[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1570115A2 - Method for the electrolytic deposition of magnesium on galvanised sheet metal - Google Patents

Method for the electrolytic deposition of magnesium on galvanised sheet metal

Info

Publication number
EP1570115A2
EP1570115A2 EP03767590A EP03767590A EP1570115A2 EP 1570115 A2 EP1570115 A2 EP 1570115A2 EP 03767590 A EP03767590 A EP 03767590A EP 03767590 A EP03767590 A EP 03767590A EP 1570115 A2 EP1570115 A2 EP 1570115A2
Authority
EP
European Patent Office
Prior art keywords
magnesium
zinc
deposition
layer
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03767590A
Other languages
German (de)
French (fr)
Other versions
EP1570115B1 (en
Inventor
Horst MITTELSTÄDT
Stefan WIENSTRÖER
Cetin Nazikkol
Bernd Schuhmacher
Christian Schwerdt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
Original Assignee
ThyssenKrupp Stahl AG
ThyssenKrupp Steel AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=30775622&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1570115(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp Stahl AG, ThyssenKrupp Steel AG filed Critical ThyssenKrupp Stahl AG
Publication of EP1570115A2 publication Critical patent/EP1570115A2/en
Application granted granted Critical
Publication of EP1570115B1 publication Critical patent/EP1570115B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals

Definitions

  • the invention relates to a method for electrolytic magnesium deposition on a substrate made of sheet metal with a zinc or zinc alloy coating, in particular steel sheet.
  • the galvanizing of body panels made of steel for the purpose of corrosion protection has largely become established in recent decades.
  • the steel sheets galvanized using the hot-dip process or by means of electrolytic deposition are distinguished by good adhesion of the zinc layer to the steel sheet and good workability.
  • JP 62109966 A describes a steel sheet, on the surface of which a zinc layer is first applied and then a magnesium layer, each by vapor deposition in a vacuum chamber. Due to the formation of an oxide layer on the magnesium surface, the sheet has very good corrosion properties. However, the vacuum process is problematic because it requires a very high level of equipment and process engineering. Furthermore, vacuum-coated sheets have a non-optimal adhesive strength of the magnesium layer.
  • DE 195 27 515 Cl specifies a method for producing corrosion-protected steel sheet.
  • a layer of one or more metals other than zinc or a zinc-free alloy is applied to a galvanized steel sheet by means of vacuum coating.
  • the sheet metal coated in this way is then subjected to a heat treatment without exposure to an oxidizing atmosphere.
  • a diffusion layer is formed on the surface of the double-coated steel sheet from the metal or alloy applied by vacuum coating and the zinc underneath. so Coated sheets are characterized by a good surface quality and high corrosion protection.
  • the diffusion layer is sufficiently ductile relative to the thickness of the zinc coating to ensure that the steel sheet can continue to be formed well.
  • the central disadvantage of this method is the high level of equipment and process technology associated with vacuum coating.
  • DE 100 39 375 AI also describes a method for producing corrosion-protected steel sheet. This is similar to the process described in DE 195 27 515 Cl in that the magnesium is deposited from the vacuum phase on a galvanized or alloy-galvanized steel sheet to be subsequently heat-treated. In this case, however, the heat treatment is controlled so that there is a zinc-magnesium phase formation over the entire thickness of the zinc coating. This leads to a coating with the positive properties described above with a further improved corrosion protection. However, the disadvantages of vacuum coating mentioned above still exist.
  • the microstructure of the coatings obtained is unfavorable, since the overall proportion of intermetallic phases in the coating is generally too high and the magnesium-containing phases are unfavorably distributed, since a targeted phase formation by means of heat treatment does not take place. This has a negative impact on both the corrosion resistance and the forming behavior of the coatings.
  • EP 1 036 862 AI the electrolytic deposition of a Zn-Mg alloy layer on a metal sheet, consisting of iron, an iron alloy or of copper, aluminum or titanium or their alloys, is described in an aqueous acidic electrolyte, the one nonionic or cationic surfactant is added.
  • the electrolytically deposited alloy layer draws are characterized by good formability and corrosion resistance according to the information in this document. The latter is further increased by the incorporation of carbon from the organic surfactant.
  • a disadvantage of this process is its low current efficiency, since the charge transport in the electrolyte is largely carried out via protons and the formation of gaseous hydrogen in the course of the magnesium deposition cannot be prevented. This must be compensated for either by increasing the current density or the dwell time of the sheet to be coated in the electrolytic cell, which in both cases leads to a reduction in process efficiency.
  • the object of the invention is to provide a process for the electrolytic magnesium coating of sheet metal with a zinc or zinc alloy coating, in particular steel sheet, which is characterized by low specific costs and wherein a sheet coated in accordance with the process should have a high surface quality and formability with simultaneously improved corrosion properties.
  • the object is achieved by a method of the type mentioned in that
  • the electrolytic deposition takes place in a solvent with a lower acidity than water, preferably in an essentially aprotic solvent, and
  • the coated substrate is then subjected to a heat treatment to form a Mg-Zn alloy phase in the zinc layer.
  • an aprotic solvent preferably tetrahydrofuran and / or diethyl ether
  • a deposition process which is known to be efficient with respect to the current yield and which, in contrast to the methods of the prior art which are based on magnesium deposition in aqueous solution, with a comparatively low current density and / or Deposition time can take place.
  • the particularly high cost-effectiveness of the method according to the invention in relation to the area-specific coating costs results from the simple implementation in terms of plant technology, in particular from the point of view of possible implementation in a continuous process.
  • magnesium salts are suitable for transporting the magnesium ions from the solvent to the cathode as a result of the applied voltage, which dissolve either completely or only partially ionically in the abovementioned solvents.
  • examples of such magnesium salts include the magnesium halides, magnesium grignard compounds, magnesium alcoholates or magnesium carboxylates.
  • the electrolytically deposited magnesium layers have a significantly higher density and better adhesion than is the case with the usual vacuum coatings. This enables problem-free further processing in the subsequent heat treatment. In a continuous conveyor belt process, for example, problematic growth of the magnesium on the rolls, often the cause of surface defects on the finished product, can be avoided.
  • the magnesium layer is preferably not exposed to an oxidizing atmosphere.
  • the heat treatment can take place in a wide temperature range from 250 to 420 ° C, which results in different layer structures.
  • the preferred layer structure results from the intended application. If the process is to be based on pure solid diffusion, treatment is preferably carried out at a temperature of 300 ° C. If the modification is to be controlled via the formation of a eutectic, a temperature of 380 ° C. is preferred.
  • the treatment time for a zinc coating of 7.5 ⁇ m customary in the automobile is a maximum of 60 s, preferably 6 s in the case of solid-state diffusion or 2 s in the case of the formation of a eutectic.
  • the formation of the alloy phase improves the corrosion properties to such an extent that sheet metal with a reduced thickness of the zinc coating can be used for the process according to the invention. This, in turn, results in an improved formability of the sheet with sufficient or even improved corrosion resistance. Accordingly, the specific advantages of a zinc and a magnesium coating are optimally combined in the method according to the invention.
  • a sheet coated according to the invention thus combines the properties of conventionally galvanized sheets with the extreme corrosion resistance of one
  • Zinc alloy coating can be expanded by simultaneously electrolytically depositing zinc in metallic form in addition to magnesium.
  • the magnesium layer is deposited in a mass ratio of 0.1 to 10 mass%, preferably 1 to 2 mass%, to the zinc layer present on the galvanized sheet surface, which is one with regard to the material used enables economical execution of the method according to the invention.
  • concentration of the magnesium ions or the magnesium-containing molecular ions in the electrolyte is kept essentially constant. In terms of process engineering, this can be done in two ways. On the one hand, it is possible to introduce the magnesium ions into the aprotic solvent by means of a magnesium anode that gradually dissolves. On the other hand, a constant ion concentration can also be achieved in that the magnesium ions are introduced into the aprotic solvent by the essentially continuous addition of a magnesium-containing substance using an inert anode.
  • electrolytically galvanized sheet metal offers the advantage that the galvanizing and the magnesium deposition and heat treatment of the coated sheet according to the invention can be carried out directly in succession in one system, since the electrolytic cells used for the galvanizing on the one hand and for the subsequent magnesium coating on the other hand essentially can be constructed identically.
  • This advantage can be used in particular if the galvanized sheet is coated as a continuous material in a continuous process. In this case, the band-shaped material first passes through several cells for applying the zinc layer and then through a last cell for magnesium deposition. The expansion of a conventional coil coating system for the execution of the The inventive method is therefore possible with very little effort.
  • a substrate in the form of a steel strip 1 is first passed in a transport direction T over a roller guide 1 a through three successively arranged, identically constructed electrolysis cells 2 and thereby provided with a zinc layer with a total thickness of, for example, approximately 7.5 ⁇ m.
  • the steel strip 1 thus functions as a cathode in the electrolysis process.
  • the electrolytic cells 2 are each filled with an aqueous electrolyte 2a, in each of which two anodes 2b consisting of elemental zinc are immersed, which continuously release zinc ions into the electrolyte 2a during the coating process.
  • the steel strip 1 then passes through a last electrolysis cell 3 which is filled with an electrolyte 3a based on an aprotic solvent, for example a mixture of tetrahydrofuran and diethyl ether.
  • an aprotic solvent for example a mixture of tetrahydrofuran and diethyl ether.
  • Two anodes 3b made of elemental magnesium are immersed in the electrolytes 3a in a manner comparable to the electrolytic cells 2, which anodes in turn continuously release magnesium ions into the electrolytes 3a in the course of the coating.
  • the galvanized steel strip 1 is provided with a magnesium layer with a thickness of, for example, approx. 0.5 ⁇ m.
  • the strip 1 is fed directly to a heating device 4, which is arranged in a housing 5 filled with inert gas 5a, such as argon or nitrogen.
  • a belt running concept with further roller contacts between the electrolytic cell 3 and the heating device 4 is easily possible here, since the electrolytically deposited Mg layers have good adhesion to the substrate, so that there is no growth of magnesium on the rollers due to abrasion.
  • the strip section passing through is heat-treated at a temperature of, for example, 300 ° C. and a treatment time of e.g. 6s, so that an Mg-Zn alloy layer is formed on the surface of the coated steel strip 1 by diffusion. It goes without saying that the length of the route on which the heat treatment is carried out and the transport speed of the belt 1 must be coordinated with one another in order to maintain the desired treatment time.
  • the coated and heat-treated steel strip 1 which now has a shiny metallic, highly corrosion-resistant surface, can be subjected to further processing steps or wound up into a coil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Process for the electrolytic magnesium deposition on a substrate (1) made from sheet metal with a zinc or zinc alloy coating comprises carrying out the electrodeposition in a solvent (3a) having a lower acidity than water and heat treating the coated substrate to form a magnesium-zinc alloy phase in the zinc layer.

