EP1428232B1 - Mobile-magnet actuator - Google Patents
Mobile-magnet actuator Download PDFInfo
- Publication number
- EP1428232B1 EP1428232B1 EP02772452A EP02772452A EP1428232B1 EP 1428232 B1 EP1428232 B1 EP 1428232B1 EP 02772452 A EP02772452 A EP 02772452A EP 02772452 A EP02772452 A EP 02772452A EP 1428232 B1 EP1428232 B1 EP 1428232B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- magnetic part
- magnetic
- mobile
- fixed
- actuator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005291 magnetic effect Effects 0.000 claims abstract description 353
- 230000000977 initiatory effect Effects 0.000 claims abstract 8
- 239000000758 substrate Substances 0.000 claims description 78
- 239000004020 conductor Substances 0.000 claims description 42
- 238000004804 winding Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 20
- 230000005415 magnetization Effects 0.000 claims description 19
- 239000000696 magnetic material Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 10
- 238000000151 deposition Methods 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 7
- 239000002889 diamagnetic material Substances 0.000 claims description 4
- 239000003989 dielectric material Substances 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 description 34
- 239000011347 resin Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000000206 photolithography Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000005339 levitation Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 2
- CLBRCZAHAHECKY-UHFFFAOYSA-N [Co].[Pt] Chemical compound [Co].[Pt] CLBRCZAHAHECKY-UHFFFAOYSA-N 0.000 description 2
- NYOGMBUMDPBEJK-UHFFFAOYSA-N arsanylidynemanganese Chemical compound [As]#[Mn] NYOGMBUMDPBEJK-UHFFFAOYSA-N 0.000 description 2
- 238000004630 atomic force microscopy Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- PAZONJYZYLTGFZ-UHFFFAOYSA-N [B].[Fe].[Er] Chemical compound [B].[Fe].[Er] PAZONJYZYLTGFZ-UHFFFAOYSA-N 0.000 description 1
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 1
- BTGZYWWSOPEHMM-UHFFFAOYSA-N [O].[Cu].[Y].[Ba] Chemical compound [O].[Cu].[Y].[Ba] BTGZYWWSOPEHMM-UHFFFAOYSA-N 0.000 description 1
- XHOGEDXMEXSLPN-UHFFFAOYSA-N [P].[Mn].[Co] Chemical compound [P].[Mn].[Co] XHOGEDXMEXSLPN-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum-nickel-cobalt Chemical compound 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- GUBSQCSIIDQXLB-UHFFFAOYSA-N cobalt platinum Chemical compound [Co].[Pt].[Pt].[Pt] GUBSQCSIIDQXLB-UHFFFAOYSA-N 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- XWHPIFXRKKHEKR-UHFFFAOYSA-N iron silicon Chemical compound [Si].[Fe] XWHPIFXRKKHEKR-UHFFFAOYSA-N 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/02—Details
- H01H37/32—Thermally-sensitive members
- H01H37/58—Thermally-sensitive members actuated due to thermally controlled change of magnetic permeability
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F7/08—Electromagnets; Actuators including electromagnets with armatures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/005—Details of electromagnetic relays using micromechanics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
- H01F2007/068—Electromagnets; Actuators including electromagnets using printed circuit coils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/0036—Switches making use of microelectromechanical systems [MEMS]
- H01H2001/0042—Bistable switches, i.e. having two stable positions requiring only actuating energy for switching between them, e.g. with snap membrane or by permanent magnet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/005—Details of electromagnetic relays using micromechanics
- H01H2050/007—Relays of the polarised type, e.g. the MEMS relay beam having a preferential magnetisation direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H51/00—Electromagnetic relays
- H01H51/22—Polarised relays
- H01H51/2209—Polarised relays with rectilinearly movable armature
- H01H2051/2218—Polarised relays with rectilinearly movable armature having at least one movable permanent magnet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H51/00—Electromagnetic relays
- H01H51/22—Polarised relays
- H01H51/2209—Polarised relays with rectilinearly movable armature
Definitions
- the subject of the present invention is a magnetic actuator with a moving magnet and in particular a microactuator that can be produced by microtechnology techniques.
- This actuator when it has several stable positions, finds its application in the production of microrelays or electrical microswitches controlling the opening or closing of an electrical contact possibly taken among several microrelais or microswitches controlling the passage, the shutter, the switching or switching a light beam, microvannes controlling the passage, sealing or switching of a fluid, micropumps controlling the pumping of a fluid.
- This actuator can be controlled so that it can take a multitude of successive positions with a nanometric precision following 5 degrees of freedom.
- Known magnetic actuators comprise a fixed magnetic part, a movable magnetic part which is mechanically connected to the fixed magnetic part.
- An electrical circuit is used to excite the moving magnetic part to make it take a working position by moving it relative to the fixed magnetic part. In the absence of excitation, the moving magnetic part is in a rest position.
- the article "Latching micro magnetic relays with multistrip permalloy cantilevers" by M. RUAN and J. SHEN published in IEEE MENS 2001 page 224 to 227 discloses a magnet magnetic microactuator made on a silicon substrate.
- the magnet is fixed, it is embedded in the silicon, it is covered by a control winding and the movable magnetic part to move is in the form of a beam with a free end and a recessed end and thus mechanically secured to the fixed magnetic part .
- the movable magnetic part is mechanically connected to the fixed magnetic part.
- This mechanical connection is difficult to achieve by collective manufacturing techniques.
- this connection limits the mobility of the mobile magnetic part, this mobility results from a deformation of one of the elements connecting the moving part to the fixed part. The speed performance of such actuators are low.
- the driving forces of the mobile magnetic part are due to the magnetic field created by at least one coil.
- Gold at constant current density a microbobine creates a force much lower than a coil of the same shape but larger.
- the performance of such microactuators therefore remains poor.
- the mass forces they are able to provide are small relative to their size.
- actuators must be electrically powered so that they remain in a working position, in the absence of power they return to a rest position.
- a method of producing a magnetic actuator in microelectronic mechanical systems (MEM) having a mechanical connection between the moving magnetic part and the fixed magnetic part is described in. WO 01/16484.
- a magnetic actuator without mechanical connection between the movable magnetic part and the fixed magnetic part is known in EP 0 179 911.
- the present invention is intended to provide a magnetic actuator that does not have all these disadvantages.
- the actuator of the present invention is particularly adapted to an embodiment in microtechnologies. It has a high movement speed, an ability to exert significant mass forces and large displacements in relation to its size. In stable position, position which can correspond to a working position, the power consumption of this actuator is zero.
- the actuator of the invention comprises a fixed magnetic part and a movable magnetic part formed by a magnet which when not glued to the fixed magnetic part is levitated without contact. When it moves and is attracted by the fixed magnetic part, it is totally guided magnetically. There is no mechanical guidance.
- the magnetic actuator according to the invention comprises a fixed magnetic part which magnetically cooperates with a mobile magnetic part and means for triggering the displacement of the mobile magnetic part.
- the mobile magnetic part comprises at least one magnet and the fixed magnetic part has at least two attraction zones on which the mobile magnetic part is likely to stick, the mobile magnetic part being levitated when it is not glued. on one of the zones of attraction, its displacement being done by magnetic guidance.
- the fixed magnetic part may be made of a material selected from the group of soft magnetic materials, hard magnetic materials, hysteresis materials, superconducting materials, diamagnetic materials, these materials being taken alone or in combination.
- the means for triggering the displacement of the mobile magnetic part are means magnetic, they can be heating means of the fixed magnetic part.
- the material of the fixed magnetic portion may have a lower Curie point than that of the magnet of the moving magnetic portion, so heating does not disturb the properties of the magnet. If this is not the case, it is necessary to take into account the thermal coupling, it is possible to thermally insulate the magnet from the moving magnetic part of the fixed magnetic part.
- the means for triggering the displacement of the moving magnetic portion creates a magnetic field in the vicinity of the moving magnetic portion.
- the means for triggering the displacement of the mobile magnetic part can be made by at least one electrical conductor.
- the actuator may comprise means for controlling the current to be circulated in the conductor at the position of the movable magnetic part so that it can take a plurality of stable levitation positions. It can then function as a positioner.
- the means for triggering the displacement of the mobile magnetic part thus serve to keep the moving magnetic part stable in levitation.
- the driver can surround the fixed magnetic part.
- the conductor may take the form of a substantially planar winding.
- the fixed and mobile magnetic parts can also be substantially flat, they can be arranged substantially in the same plane.
- the driver on the one hand and the fixed and mobile magnetic parts on the other hand can then be arranged in substantially parallel planes.
- the fixed magnetic part may be a single element which surrounds the moving magnetic part, the latter then being able to take up several stable positions inside the fixed magnetic part. It can thus have at least four degrees of freedom.
- the fixed magnetic part may be formed of several elements, the moving magnetic part being adhered to one of the elements of the fixed magnetic part or on another.
- the moving magnetic part can then take the orientation of the element on which it is glued.
- the magnetization of the fixed magnetic part and that of the movable magnetic part may be directed in the same direction or on the contrary be directed in opposite directions.
- the means for triggering the displacement of the movable magnetic part can trigger a rotational movement.
- the fixed magnetic part may comprise, at the level of at least one attraction zone, a pair of electrical contacts and the magnetic part that is mobile with at least one electrical contact, the mobile magnetic part coming to connect the two contacts of the pair when it comes stick to the area of attraction.
- the movable magnetic part may comprise a reflecting zone intended to reflect a light beam, the actuator may then be used as an optical relay or switch, as a scanner for example according to the displacement that the moving magnetic part can make.
- Such an actuator is feasible on a non-magnetic substrate, the means for triggering the displacement of the mobile magnetic part being embedded in the substrate.
- An array of actuators can be made with a plurality of magnetic actuators thus defined, these magnetic actuators being grouped together on the same support.
- the present invention also relates to a device that uses at least one magnetic actuator thus defined. It may be for example a relay, a switch, a pump, a valve, a positioner, an optical scanner.
- It also comprises a magnetization step of the magnet of the mobile magnetic part and possibly of the fixed magnetic part before the release of the mobile magnetic part.
- the step of etching the dielectric layer of the first substrate also aims to provide at least one opening for access to at least one electrical contact for powering the conductor.
- a step of producing at least one electrical contact for the supply of the conductor may take place on the second substrate, after the deposition of the conductor and before the assembly of the two substrates.
- a step of depositing a dielectric material on the surface of the second substrate can intervene before assembling the two substrates to protect the driver.
- the two substrates may be solid semiconductor substrates or SOI substrates.
- FIG. 1A to 1D which schematically illustrate an actuator according to the invention and different positions that its moving magnetic part can take.
- the fixed magnetic part 3 may comprise one or more elements based on permanent magnets 3-1 and / or magnetic material. In Figures 1, it is assumed that the fixed magnetic portion 3 comprises two elements 3-1 which are permanent magnets.
- the mobile magnetic part assembly and fixed part is supported by a non-magnetic support (not shown in FIGS. 1). When producing such an actuator in microtechnologies, it can be performed on or in a substrate as will be seen later.
- the fixed magnetic part 3 and the mobile magnetic part 1 cooperate magnetically with each other.
- the fixed magnetic portion 3 is configured to have at least two attraction zones 3-2 which separately and naturally attract the mobile magnetic part 1.
- the mobile magnetic part 1 is limited to a single permanent magnet 1-1 in the form of a parallelepiped plate. It is located between the two permanent magnets 3-1 of the fixed magnetic part 3 which are also in the form of a parallelepiped plate.
- the zones of attraction 3-2 are lateral faces of the fixed magnets 3-1.
- the movable magnet 1-1 can be glued either to one of the faces 3-2 of the fixed magnet of the right or to one of the faces 3-2 of the fixed magnet of the left, these two faces being in opposite.
- the three magnets 1-1 and 3-1 are aligned and extend substantially in the x, y plane.
- the mobile magnetic part 1 is devoid of permanent mechanical connection with the fixed part 2.
- the mobile magnetic part 1 is not bonded to one of the attraction zones 3-2, it is free, levitated without contact, thanks to the interactions it has with the fixed magnetic part 3. During its displacement, it is guided magnetically.
- the means 4 for triggering the displacement of the movable magnetic part 1 have the function of modifying the forces interacting on the moving magnetic part 1 and thus of modifying the balance of the fixed magnetic magnetic 1-part mobile part assembly 3. initiate the displacement of the mobile magnetic part 1 but then the displacement is due to the interactions between the fixed magnetic part 3 and the mobile magnetic part 1.
- the means 4 for triggering the displacement are magnetic means. They can act next several different physical principles. They can, by a localized increase of the temperature, modify the magnetic characteristics of the fixed magnetic part 3 at the zone of attraction 3-2 on which is glued the mobile magnetic part 1. According to a variation, they can create a magnetic field at the mobile magnetic part, this magnetic field modifies the magnetic characteristics of the assembly and sets in motion the moving magnetic part.
- each of the magnets 3-1 of the fixed magnetic part 3 is provided with a heating resistor R.
- This resistor R may be deposited on one faces of the magnets 3-1 of the fixed magnetic part. It can be made of copper, silver, gold, aluminum for example.
