305850B2 (en) 2004-07-23 2007-12-11 Velocys, Inc. Distillation process using microchannel technology
CA2574113C (en) 2004-07-23 2014-02-18 Anna Lee Tonkovich Distillation process using microchannel technology
EP1786797B1 (en) 2004-08-12 2014-11-26 Velocys, Inc. Process for converting ethylene to ethylene oxide using microchannel process technology
JP5643474B2 (en) 2004-10-01 2014-12-17 ヴェロシス,インク. Multiphase mixing process using microchannel process technology
EP1817102A1 (en) 2004-11-12 2007-08-15 Velocys, Inc. Process using microchannel technology for conducting alkylation or acylation reaction
US8383872B2 (en) 2004-11-16 2013-02-26 Velocys, Inc. Multiphase reaction process using microchannel technology
WO2006107206A2 (en) * 2005-04-06 2006-10-12 Stichting Voor De Technische Wetenschappen Inlet section for micro-reactor
KR100695151B1 (en) 2005-05-18 2007-03-14 삼성전자주식회사 Fluid mixing device using cross channels
WO2006127889A2 (en) 2005-05-25 2006-11-30 Velocys Inc. Support for use in microchannel processing
WO2007008495A2 (en) 2005-07-08 2007-01-18 Velocys Inc. Catalytic reaction process using microchannel technology
CN100345617C (en) * 2005-09-22 2007-10-31 上海交通大学 Magneto-electric circulation blender
JP4855471B2 (en) * 2005-09-26 2012-01-18 エルジー・ケム・リミテッド Laminated reactor
DE102005049294C5 (en) 2005-10-14 2012-05-03 Ehrfeld Mikrotechnik Bts Gmbh Process for the preparation of organic peroxides by microreaction technology
DE102005060280B4 (en) * 2005-12-16 2018-12-27 Ehrfeld Mikrotechnik Bts Gmbh Integrated micromixer and its use
CN1800161B (en) * 2006-01-16 2010-11-10 华东理工大学 Method and microreaction device for continuous producing garox mek
MX2008014818A (en) * 2006-05-23 2008-12-01 Basf Se Method for producing polyether polyols.
US20110150703A1 (en) * 2008-07-18 2011-06-23 Castro Gustavo H Tortuous path static mixers and fluid systems including the same
WO2010009233A2 (en) * 2008-07-18 2010-01-21 3M Innovative Properties Company Offset path mixers and fluid systems including the same
US8764279B2 (en) * 2008-07-18 2014-07-01 3M Innovation Properties Company Y-cross mixers and fluid systems including the same
EP2403633B1 (en) 2009-03-06 2013-04-17 Ehrfeld Mikrotechnik BTS GmbH Coaxial compact static mixer and use thereof
DE102009038019B4 (en) * 2009-08-12 2011-11-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. 3D micro-structuring for the production of mixing and channel structures in multilayer technology for use in or for the construction of reactors
JP5212313B2 (en) * 2009-08-24 2013-06-19 株式会社日立プラントテクノロジー Emulsifying device
CN101716473B (en) * 2009-11-04 2011-11-30 中国科学院长春光学精密机械与物理研究所 Chip-in micro-mixer and preparation method thereof
WO2011066247A2 (en) 2009-11-30 2011-06-03 Corning Incorporated Honeycomb body u-bend mixers
EP2383245A3 (en) 2010-04-20 2012-02-22 Bayer Technology Services GmbH Method for continuous oxidation of thioethers
JP5062383B2 (en) * 2010-06-28 2012-10-31 Dic株式会社 Micro mixer
WO2012025548A1 (en) 2010-08-27 2012-03-01 Solvay Sa Process for the preparation of alkenones
JP5642488B2 (en) * 2010-10-04 2014-12-17 株式会社神戸製鋼所 Channel structure
JP2012120962A (en) * 2010-12-07 2012-06-28 Kobe Steel Ltd Flow channel structure