Description

Verfahren zur elektrolytischen Magnesium-Abscheidung auf verzinktem BlechProcess for electrolytic magnesium deposition on galvanized sheet
Die Erfindung betrifft ein Verfahren zur elektrolytischen Magnesium-Abscheidung auf einem Substrat aus Blech mit Zink- oder Zinklegierungsüberzug, insbesondere Stahlblech.The invention relates to a method for electrolytic magnesium deposition on a substrate made of sheet metal with a zinc or zinc alloy coating, in particular steel sheet.
In der Automobilindustrie besteht großer Bedarf an Werkstoffen mit hoher Korrosionsbeständigkeit und gleichzeitig guten Verarbeitungseigenschaften- Die Verzinkung von Karosserieblechen aus Stahl (Schmelztauchverfahren oder elektrolytische Beschichtung) zum Zwecke des Korrosionsschutzes hat sich in den letzten Jahrzehnten weitgehend durchgesetzt. Die im Schmelztauchverfahren oder mittels elektrolytischer Abscheidung verzinkten Stahlbleche zeichnen sich durch eine gute Haftung der Zinkschicht auf dem Stahlblech und eine gute Verarbeitbarkeit aus.In the automotive industry there is a great need for materials with high corrosion resistance and at the same time good processing properties. The galvanizing of body panels made of steel (hot-dip process or electrolytic coating) for the purpose of corrosion protection has largely become established in recent decades. The steel sheets galvanized using the hot-dip process or by means of electrolytic deposition are distinguished by good adhesion of the zinc layer to the steel sheet and good workability.
Deutlich verbesserte Korrosionseigenschaften sind - alternativ zu den Verzinkungsverfahren - durch das Aufbringen einer Magnesiumschicht auf das unbeschichtete Stahlblech erreichbar. So kommt es bei Lagerung eines magnesiumbeschichteten Stahlbleches an Luft zu einer sofortigen Oxidierung der Magnesiumschicht, wodurch die Blechoberfläche passiviert wird. Demnach wird der darunter befindliche Stahl nicht weiter angegriffen. Nachteilig an magnesiumbeschichteten Blechen ist allerdings ihre gegenüber verzinkten Stahlblechen erhöhte Oberflächenrauhigkeit infolge der Ausbildung der Oxidschicht .As an alternative to the galvanizing process, significantly improved corrosion properties can be achieved by applying a magnesium layer on the uncoated steel sheet. When a magnesium-coated steel sheet is stored in air, the magnesium layer is immediately oxidized, which means that the sheet surface is passivated. Accordingly, the steel underneath is no longer attacked. Disadvantageous Magnesium-coated sheets, however, are their increased surface roughness compared to galvanized steel sheets due to the formation of the oxide layer.
Aus dem Stand der Technik sind verschiedene Verfahren zur Magnesium-Abscheidung auf verzinktem Stahlblech bekannt.Various processes for magnesium deposition on galvanized steel sheet are known from the prior art.
In der JP 62109966 A ist ein Stahlblech beschrieben, auf dessen Oberfläche zunächst eine Zinkschicht und anschließend eine Magnesiumschicht jeweils durch Aufdampfen in einer Vakuumkammer aufgebracht ist. Durch die Ausbildung einer Oxidschicht auf der Magnesiumoberfläche weist das Blech sehr gute Korrosionseigenschaften auf. Als problematisch ist jedoch das Vakuumverfahren anzusehen, da es einen sehr hohen apparativen und prozeßtechnischen Aufwand erfordert. Weiterhin weisen vakuumbeschichtete Bleche eine nicht optimale Haftfestigkeit der Magnesiumschicht auf.JP 62109966 A describes a steel sheet, on the surface of which a zinc layer is first applied and then a magnesium layer, each by vapor deposition in a vacuum chamber. Due to the formation of an oxide layer on the magnesium surface, the sheet has very good corrosion properties. However, the vacuum process is problematic because it requires a very high level of equipment and process engineering. Furthermore, vacuum-coated sheets have a non-optimal adhesive strength of the magnesium layer.
In der DE 195 27 515 Cl ist ein Verfahren zur Herstellung von korrosionsgeschütztem Stahlfeinblech angegeben. Auf ein verzinktes Stahlblech wird mittels VakuumbeSchichtung eine Schicht aus einem oder mehreren Metallen außer Zink oder einer zinkfreien Legierung aufgebracht. Anschließend wird das derart beschichtete Blech ohne Exposition an oxidierender Atmosphäre einer Wärmebehandlung unterworfen. Dadurch bildet sich an der Oberfläche des zweifach beschichteten Stahlbleches eine Diffusionsschicht aus dem durch VakuumbeSchichtung aufgebrachten Metall bzw. der Legierung und dem darunter liegenden Zink. Derart beschichtete Bleche zeichnen sich durch eine gute Oberflächenqualität und einen hohen Korrosionsschutz aus. Zudem ist die Diffusionsschicht infolge ihrer geringen Dicke relativ zur Dicke des Zinküberzuges hinreichend duktil, um eine weiterhin gute Umformbarkeit des Stahlbleches zu gewährleisten. Zentraler Nachteil auch dieses Verfahrens ist der mit der VakuumbeSchichtung zusammenhängende hohe apparative und prozeßtechnische Aufwand.DE 195 27 515 Cl specifies a method for producing corrosion-protected steel sheet. A layer of one or more metals other than zinc or a zinc-free alloy is applied to a galvanized steel sheet by means of vacuum coating. The sheet metal coated in this way is then subjected to a heat treatment without exposure to an oxidizing atmosphere. As a result, a diffusion layer is formed on the surface of the double-coated steel sheet from the metal or alloy applied by vacuum coating and the zinc underneath. so Coated sheets are characterized by a good surface quality and high corrosion protection. In addition, due to its small thickness, the diffusion layer is sufficiently ductile relative to the thickness of the zinc coating to ensure that the steel sheet can continue to be formed well. The central disadvantage of this method is the high level of equipment and process technology associated with vacuum coating.
In der DE 100 39 375 AI wird ebenfalls ein Verfahren zur Herstellung von korrosionsgeschütztem Stahlfeinblech beschrieben. Dieses ähnelt dem in DE 195 27 515 Cl beschriebenen Verfahren insoweit, daß das Magnesium aus der Vakuumphase auf einem verzinkten bzw. legierverzinkten Stahlfeinblech abgeschieden wird, um anschließend wärmebehandelt zu werden. In diesem Fall wird die Wärmebehandlung allerdings so gesteuert, dass es zu einer Zink-Magnesium Phasenbildung über die gesamte Dicke des Zinküberzuges kommt. Dies führt zu einem Überzug mit den oben beschriebenen positiven Eigenschaften bei einem weiter verbesserten Korrosionsschutz. Die angesprochenen Nachteile der VakuumbeSchichtung sind dabei allerdings weiterhin gegeben.DE 100 39 375 AI also describes a method for producing corrosion-protected steel sheet. This is similar to the process described in DE 195 27 515 Cl in that the magnesium is deposited from the vacuum phase on a galvanized or alloy-galvanized steel sheet to be subsequently heat-treated. In this case, however, the heat treatment is controlled so that there is a zinc-magnesium phase formation over the entire thickness of the zinc coating. This leads to a coating with the positive properties described above with a further improved corrosion protection. However, the disadvantages of vacuum coating mentioned above still exist.