- a light beam for example a laser beam which would irradiate the fixed magnetic portion at the area whose magnetic properties are to be modified.
- the fixed magnetic part 3 can then be made of a material whose Curie point is low, for example less than or equal to 100 ° C. Its magnetic properties are likely to disappear with an increase in temperature.
- the material used is magnetic below 100 ° C and non-magnetic above 100 ° C.
- the temperature reached by the fixed magnetic portion during heating should not disturb the behavior of the magnet of the moving magnetic part which can then have a higher Curie point.
- the Curie point of the magnet of the moving magnetic part may not be less than that of the fixed magnetic part, but in this case the magnet of the mobile magnetic part will have a weak thermal coupling with the fixed magnetic part of not to heat up when the fixed magnetic part heats up.
- the movable magnet 1-1 is glued to the fixed magnet 3-1 of the left. Once in such a stable position, the magnetic forces are so great that even a very violent shock will not succeed in detaching it.
- mobile and fixed magnets with dimensions of 50 ⁇ m x 50 ⁇ m x 10 ⁇ m, with a magnetization of 1 Tesla, it would take a shock well above 1000G to be able to take off and move it 1 .mu.m.
- the movable magnet 1-1 comes off, enters into motion and is attracted by the right fixed magnet 3-1. It sticks on the fixed magnet 3-1 on the right and takes another stable position.
- the movable magnet 1-1 is levitating between the fixed magnet 3-1 of the left and the fixed magnet 3-1 of the right which attracts it.
- the moving magnet 1-1 is now bonded to the fixed magnet 3-1 from the right, he stays in that position which is stable. The fixed magnet 3-1 on the left, which is no longer heated, resumes its magnetic properties.
- the fixed magnetic part 3 and the mobile magnetic part 1 can be provided with electrical contacts as illustrated in FIGS. 2A, 2B, 2C, 2D.
- At least one attraction zone 3-2 of the fixed magnetic portion 3 is provided with a pair of electrical contacts C1, C2, these contacts extend beyond the attraction zone 3-2 to be accessible.
- the mobile magnetic part 1 is provided with at least one electrical contact C. When the mobile magnetic part 1 is bonded to the attraction zone 3-2, its contact C electrically connects the two contacts C1, C2 of the pair. One can thus realize an electrical relay.
- the two fixed magnets 3-1 are provided with contacts C1, C2 and the movable magnet 1-1 has two of its faces 1-2 each having a contact C (contact C on its face 1-2 which comes into contact with the fixed magnet 3-1 of the left is not visible in Figures 2A, 2B).
- a device 20 for example of the electric switch type, comprising at least one magnetic actuator according to the invention.
- the fixed magnetic portion instead of being formed of two elements 3-1 each having a pair of electrical contacts is formed of two pairs of elements 3-1a, 3-1b.
- the elements 3-1a, 3-1b of a pair are side by side but disjoint.
- Each of the elements 3-1a, 3-1b of the pair is provided with an electrical contact C1, C2 respectively. There is no change for the moving magnetic part 1.
- the magnetization of the fixed and movable magnetic parts is directed in the same direction along the x axis.
- FIG. 3A The only difference with respect to the preceding figures is at the level of the means 4 for triggering the displacement of the mobile magnetic part 1.
- Their principle is now to create a magnetic field in the vicinity of the moving magnetic part.
- These means 4 may be made by at least one conductor 4-1 intended to be traversed by an electric current to generate the magnetic field.
- the driver 4-1 can have a large number of configurations, for example it can take the form of an open loop or a winding with one or more turns. In the remainder of the description, when the term "winding" has been used, it could equally well be a conductor taking a form suitable for generating the magnetic field without being a winding.
- FIG. 3A there is a single winding 4-1 substantially flat extending in an x plane, y.
- the winding comprises one or more turns wound around an empty central part, the fixed magnetic part 3 is in the vicinity of the turns and the moving magnetic part 1, when it is levitated is close to the central part of the winding 4-1.
- a current pulse travels through this winding 4-1, a magnetic field is created and it has the effect of modifying the magnetic equilibrium of the fixed magnetic 3 and mobile 1 parts and triggering the displacement of the mobile magnetic part 1 of a stable position towards another.
- the pulse necessary for the passage from one position to another may be less than 5 ⁇ s for the actuator whose characteristics have been given above.
- the rest of the actuator does not consume energy.
- An actuator that would switch a thousand times per second would consume about 2mW which is very low. With magnetic materials of very good quality, this consumption could be reduced.
- the fixed magnetic part 3 can rest on the winding 4-1 while the mobile magnetic part 1 is levitated above. Appropriate insulations are inserted between the fixed magnetic part and the winding.
- the direction of movement is conditioned by the direction of the current flowing in the winding 4-1. For example, with a current flowing in the winding 4-1 clockwise and a magnetization in the fixed magnets 3-1 and mobile 1-1 in the x-axis direction, the moving magnet 3-1 will be attracted to the left 3-1 fixed magnet.
- the means 4 for triggering the displacement of the mobile magnetic part 1 are now made by two conductors 40 which each surround one of the elements of the fixed magnetic part. They take the form of tubular windings.
- soft magnetic materials such as iron, nickel, iron-nickel alloys, iron-cobalt, iron-silicon
- Hard magnetic materials correspond to magnets such as ferrite magnets, samarium-cobalt magnets, neodymium-iron-boron magnets, platinum-cobalt magnets. Their magnetization depends little on the external magnetic field.
- Hysteresis materials for example of aluminum-nickel-cobalt (AlNiCo) type, have properties that are between those of soft magnetic materials and those of hard magnetic materials. They are sensitive to the magnetic field in which they are. When with diamagnetic materials such as bismuth or pyrolitic graphite, their magnetization is collinear with the inducing magnetic field but of opposite direction.
- the superconducting materials could be nobium-titanium alloys (NbTi), yttrium-barium-copper-oxygen (YBaCuO) for example.
- the magnet of the mobile magnetic part may be made for example of ferrite, samarium-cobalt, neodymium-iron-boron, platinum-cobalt.
- the low Curie magnetic materials which are suitable for producing the fixed magnetic part are, for example, the manganese-arsenic (MnAs), cobalt-manganese-phosphorus (CoMnP), erbium-iron-boron (ErFeB) alloys.
- MnAs manganese-arsenic
- CoMnP cobalt-manganese-phosphorus
- ErFeB erbium-iron-boron alloys.
- the actuator according to the invention is transformed into a positioner.
- the mobile magnetic part 1 is capable of taking a plurality of intermediate positions between the two extreme stable positions which correspond to the cases where it is glued to the fixed magnetic part 3.
- the means for triggering the displacement of the moving magnetic part then serve to keep the moving magnetic part in a stable position while it is levitating.
- a device 5 which detects the position of the mobile magnetic part 1.
- the signal delivered by this device 5 is compared with a setpoint K in a comparator 6 and the result of this comparison serves to control a power source 7 provided to power the driver 4-1.
- the device 5 which detects the position of the mobile magnetic part 1 may comprise, associated with each of the fixed magnetic elements 3-1, a capacitive position sensor 5-1 which measures the capacitance existing between the fixed magnetic element 3-1 with which it is associated with and the moving magnetic part 1.
- a differentiator device 5-2 receives the signals coming from the two capacitive position sensors 5-1, makes the difference and delivers a signal representative of the position of the mobile magnetic part 1.
- FIGS. 1 to 3 have the advantage of allowing the use of medium quality magnets. Indeed a magnet creates a magnetic field that tends to demagnetize it. The intensity of this phenomenon depends on the direction of magnetization with respect to the shape of the magnet. This phenomenon of demagnetization is more intense when the magnetization follows a small side of the magnet and it is less intense when the magnetization is directed along a long side of the magnet, which is the case in these figures, with a magnetization directed along the x axis.
- the magnets compatible with the collective manufacturing technologies are sensitive to demagnetization, but by magnetizing them in a direction that follows one of their long side, this disadvantage is mitigated.
- the magnets that they belong to the fixed magnetic part or the mobile magnetic part can finally be realized in a simple way and in one operation because they are all magnetized in the same direction.
- FIG. 4 shows a variant of an actuator according to the invention made on a substrate 9, for example a silicon wafer. It can have a thickness of 300 ⁇ m if the mobile and fixed magnetic parts have the dimensions mentioned above (50 ⁇ m x 50 ⁇ m x 10 ⁇ m)
- the fixed magnetic part 3 is attached to the surface of the substrate 9, the mobile magnetic part 1, when it is not glued to the fixed magnetic part 3, floats above the substrate 9, in the magnetic field created by the fixed magnetic part 3, as to the means 4 for triggering the displacement of the mobile magnetic part 1, they are embedded in the substrate 9.
- the mobile 1 and fixed 3 magnetic parts can be made similar to those of Figures 1 to 3, but other configurations are possible. Instead of being formed by two elements, the fixed magnetic part could be massive. Instead of being made from a magnet, it could be made of a ferromagnetic material.
- the magnetization of the fixed and mobile magnetic parts now follow the z-axis instead of following the x-axis.
- This magnetization follows the thickness of the mobile and fixed magnetic parts which have the form of plates. But these magnetizations are in opposite directions.
- the two magnet plates 3-1 or ferromagnetic material of the fixed magnetic part 3 have a magnetization in the same direction and the magnetization of the magnet 1-1 of the movable magnetic part 1 is of opposite direction. If the plates 3-1 of the fixed magnetic part 3 are ferromagnetic, their magnetization depends on that of the magnet 1-1 of the mobile magnetic part 1, it is naturally opposite to that of the mobile magnetic part 1.
- the means 4 for triggering the displacement of the mobile magnetic part 1 are suitably modified to be effective. They are formed in this example of two coils 410, 411 substantially planar, placed side by side in the same plane, along the x axis. Each of these windings 410, 411 is comparable to that shown in Figure 3A. But now the moving magnetic part 1 is straddling portions of turn of each of the windings 410, 411.
- the two coils 410, 411 can be supplied in series, in parallel or independently of one another. No power source has been shown to avoid overloading the figure.
- the creation of an asymmetry in the currents flowing through the two coils 410, 411 can make it possible to drive the mobile magnetic part 1 in rotation about the y axis when it is levitating.
- this portion 10 is on the upper main face of the mobile magnetic part 1. It can be thus realize an optical scanner.
- the portion 10 is on an edge of the movable magnetic part 1 or on its lower main face if the substrate 9 allows it. The latter could be provided with an opening or let the light beam F if it is made of glass for example.
- the mobile magnetic part 1 has a resonant frequency and by using this frequency, it is possible to make an optical scanner with very low power consumption.
- This power supply corresponds to that injected into the windings to obtain the rotation of the moving magnetic part when it is in levitation and thus the desired scanning of the light beam F.
- At the resonance it is necessary to supply very little energy to the system for the to oscillate. In theory, an impulse would be enough to make it oscillate indefinitely.
- Figure 5 illustrates a variant of the previous configuration.
- the two elements 3-1 of the fixed magnetic part 3 instead of being in the same plane, have a dissymmetry of shape or position with respect to the mobile magnetic part 1.
- they are now inclined. one compared to the other.
- they are inclined around the x axis.
- the mobile magnetic part 1 coming to stick on one of the elements 3-1 of the fixed magnetic part takes the same inclination as him. If the mobile magnetic part 1 is provided with a reflective portion 10, a light ray F which is reflected on this portion 10 will be deflected with a inclination which depends on that of the fixed magnetic element on which sticks the moving magnetic part. An optical switch is then produced.
- FIG. 6 is an actuator according to the invention which is deduced from the configuration of FIG. 4.
- the means 4 for triggering the displacement of the mobile magnetic part 1 comprise four windings 401, 402, 403, 404 planes, situated in a same plane x, y and arranged in matrix.
- the moving magnetic portion overlaps a turn portion of the four windings 401, 402, 403, 404 and each member 3-1 of the fixed magnetic portion 3 overlaps a turn portion of two of the windings 401, 402, 403, 404.
- Two degrees of freedom of the moving magnetic part are controlled.
- the mobile magnetic part 1 is similar to that of FIG. means 4 to trigger the movement also with the exception of the fifth winding 405 which has been omitted, for the sake of simplification but which could be present.
- the difference now lies in the fixed magnetic means 3 which now comprise four fixed magnetic elements 31, 32, 33, 34 forming a cross with the moving magnetic part 1.
- Each of these elements 31, 32, 33, 34 of the part fixed magnetic magnet 3 overlaps a turn portion of two coils respectively (401, 404), (401, 402), (402, 403), (403, 404).
- the mobile magnetic part 1 can then be controlled in the same directions as those of FIG. 6.
- the addition of the fifth winding could be envisaged to obtain a displacement in a direction perpendicular to the plane of the first windings 401, 402, 403, 404.
- the actuator can take four stable positions, the mobile magnetic part 1 can stick on each of the four fixed magnetic elements 31, 32, 33, 34.
- the fixed magnetic portion 3 is formed of a single element 30 which surrounds the mobile magnetic part 1. The mobile magnetic part 1 can then take an infinity of stable positions when it comes to stick against the fixed magnetic element 30. It is then possible to obtain a positioner.
- the fixed magnetic portion has been shown as a hollowed square plate.