CA2859717A1 (en) 2011-12-21 2013-06-27 Bellerophon Bcm Llc Process for manufacturing partially cross-linked alginate solution
JP5832282B2 (en) * 2011-12-28 2015-12-16 株式会社フジクラ Micro mixer
EP2664607A1 (en) 2012-05-16 2013-11-20 Solvay Sa Fluorination process
GB201214122D0 (en) 2012-08-07 2012-09-19 Oxford Catalysts Ltd Treating of catalyst support
CN103977720B (en) * 2013-09-10 2016-01-13 中国中化股份有限公司 A kind of combined type stratiform fluid distribution mixing arrangement and application thereof
JP6142002B2 (en) * 2014-01-09 2017-06-07 株式会社日立ハイテクノロジーズ Liquid mixing apparatus and liquid chromatograph apparatus
US10161690B2 (en) * 2014-09-22 2018-12-25 Hamilton Sundstrand Space Systems International, Inc. Multi-layer heat exchanger and method of distributing flow within a fluid layer of a multi-layer heat exchanger
US9937472B2 (en) 2015-05-07 2018-04-10 Techmetals, Inc. Assembly operable to mix or sparge a liquid
GB2554618B (en) 2015-06-12 2021-11-10 Velocys Inc Synthesis gas conversion process
KR101688419B1 (en) * 2016-08-11 2016-12-21 (주)케이클라우드 Method and system for confidentially issuing and managing delivery waybill by using virtual personal information
CN106423006A (en) * 2016-10-31 2017-02-22 山东豪迈化工技术有限公司 Hedging micro reaction unit and micro reactor
CN106823946B (en) * 2017-01-19 2022-08-16 南京理工大学 Oscillatory flow micro mixer
EP3651887A4 (en) 2017-07-14 2021-04-14 3M Innovative Properties Company Adapter for conveying plural liquid streams
EP3655146B1 (en) * 2017-07-20 2023-01-25 Sonny's Hfi Holdings, Llc Dilution device for dispensing fluid
US20210001340A1 (en) 2018-02-28 2021-01-07 Tokyo Institute Of Technology Microdroplet/bubble-producing device
CN108273456B (en) * 2018-03-29 2023-07-04 睦化(上海)流体工程有限公司 Microporous vortex plate type mixing reactor and application thereof
CN110433876B (en) * 2018-05-03 2022-05-17 香港科技大学 Microfluidic device, manufacturing method thereof, mask and method for filtering suspended particles
GB201817692D0 (en) * 2018-10-30 2018-12-19 Ge Healthcare Mixing device
US11633703B2 (en) 2020-04-10 2023-04-25 Sonny's Hfi Holdings, Llc Insert assembly for foaming device
US11938480B2 (en) * 2020-05-14 2024-03-26 The Board Of Trustees Of The University Of Illinois Urbana, Illinois Microfluidic diagnostic device with a three-dimensional (3D) flow architecture
US20240017224A1 (en) * 2020-11-20 2024-01-18 Japan Science And Technology Agency Micro two-phase liquid droplet generation device
US11925953B2 (en) 2021-03-15 2024-03-12 Sonny's Hfi Holdings, Llc Foam generating device
CN114797613B (en) * 2021-11-08 2024-08-02 上海立得催化剂有限公司 Magnesium chloride spherical dispersion system and method
CN114534652B (en) * 2022-02-08 2024-07-19 上海天泽云泰生物医药有限公司 Waveform microstructure mixing unit and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US422671A (en) * 1890-03-04 willis
US3881701A (en) * 1973-09-17 1975-05-06 Aerojet General Co Fluid mixer reactor
US5534328A (en) * 1993-12-02 1996-07-09 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
US5887977A (en) * 1997-09-30 1999-03-30 Uniflows Co., Ltd. Stationary in-line mixer
DE10041823A1 (en) * 2000-08-25 2002-03-14 Inst Mikrotechnik Mainz Gmbh Method and static micromixer for mixing at least two fluids