Die direkte Abscheidung von Zn-Mg- bzw. Zn-Mg-Al- Legierungsüberzügen auf der Oberfläche eines Stahlblechs als vollständige Schicht im Schmelztauchverfahren, beschrieben z.B. in EP 0 905 270 A2 und US 3,505,043, beinhaltet ebenfalls erhebliche technische Schwierigkeiten. Das Schmelzbad, insbesondere die Einhaltung eines konstanten Mg-Gehaltes, ist wegen der durch die hohe Oxidationsneigung bedingten Mg-Schlackebildung und des unvermeidbaren Abbrands nur mit hohem technischem Aufwand beherrschbar. Außerdem ist die Oberflächenqualität der Überzüge nur gering, so daß die möglichen Einsatzgebiete dieser Produkte stark eingeschränkt sind. Weiterhin ist die MikroStruktur der erhaltenen Überzüge ungünstig, da der Anteil intermetallischer Phasen im Überzug insgesamt in der Regel zu hoch ist und die magnesiumhaltigen Phasen ungünstig verteilt sind, da eine gezielte Phasenbildung mittels Wärmebehandlung nicht erfolgt. Dies wirkt sich negativ sowohl auf die Korrosionsbeständigkeit als auch auf das Umformverhalten der Überzüge aus .The direct deposition of Zn-Mg or Zn-Mg-Al alloy coatings on the surface of a steel sheet as a complete layer in the hot-dip process, described for example in EP 0 905 270 A2 and US 3,505,043, also involves considerable technical difficulties. The weld pool, especially compliance with a constant Mg content, can only be managed with great technical effort due to the high formation tendency of Mg slag formation and the inevitable combustion. In addition, the surface quality of the coatings is only low, so that the possible areas of use of these products are severely restricted. Furthermore, the microstructure of the coatings obtained is unfavorable, since the overall proportion of intermetallic phases in the coating is generally too high and the magnesium-containing phases are unfavorably distributed, since a targeted phase formation by means of heat treatment does not take place. This has a negative impact on both the corrosion resistance and the forming behavior of the coatings.
Der als alternative Abscheidungsmethode denkbaren elektrolytischen Abscheidung von Magnesium in einem wäßrigen Elektrolyten steht das stark negative Normalpotential von Magnesium (-2,363 V) entgegen. In einer Elektrolysezelle mit einem wäßrigen Elektrolyten erfolgt an der Kathode anstelle der Abscheidung von elementarem Magnesium somit annähernd ausschließlich die Reduktion von Protonen zu Wasserstoffgas.The electrolytic deposition of magnesium in an aqueous electrolyte, which is conceivable as an alternative deposition method, is opposed by the strongly negative normal potential of magnesium (-2.363 V). In an electrolytic cell with an aqueous electrolyte, instead of the deposition of elemental magnesium, almost exclusively the reduction of protons to hydrogen gas takes place at the cathode.
In der EP 1 036 862 AI wird gleichwohl die elektrolytische Abscheidung einer Zn-Mg-Legierungsschicht auf einem Metallblech, bestehend aus Eisen, einer Eisenlegierung oder aus Kupfer, Aluminium oder Titan bzw. deren Legierungen, in einem wäßrig-sauren Elektrolyten beschrieben, dem ein nichtionisches oder kationisches Tensid zugegeben ist. Die elektrolytisch abgeschiedene Legierungsschicht zeichnet sich gemäß den Angaben dieser Druckschrift durch gute Umformbarkeit und Korrosionsbeständigkeit aus. Letztere wird durch die Einlagerung von Kohlenstoff aus dem organischen Tensid noch erhöht. Nachteilig an diesem Verfahren ist jedoch seine geringe Stromausbeute, da der Ladungstransport im Elektrolyten zu einem erheblichen Teil über Protonen erfolgt und somit die Bildung gasförmigen Wasserstoffes im Zuge der Magnesiumabscheidung nicht unterbunden werden kann. Dies muß entweder durch eine Erhöhung der Stromdichte oder der Verweilzeit des zu beschichtenden Bleches in der Elektrolysezelle kompensiert werden, was in beiden Fällen zu einer Senkung der Prozeßeffizienz führt.In EP 1 036 862 AI the electrolytic deposition of a Zn-Mg alloy layer on a metal sheet, consisting of iron, an iron alloy or of copper, aluminum or titanium or their alloys, is described in an aqueous acidic electrolyte, the one nonionic or cationic surfactant is added. The electrolytically deposited alloy layer draws are characterized by good formability and corrosion resistance according to the information in this document. The latter is further increased by the incorporation of carbon from the organic surfactant. A disadvantage of this process, however, is its low current efficiency, since the charge transport in the electrolyte is largely carried out via protons and the formation of gaseous hydrogen in the course of the magnesium deposition cannot be prevented. This must be compensated for either by increasing the current density or the dwell time of the sheet to be coated in the electrolytic cell, which in both cases leads to a reduction in process efficiency.
Die elektrolytische Abscheidung von Magnesium in einem aprotischen (protonenfreien) Lösungsmittel ist in der Dissertation „Galvanische Abscheidung von Aluminium- und Magnesiumlegierungen" (TH Leuna-Merseburg, 1985) offenbart. Die Abscheidung erfolgt in einem Elektrolyten auf Basis von Tetrahydrofuran (THF) auf Substraten aus Nickel, Kupfer, Platin und einem niedriglegierten Stahl. In dieser Schrift wird lediglich die prinzipielle Machbarkeit des Verfahrens im Labormaßstab nachgewiesen, ohne es jedoch im Hinblick auf mögliche industrielle Anwendungen zu optimieren.The electrolytic deposition of magnesium in an aprotic (proton-free) solvent is disclosed in the dissertation "Galvanic deposition of aluminum and magnesium alloys" (TH Leuna-Merseburg, 1985). The deposition takes place in an electrolyte based on tetrahydrofuran (THF) on substrates made of nickel, copper, platinum and a low-alloy steel This document only demonstrates the basic feasibility of the process on a laboratory scale, without, however, optimizing it with regard to possible industrial applications.