- Other shapes are of course conceivable, for example ring.
- the moving magnetic part must have a shape compatible with that of the fixed magnetic part.
- a ring shape for the fixed magnetic portion would correspond to a disk shape for the moving magnetic portion.
- the control of the position of the moving magnetic part is similar to that described in FIGS. 6 and 7.
- a fifth coil could be added to control the position in a plane perpendicular to that of the first four coils.
- FIGS. 9A, 9B A device with a plurality of actuators A according to the invention has been shown in FIGS. 9A, 9B.
- the various actuators A are arranged in matrix M on the same support 9, at the intersection between n line conductors 11 to 13 and m column conductors j1 to j4 (n and m are integers, n and m may be different or not).
- signals propagating on a web formed of n line conductors i1 to i3 can be switched to the m column conductors j1, j2, j3, j4.
- These signals can be electrical or optical signals depending on the nature of the actuators A. Due to the bistability of the actuators A of the matrix M, the latter can be programmed and keep its configuration without the need to power it.
- actuators operate in positioners, such a matrix makes it possible to access several memories mounted in parallel, each position of the positioner corresponding to a memory position of one of the memories.
- the actuators can be grouped into a particular matrix B as in FIG. 9B with a line conductor 11 and several column conductors j1 to j4. By connecting a bus to the line conductor i1, the signals it conveys can be directed to the different column conductors j1 to j4 according to the state of the various actuators A.
- microactuators have their magnetic parts movable and fixed carried by magnets.
- the means for triggering the displacement of the mobile magnetic part are made by coils.
- the advantage of this process is to be able to make several at the same time on the same substrate.
- the microactuator is completely embedded in the substrate made in two assembled parts.
- the triggering means are embedded in the substrate, also made in two assembled parts, the moving and fixed magnetic parts being placed on the substrate.
- the two parts are solid classical semiconductor substrates while in Figs. 14A, 14B, one of them is a massive conventional substrate while the other is an SOI substrate (acronym silicon on insulator, for silicon on insulator).
- SOI substrate an SOI substrate
- Such a silicon substrate has a layer of insulating material 93-1, silicon oxide buried in the silicon. Its advantage is that when performing an etching operation, the layer of insulating material can serve as a barrier layer.
- a first solid classical substrate 91 made of semiconductor material, or SOI type 93 the micro-magnets will be produced (FIGS. 10A to 10I and 11A to 11I).
- a second solid substrate 92 made of semiconductor material or of the SOI type the displacement triggering means taking the form of one or more conductors which can be arranged in winding (FIGS. 12A to 12G) will be realized.
- FIG. 12B the position of the layer of insulating material of an SOI substrate is shown schematically by dotted lines.
- 93 crates 51 are etched for the magnets.
- the engraving can be a dry etching.
- the etching stops on the oxide layer 93-1. We remove the resin 50-1.
- a conductive bonding sub-layer 52 is deposited on the substrate 91, 93. In fact this variant is only found in FIG. 11B.
- FIG. 10B there are two attachment sublayers 52-1, 52-2, the second 52-2 being inserted between the first 52-1 and the substrate 91. It allows a good adhesion to the substrate 91 of the first underlayer 52-1. It also allows protection of the movable magnet 1-1, made subsequently, against corrosion.
- the first undercoat can be gold and the second titanium.
- the deposition zone of the magnets is defined by photolithography.
- the resin layer employed is 50-2.
- the magnets 3-1, 1-1 are deposited electrolytically.
- the material used may be cobalt-platinum ( Figures 10C, 11C).
- a planarization step of the magnets is carried out and then a step of removing the sub-layer 52 at the surface (FIG. 10D) or of the two sub-layers 52-1, 52-2 ( Figure 11D).
- a conductive layer 53 is then deposited on the surface intended to make the electrical contacts C1, C2, C on the magnets 3-1, 1-1.
- the geometry of the contacts C1, C2, C is defined by photolithography.
- the resin has the reference 50-3 ( Figures 10E, 11E). Since all the magnets are made at the same time, the movable magnet 1-1 also carries a conductive layer on its upper face, it has a role of protection against corrosion.
- the next step is a step of etching the conductive layer 53 to delimit the contacts C1, C2, C.
- the resin 50-3 is then removed.
- An insulating layer 54 made of SiO 2 for example, is deposited on the surface and then a planarization step is carried out (FIGS. 10F, 11F).
- At least one opening 46 will be defined to make the feed contacts of the conductor or conductors to be made accessible on the second substrate accessible, as well as the geometry of the free space 58 surrounding the mobile magnetic part 1-1 so as to allow his displacement.
- This step is a photolithography step and the resin employed is referenced 50-4 (FIGS. 10G, 11G).
- the insulation layer 54 is then etched where there is no resin 50-4. Resin 50-4 is removed ( Figures 10H, 11H). The moving magnet 1-1 is then exposed as well as its surroundings to the fixed magnets 3-1.
- the second substrate 92 On the second substrate 92, it defines the geometry of the conductor 4-1 and its ends 45 to carry the feed contacts by photolithography.
- the resin employed has the reference 50-5 (FIG. 12A).
- Photolithography is defined as the deposition area of the conductor.
- the resin used has the reference 50-6.
- the conductor 4-1 is deposited electrolytically, its referenced ends 45 are clearly visible (FIG. 12C).
- the deposit may be copper.
- a conductive layer 57 for making the power supply contacts 47 of the conductor 4-1 these contacts 47 covering the ends 45 of the conductor 4-1.
- the geometry of the contacts 47 is defined by photolithography, the resin used for this bearing the reference 50-7 (FIG. 12E).
- the conductive layer 57 is then etched so as to remove it wherever it is not protected by the resin 50-7.
- an insulating layer 59 is deposited on the surface. It can be made of silicon oxide SiO 2 . It will isolate the conductor 4-1 magnets 3-1, 1-1 during the assembly of the first substrate 91, 93 and the second substrate 92 ( Figure 12F).
- Planarization is carried out on the surface and the contacts 47 are exposed (FIG. 12G).
- the substrate of FIG. 10I will be assembled by bonding them face to face to the substrate of FIG. 12G (FIG. 13A) or the substrate of FIG. 11I to the substrate of FIG. 12G (FIG. 14A).
- the first substrate 91, 93 will be totally or partially removed. It may be a mechanical thinning and / or chemical etching.
- the substrate 91 has been completely removed while in Fig. 14B, the removal has stopped on the oxide layer 93-1 and the silicon of the substrate 93 underneath it remains in place. It ends with the removal of the oxide layer 93-1.
- the magnets 3-1, 1-1 are then embedded in the substrate formed by the two assembled parts 92 and 93 while in FIG. 13B they are on the surface of the substrate 92.
- the actuator according to the invention if it occupies a volume greater than about 1 cubic centimeter, risk to be sensitive to the external environment such as vibrations and shocks. Its performance may not be optimal in such disturbed environments. On the other hand, against all odds, with smaller dimensions its performances are greatly improved whatever the environment.
- the interaction between the fixed and mobile magnetic parts is favorable and does not bring performance degradation as in the case of a much larger actuator.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Micromachines (AREA)
- Reciprocating, Oscillating Or Vibrating Motors (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Vehicle Body Suspensions (AREA)
Abstract
Description
La présente invention a pour objet un actionneur magnétique à aimant mobile et notamment un microactionneur réalisable par les techniques de la microtechnologie.The subject of the present invention is a magnetic actuator with a moving magnet and in particular a microactuator that can be produced by microtechnology techniques.
Cet actionneur lorsqu'il possède plusieurs positions stables trouve son application dans la réalisation de microrelais ou microcommutateurs électriques commandant l'ouverture ou la fermeture d'un contact électrique éventuellement pris parmi plusieurs, de microrelais ou microcommutateurs commandant le passage, l'obturation, la commutation ou l'aiguillage d'un rayon lumineux, de microvannes commandant le passage, l'obturation ou l'aiguillage d'un fluide, de micropompes commandant le pompage d'un fluide.This actuator, when it has several stable positions, finds its application in the production of microrelays or electrical microswitches controlling the opening or closing of an electrical contact possibly taken among several microrelais or microswitches controlling the passage, the shutter, the switching or switching a light beam, microvannes controlling the passage, sealing or switching of a fluid, micropumps controlling the pumping of a fluid.
Cet actionneur peut être piloté de manière à pouvoir prendre une multitude de positions successives avec une précision nanométrique suivant 5 degrés de liberté.This actuator can be controlled so that it can take a multitude of successive positions with a nanometric precision following 5 degrees of freedom.
Il peut alors servir pour le positionnement de tête de lecture magnétique ou optique, dans les scanneurs optiques, pour effectuer de l'enregistrement AFM (sigle correspondant à la dénomination anglo-saxonne Atomic Force Microscope pour microscope à forces atomiques) ou thermique, dans des tables de positionnement.It can then be used for the positioning of magnetic or optical reading heads, in optical scanners, to perform AFM (Atomic Force Microscope for Atomic Force Microscopy) or thermal recording, in positioning tables.
Les actionneurs magnétiques connus comportent une partie magnétique fixe, une partie magnétique mobile qui est mécaniquement reliée à la partie magnétique fixe. Un circuit électrique permet d'exciter la partie magnétique mobile pour lui faire prendre une position de travail en la faisant se déplacer par rapport à la partie magnétique fixe. En l'absence d'excitation la partie magnétique mobile est dans une position de repos.Known magnetic actuators comprise a fixed magnetic part, a movable magnetic part which is mechanically connected to the fixed magnetic part. An electrical circuit is used to excite the moving magnetic part to make it take a working position by moving it relative to the fixed magnetic part. In the absence of excitation, the moving magnetic part is in a rest position.
On connaît dans l'article « Latching micro magnetic relays with multistrip permalloy cantilevers » de M. RUAN et J. SHEN publié dans IEEE MENS 2001 page 224 à 227 un microactionneur magnétique à aimant réalisé sur un substrat de silicium. L'aimant est fixe, il est encastré dans le silicium, il est recouvert par un bobinage de commande et la partie magnétique mobile à déplacer est en forme de poutre avec une extrémité libre et une extrémité encastrée et donc solidaire mécaniquement de la partie magnétique fixe.The article "Latching micro magnetic relays with multistrip permalloy cantilevers" by M. RUAN and J. SHEN published in IEEE MENS 2001 page 224 to 227 discloses a magnet magnetic microactuator made on a silicon substrate. The magnet is fixed, it is embedded in the silicon, it is covered by a control winding and the movable magnetic part to move is in the form of a beam with a free end and a recessed end and thus mechanically secured to the fixed magnetic part .
Un autre type de microactionneur magnétique à aimant a été décrit sur le site internet du Laboratoire de Recherche de la Société IBM à Zurich (www.zurich.ibm.com) sous le titre « Electromagnetic scanner ». Cet article était disponible en avril 2001. Le microactionneur fonctionne sur le principe du haut parleur. Des bobines planes placées sur un substrat commandent le déplacement d'aimants solidaires d'une platine, cette dernière étant suspendue mécaniquement par des poutres à un cadre fixe solidaire du substrat.Another type of magnetic magnet microactuator has been described on the website of the IBM Research Laboratory in Zurich ( www.zurich.ibm.com) under the title "Electromagnetic scanner". This article was available in April 2001. The microactuator works on the principle of the speaker. Flat coils placed on a substrate control the displacement of magnets integral with a plate, the latter being suspended mechanically by beams to a fixed frame integral with the substrate.
Dans tous ces actionneurs la partie magnétique mobile est reliée mécaniquement à la partie magnétique fixe. Cette liaison mécanique est délicate à réaliser par des techniques collectives de fabrication. De plus, cette connexion limite la mobilité de la partie magnétique mobile, cette mobilité résulte d'une déformation d'un des éléments reliant la pièce mobile à la partie fixe. Les performances en vitesse de tels actionneurs sont faibles.In all these actuators the movable magnetic part is mechanically connected to the fixed magnetic part. This mechanical connection is difficult to achieve by collective manufacturing techniques. In addition, this connection limits the mobility of the mobile magnetic part, this mobility results from a deformation of one of the elements connecting the moving part to the fixed part. The speed performance of such actuators are low.
Les forces d'entraînement de la partie magnétique mobile sont dues au champ magnétique créé par au moins une bobine. Or à densité de courant constante, une microbobine crée une force bien plus faible qu'une bobine de même forme mais de plus grandes dimensions. Les performances de tels microactionneurs restent donc médiocres. Les forces massiques qu'ils sont capables de fournir sont faibles relativement à leur taille.The driving forces of the mobile magnetic part are due to the magnetic field created by at least one coil. Gold at constant current density, a microbobine creates a force much lower than a coil of the same shape but larger. The performance of such microactuators therefore remains poor. The mass forces they are able to provide are small relative to their size.
De plus, de tels actionneurs doivent être alimentés électriquement pour qu'ils restent dans une position de travail, en l'absence d'alimentation ils reviennent à une position de repos.In addition, such actuators must be electrically powered so that they remain in a working position, in the absence of power they return to a rest position.