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6710428A (en) 1967-07-27 1969-01-29
US4222671A (en) * 1978-09-05 1980-09-16 Gilmore Oscar Patrick Static mixer
JPS55147729A (en) 1979-05-08 1980-11-17 Sharp Corp Data inpt unit
JPS5662120A (en) * 1979-10-25 1981-05-27 Hitachi Chem Co Ltd Production of unsaturated polyester molded object having high surface hardness
JPS5710752Y2 (en) * 1980-10-16 1982-03-02
EP0285725B1 (en) * 1987-04-10 1992-09-30 Chugoku Kayaku Kabushiki Kaisha Mixing apparatus
DE3926466C2 (en) 1989-08-10 1996-12-19 Christoph Dipl Ing Caesar Microreactor for carrying out chemical reactions of two chemical substances with strong heat
US5016707A (en) * 1989-12-28 1991-05-21 Sundstrand Corporation Multi-pass crossflow jet impingement heat exchanger
DE4416343C2 (en) * 1994-05-09 1996-10-17 Karlsruhe Forschzent Static micro mixer
US5595712A (en) * 1994-07-25 1997-01-21 E. I. Du Pont De Nemours And Company Chemical mixing and reaction apparatus
JP2587390B2 (en) * 1994-10-03 1997-03-05 特殊機化工業株式会社 Ultra-fine atomizing and mixing equipment for liquids
DE19511603A1 (en) 1995-03-30 1996-10-02 Norbert Dr Ing Schwesinger Device for mixing small amounts of liquid
AU6541596A (en) * 1995-06-16 1997-01-15 University Of Washington Microfabricated differential extraction device and method
DE19540292C1 (en) * 1995-10-28 1997-01-30 Karlsruhe Forschzent Static micromixer
DE19541266A1 (en) * 1995-11-06 1997-05-07 Bayer Ag Method and device for carrying out chemical reactions using a microstructure lamella mixer
JPH10314566A (en) * 1997-05-19 1998-12-02 Sumitomo Heavy Ind Ltd Microstatic mixer
DE19917156B4 (en) 1999-04-16 2006-01-19 INSTITUT FüR MIKROTECHNIK MAINZ GMBH Process for the preparation of a water-in-diesel oil emulsion as fuel and its uses
CN2376326Y (en) * 1999-05-24 2000-05-03 倪新宇 Porous ripple static mixer
US6485690B1 (en) * 1999-05-27 2002-11-26 Orchid Biosciences, Inc. Multiple fluid sample processor and system
DE19927554C2 (en) 1999-06-16 2002-12-19 Inst Mikrotechnik Mainz Gmbh micromixer
DE19928123A1 (en) * 1999-06-19 2000-12-28 Karlsruhe Forschzent Static micromixer has a mixing chamber and a guiding component for guiding fluids to be mixed or dispersed with slit-like channels that widen in the direction of the inlet side
US7223364B1 (en) * 1999-07-07 2007-05-29 3M Innovative Properties Company Detection article having fluid control film
JP4284841B2 (en) * 2000-08-07 2009-06-24 株式会社島津製作所 Liquid mixer
DE10055856C2 (en) 2000-11-10 2003-04-10 Kundo Systemtechnik Gmbh Device for producing carbonated water
DE10055858A1 (en) 2000-11-10 2002-05-29 Kundo Systemtechnik Gmbh A method for producing carbonated mineral water has a block comprising thermoelectric cooling elements and a carbon dioxide mixing chamber delivering to a tap
JP3694877B2 (en) * 2001-05-28 2005-09-14 株式会社山武 Micro mixer
JP3694876B2 (en) * 2001-05-28 2005-09-14 株式会社山武 Micro emulsifier
JP3727594B2 (en) * 2002-01-18 2005-12-14 富士写真フイルム株式会社 Micro mixer
DE20209009U1 (en) 2002-06-11 2002-08-29 Ehrfeld Mikrotechnik AG, 55234 Wendelsheim Comb-shaped micromixer
DE20218972U1 (en) 2002-12-07 2003-02-13 Ehrfeld Mikrotechnik AG, 55234 Wendelsheim Static lamination micro mixer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US422671A (en) * 1890-03-04 willis
US3881701A (en) * 1973-09-17 1975-05-06 Aerojet General Co Fluid mixer reactor
US5534328A (en) * 1993-12-02 1996-07-09 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
US5887977A (en) * 1997-09-30 1999-03-30 Uniflows Co., Ltd. Stationary in-line mixer
DE10041823A1 (en) * 2000-08-25 2002-03-14 Inst Mikrotechnik Mainz Gmbh Method and static micromixer for mixing at least two fluids