In der US-Patentschrift 3,520,780 ist ebenfalls die elektrolytische Magnesiumabscheidung in THF als aprotischem Lösungsmittel beschrieben. Hierbei handelt es sich allerdings nicht um ein Beschichtungsverfahren, sondern um ein Verfahren zur Galvanoformung, d.h. zum kontrollierten Erzeugen von Körpern und Bauteilen aus elektrolytisch abgeschiedenem Magnesium.US Pat. No. 3,520,780 also describes electrolytic magnesium deposition in THF as an aprotic solvent. However, this is not a coating process, but rather a process for electroforming, ie for a controlled process Production of bodies and components from electrodeposited magnesium.
Aufgabe der Erfindung ist es, ein Verfahren zur elektrolytischen Magnesiumbeschichtung von Blech mit Zinkoder Zinklegierungsüberzug, insbesondere Stahlblech, anzugeben, welches sich durch geringe spezifische Kosten auszeichnet und wobei ein entsprechend dem Verfahren beschichtetes Blech eine hohe Oberflächenqualität und Umformbarkeit bei gleichzeitig verbesserten Korrosionseigenschaften aufweisen soll.The object of the invention is to provide a process for the electrolytic magnesium coating of sheet metal with a zinc or zinc alloy coating, in particular steel sheet, which is characterized by low specific costs and wherein a sheet coated in accordance with the process should have a high surface quality and formability with simultaneously improved corrosion properties.
Die Aufgabe wird durch ein Verfahren der eingangs genannten Art dadurch gelöst, daßThe object is achieved by a method of the type mentioned in that
- die elektrolytische Abscheidung in einem Lösungsmittel mit geringerer Acidität als Wasser, bevorzugt in einem im wesentlichen aprotischen Lösungsmittel, erfolgt und- The electrolytic deposition takes place in a solvent with a lower acidity than water, preferably in an essentially aprotic solvent, and
- das beschichtete Substrat anschließend einer Wärmebehandlung zur Ausbildung einer Mg-Zn- Legierungsphase in der Zinkschicht unterzogen wird.- The coated substrate is then subjected to a heat treatment to form a Mg-Zn alloy phase in the zinc layer.
Durch die Wahl eines weniger aciden Lösungsmittels (pKA > 16 mit KA: Säuredissoziationskonstante) als Wasser (pKA = 14) wird die Konzentration an Protonen im Lösungsmittel deutlich abgesenkt, so daß hauptsächlich nicht mehr die Reduktion der Protonen zu elementarem Wasserstoff an der Kathode stattfindet, sondern die Abscheidung von elementarem Magnesium. Durch Zugabe geeigneter Basen zum Lösungsmittel kann die Konzentration an Protonen im Lösungsmittel weiter gesenkt werden. Zudem kann durch Zugabe weiterer geeigneter organischer Komponenten die Abscheidung von Wasserstoffgas an der Kathode teilweise unterdrückt werden. Besonders geeignet scheinen dabei Lösungsmittel, die aufgrund ihrer äußerst geringen Aciditat als aprotisch bezeichnet werden, weil sie näherungsweise keine freien Protonen enthalten.By choosing a less acidic solvent (pK A > 16 with K A : acid dissociation constant) as water (pK A = 14) the concentration of protons in the solvent is significantly reduced, so that mainly the reduction of the protons to elemental hydrogen at the Cathode takes place, but the deposition of elemental magnesium. The concentration of protons in the solvent can be further reduced by adding suitable bases to the solvent. In addition, by Addition of other suitable organic components to partially suppress the deposition of hydrogen gas at the cathode. Solvents that are designated as aprotic because of their extremely low acidity, because they contain approximately no free protons, appear to be particularly suitable.
Die Verwendung eines aprotischen Lösungsmittels, vorzugsweise Tetrahydrofuran und/oder Diethylether, ermöglicht einen bezogen auf die Stromausbeute bekanntermaßen effizienten Abscheidungsprozeß, der im Gegensatz zu den Verfahren des Standes der Technik, die auf einer Magnesiumabscheidung in wäßriger Lösung basieren, bei vergleichsweise geringer Stromdichte und/oder Abscheidungszeit erfolgen kann. Die besonders hohe Wirtschaftlichkeit des erfindungsgemäßen Verfahrens in bezug auf die flächenspezifischen Beschichtungskosten resultiert aus der anlagentechnisch einfachen Realisierbarkeit, insbesondere unter dem Aspekt einer möglichen Ausführung in einem kontinuierlichen Prozeß.The use of an aprotic solvent, preferably tetrahydrofuran and / or diethyl ether, enables a deposition process which is known to be efficient with respect to the current yield and which, in contrast to the methods of the prior art which are based on magnesium deposition in aqueous solution, with a comparatively low current density and / or Deposition time can take place. The particularly high cost-effectiveness of the method according to the invention in relation to the area-specific coating costs results from the simple implementation in terms of plant technology, in particular from the point of view of possible implementation in a continuous process.
Zum Transport der Magnesiumionen aus dem Lösungsmittel zur Kathode als Folge der angelegten Spannung eignen sich prinzipiell alle Magnesiumsalze, die sich in den obengenannten Lösungsmitteln entweder vollständig oder nur teilweise ionisch lösen. Beispiele für solche Magnesiumsalze sind unter anderem die Magnesiumhalogenide, Magnesiumgrignardverbindungen, Magnesiumalkoholate oder Magnesiumcarboxylate . Die elektrolytisch abgeschiedenen Magnesiumschichten weisen eine deutlich höhere Dichte und bessere Haftung auf, als dies bei den üblichen VakuumbeSchichtungen der Fall ist. Dies ermöglicht eine problemlose Weiterverarbeitung in der anschließenden Wärmebehandlung. So können z.B. in einem kontinuierlichen Bandanlagenprozess problematische Aufwachsungen des Magnesiums auf den Rollen, häufig Ursache von Oberflächenfehlern am fertigen Produkt, vermieden werden .In principle, all magnesium salts are suitable for transporting the magnesium ions from the solvent to the cathode as a result of the applied voltage, which dissolve either completely or only partially ionically in the abovementioned solvents. Examples of such magnesium salts include the magnesium halides, magnesium grignard compounds, magnesium alcoholates or magnesium carboxylates. The electrolytically deposited magnesium layers have a significantly higher density and better adhesion than is the case with the usual vacuum coatings. This enables problem-free further processing in the subsequent heat treatment. In a continuous conveyor belt process, for example, problematic growth of the magnesium on the rolls, often the cause of surface defects on the finished product, can be avoided.