Un procédé de réalisation d'un actionneur magnétique dans des systèmes mécaniques micro-électroniques (MEM) ayant une liaison mécanique entre la partie magnétique mobile et la partie magnétique fixe est décrit dans. WO 01/16484. Un actionneur magnétique sans liaison mécanique entre la partie magnétique mobile et la partie magnétique fixe est connue dans EP 0 179 911.A method of producing a magnetic actuator in microelectronic mechanical systems (MEM) having a mechanical connection between the moving magnetic part and the fixed magnetic part is described in. WO 01/16484. A magnetic actuator without mechanical connection between the movable magnetic part and the fixed magnetic part is known in EP 0 179 911.
La présente invention a justement pour but de proposer un actionneur magnétique qui ne présente pas tous ces inconvénients. L'actionneur de la présente invention est particulièrement adapté à une réalisation en microtechnologies. Il possède une vitesse de déplacement élevée, une capacité à exercer des forces massiques importantes et des déplacements importants par rapport à sa taille. En position stable, position qui peut correspondre à une position de travail, la consommation électrique de cet actionneur est nulle.The present invention is intended to provide a magnetic actuator that does not have all these disadvantages. The actuator of the present invention is particularly adapted to an embodiment in microtechnologies. It has a high movement speed, an ability to exert significant mass forces and large displacements in relation to its size. In stable position, position which can correspond to a working position, the power consumption of this actuator is zero.
Pour y parvenir l'actionneur de l'invention comporte une partie magnétique fixe et une partie magnétique mobile formée par un aimant qui lorsqu'il n'est pas collé à la partie magnétique fixe est en lévitation sans contact. Lorsqu'il se déplace et qu'il est attiré par la partie magnétique fixe, il est totalement guidé magnétiquement. Il n'y a aucun guidage mécanique.To achieve this, the actuator of the invention comprises a fixed magnetic part and a movable magnetic part formed by a magnet which when not glued to the fixed magnetic part is levitated without contact. When it moves and is attracted by the fixed magnetic part, it is totally guided magnetically. There is no mechanical guidance.
Plus précisément l'actionneur magnétique selon l'invention comporte une partie magnétique fixe qui coopère magnétiquement avec une partie magnétique mobile et des moyens pour déclencher le déplacement de la partie magnétique mobile. La partie magnétique mobile comporte au moins un aimant et la partie magnétique fixe présente au moins deux zones d'attraction sur lesquelles la partie magnétique mobile est susceptible de venir se coller, la partie magnétique mobile étant en lévitation lorsqu'elle n'est pas collée sur l'une des zones d'attraction, son déplacement se faisant par guidage magnétique.More precisely, the magnetic actuator according to the invention comprises a fixed magnetic part which magnetically cooperates with a mobile magnetic part and means for triggering the displacement of the mobile magnetic part. The mobile magnetic part comprises at least one magnet and the fixed magnetic part has at least two attraction zones on which the mobile magnetic part is likely to stick, the mobile magnetic part being levitated when it is not glued. on one of the zones of attraction, its displacement being done by magnetic guidance.
La partie magnétique fixe peut être réalisée en un matériau choisi dans le groupe des matériaux magnétiques doux, des matériaux magnétiques durs, des matériaux à hystérésis, des matériaux supraconducteurs, des matériaux diamagnétiques, ces matériaux étant pris seuls ou en combinaison.The fixed magnetic part may be made of a material selected from the group of soft magnetic materials, hard magnetic materials, hysteresis materials, superconducting materials, diamagnetic materials, these materials being taken alone or in combination.
Les moyens pour déclencher le déplacement de la partie magnétique mobile sont des moyens magnétiques, ils peuvent être des moyens de chauffage de la partie magnétique fixe.The means for triggering the displacement of the mobile magnetic part are means magnetic, they can be heating means of the fixed magnetic part.
Le matériau de la partie magnétique fixe peut avoir un point de Curie inférieur à celui de l'aimant de la partie magnétique mobile, ainsi le chauffage ne perturbe pas les propriétés de l'aimant. Si ce n'est pas le cas, il faut tenir compte du couplage thermique, on peut isoler thermiquement l'aimant de la partie magnétique mobile de la partie magnétique fixe.The material of the fixed magnetic portion may have a lower Curie point than that of the magnet of the moving magnetic portion, so heating does not disturb the properties of the magnet. If this is not the case, it is necessary to take into account the thermal coupling, it is possible to thermally insulate the magnet from the moving magnetic part of the fixed magnetic part.
Dans un autre mode de réalisation, les moyens pour déclencher le déplacement de la partie magnétique mobile créent un champ magnétique au voisinage de la partie magnétique mobile.In another embodiment, the means for triggering the displacement of the moving magnetic portion creates a magnetic field in the vicinity of the moving magnetic portion.
Dans ce cas, les moyens pour déclencher le déplacement de la partie magnétique mobile peuvent être réalisés par au moins un conducteur électrique.In this case, the means for triggering the displacement of the mobile magnetic part can be made by at least one electrical conductor.
L'actionneur peut comporter des moyens pour asservir le courant à faire circuler dans le conducteur à la position de la partie magnétique mobile de manière à ce qu'elle puisse prendre une pluralité de positions stables en lévitation. Il peut alors fonctionner en positionneur. Les moyens pour déclencher le déplacement de la partie magnétique mobile servent ainsi pour maintenir la partie magnétique mobile stable en lévitation.The actuator may comprise means for controlling the current to be circulated in the conductor at the position of the movable magnetic part so that it can take a plurality of stable levitation positions. It can then function as a positioner. The means for triggering the displacement of the mobile magnetic part thus serve to keep the moving magnetic part stable in levitation.
Le conducteur peut entourer la partie magnétique fixe.The driver can surround the fixed magnetic part.
De préférence, notamment dans le cas d'actionneur réalisé en microtechnologies, le conducteur peut prendre la forme d'un bobinage sensiblement plan.Preferably, especially in the case of actuators made in microtechnologies, the conductor may take the form of a substantially planar winding.
Les parties magnétiques fixe et mobile peuvent elles aussi être sensiblement planes, elles peuvent être disposées sensiblement dans le même plan.The fixed and mobile magnetic parts can also be substantially flat, they can be arranged substantially in the same plane.
Le conducteur d'une part et les parties magnétiques fixe et mobile d'autre part peuvent alors être disposés dans des plans sensiblement parallèles.The driver on the one hand and the fixed and mobile magnetic parts on the other hand can then be arranged in substantially parallel planes.
La partie magnétique fixe peut être mono élément qui entoure la partie magnétique mobile, cette dernière pouvant alors prendre plusieurs positions stables à l'intérieur de la partie magnétique fixe. Elle peut ainsi disposer d'au moins quatre degrés de liberté.The fixed magnetic part may be a single element which surrounds the moving magnetic part, the latter then being able to take up several stable positions inside the fixed magnetic part. It can thus have at least four degrees of freedom.
Dans un autre mode de réalisation, la partie magnétique fixe peut être formée de plusieurs éléments, la partie magnétique mobile venant se coller sur un des éléments de la partie magnétique fixe ou sur un autre.In another embodiment, the fixed magnetic part may be formed of several elements, the moving magnetic part being adhered to one of the elements of the fixed magnetic part or on another.
Si la partie magnétique fixe comporte plusieurs éléments plans orientés dans des plans différents, la partie magnétique mobile peut alors prendre l'orientation de l'élément sur lequel elle est collée.If the fixed magnetic part has several planar elements oriented in different planes, the moving magnetic part can then take the orientation of the element on which it is glued.
L'aimantation de partie magnétique fixe et celle de la partie magnétique mobile peuvent être dirigées dans une même direction ou au contraire être dirigées dans des directions opposées.The magnetization of the fixed magnetic part and that of the movable magnetic part may be directed in the same direction or on the contrary be directed in opposite directions.
Les moyens pour déclencher le déplacement de la partie magnétique mobile peuvent déclencher un déplacement en rotation.The means for triggering the displacement of the movable magnetic part can trigger a rotational movement.
La partie magnétique fixe peut comporter, au niveau d'au moins une zone d'attraction une paire de contacts électriques et la partie magnétique mobile au moins un contact électrique, la partie magnétique mobile venant relier les deux contacts de la paire lorsqu'elle vient se coller sur la zone d'attraction.The fixed magnetic part may comprise, at the level of at least one attraction zone, a pair of electrical contacts and the magnetic part that is mobile with at least one electrical contact, the mobile magnetic part coming to connect the two contacts of the pair when it comes stick to the area of attraction.
La partie magnétique mobile peut comporter une zone réfléchissante destinée à réfléchir un rayon lumineux, l'actionneur peut alors être utilisé en tant que relais ou commutateur optique, en tant que scanneur par exemple selon le déplacement que peut faire la partie magnétique mobile.The movable magnetic part may comprise a reflecting zone intended to reflect a light beam, the actuator may then be used as an optical relay or switch, as a scanner for example according to the displacement that the moving magnetic part can make.
Un tel actionneur est réalisable sur un substrat amagnétique, les moyens pour déclencher le déplacement de la partie magnétique mobile étant encastrés dans le substrat.Such an actuator is feasible on a non-magnetic substrate, the means for triggering the displacement of the mobile magnetic part being embedded in the substrate.
Une matrice d'actionneurs peut être réalisée avec une pluralité d'actionneurs magnétiques ainsi définis, ces actionneurs magnétiques étant regroupés sur un même support.An array of actuators can be made with a plurality of magnetic actuators thus defined, these magnetic actuators being grouped together on the same support.
La présente invention concerne aussi un dispositif qui utilise au moins un actionneur magnétique ainsi défini. Il peut s'agir par exemple d'un relais, d'un commutateur, d'une pompe, d'une vanne, d'un positionneur, d'un scanneur optique.The present invention also relates to a device that uses at least one magnetic actuator thus defined. It may be for example a relay, a switch, a pump, a valve, a positioner, an optical scanner.
La présente invention concerne également un procédé de réalisation d'un actionneur magnétique. Il comporte les étapes suivantes :
- sur un premier substrat réalisation de caissons aptes à recevoir une partie magnétique fixe et une partie magnétique mobile avec un aimant,
- dépôt dans les caissons de la partie magnétique fixe et de la partie magnétique mobile avec l'aimant,
- dépôt d'une couche diélectrique et gravure de cette dernière pour mettre à nu la partie magnétique mobile et son entourage jusqu'à la partie magnétique fixe,
- sur un second substrat réalisation d'au moins un caisson apte à recevoir un conducteur destiné à déclencher un déplacement de la partie magnétique mobile,
- dépôt du conducteur dans le caisson,
- assemblage des deux substrats en les mettant face à face,
- élimination totale ou partielle du premier substrat de manière à libérer la partie magnétique mobile.
- on a first caisson realization substrate adapted to receive a fixed magnetic part and a magnetic part movable with a magnet,
- deposit in the boxes of the fixed magnetic part and the mobile magnetic part with the magnet,
- depositing a dielectric layer and etching thereof to expose the moving magnetic part and its surroundings to the fixed magnetic part,
- on a second substrate embodiment of at least one box capable of receiving a conductor intended to trigger a displacement of the mobile magnetic part,
- deposit of the driver in the box,
- assembly of the two substrates by putting them face to face,
- total or partial elimination of the first substrate so as to release the mobile magnetic part.
Il comporte aussi une étape d'aimantation de l'aimant de la partie magnétique mobile et éventuellement de la partie magnétique fixe avant la libération de la partie magnétique mobile.It also comprises a magnetization step of the magnet of the mobile magnetic part and possibly of the fixed magnetic part before the release of the mobile magnetic part.
L'étape de gravure de la couche diélectrique du premier substrat vise également à réaliser au moins une ouverture d'accès à au moins contact électrique d'alimentation du conducteur.The step of etching the dielectric layer of the first substrate also aims to provide at least one opening for access to at least one electrical contact for powering the conductor.
Une étape de réalisation d'au moins un contact électrique pour l'alimentation du conducteur peut intervenir sur le second substrat, après le dépôt du conducteur et avant l'assemblage des deux substrats.A step of producing at least one electrical contact for the supply of the conductor may take place on the second substrate, after the deposition of the conductor and before the assembly of the two substrates.
Une étape de dépôt d'un matériau diélectrique en surface du second substrat peut intervenir avant l'assemblage des deux substrats pour protéger le conducteur.A step of depositing a dielectric material on the surface of the second substrate can intervene before assembling the two substrates to protect the driver.
Les deux substrats peuvent être des substrats semi-conducteurs massifs ou des substrats de type SOI.The two substrates may be solid semiconductor substrates or SOI substrates.