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DE BELLEFON C ET AL: "Microreactors for dynamic high throughput screening of fluid-liquid molecular catalysis", ANGEWANDTE CHEMIE, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 19, 1 January 2000 (2000-01-01), pages 3584 - 3587, XP003022882, ISSN: 0044-8249 *
EHRFELD W ET AL: "CHARACTERIZATION OF MIXING IN MICROMIXERS BY A TEST REACTION: SINGLE MIXING UNITS AND MIXER ARRAYS", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, AMERICAN CHEMICAL SOCIETY, US, vol. 38, no. 3, 1 January 1999 (1999-01-01), pages 1075 - 1082, XP000940846, ISSN: 0888-5885, DOI: 10.1021/IE980128D *
HAVERKAMP V ET AL: "The potential of micromixers for contacting of disperse liquid phases", FRESENIUS JOURNAL OF ANALYTICAL CHEMISTRY, SPRINGER, BERLIN, DE, vol. 364, 1 January 1999 (1999-01-01), pages 617 - 624, XP002260622, ISSN: 0937-0633, DOI: 10.1007/S002160051397 *

Also Published As

Publication number Publication date
AU2003288216A8 (en) 2004-06-30
WO2004052518A2 (en) 2004-06-24
DE20218972U1 (en) 2003-02-13
AU2003288216A1 (en) 2004-06-30
JP2011183386A (en) 2011-09-22
US7909502B2 (en) 2011-03-22
EP1572335A2 (en) 2005-09-14
KR20050085326A (en) 2005-08-29
CN100360218C (en) 2008-01-09
KR100806401B1 (en) 2008-02-21
WO2004052518A3 (en) 2005-06-09
JP2006508795A (en) 2006-03-16
CN1780681A (en) 2006-05-31
US20060087917A1 (en) 2006-04-27
JP4847700B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
EP1572335B1 (en) Static lamination micro mixer
DE3783880T2 (en) STRUCTURED COLUMN PACK.
DE69829697T2 (en) Heat exchanger and / or apparatus for mixing fluids
DE69400127T2 (en) Heat exchangers for electronic components and electrical apparatus
DE60010227T2 (en) HOUSING-FREE HEAT EXCHANGER
EP1866066B1 (en) Mixer system, reactor and reactor system
EP2167270B1 (en) Gas distributor comprising a plurality of diffusion-welded panes and a method for the production of such a gas distributor
EP1506054B1 (en) Micro-reactor and micro-channel heat exchanger
EP0879083A1 (en) Device for mixing small quantities of liquids
EP1185359B1 (en) Micromixer
DE102010030781A1 (en) Heat exchanger plate, thus provided plate heat exchanger and method for producing a plate heat exchanger
DE112018004787T5 (en) MULTI-FLUID HEAT EXCHANGER
EP1856734A1 (en) Micro-heat exchanger
DE2803810A1 (en) FLOW CHANNEL FOR DISTRIBUTION OF A REACTION AGENT IN A REACTION VESSEL
EP1475596B1 (en) Plate heat exchanger with single and dopple wall plates
EP1477761B1 (en) Plate heat exchanger
DE69625531T2 (en) Plates - fabric and heat exchangers
DE10034343A1 (en) Plate heat exchanger
DE102005010341A1 (en) Plate type heat exchanger has short ridges and grooves to ensure non impeded flow without fluid trapped in pockets
DE2753189A1 (en) Plate type heat exchanger with flat channels - has turbulence generating woven wire sheets in flat channels
EP1689013B1 (en) Fuel cell
DE20219871U1 (en) Static micro-mixer has housing around stack of diagonally slotted plates
WO2006034666A1 (en) Microchannel recuperator produced from stacked films
EP1788339B1 (en) Plate heat exchanger
DE1451246B2 (en) Multi-plate heat exchanger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20051209

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: MERKEL, TILL

Inventor name: EHRFELD, WOLFGANG

Inventor name: KROSCHEL, MATTHIAS

Inventor name: HERBSTRITT, FRANK

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

17Q First examination report despatched

Effective date: 20090817

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HERBSTRITT, FRANK

Inventor name: KROSCHEL, MATTHIAS

Inventor name: EHRFELD, WOLFGANG

Inventor name: MERKEL, TILL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 614005

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314806

Country of ref document: DE

Effective date: 20130725

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130930

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130830

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130909

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314806

Country of ref document: DE

Effective date: 20140303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131203

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20031203

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50314806

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0013000000

Ipc: B01F0033000000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20221221

Year of fee payment: 20

Ref country code: GB

Payment date: 20221219

Year of fee payment: 20

Ref country code: FR

Payment date: 20221216

Year of fee payment: 20

Ref country code: DE

Payment date: 20221216

Year of fee payment: 20

Ref country code: AT

Payment date: 20221219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221219

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20221220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221220

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50314806

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20231202

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231202

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20231203

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 614005

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231202