Durch die sich an die elektrolytische Magnesiumbeschichtung anschließende Wärmebehandlung des Bleches wird diffusionsbedingt eine Mg-Zn-Legierungsschicht erzeugt. Dadurch wird eine schnelle Oxidierung der elektrolytisch abgeschiedenen Magnesiumschicht, was eine rauhe Oberfläche zur Folge hätte, wirksam verhindert. Vor und während der Wärmebehandlung wird die Magnesiumschicht dabei vorzugsweise keiner oxidierenden Atmosphäre ausgesetzt. Die Wärmebehandlung kann dabei in einem großen Temperaturbereich von 250 bis 420°C erfolgen, woraus unterschiedliche Schichtstrukturen resultieren. Die bevorzugte Schichtstruktur ergibt sich dabei aus dem jeweils angestrebten Anwendungsfall . Soll der Prozeß auf einer reinen Festkörperdiffusion beruhen, so wird vorzugsweise bei einer Temperatur von 300°C behandelt. Soll die Modifikation über die Bildung eines Eutektikums gesteuert werden, so wird eine Temperatur von 380°C bevorzugt. Die Behandlungszeit beträgt dabei für eine automobilgemäß übliche Zinkauflage von 7,5μm maximal 60s, vorzugsweise 6s im Falle der Festkörperdiffusion bzw. 2s im Falle der Bildung eines Eutektikums. Zusätzlich zeigt sich, daß durch die Ausbildung der Legierungsphase die Korrosionseigenschaften in so hohem Maße verbessert werden, daß für das erfindungsgemäße Verfahren Bleche mit reduzierter Stärke der Zinkauflage verwendet werden können. Dadurch ergibt sich wiederum eine verbesserte Umformbarkeit des Bleches bei nach wie vor ausreichender oder sogar verbesserter Korrosionsbeständigkeit . Demnach werden bei dem erfindungsgemäßen Verfahren die spezifischen Vorteile einer Zink- und einer Magnesiumbeschichtung in optimaler Weise kombiniert. So vereint ein erfindungsgemäß beschichtetes Blech die Eigenschaften konventionell verzinkter Bleche mit der extremen Korrosionsbeständigkeit einerDue to the heat treatment of the sheet following the electrolytic magnesium coating, a Mg-Zn alloy layer is generated due to diffusion. This effectively prevents rapid oxidation of the electrolytically deposited magnesium layer, which would result in a rough surface. Before and during the heat treatment, the magnesium layer is preferably not exposed to an oxidizing atmosphere. The heat treatment can take place in a wide temperature range from 250 to 420 ° C, which results in different layer structures. The preferred layer structure results from the intended application. If the process is to be based on pure solid diffusion, treatment is preferably carried out at a temperature of 300 ° C. If the modification is to be controlled via the formation of a eutectic, a temperature of 380 ° C. is preferred. The treatment time for a zinc coating of 7.5 μm customary in the automobile is a maximum of 60 s, preferably 6 s in the case of solid-state diffusion or 2 s in the case of the formation of a eutectic. In addition, it can be seen that the formation of the alloy phase improves the corrosion properties to such an extent that sheet metal with a reduced thickness of the zinc coating can be used for the process according to the invention. This, in turn, results in an improved formability of the sheet with sufficient or even improved corrosion resistance. Accordingly, the specific advantages of a zinc and a magnesium coating are optimally combined in the method according to the invention. A sheet coated according to the invention thus combines the properties of conventionally galvanized sheets with the extreme corrosion resistance of one
Magnesiumschicht . Gleichzeitig werden durch die Einsparung von Zink weitere Kostenvorteile erzielt.Magnesium layer. At the same time, savings in zinc result in further cost advantages.
Nach einer ersten Ausgestaltung der Erfindung kann die Abscheidung von Metall auf dem Zink- oderAccording to a first embodiment of the invention, the deposition of metal on the zinc or
Zinklegierungsüberzug dadurch erweitert werden, dass neben dem Magnesium auch Zink in metallischer Form simultan elektrolytisch abgeschieden wird.Zinc alloy coating can be expanded by simultaneously electrolytically depositing zinc in metallic form in addition to magnesium.
Für die Erzielung der vorstehend genannten Eigenschaften ist es ausreichend, wenn die Magnesiumschicht in einem Massenverhältnis von 0,1 bis 10 Massen-%, vorzugsweise 1 bis 2 Massen-%, zur vorliegenden Zinkschicht auf der verzinkten Blechoberfläche abgeschieden wird, was eine hinsichtlich des Materialeinsatzes wirtschaftliche Ausführung des erfindungsgemäßen Verfahrens ermöglicht. Für ein gleichmäßiges Beschichtungsergebnis ist es notwendig, daß die Konzentration der Magnesiumionen oder der magnesiumhaltigen Molekülionen im Elektrolyten im wesentlichen konstant gehalten wird. Dies kann verfahrenstechnisch auf zweierlei Weise erfolgen. Einerseits ist es möglich, die Magnesium-Ionen mittels einer sich nach und nach auflösenden Magnesiumanode in das aprotische Lösungsmittel einzubringen. Anderereits kann eine konstante Ionenkonzentration auch dadurch erreicht werden, daß die Magnesium-Ionen durch die im wesentlichen kontinuierliche Zugabe einer magnesiumhaltigen Substanz bei Verwendung einer inerten Anode in das aprotische Lösungsmittel eingebracht werden.To achieve the above-mentioned properties, it is sufficient if the magnesium layer is deposited in a mass ratio of 0.1 to 10 mass%, preferably 1 to 2 mass%, to the zinc layer present on the galvanized sheet surface, which is one with regard to the material used enables economical execution of the method according to the invention. For a uniform coating result, it is necessary that the concentration of the magnesium ions or the magnesium-containing molecular ions in the electrolyte is kept essentially constant. In terms of process engineering, this can be done in two ways. On the one hand, it is possible to introduce the magnesium ions into the aprotic solvent by means of a magnesium anode that gradually dissolves. On the other hand, a constant ion concentration can also be achieved in that the magnesium ions are introduced into the aprotic solvent by the essentially continuous addition of a magnesium-containing substance using an inert anode.