La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés, à titre purement indicatif et nullement limitatif, en faisant référence aux dessins annexés sur lesquels :
- les figures 1A à 1D montrent un exemple de commutateur selon l'invention dans différentes positions que sa partie magnétique mobile peut prendre ;
- les figures 2A, 2B, 2C et 2D montrent des exemples d'actionneurs selon l'invention fonctionnant en tant que commutateurs électriques ;
- les figures 3A à 3C montrent différentes configurations des moyens pour déclencher le déplacement de la partie magnétique mobile d'un actionneur conforme à l'invention ;
- la figure 4 montre un exemple d'actionneur selon l'invention réalisé sur un substrat amagnétique ;
- la figure 5 montre un exemple d'actionneur selon l'invention réalisé sur un substrat amagnétique ;
- la figure 6 montre un exemple d'actionneur selon l'invention pouvant être contrôlé par cinq degrés de liberté ;
- la figure 7 montre un exemple d'actionneur selon l'invention dont la partie magnétique fixe est formée de quatre éléments ;
- la figure 8 montre un exemple d'actionneur selon l'invention dont la partie magnétique fixe comporte un seul élément qui entoure la partie magnétique mobile ;
- les figures 9A et 9B montrent des actionneurs selon l'invention, regroupés sur un même support et arrangés en matrice ;
- les figures 10A à 10I montrent différentes étapes de réalisation des parties magnétiques fixe et mobile d'un actionneur selon l'invention, sur un substrat semi-conducteur massif ;
- les figures 11A à 11I montrent différentes étapes de réalisation des parties magnétiques fixe et mobile d'un actionneur selon l'invention, sur un substrat semi-conducteur de type SOI ;
- les figures 12A à 12G montrent différentes étapes de réalisation des moyens pour déclencher le déplacement de la partie magnétique mobile d'un actionneur selon l'invention, sur un substrat semi-conducteur ;
- les figures 13A et 13B montrent les étapes d'assemblage et de finition des substrats obtenus aux figures 10I et 12G ;
- les figures 14A et 14B montrent les étapes d'assemblage et de finition des substrats obtenus aux figures 11I et 12G ;
- FIGS. 1A to 1D show an example of a switch according to the invention in different positions that its moving magnetic part can take;
- FIGS. 2A, 2B, 2C and 2D show examples of actuators according to the invention functioning as electrical switches;
- FIGS. 3A to 3C show different configurations of the means for triggering the displacement of the movable magnetic part of an actuator according to the invention;
- FIG. 4 shows an example of an actuator according to the invention made on a non-magnetic substrate;
- FIG. 5 shows an exemplary actuator according to the invention made on a non-magnetic substrate;
- FIG. 6 shows an example of an actuator according to the invention that can be controlled by five degrees of freedom;
- Figure 7 shows an example of actuator according to the invention, the fixed magnetic part is formed of four elements;
- FIG. 8 shows an exemplary actuator according to the invention, the fixed magnetic part of which comprises a single element which surrounds the mobile magnetic part;
- FIGS. 9A and 9B show actuators according to the invention, grouped together on the same support and arranged in a matrix;
- FIGS. 10A to 10I show different stages of realization of the fixed and mobile magnetic parts of an actuator according to the invention, on a solid semiconductor substrate;
- FIGS. 11A to 11I show different stages of realization of the fixed and mobile magnetic parts of an actuator according to the invention, on a semiconductor substrate of the SOI type;
- FIGS. 12A to 12G show different steps for producing the means for triggering the displacement of the mobile magnetic part of an actuator according to the invention on a semiconductor substrate;
- Figures 13A and 13B show the steps of assembly and finishing of the substrates obtained in Figures 10I and 12G;
- FIGS. 14A and 14B show the assembly and finishing steps of the substrates obtained in FIGS. 11I and 12G;
On se réfère aux figures 1A à 1D qui illustrent schématiquement un actionneur selon l'invention et différentes positions que sa partie magnétique mobile peut prendre.1A to 1D which schematically illustrate an actuator according to the invention and different positions that its moving magnetic part can take.
Il comporte une partie magnétique mobile 1 avec au moins un aimant 1-1 permanent. Il comporte également une partie fixe 2 formée d'une partie magnétique fixe 3 ainsi que des moyens 4 pour déclencher le déplacement de la partie magnétique mobile 1. La référence 2 de la partie fixe n'est indiquée que sur la figure 1B qui montre les moyens 4 pour déclencher thermiquement le déplacement de la partie magnétique mobile, ils sont fixes. La partie magnétique fixe 3 peut comporter un ou plusieurs éléments à base d'aimants permanents 3-1 et/ou de matériau magnétique. Sur les figures 1, on suppose que la partie magnétique fixe 3 comporte deux éléments 3-1 qui sont des aimants permanents. L'ensemble partie magnétique mobile et partie fixe est supporté par un support amagnétique (non représenté sur les figures 1). Lors de la réalisation d'un tel actionneur en microtechnologies, il peut être réalisé sur ou dans un substrat comme on le verra ultérieurement. La partie magnétique fixe 3 et la partie magnétique mobile 1 coopèrent entre elles magnétiquement.It comprises a mobile
La partie magnétique fixe 3 est configurée de manière à présenter au moins deux zones d'attraction 3-2 qui attirent séparément et naturellement la partie magnétique mobile 1.The fixed
Sur l'exemple des figures 1, la partie magnétique mobile 1 se limite à un seul aimant permanent 1-1 en forme de plaque parallélépipédique. Il se trouve entre les deux aimants permanents 3-1 de la partie magnétique fixe 3 qui eux aussi sont en forme de plaque parallélépipédique. Les zones d'attraction 3-2 sont des faces latérales des aimants fixes 3-1.In the example of FIGS. 1, the mobile
L'aimant mobile 1-1 peut venir se coller soit sur l'une des faces 3-2 de l'aimant fixe de droite soit sur l'une des faces 3-2 de l'aimant fixe de gauche, ces deux faces étant en vis à vis. Les trois aimants 1-1 et 3-1 sont alignés et s'étendent sensiblement dans le plan x, y.The movable magnet 1-1 can be glued either to one of the faces 3-2 of the fixed magnet of the right or to one of the faces 3-2 of the fixed magnet of the left, these two faces being in opposite. The three magnets 1-1 and 3-1 are aligned and extend substantially in the x, y plane.
La partie magnétique mobile 1 est dépourvue de liaison mécanique permanente avec la partie fixe 2. Lorsque la partie magnétique mobile 1 n'est pas collée à l'une des zones d'attraction 3-2, elle est libre, en lévitation sans contact, grâce aux interactions qu'elle possède avec la partie magnétique fixe 3. Lors de son déplacement, elle est guidée magnétiquement.The mobile
Les moyens 4 pour déclencher le déplacement de la partie magnétique mobile 1 ont pour fonction de modifier les forces qui interagissent sur la partie magnétique mobile 1 et donc de modifier l'équilibre de l'ensemble partie magnétique mobile 1-partie magnétique fixe 3. Ils initient le déplacement de la partie magnétique mobile 1 mais ensuite le déplacement est dû aux interactions entre la partie magnétique fixe 3 et la partie magnétique mobile 1.The
Les moyens 4 pour déclencher le déplacement sont des moyens magnétiques. Ils peuvent agir suivant plusieurs principes physiques différents. Ils peuvent, par une augmentation localisée de la température, modifier les caractéristiques magnétiques de la partie magnétique fixe 3 au niveau de la zone d'attraction 3-2 sur laquelle est collée la partie magnétique mobile 1. Selon une variante, ils peuvent créer un champ magnétique au niveau de la partie magnétique mobile, ce champ magnétique modifie les caractéristiques magnétiques de l'ensemble et met en mouvement la partie magnétique mobile.The
C'est le premier principe qui est illustré sur les figures 1. Dans cette configuration, chacun des aimants 3-1 de la partie magnétique fixe 3 est pourvu d'une résistance de chauffage R. Cette résistance R peut être déposée sur l'une des faces des aimants 3-1 de la partie magnétique fixe. Elle peut être réalisée en cuivre, en argent, en or, en aluminium par exemple. Une fois que le mouvement est initié, le chauffage peut être arrêté et il n'y a plus besoin d'énergie. Lorsque la partie magnétique mobile est collée sur la partie magnétique fixe, la consommation en énergie est nulle également.This is the first principle which is illustrated in FIGS. 1. In this configuration, each of the magnets 3-1 of the fixed
Au lieu de réaliser le chauffage par une résistance, il est possible d'employer un faisceau lumineux, par exemple un faisceau laser qui viendrait irradier la partie magnétique fixe au niveau de la zone dont on veut modifier les propriétés magnétiques.Instead of heating by resistance, it is possible to use a light beam, for example a laser beam which would irradiate the fixed magnetic portion at the area whose magnetic properties are to be modified.
La partie magnétique fixe 3 peut alors être réalisée dans un matériau dont le point de Curie est bas, par exemple inférieur ou égal à 100°C. Ses propriétés magnétiques sont susceptibles de disparaître avec une augmentation de la température. Par exemple, le matériau utilisé est magnétique au dessous de 100°C et amagnétique au dessus de 100°C. La température atteinte par la partie magnétique fixe lors du chauffage ne doit pas perturber le comportement de l'aimant de la partie magnétique mobile qui peut alors posséder un point de Curie plus élevé. Le point de Curie de l'aimant de la partie magnétique mobile peut ne pas être inférieur à celui de la partie magnétique fixe, mais dans ce cas l'aimant de la partie magnétique mobile possédera un faible couplage thermique avec la partie magnétique fixe de manière à ne pas chauffer lorsque la partie magnétique fixe chauffe.The fixed
Sur la figure 1A, l'aimant mobile 1-1 est collé sur l'aimant fixe 3-1 de gauche. Une fois qu'il se trouve dans une telle position stable, les forces magnétiques sont si importantes que même un choc très violent ne parviendrait pas à le décoller. Par exemple, avec des aimants mobile et fixes dont les dimensions sont de 50 µm x 50 µm x 10 µm, dotés d'une aimantation de 1 Tesla, il faudrait un choc largement supérieur à 1000G pour pouvoir le décoller et le déplacer d'1 µm.In Figure 1A, the movable magnet 1-1 is glued to the fixed magnet 3-1 of the left. Once in such a stable position, the magnetic forces are so great that even a very violent shock will not succeed in detaching it. For example, with mobile and fixed magnets with dimensions of 50 μm x 50 μm x 10 μm, with a magnetization of 1 Tesla, it would take a shock well above 1000G to be able to take off and move it 1 .mu.m.
Si on chauffe l'aimant fixe 3-1 de gauche il perd ses propriétés magnétiques, l'aimant mobile 1-1 se décolle, entre en mouvement et est attiré par l'aimant 3-1 fixe de droite. Il se colle sur l'aimant fixe 3-1 de droite et prend une autre position stable. Sur la figure 1B, l'aimant mobile 1-1 est en lévitation entre l'aimant fixe 3-1 de gauche et l'aimant fixe 3-1 de droite qui l'attire. Sur la figure 1C, l'aimant mobile 1-1 est maintenant collé sur l'aimant fixe 3-1 de droite, il reste dans cette position qui est stable. L'aimant fixe 3-1 de gauche, qui n'est plus chauffé reprend ses propriétés magnétiques.If the left fixed magnet 3-1 is heated, it loses its magnetic properties, the movable magnet 1-1 comes off, enters into motion and is attracted by the right fixed magnet 3-1. It sticks on the fixed magnet 3-1 on the right and takes another stable position. In Figure 1B, the movable magnet 1-1 is levitating between the fixed magnet 3-1 of the left and the fixed magnet 3-1 of the right which attracts it. In FIG. 1C, the moving magnet 1-1 is now bonded to the fixed magnet 3-1 from the right, he stays in that position which is stable. The fixed magnet 3-1 on the left, which is no longer heated, resumes its magnetic properties.
Pour revenir à la première position stable, il suffit de chauffer l'aimant fixe 3-1 de droite. L'aimant fixe 3-1 de gauche attire l'aimant mobile 1-1 car il a retrouvé ses propriétés magnétiques.To return to the first stable position, simply heat the fixed magnet 3-1 on the right. The fixed magnet 3-1 on the left attracts the movable magnet 1-1 because it has regained its magnetic properties.
La partie magnétique fixe 3 et la partie magnétique mobile 1 peuvent être dotées de contacts électriques comme l'illustrent les figures 2A, 2B, 2C, 2D.The fixed
Au moins une zone d'attraction 3-2 de la partie magnétique fixe 3 est pourvue d'une paire de contacts électriques C1, C2, ces contacts se prolongent au delà de la zone d'attraction 3-2 pour être accessibles. La partie magnétique mobile 1 est dotée d'au moins un contact électrique C. Lorsque la partie magnétique mobile 1 est collée sur la zone d'attraction 3-2, son contact C vient relier électriquement les deux contacts C1, C2 de la paire. On peut réaliser ainsi un relais électrique.At least one attraction zone 3-2 of the fixed
Sur les figures 2A, 2B, les deux aimants fixes 3-1 sont dotés de contacts C1, C2 et l'aimant mobile 1-1 a deux de ses faces 1-2 dotées chacune d'un contact C (le contact C sur sa face 1-2 qui vient en contact avec l'aimant fixe 3-1 de gauche n'est pas visible sur les figures 2A, 2B). On a réalisé ainsi un dispositif 20 par exemple de type commutateur électrique, comportant au moins un actionneur magnétique selon l'invention.In FIGS. 2A, 2B, the two fixed magnets 3-1 are provided with contacts C1, C2 and the movable magnet 1-1 has two of its faces 1-2 each having a contact C (contact C on its face 1-2 which comes into contact with the fixed magnet 3-1 of the left is not visible in Figures 2A, 2B). Thus, a
Sur les figures 2C, 2D, la partie magnétique fixe au lieu d'être formée de deux éléments 3-1 dotés chacun d'une paire de contacts électriques est formée de deux paires d'éléments 3-1a, 3-1b. Les éléments 3-1a, 3-1b d'une paire sont côte à côte mais disjoints. Chacun des éléments 3-1a, 3-1b de la paire est doté d'un contact électrique C1, C2 respectivement. Il n'y a pas de changement pour la partie magnétique mobile 1.In Figures 2C, 2D, the fixed magnetic portion instead of being formed of two elements 3-1 each having a pair of electrical contacts is formed of two pairs of elements 3-1a, 3-1b. The elements 3-1a, 3-1b of a pair are side by side but disjoint. Each of the elements 3-1a, 3-1b of the pair is provided with an electrical contact C1, C2 respectively. There is no change for the moving
Dans les configurations des figures 1 et 2, l'aimantation des parties magnétiques fixe et mobile est dirigée dans le même sens selon l'axe x.In the configurations of Figures 1 and 2, the magnetization of the fixed and movable magnetic parts is directed in the same direction along the x axis.
On se réfère maintenant à la figure 3A. La seule différence par rapport aux figures précédentes se situe au niveau des moyens 4 pour déclencher le déplacement de la partie magnétique mobile 1. Leur principe est maintenant de créer un champ magnétique au voisinage de la partie magnétique mobile. Ces moyens 4 peuvent être réalisés par au moins un conducteur 4-1 destiné à être parcouru par un courant électrique pour générer le champ magnétique. Le conducteur 4-1 peut avoir un grand nombre de configurations par exemple il peut prendre la forme d'une boucle ouverte ou d'un bobinage à une ou plusieurs spires. Dans la suite de la description, lorsqu'on on a employé le terme de bobinage, il pourrait aussi bien s'agir d'un conducteur prenant une forme appropriée pour générer le champ magnétique sans pour autant être un bobinage.Reference is now made to Figure 3A. The only difference with respect to the preceding figures is at the level of the
Sur l'exemple de la figure 3A, se trouve un seul bobinage 4-1 sensiblement plat s'étendant dans un plan x, y. Le bobinage comporte une ou plusieurs spires bobinées autour d'une partie centrale vide, la partie magnétique fixe 3 se trouve au voisinage des spires et la partie magnétique mobile 1, lorsqu'elle est en lévitation se trouve à proximité de la partie centrale du bobinage 4-1. Lorsqu'une impulsion de courant parcourt ce bobinage 4-1, un champ magnétique est créé et il a pour effet de modifier l'équilibre magnétique des parties magnétiques fixe 3 et mobile 1 et de déclencher le déplacement de la partie magnétique mobile 1 d'une position stable vers une autre. L'impulsion nécessaire pour le passage d'une position à une autre peut être inférieure à 5 µs pour l'actionneur dont les caractéristiques ont été données plus haut. Le reste de l'actionneur ne consomme pas d'énergie. Un actionneur qui commuterait mille fois par seconde consommerait environ 2mW ce qui est très faible. Avec des matériaux magnétiques de très bonne qualité, cette consommation pourrait être réduite.In the example of Figure 3A, there is a single winding 4-1 substantially flat extending in an x plane, y. The winding comprises one or more turns wound around an empty central part, the fixed
La partie magnétique fixe 3 peut reposer sur le bobinage 4-1 tandis que la partie magnétique mobile 1 est en lévitation au dessus. Des isolements appropriés sont insérés entre la partie magnétique fixe et le bobinage.The fixed
Le sens du déplacement est conditionné par le sens du courant circulant dans le bobinage 4-1. Par exemple, avec un courant circulant dans le bobinage 4-1 dans le sens des aiguilles d'une montre et une aimantation dans les aimants fixes 3-1 et mobile 1-1 dans le sens de l'axe x, l'aimant mobile 3-1 sera attiré vers l'aimant fixe 3-1 de gauche.The direction of movement is conditioned by the direction of the current flowing in the winding 4-1. For example, with a current flowing in the winding 4-1 clockwise and a magnetization in the fixed magnets 3-1 and mobile 1-1 in the x-axis direction, the moving magnet 3-1 will be attracted to the left 3-1 fixed magnet.
Sur la figure 3B, les moyens 4 pour déclencher le déplacement de la partie magnétique mobile 1 sont maintenant réalisés par deux conducteurs 40 qui entourent chacun un des éléments de la partie magnétique fixe. Ils prennent la forme de bobinages tubulaires.In FIG. 3B, the
On pourra utiliser pour la partie magnétique fixe, des matériaux magnétiques doux, des matériaux magnétiques durs, des matériaux magnétiques à hystérésis, des matériaux diamagnétiques, des matériaux supra-conducteurs, ces matériaux étant pris seuls ou en combinaison. Les matériaux magnétiques doux tels que le fer, le nickel, des alliages fer-nickel, fer-cobalt, fer-silicium, s'aimantent en fonction d'un champ inducteur auquel ils sont soumis. Les matériaux magnétiques durs correspondent aux aimants tels que les aimants en ferrite, les aimants au samarium-cobalt, les aimants néodyme-fer-bore, les aimants platine-cobalt. Leur aimantation dépend peu du champ magnétique extérieur. Les matériaux à hystérésis, par exemple de type aluminium-nickel-cobalt (AlNiCo), ont des propriétés qui se situent entre celles des matériaux magnétiques doux et celles des matériaux magnétiques durs. Ils sont sensibles au champ magnétique dans lequel ils se trouvent. Quand aux matériaux diamagnétiques tels que le bismuth ou le graphite pyrolitique, leur aimantation est colinéaire au champ magnétique inducteur mais de sens opposé. Les matériaux supra-conducteurs pourraient être des alliages nobium-titane (NbTi), yttrium-barium-cuivre-oxygène (YBaCuO) par exemple.It will be possible to use, for the fixed magnetic part, soft magnetic materials, hard magnetic materials, magnetic hysteresis materials, diamagnetic materials, superconductive materials, these materials being taken alone or in combination. Soft magnetic materials such as iron, nickel, iron-nickel alloys, iron-cobalt, iron-silicon, are magnetized according to an inductive field to which they are subjected. Hard magnetic materials correspond to magnets such as ferrite magnets, samarium-cobalt magnets, neodymium-iron-boron magnets, platinum-cobalt magnets. Their magnetization depends little on the external magnetic field. Hysteresis materials, for example of aluminum-nickel-cobalt (AlNiCo) type, have properties that are between those of soft magnetic materials and those of hard magnetic materials. They are sensitive to the magnetic field in which they are. When with diamagnetic materials such as bismuth or pyrolitic graphite, their magnetization is collinear with the inducing magnetic field but of opposite direction. The superconducting materials could be nobium-titanium alloys (NbTi), yttrium-barium-copper-oxygen (YBaCuO) for example.
L'aimant de la partie magnétique mobile peut être réalisé par exemple, en ferrite, en samarium-cobalt, en néodyme-fer-bore, en platine-cobalt.The magnet of the mobile magnetic part may be made for example of ferrite, samarium-cobalt, neodymium-iron-boron, platinum-cobalt.
Les matériaux magnétiques à point de Curie bas qui conviennent pour réaliser la partie magnétique fixe sont par exemple les alliages manganèse-arsenic (MnAs), cobalt-manganèse-phosphore (CoMnP), erbium-fer-bore (ErFeB).The low Curie magnetic materials which are suitable for producing the fixed magnetic part are, for example, the manganese-arsenic (MnAs), cobalt-manganese-phosphorus (CoMnP), erbium-iron-boron (ErFeB) alloys.
Sur la figure 3C l'actionneur selon l'invention est transformé en positionneur. Dans cette configuration la partie magnétique mobile 1 est susceptible de prendre une pluralité de positions intermédiaires entre les deux positions stables extrêmes qui correspondent aux cas où elle est collée sur la partie magnétique fixe 3. Au lieu d'envoyer une impulsion de courant dans le conducteur 4-1, on peut asservir le courant circulant dans le conducteur 4-1 en fonction de la position de la partie magnétique mobile 1.In FIG. 3C, the actuator according to the invention is transformed into a positioner. In this configuration, the mobile
Les moyens pour déclencher le déplacement de la partie magnétique mobile servent alors pour maintenir la partie magnétique mobile dans une position stable alors qu'elle est en lévitation.The means for triggering the displacement of the moving magnetic part then serve to keep the moving magnetic part in a stable position while it is levitating.
On peut utiliser un dispositif 5 qui détecte la position de la partie magnétique mobile 1. Le signal délivré par ce dispositif 5 est comparé à une consigne K dans un comparateur 6 et le résultat de cette comparaison sert à commander une source d'alimentation 7 prévue pour alimenter le conducteur 4-1.It is possible to use a
Le dispositif 5 qui détecte la position de la partie magnétique mobile 1 peut comprendre, associé à chacun des éléments magnétiques fixes 3-1, un capteur de position capacitif 5-1 qui mesure la capacité existant entre l'élément magnétique fixe 3-1 avec lequel il est associé et la partie magnétique mobile 1.The
Un dispositif différentiateur 5-2 reçoit les signaux en provenance des deux capteurs de position capacitifs 5-1, en fait la différence et délivre un signal représentatif de la position de la partie magnétique mobile 1.A differentiator device 5-2 receives the signals coming from the two capacitive position sensors 5-1, makes the difference and delivers a signal representative of the position of the mobile
Les configurations précédemment décrites aux figures 1 à 3 ont l'avantage d'autoriser l'utilisation d'aimants de qualité moyenne. En effet un aimant crée un champ magnétique qui a tendance à le désaimanter. L'intensité de ce phénomène dépend de la direction d'aimantation par rapport à la forme de l'aimant. Ce phénomène de désaimantation est plus intense lorsque l'aimantation suit un petit côté de l'aimant et il est moins intense lorsque l'aimantation est dirigée selon un grand côté de l'aimant, ce qui est le cas sur ces figures, avec une aimantation dirigée selon l'axe x.The configurations previously described in FIGS. 1 to 3 have the advantage of allowing the use of medium quality magnets. Indeed a magnet creates a magnetic field that tends to demagnetize it. The intensity of this phenomenon depends on the direction of magnetization with respect to the shape of the magnet. This phenomenon of demagnetization is more intense when the magnetization follows a small side of the magnet and it is less intense when the magnetization is directed along a long side of the magnet, which is the case in these figures, with a magnetization directed along the x axis.
A ce jour, les aimants compatibles avec les technologies de réalisation collective sont sensibles à la désaimantation, mais en les aimantant dans une direction qui suit l'un de leur grand côté, on atténue cet inconvénient.To date, the magnets compatible with the collective manufacturing technologies are sensitive to demagnetization, but by magnetizing them in a direction that follows one of their long side, this disadvantage is mitigated.
Les aimants qu'ils appartiennent à la partie magnétique fixe ou à la partie magnétique mobile peuvent finalement être réalisés de manière simple et en une seule opération parce qu'ils sont tous aimantés dans la même direction.The magnets that they belong to the fixed magnetic part or the mobile magnetic part can finally be realized in a simple way and in one operation because they are all magnetized in the same direction.
La figure 4 montre une variante d'un actionneur selon l'invention réalisé sur un substrat 9 par exemple une plaquette de silicium. Elle peut avoir une épaisseur de 300 µm si les parties magnétiques mobile et fixe ont les dimensions évoquées plus haut (de 50 µm x 50 µm x 10 µm)FIG. 4 shows a variant of an actuator according to the invention made on a
Dans cette configuration la partie magnétique fixe 3 est rapportée à la surface du substrat 9, la partie magnétique mobile 1, quand elle n'est pas collée à la partie magnétique fixe 3, flotte au dessus du substrat 9, dans le champ magnétique créé par la partie magnétique fixe 3, quant aux moyens 4 pour déclencher le déplacement de la partie magnétique mobile 1, ils sont encastrés dans le substrat 9.In this configuration the fixed
Les parties magnétiques mobile 1 et fixe 3 peuvent être réalisées de manière similaire à celles des figures 1 à 3, mais d'autres configurations sont possibles. Au lieu d'être formée par deux éléments, la partie magnétique fixe pourrait être massive. Au lieu d'être réalisée à base d'aimant, elle pourrait être réalisés dans un matériau ferromagnétique.The mobile 1 and fixed 3 magnetic parts can be made similar to those of Figures 1 to 3, but other configurations are possible. Instead of being formed by two elements, the fixed magnetic part could be massive. Instead of being made from a magnet, it could be made of a ferromagnetic material.