Die Verwendung von z.B. elektrolytisch verzinktem Blech als Substratmaterial bietet den Vorteil, daß die Verzinkung und die erfindungsgemäße Magnesiumabscheidung und Wärmebehandlung des beschichteten Bleches unmittelbar hintereinander in einer Anlage ausgeführt werden können, da die für die Verzinkung einerseits und für die anschließende Magnesiumbeschichtung andererseits verwendeten Elektrolysezellen im wesentlichen identisch aufgebaut sein können. Dieser Vorteil kann insbesondere dann genutzt werden, wenn das verzinkte Blech als Endlosmaterial in einem durchlaufenden Prozeß beschichtet wird. Das beispielsweise bandförmige Material durchläuft in diesem Falle zunächst mehrere Zellen zur Aufbringung der Zinkschicht und im Anschluß daran eine letzte Zelle zur Magnesiumabscheidung. Die Erweiterung einer konventionellen Bandbeschichtungsanlage zur Ausführung des erfindungsgemäßen Verfahrens ist daher mit sehr geringem Aufwand möglich.The use of, for example, electrolytically galvanized sheet metal as the substrate material offers the advantage that the galvanizing and the magnesium deposition and heat treatment of the coated sheet according to the invention can be carried out directly in succession in one system, since the electrolytic cells used for the galvanizing on the one hand and for the subsequent magnesium coating on the other hand essentially can be constructed identically. This advantage can be used in particular if the galvanized sheet is coated as a continuous material in a continuous process. In this case, the band-shaped material first passes through several cells for applying the zinc layer and then through a last cell for magnesium deposition. The expansion of a conventional coil coating system for the execution of the The inventive method is therefore possible with very little effort.
Im folgenden wird die Erfindung anhand einer ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert, die eine Anlage zur Magnesium-Abscheidung auf einem verzinkten Stahlband in schematischer Darstellung zeigt .The invention is explained in more detail below with reference to a drawing which shows an exemplary embodiment and shows a schematic representation of a plant for magnesium deposition on a galvanized steel strip.
Gemäß der Zeichnung wird ein Substrat in Form eines Stahlbandes 1 in einer Transportrichtung T über eine Rollenführung la zunächst durch drei hintereinander angeordnete, identisch aufgebaute Elektrolysezellen 2 geleitet und dabei mit einer Zinkschicht einer Dicke von insgesamt z.B. ca. 7,5 μm versehen. Das Stahlband 1 fungiert im Elektrolyseprozeß somit als Kathode. Die Elektrolysezellen 2 sind jeweils mit einem wäßrigen Elektrolyten 2a gefüllt, in den jeweils zwei aus elementarem Zink bestehende Anoden 2b getaucht sind, welche während des Beschichtungsprozesses kontinuierlich Zinkionen in den Elektrolyten 2a abgeben. Im Anschluß daran durchläuft das Stahlband 1 eine letzte Elektrolysezelle 3, die mit einem Elektrolyten 3a auf Basis eines aprotischen Lösungsmittels, z.B. eines Gemisches aus Tetrahydrofuran und Diethylether, gefüllt ist. In den Elektrolyten 3a sind in zu den Elektrolysezellen 2 vergleichbarer Weise zwei Anoden 3b aus elementarem Magnesium getaucht, welche ihrerseits im Zuge der Beschichtung kontinuierlich Magnesiumionen in den Elektrolyten 3a abgeben. In dieser Elektrolysezelle 3 wird das verzinkte Stahlband 1 mit einer Magnesiumschicht einer Dicke von z.B. ca. 0,5 μm versehen. Nach Verlassen der letzten Elektrolysezelle 3 wird das Band 1 direkt einer Heizeinrichtung 4 zugeführt, die in einem mit Inertgas 5a, wie z.B. Argon oder Stickstoff, gefüllten Gehäuse 5 angeordnet ist.According to the drawing, a substrate in the form of a steel strip 1 is first passed in a transport direction T over a roller guide 1 a through three successively arranged, identically constructed electrolysis cells 2 and thereby provided with a zinc layer with a total thickness of, for example, approximately 7.5 μm. The steel strip 1 thus functions as a cathode in the electrolysis process. The electrolytic cells 2 are each filled with an aqueous electrolyte 2a, in each of which two anodes 2b consisting of elemental zinc are immersed, which continuously release zinc ions into the electrolyte 2a during the coating process. The steel strip 1 then passes through a last electrolysis cell 3 which is filled with an electrolyte 3a based on an aprotic solvent, for example a mixture of tetrahydrofuran and diethyl ether. Two anodes 3b made of elemental magnesium are immersed in the electrolytes 3a in a manner comparable to the electrolytic cells 2, which anodes in turn continuously release magnesium ions into the electrolytes 3a in the course of the coating. In this electrolysis cell 3, the galvanized steel strip 1 is provided with a magnesium layer with a thickness of, for example, approx. 0.5 μm. After leaving the last electrolysis cell 3, the strip 1 is fed directly to a heating device 4, which is arranged in a housing 5 filled with inert gas 5a, such as argon or nitrogen.
Ein Bandlaufkonzept mit weiteren Rollenberührungen zwischen Elektrolysezelle 3 und Heizeinrichtung 4 ist hier ohne weiteres möglich, da die elektrolytisch abgeschiedenen Mg- Schichten eine gute Haftung auf dem Substrat aufweisen, so daß es nicht zu Aufwachsungen von Magnesium auf den Rollen durch Abrieb kommt. In dem mit der Heizeinrichtung 4 versehenen Gehäuse 5 erfolgt eine Wärmebehandlung des jeweils durchlaufenden Bandabschnittes bei einer Temperatur von beispielsweise 300°C und einer Behandlungsdauer von z.B. 6s, so daß sich an der Oberfläche des beschichteten Stahlbandes 1 durch Diffusion eine Mg-Zn-Legierungsschicht ausbildet. Es versteht sich, daß für die Einhaltung der gewünschten Behandlungszeit die Länge der Strecke, auf der die Wärmebehandlung erfolgt, und die Transportgeschwindigkeit des Bandes 1 aufeinander abgestimmt werden müssen.A belt running concept with further roller contacts between the electrolytic cell 3 and the heating device 4 is easily possible here, since the electrolytically deposited Mg layers have good adhesion to the substrate, so that there is no growth of magnesium on the rollers due to abrasion. In the housing 5 provided with the heating device 4, the strip section passing through is heat-treated at a temperature of, for example, 300 ° C. and a treatment time of e.g. 6s, so that an Mg-Zn alloy layer is formed on the surface of the coated steel strip 1 by diffusion. It goes without saying that the length of the route on which the heat treatment is carried out and the transport speed of the belt 1 must be coordinated with one another in order to maintain the desired treatment time.
Nach Verlassen des Gehäuses 5 kann das beschichtete und wärmebehandelte Stahlband 1, welches nun eine metallisch glänzende, hoch korrosionsbeständige Oberfläche aufweist, weiteren Bearbeitungsschritten unterzogen oder zu einem Coil aufgewickelt werden. After leaving the housing 5, the coated and heat-treated steel strip 1, which now has a shiny metallic, highly corrosion-resistant surface, can be subjected to further processing steps or wound up into a coil.