On suppose que l'aimantation des parties magnétiques fixe et mobile suivent maintenant l'axe z au lieu de suivre l'axe x. Cette aimantation suit l'épaisseur des parties magnétiques mobile et fixes qui ont la forme de plaques. Mais ces aimantations sont de sens opposé. Les deux plaques d'aimant 3-1 ou de matériau ferromagnétique de la partie magnétique fixe 3 ont une aimantation dans le même sens et l'aimantation de l'aimant 1-1 de la partie magnétique mobile 1 est de sens opposé. Si les plaques 3-1 de la partie magnétique fixe 3 sont ferromagnétiques, leur aimantation dépend de celle de l'aimant 1-1 de la partie magnétique mobile 1, elle est naturellement opposée à celle de la partie magnétique mobile 1.It is assumed that the magnetization of the fixed and mobile magnetic parts now follow the z-axis instead of following the x-axis. This magnetization follows the thickness of the mobile and fixed magnetic parts which have the form of plates. But these magnetizations are in opposite directions. The two magnet plates 3-1 or ferromagnetic material of the fixed
Les moyens 4 pour déclencher le déplacement de la partie magnétique mobile 1 sont modifiés de manière appropriée pour pouvoir être efficaces. Ils sont formés dans cet exemple de deux bobinages 410, 411 sensiblement plans, placés côte à côte, dans le même plan, le long de l'axe x. Chacun de ces bobinages 410, 411 est comparable à celui représenté à la figure 3A. Mais maintenant la partie magnétique mobile 1 se trouve à cheval sur des portions de spire des chacun des bobinages 410, 411.The
Les deux bobinages 410, 411 peuvent être alimentés en série, en parallèle ou indépendamment l'un de l'autre. Aucune source d'alimentation n'a été représentée pour ne pas surcharger la figure. La création d'une dissymétrie dans les courants parcourant les deux bobinages 410, 411 peut permettre d'entraîner la partie magnétique mobile 1 en rotation autour de l'axe y lorsqu'elle est en lévitation.The two
En rendant réfléchissante une portion 10 de la partie magnétique mobile 1 et en ajustant le courant dans les bobinages 410, 411, il est possible de contrôler l'angle de réflexion d'un faisceau lumineux F incident sur la face réfléchissante. Dans cet exemple cette portion 10 se trouve sur la face principale supérieure de la partie magnétique mobile 1. On peut ainsi réaliser un scanneur optique. On pourrait imaginer que la portion 10 se trouve sur un bord de la partie magnétique mobile 1 ou sur sa face principale inférieure si le substrat 9 le permet. Ce dernier pourrait être doté d'une ouverture ou laisser passer le faisceau lumineux F s'il est réalisé en verre par exemple.By making a
La partie magnétique mobile 1 possède une fréquence de résonance et en exploitant cette fréquence, il est possible de réaliser un scanneur optique à très faible consommation électrique. Cette alimentation correspond à celle injectée dans les bobinages pour obtenir la rotation de la partie magnétique mobile lorsqu'elle est en lévitation et donc le balayage souhaité du faisceau lumineux F. A la résonance, il faut fournir très peu d'énergie au système pour le faire osciller. En théorie, une impulsion suffirait à le faire osciller indéfiniment.The mobile
La figure 5 illustre une variante de la configuration précédente. Les deux éléments 3-1 de la partie magnétique fixe 3, au lieu de se trouver dans un même plan présentent une dissymétrie de forme ou de position vis à vis de la partie magnétique mobile 1. Dans cet exemple, ils sont maintenant inclinés l'un par rapport à l'autre. Sur la figure 5, ils sont inclinés autour de l'axe x. La partie magnétique mobile 1 en venant se coller sur un des éléments 3-1 de la partie magnétique fixe prend la même inclinaison que lui. Si la partie magnétique mobile 1 est dotée d'une portion réfléchissante 10, un rayon lumineux F venant se réfléchir sur cette portion 10 sera dévié avec une inclinaison qui dépend de celle de l'élément magnétique fixe sur lequel vient se coller la partie magnétique mobile. On réalise alors un commutateur optique.Figure 5 illustrates a variant of the previous configuration. The two elements 3-1 of the fixed
La figure 6 est un actionneur selon l'invention qui se déduit de la configuration de la figure 4. Maintenant les moyens 4 pour déclencher le déplacement de la partie magnétique mobile 1 comportent quatre bobinages 401, 402, 403, 404 plans, situés dans un même plan x, y et arrangés en matrice. La partie magnétique mobile chevauche une portion de spire des quatre bobinages 401, 402, 403, 404 et chaque élément 3-1 de la partie magnétique fixe 3 chevauche une portion de spire de deux des bobinages 401, 402, 403, 404. Avec une telle configuration, il est possible de contrôler le déplacement de la partie magnétique mobile 1 dans un plan parallèle à celui des bobinages selon quatre directions, deux selon l'axe x et deux selon l'axe y. On contrôle deux degrés de liberté de la partie magnétique mobile. De même, il est possible de contrôler deux rotations autour des axes x et y : on contrôle alors quatre degrés de liberté.FIG. 6 is an actuator according to the invention which is deduced from the configuration of FIG. 4. Now the
En ajoutant un cinquième bobinage 405 qui ceinture l'ensemble des quatre premiers bobinages 401, 402, 403, 404, et qui se trouve dans le même plan x, y qu'eux ou dans un plan parallèle, il est possible d'obtenir un déplacement de la partie magnétique mobile 1 dans une direction perpendiculaire au plan des bobinages 401 à 405, c'est à dire dans ce cas selon l'axe z.By adding a fifth winding 405 which surrounds all of the first four
Sur la figure 7, la partie magnétique mobile 1 est similaire à celle de la figure 6, les moyens 4 pour déclencher le déplacement également à l'exception du cinquième bobinage 405 qui a été omis, dans un but de simplification mais qui pourrait être présent. La différence se situe maintenant au niveau des moyens magnétiques fixes 3 qui comportent maintenant quatre éléments magnétiques fixes 31, 32, 33, 34 formant une croix avec la partie magnétique mobile 1. Chacun de ces éléments 31, 32, 33, 34 de la partie magnétique fixe 3 chevauche une portion de spire de deux bobinages respectivement (401, 404), (401, 402), (402, 403), (403, 404). La partie magnétique mobile 1 peut alors être contrôlée suivant les mêmes directions que celles de la figure 6. L'ajout du cinquième bobinage pourrait être envisagé pour obtenir un déplacement selon une direction perpendiculaire au plan des premiers bobinages 401, 402, 403, 404.In FIG. 7, the mobile
Dans cette configuration, l'actionneur peut prendre quatre positions stables, la partie magnétique mobile 1 peut se coller sur chacun des quatre éléments magnétiques fixes 31, 32, 33, 34.In this configuration, the actuator can take four stable positions, the mobile
Sur la figure 6, il ne possédait que deux positions stables puisqu'il n'y avait que deux éléments magnétiques fixes 3-1.In Figure 6, it had only two stable positions since there were only two fixed magnetic elements 3-1.
Sur la figure 8, il n'y a pas de changement par rapport à la figure 7 ni pour la partie magnétique mobile 1, ni pour les moyens 4 pour déclencher son déplacement. Par contre, au lieu d'être formée de plusieurs éléments voisins, la partie magnétique fixe 3 est formée d'un seul élément 30 qui ceinture la partie magnétique mobile 1. La partie magnétique mobile 1 peut alors prendre une infinité de positions stables lorsqu'elle vient se coller contre l'élément magnétique fixe 30. On peut alors obtenir un positionneur.In FIG. 8, there is no change with respect to FIG. 7 nor for the moving
Sur la figure 8, la partie magnétique fixe a été représentée telle une plaque carrée évidée. D'autres formes sont bien sûr envisageables, par exemple en anneau. La partie magnétique mobile doit avoir une forme compatible avec celle de la partie magnétique fixe. A une forme en anneau pour la partie magnétique fixe correspondrait une forme en disque pour la partie magnétique mobile.In Figure 8, the fixed magnetic portion has been shown as a hollowed square plate. Other shapes are of course conceivable, for example ring. The moving magnetic part must have a shape compatible with that of the fixed magnetic part. A ring shape for the fixed magnetic portion would correspond to a disk shape for the moving magnetic portion.
Le contrôle de la position de la partie magnétique mobile est similaire à ce qui a été décrit aux figures 6 et 7. Dans cette configuration également un cinquième bobinage pourrait être ajouté pour contrôler la position dans un plan perpendiculaire à celui des quatre premiers bobinages.The control of the position of the moving magnetic part is similar to that described in FIGS. 6 and 7. In this configuration also a fifth coil could be added to control the position in a plane perpendicular to that of the first four coils.
De tels actionneurs peuvent être utilisés en groupe. Un dispositif avec une pluralité d'actionneurs A selon l'invention a été représenté sur les figures 9A, 9B. Sur la figure 9A, les différents actionneurs A sont disposés en matrice M sur un même support 9, à la croisée entre n conducteurs de lignes il à i3 et m conducteurs de colonnes j1 à j4 (n et m sont des entiers, n et m peuvent être différents ou non). De cette manière, des signaux se propageant sur une nappe formée des n conducteurs de lignes i1 à i3 peuvent être commutés vers les m conducteurs de colonne j1, j2, j3, j4. Ces signaux peuvent être des signaux électriques ou optiques en fonction de la nature des actionneurs A. Du fait de la bistabilité des actionneurs A de la matrice M, cette dernière peut être programmée et garder sa configuration sans qu'il soit nécessaire de l'alimenter électriquement.Such actuators can be used in groups. A device with a plurality of actuators A according to the invention has been shown in FIGS. 9A, 9B. In FIG. 9A, the various actuators A are arranged in matrix M on the
Si les actionneurs fonctionnement en positionneurs, une telle matrice permet d'accéder à plusieurs mémoires montées en parallèle, chaque position du positionneur correspondant à une position mémoire d'une des mémoires.If the actuators operate in positioners, such a matrix makes it possible to access several memories mounted in parallel, each position of the positioner corresponding to a memory position of one of the memories.
Les actionneurs peuvent être regroupés en une matrice particulière B comme sur la figure 9B avec un conducteur de ligne il et plusieurs conducteurs de colonne j1 à j4. En connectant un bus sur le conducteur de ligne i1, les signaux qu'il véhicule peuvent être orientés vers les différents conducteurs de colonne j1 à j4 en fonction de l'état des différents actionneurs A.The actuators can be grouped into a particular matrix B as in FIG. 9B with a line conductor 11 and several column conductors j1 to j4. By connecting a bus to the line conductor i1, the signals it conveys can be directed to the different column conductors j1 to j4 according to the state of the various actuators A.
On va voir maintenant différentes étapes de réalisation en microtechnologie de microactionneurs selon l'invention. Ces microactionneurs ont leurs parties magnétiques mobile et fixe réalisées par des aimants. Les moyens de déclenchement du déplacement de la partie magnétique mobile sont réalisés par des bobinages. Sur les figures on ne voit qu'un microactionneur mais en fait l'avantage de ce procédé est de pouvoir en réaliser plusieurs en même temps sur un même substrat.We will now see different stages of realization in microtechnology of microactuators according to the invention. These microactuators have their magnetic parts movable and fixed carried by magnets. The means for triggering the displacement of the mobile magnetic part are made by coils. In the figures we see a microactuator but in fact the advantage of this process is to be able to make several at the same time on the same substrate.
Sur les figures 14A, 14B le microactionneur se trouve encastré totalement dans le substrat réalisé en deux parties assemblées. Sur les figures 13A, 13B , seuls les moyens de déclenchement sont encastrés dans le substrat également réalisé en deux parties assemblées, les parties magnétiques mobile et fixe sont placées sur le substrat. Sur les figures 13A, 13B, les deux parties sont des substrats semi-conducteurs classiques massifs tandis que sur la figures 14A, 14B, l'une d'entre elle est un substrat classique massif tandis que l'autre est un substrat SOI (sigle de silicon on insulator, pour silicium sur isolant). Un tel substrat en silicium possède une couche de matériau isolant 93-1, de l'oxyde de silicium, enfouie au sein du silicium. Son avantage est que lorsqu'on fait une opération de gravure, la couche de matériau isolant peut servir de couche d'arrêt.In FIGS. 14A, 14B, the microactuator is completely embedded in the substrate made in two assembled parts. In FIGS. 13A, 13B, only the triggering means are embedded in the substrate, also made in two assembled parts, the moving and fixed magnetic parts being placed on the substrate. In Figs. 13A, 13B, the two parts are solid classical semiconductor substrates while in Figs. 14A, 14B, one of them is a massive conventional substrate while the other is an SOI substrate (acronym silicon on insulator, for silicon on insulator). Such a silicon substrate has a layer of insulating material 93-1, silicon oxide buried in the silicon. Its advantage is that when performing an etching operation, the layer of insulating material can serve as a barrier layer.