Claims

P A T E N T AN S P R Ü C H E PATENT TO SPEECH
1. Verfahren zur elektrolytischen Magnesium-Abscheidung auf einem Substrat aus Blech mit Zink- oder Zinklegierungsüberzug (1) , insbesondere Stahlblech, wobei1. A method for electrolytic magnesium deposition on a substrate made of sheet metal with a zinc or zinc alloy coating (1), in particular steel sheet, wherein
- die elektrolytische Abscheidung in einem Lösungsmittel mit geringerer Aciditat als Wasser erfolgt und- The electrolytic deposition takes place in a solvent with a lower acidity than water and
- das beschichtete Substrat (1) anschließend einer Wärmebehandlung zur Ausbildung einer Mg-Zn- Legierungsphase in der Zinkschicht unterzogen wird.- The coated substrate (1) is then subjected to a heat treatment to form a Mg-Zn alloy phase in the zinc layer.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, d a ß das bei der elektrolytischen Abscheidung verwendete Lösungsmittel ein im wesentlichen aprotisches Lösungsmittel ist.2. The method according to claim 1, which also means that the solvent used in the electrodeposition is an essentially aprotic solvent.
3. Verfahren nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t, d a ß eine Mg-Schicht in einem Massenverhältnis von 0,1 bis 10 Massen-%, vorzugsweise 1 bis 2 Massen-%, zur vorliegenden Zinkschicht auf der verzinkten Blechoberfläche abgeschieden wird. Verfahren nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, d a ß die Magnesium-Ionen mittels einer Magnesiumanode (3b) in das Lösungsmittel (3a) eingebracht werden.3. The method according to claim 1 or 2, characterized in that a Mg layer is deposited in a mass ratio of 0.1 to 10 mass%, preferably 1 to 2 mass%, to the present zinc layer on the galvanized sheet surface. Method according to one of claims 1 to 3, characterized in that the magnesium ions are introduced into the solvent (3a) by means of a magnesium anode (3b).
Verfahren nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, d a ß die Magnesium-Ionen durch Zugabe einer magnesiumhaltigen Substanz in das Lösungsmittel (3a) eingebracht werden.Method according to one of Claims 1 to 4, that the magnesium ions are introduced into the solvent (3a) by adding a magnesium-containing substance.
Verfahren nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, d a ß das Blech (1) mit Zink- oder Zinklegierungsüberzug als Endlosmaterial in einem durchlaufenden Prozeß beschichtet wird.Method according to one of Claims 1 to 5, that the sheet (1) is coated with a zinc or zinc alloy coating as a continuous material in a continuous process.
Verfahren nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, d a ß die anschließende Wärmebehandlung bei einer Temperatur von 250 bis 359°C, vorzugsweise 300°C, durchgeführt wird, mit einer Behandlungsdauer < 60s, vorzugsweise 6s.Method according to one of claims 1 to 6, that the subsequent heat treatment is carried out at a temperature of 250 to 359 ° C, preferably 300 ° C, with a treatment time <60s, preferably 6s.
Verfahren nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, d a ß die anschließende Wärmebehandlung bei einer Temperatur von 359 bis 420°C, vorzugsweise 380°C, durchgeführt wird, mit einer Behandlungsdauer < 60s, vorzugsweise 2s. Verfahren nach einem der Ansprüche 1 bis 8, d a d u r c h g e k e n n z e i c h n e t, d a ß bei der elektrolytischen Magnesiumabscheidung auch Zink in metallischer Form auf dem Zink- oder Zinklegierungsüberzug abgeschieden wird und bei der Wärmebehandlung eine Mg-Zn-Legierungsphase ausgebildet wird. Method according to one of claims 1 to 7, characterized in that the subsequent heat treatment is carried out at a temperature of 359 to 420 ° C, preferably 380 ° C, with a treatment time <60s, preferably 2s. Method according to one of claims 1 to 8, characterized in that ß is also deposited in metallic form on the zinc or zinc alloy coating during electrolytic magnesium deposition and a Mg-Zn alloy phase is formed during the heat treatment.
EP03767590A 2002-12-10 2003-11-21 Method for the electrolytic deposition of magnesium on galvanised sheet metal Revoked EP1570115B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10257737 2002-12-10
DE10257737A DE10257737B3 (en) 2002-12-10 2002-12-10 Electrolytic magnesium deposition on a substrate made from sheet metal with a zinc (alloy) coating, used in the automobile industry, using a solvent for the deposition and heat treating the coated substrate
PCT/EP2003/013055 WO2004053203A2 (en) 2002-12-10 2003-11-21 Method for the electrolytic deposition of magnesium or magnesium-zinc on galvanised sheet metal

Publications (2)

Publication Number Publication Date
EP1570115A2 true EP1570115A2 (en) 2005-09-07
EP1570115B1 EP1570115B1 (en) 2006-04-12

Family

ID=30775622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03767590A Revoked EP1570115B1 (en) 2002-12-10 2003-11-21 Method for the electrolytic deposition of magnesium on galvanised sheet metal

Country Status (7)

Country Link
EP (1) EP1570115B1 (en)
AT (1) ATE323186T1 (en)
AU (1) AU2003292060A1 (en)
DE (2) DE10257737B3 (en)
ES (1) ES2261976T3 (en)
PL (1) PL375788A1 (en)
WO (1) WO2004053203A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9744743B2 (en) 2012-12-26 2017-08-29 Posco Zn—Mg alloy plated steel sheet, and method for manufacturing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL1651789T3 (en) * 2003-07-29 2011-03-31 Voestalpine Stahl Gmbh Method for producing hardened parts from sheet steel
EP1624093A1 (en) * 2004-08-04 2006-02-08 Aluminal Oberflächentechnik GmbH & Co. KG Coating of substrates of light metals or light metal alloys
DE102004037673B4 (en) * 2004-08-04 2009-01-29 Thyssenkrupp Steel Ag Process for the simultaneous electrolytic deposition of zinc and magnesium on a sheet-metal substrate and method for producing a corrosion-protected painted sheet metal part
DE102005036426B4 (en) * 2005-08-03 2007-08-16 Thyssenkrupp Steel Ag Process for coating steel products
DE102008004728A1 (en) 2008-01-16 2009-07-23 Henkel Ag & Co. Kgaa Phosphated steel sheet and method for producing such a sheet
DE102009022515B4 (en) * 2009-05-25 2015-07-02 Thyssenkrupp Steel Europe Ag Process for producing a flat steel product and flat steel product
DE102021200229A1 (en) 2021-01-13 2022-07-14 Thyssenkrupp Steel Europe Ag Process for producing an electrolytically coated steel sheet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3520780A (en) * 1967-05-11 1970-07-14 Xerox Corp Magnesium electrodeposition
US3505043A (en) * 1969-01-08 1970-04-07 Inland Steel Co Al-mg-zn alloy coated ferrous metal sheet
JPS62109966A (en) * 1985-11-08 1987-05-21 Nippon Kokan Kk <Nkk> Corrosion-resisting plated steel sheet
DD243722A1 (en) * 1985-11-15 1987-03-11 Tech Hochschule C Schorlemmer GALVANIC BATH AND METHOD OF SEPARATING MAGNESIUM OVERLAP
DE19527515C1 (en) * 1995-07-27 1996-11-28 Fraunhofer Ges Forschung Corrosion-resistant steel sheet prodn., e.g. for the automobile industry
DE69730212T2 (en) * 1996-12-13 2005-08-18 Nisshin Steel Co., Ltd. HEALTH DIVING Zn-Al-Mg COATED STEEL PLATE WITH EXCELLENT CORROSION PROPERTIES AND SURFACES AND METHOD OF MANUFACTURING
DE19855666A1 (en) * 1998-12-01 2000-06-08 Studiengesellschaft Kohle Mbh Organoaluminum electrolytes and processes for electrolytic coating with aluminum or aluminum-magnesium alloys
US6607844B1 (en) * 1999-03-15 2003-08-19 Kobe Steel, Ltd. Zn-Mg electroplated metal sheet and fabrication process therefor
DE10039375A1 (en) * 2000-08-11 2002-03-28 Fraunhofer Ges Forschung Corrosion-protected steel sheet and process for its manufacture
KR100590406B1 (en) * 2001-12-22 2006-06-15 주식회사 포스코 surface treated steel sheet having excellent corrosion resistance and welding property and its manufacturing of the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004053203A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9744743B2 (en) 2012-12-26 2017-08-29 Posco Zn—Mg alloy plated steel sheet, and method for manufacturing same

Also Published As

Publication number Publication date
AU2003292060A8 (en) 2004-06-30
WO2004053203A3 (en) 2004-12-23
DE10257737B3 (en) 2004-02-26
ATE323186T1 (en) 2006-04-15
PL375788A1 (en) 2005-12-12
WO2004053203A2 (en) 2004-06-24
ES2261976T3 (en) 2006-11-16
EP1570115B1 (en) 2006-04-12
DE50302990D1 (en) 2006-05-24
AU2003292060A1 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
EP1658390B1 (en) Method for producing a hardened steel part
EP2507408B1 (en) Multi-stage pre-treatment method for metal components having zinc and iron surfaces
DE69606077T2 (en) Steel sheet with a corrosion-resistant two-component layer made of Zn-Mg and process for its production
EP0756022B1 (en) Steel sheet protected against corrosion and process for its production
DE4202625A1 (en) GALVANIZED METAL MATERIAL
DE202004021264U1 (en) Corrosion layer and hardened steel component
DE69106552T2 (en) Surface-treated steel strip with improved weldability and coating properties and its manufacture.
EP1570115B1 (en) Method for the electrolytic deposition of magnesium on galvanised sheet metal
DE69520350T2 (en) GALVANIZED STEEL SHEET AND METHOD FOR PRODUCING IT
DE102018102624A1 (en) Process for producing a steel strip with improved adhesion of metallic hot-dip coatings
EP3947753B1 (en) Method for producing a steel sheet with improved adhesion of metallic hot-dip coatings
EP2635724B1 (en) Process for electroplating hard chromium from a cr(vi) free electrolyte
DE69027428T2 (en) GALVANIZED STEEL SHEET WITH EXCELLENT PRESS FORMING, CHEMICAL SURFACE CONVERSION AND SIMILAR PROPERTIES AND THE PRODUCTION OF SUCH A SHEET
DE102004037673B4 (en) Process for the simultaneous electrolytic deposition of zinc and magnesium on a sheet-metal substrate and method for producing a corrosion-protected painted sheet metal part
EP4359575A1 (en) Method for producing a flat steel product having a zinc- or aluminium-based metal coating and corresponding flat steel product
EP3947754B1 (en) Method for producing a steel sheet with improved adhesion of metallic hot-dip coatings
EP3728693B1 (en) Method for the corrosion protection and cleaning pretreatment of metallic components
EP2955249B1 (en) Method for the production of a steel sheet provided with a corrosion protection system
DE102005036426B4 (en) Process for coating steel products
EP1574601B1 (en) Process for the galvanic deposition of zinc phosphate or zinc-calcium phosphate
WO2022184565A1 (en) Method for modifying finished surfaces with the aim of improved surface properties
WO2019243146A1 (en) Separating layer for hot forming
EP4414168A1 (en) Cold-formed component with zn-al-mg-sn coating
EP4159896A2 (en) Method for passivating the surface of a white sheet and electrolysis system for carrying out the method
DE2223372C3 (en) Process for the electrolytic deposition of aluminum alloys on metallic workpieces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050607

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THYSSENKRUPP STEEL AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060412

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060412

REF Corresponds to:

Ref document number: 50302990

Country of ref document: DE

Date of ref document: 20060524

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060912

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

RDAD Information modified related to despatch of communication that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSCREV1

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

ET Fr: translation filed
26 Opposition filed

Opponent name: ALUMINAL OBERFLAECHENTECHNIK GMBH & CO. KG

Effective date: 20060930

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2261976

Country of ref document: ES

Kind code of ref document: T3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 4

NLR1 Nl: opposition has been filed with the epo

Opponent name: ALUMINAL OBERFLAECHENTECHNIK GMBH & CO. KG

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20061116

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20061116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLR2 Nl: decision of opposition

Effective date: 20061116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060412