Sur un premier substrat soit classique massif 91 en matériau semi-conducteur, soit de type SOI 93 on va réaliser les microaimants (figures 10A à 10I et 11A à 11I). Sur un second substrat 92 massif en matériau semi-conducteur ou de type SOI, on va réaliser les moyens de déclenchement du déplacement prenant la forme d'un ou plusieurs conducteurs pouvant être agencés en bobinage (figures 12A à 12G). Sur ces figures 12A à 12G on a représenté un substrat massif. Toutefois sur la figure 12B on a schématisé par des pointillés la position de que prendrait la couche de matériau isolant d'un substrat SOI.On a first solid
On part du premier substrat 91, 93. On délimite la géométrie des aimants par photolithographie. On utilise pour cela une résine 50-1 (figures 10A, 11A).We start from the
On grave dans le premier substrat 91, 93 des caissons 51 pour les aimants. La gravure peut être une gravure sèche. Dans le substrat SOI 93, la gravure s'arrête sur la couche d'oxyde 93-1. On ôte la résine 50-1. On dépose une sous-couche d'accrochage conductrice 52 sur le substrat 91, 93. En fait cette variante ne se trouve que sur la figure 11B.In the
Sur la figure 10B, il y a deux sous-couches d'accrochage 52-1, 52-2, la seconde 52-2 étant insérée entre la première 52-1 et le substrat 91. Elle permet une bonne adhésion au substrat 91 de la première sous-couche 52-1. Elle permet aussi une protection de l'aimant mobile 1-1, réalisé ultérieurement, contre la corrosion. La première sous-couche peut être en or et la seconde en titane. Ces deux sous-couches pourraient être employées dans l'exemple de la figure 11B.In FIG. 10B, there are two attachment sublayers 52-1, 52-2, the second 52-2 being inserted between the first 52-1 and the
On définit la zone de dépôt des aimants par photolithographie. La couche de résine employée porte la référence 50-2. On dépose les aimants 3-1, 1-1 par voie électrolytique. Le matériau employé peut être du cobalt-platine (figures 10C, 11C).The deposition zone of the magnets is defined by photolithography. The resin layer employed is 50-2. The magnets 3-1, 1-1 are deposited electrolytically. The material used may be cobalt-platinum (Figures 10C, 11C).
Après une étape de retrait de la résine 50-2, on effectue une étape de planarisation des aimants puis une étape de retrait de la sous-couche 52 en surface (figures 10D) ou des deux sous-couches 52-1, 52-2 (figure 11D).After a step of removing the resin 50-2, a planarization step of the magnets is carried out and then a step of removing the sub-layer 52 at the surface (FIG. 10D) or of the two sub-layers 52-1, 52-2 (Figure 11D).
On dépose ensuite une couche conductrice 53 en surface destinée à réaliser les contacts électriques C1, C2, C sur les aimants 3-1, 1-1. On définit la géométrie des contacts C1, C2, C par photolithographie. La résine porte la référence 50-3 (figures 10E, 11E). Puisque tous les aimants sont réalisés en même temps, l'aimant mobile 1-1 porte aussi une couche conductrice sur sa face supérieure, elle a un rôle de protection contre la corrosion.A
L'étape suivante est une étape de gravure de la couche conductrice 53 pour délimiter les contacts C1, C2, C. On ôte ensuite la résine 50-3. On dépose en surface une couche isolante 54, en SiO2 par exemple puis on effectue une étape de planarisation (figures 10F, 11F).The next step is a step of etching the
On va ensuite définir au moins une ouverture 46 pour rendre accessible des contacts d'alimentation du ou des conducteurs à réaliser sur le second substrat, ainsi que la géométrie de l'espace libre 58 entourant la partie magnétique mobile 1-1 de manière à permettre son déplacement. Cette étape est une étape de photolithographie et la résine employée porte la référence 50-4 (figures 10G, 11G).Next, at least one
On vient ensuite graver la couche d'isolant 54 là où il n'y a pas de résine 50-4. On ôte la résine 50-4 (figures 10H, 11H). L'aimant mobile 1-1 est alors mis à nu ainsi que son entourage jusqu'aux aimants fixes 3-1.The
On effectue ensuite une gravure sèche du substrat 91, 93 au niveau de l'espace 58 autour de la partie magnétique mobile 1-1 et au niveau des ouvertures 46 qui s'arrête sur la couche d'isolant dans le cas du substrat SOI 93 (figures 10I, 11I).Dry etching of the
On suppose que l'actionneur à réaliser est similaire de celui de la figures 3A avec un seul conducteur 4-1.It is assumed that the actuator to be produced is similar to that of FIG. 3A with a single conductor 4-1.
Sur le second substrat 92, on définit la géométrie du conducteur 4-1 et de ses extrémités 45 devant porter les contacts d'alimentation par photolithographie. La résine employée porte la référence 50-5 (figures 12A).On the
On effectue une gravure d'un caisson 55 devant accueillir le conducteur 4-1. Dans un substrat SOI la gravure du caisson 55 s'arrête sur la couche isolante. La profondeur du caisson 55 correspond à l'épaisseur du conducteur 4-1. Après le retrait de la résine 50-5, on dépose en surface une sous-couche conductrice 56 d'accrochage (figure 12B). Elle peut être réalisée en cuivre par exemple. On peut aussi introduire une seconde sous-couche comme décrit à la figure 10B. Elle peut être réalisée en titane par exemple.Engraving of a
On définit par photolithographie la zone de dépôt du conducteur. La résine employée porte la référence 50-6. On dépose par voie électrolytique le conducteur 4-1 , ses extrémités référencées 45 sont bien visibles (figures 12C). Le dépôt peut être du cuivre.Photolithography is defined as the deposition area of the conductor. The resin used has the reference 50-6. The conductor 4-1 is deposited electrolytically, its referenced ends 45 are clearly visible (FIG. 12C). The deposit may be copper.
On ôte la résine 50-6, on planarise le dépôt conducteur. On grave la sous-couche conductrice 56 en surface pour la retirer (figure 12D).We remove the resin 50-6, planarize the conductive deposit. The
On dépose ensuite en surface une couche conductrice 57 destinée réaliser les contacts d'alimentation 47 du conducteur 4-1, ces contacts 47 recouvrant les extrémités 45 du conducteur 4-1. On définit la géométrie des contacts 47 par photolithographie, la résine employée pour cela portant la référence 50-7 (figure 12E).Then deposited on the surface a
On grave ensuite la couche conductrice 57 de manière à la retirer partout où elle n'est pas protégée par la résine 50-7. Après retrait de la résine 50-7, on dépose en surface une couche isolante 59. Elle peut être réalisée en oxyde de silicium SiO2. Elle va isoler le conducteur 4-1 des aimants 3-1, 1-1 lors de l'assemblage du premier substrat 91, 93 et du second substrat 92 (figure 12F).The
On réalise une planaristion en surface et on met à nu les contacts 47 (figure 12G).Planarization is carried out on the surface and the
On va ensuite assembler par collage, en les mettant face à face, le substrat de la figure 10I au substrat de la figure 12G (figure 13A) ou le substrat de la figure 11I au substrat de la figure 12G (figure 14A).Next, the substrate of FIG. 10I will be assembled by bonding them face to face to the substrate of FIG. 12G (FIG. 13A) or the substrate of FIG. 11I to the substrate of FIG. 12G (FIG. 14A).
Il faut s'assurer maintenant que les aimants 1-1, 3-1 sont aimantés car sinon, lors de la libération de l'aimant mobile 1-1, il ne serait pas attiré par les aimants fixes 3-1 qui eux restent bien solidaires du substrat par la sous-couche d'accrochage.It must now be ensured that the magnets 1-1, 3-1 are magnetized because otherwise, upon release of the movable magnet 1-1, it would not be attracted by the fixed magnets 3-1 which remain well secured to the substrate by the underlayer hooking.
On va éliminer totalement ou partiellement le premier substrat 91, 93. Il peut s'agir d'un amincissement mécanique et/ou d'une attaque chimique. Sur la figure 13B, le substrat 91 a été complètement ôté tandis que sur la figure 14B, l'élimination s'est arrêtée sur la couche d'oxyde 93-1 et le silicium du substrat 93 qui se trouve en dessous reste en place. On termine par le retrait de la couche d'oxyde 93-1. Les aimants 3-1, 1-1 sont alors encastrés dans le substrat formé des deux parties assemblées 92 et 93 alors que sur la figure 13B ils sont en surface du substrat 92.The
L'actionneur selon l'invention, s'il occupe un volume supérieur à environ 1 centimètre cube, risque d'être sensible à l'environnement extérieur tel que les vibrations et les chocs. Ses performances risquent de ne pas être optimales dans de tels environnements perturbés. Par contre, contre toute attente, avec des dimensions plus faibles ses performances sont grandement améliorées quelles que soient l'environnement. L'interaction entre les parties magnétiques fixe et mobile est favorable et n'apporte pas de dégradation des performances comme dans le cas d'un actionneur beaucoup plus volumineux.The actuator according to the invention, if it occupies a volume greater than about 1 cubic centimeter, risk to be sensitive to the external environment such as vibrations and shocks. Its performance may not be optimal in such disturbed environments. On the other hand, against all odds, with smaller dimensions its performances are greatly improved whatever the environment. The interaction between the fixed and mobile magnetic parts is favorable and does not bring performance degradation as in the case of a much larger actuator.
Bien qu'un certain nombre de modes de réalisation de la présente invention ait été représenté et décrit de façon détaillée, on comprendra que différents changements et modifications puissent être apportés sans sortir du cadre de l'invention.Although a number of embodiments of the present invention have been shown and described in detail, it will be understood that various changes and modifications can be made without departing from the scope of the invention.
Claims (31)
- Magnetic actuator comprising a fixed magnetic part (3) cooperating magnetically with a mobile magnetic part (1), means (4) for initiating movement of the mobile magnetic part (1), characterized in that the mobile magnetic part (1) comprises at least one magnet (1-1) and in that the fixed magnetic part (3) has at least two attraction zones (3-2) onto which the mobile magnetic part is able to come to attach itself, the mobile magnetic part (1) levitating when it is not attached to one of attraction zones (3-2), its movement being magnetically guided.
- Magnetic actuator as in claim 1, characterized in that the fixed magnetic part (3) is made in a material chosen from the group of soft magnetic materials, hard magnetic materials, hysteresis materials, supraconductor materials, diamagnetic materials, these materials being used alone or in combination.
- Magnetic actuator as in either of claims 1 or 2, characterized in that means (4) for initiating movement of the mobile magnetic part (1) are magnetic means.
- Magnetic actuator as in claim 3, characterized in that the means (4) for initiating movement of mobile magnetic part (1) are heating means (R) to heat fixed magnetic part (3).
- Magnetic actuator as in claim 4, characterized in that the material of the fixed magnetic part (3) has a Curie temperature lower than that of magnet (1-1) of mobile magnetic part (1).
- Magnetic actuator as in claim 4, characterized in that magnet (1-1) of mobile magnetic part (1) is heat insulated from fixed magnetic part (3).
- Magnetic actuator as in claim 3, characterized in that means (4) for initiating movement of the mobile magnetic part set up a magnetic field in the vicinity of mobile magnetic part (1).
- Magnetic actuator as in claim 7, characterized in that the means (4) for initiating movement of mobile magnetic part (1) consist of at least one conductor (4-1) through a which an electric current is able to pass.
- Magnetic actuator as in claim 8, characterized in that it comprises means (5,6) for servo-controlling the current to be circulated in conductor (4-1) in relation to the position of mobile magnetic part (1) so that it is able to assume a plurality of stable levitating positions.
- Magnetic actuator as in either of claims 8 or 9, characterized in that the conductor (40) surrounds the fixed magnetic part (3).
- Magnetic actuator as in any of claims 8 to 10, characterized in that conductor (4-1) is in the form of a substantially planar winding.
- Magnetic actuator as in any of claims 1 to 11, characterized in that the fixed (3) and mobile (1) magnetic parts are substantially planar.
- Magnetic actuator as in claim 12, characterized in that the fixed (3) and mobile (1) magnetic parts are arranged substantially in the same plane.
- Magnetic actuator as in any of claims 8 to 13, characterized in that conductor (4-1) firstly and fixed (3) and mobile (1) magnetic parts secondly are arranged in substantially parallel planes.
- Magnetic actuator as in any of claims 1 to 14, characterized in that fixed (3) magnetic part consists of a member (30) which surrounds mobile magnetic part (1).
- Magnetic actuator as in any of claims 1 to 15, characterized in that the fixed magnetic part (3) consists of several members (3-1), the mobile magnetic part (1) coming to attach itself onto one or other of members (3-1) of fixed magnetic part (3).
- Magnetic actuator as in claim 16, in which the fixed magnetic part (3) comprises several members (3-1) oriented along different planes, the mobile magnetic part (1) assuming the orientation of member (3-1) to which it is attached.
- Magnetic actuator as in any of claims 1 to 17, characterized in that the magnetization of fixed magnetic part (3) and that of mobile magnetic part (1) are directed in one same direction.
- Magnetic actuator as in any of claims 1 to 17, characterized in that the magnetization of fixed magnetic part (3) and that of mobile magnetic part (1) are directed in opposite directions.
- Magnetic actuator as in claim 17, characterized in that the means (4) for initiating movement of mobile magnetic part (1) are able to initiate rotational movement.
- Magnetic actuator as in any of claims 1 to 20, characterized in that the fixed magnetic part (3), at an attraction zone (3-2), comprises a pair of electric contacts (C1,C2), and in that the mobile magnetic part (1) comprises at least one electric contact (C), the mobile magnetic part (1) connecting the two contacts (C1,C2) of the pair when it attaches itself to attraction zone (3-2).
- Magnetic actuator as in any of claims 1 to 21, characterized in that mobile magnetic part (1) comprises a reflective zone (10) intended to reflect a light ray (F).
- Magnetic actuator as in any of claims 1 to 22, characterized in that it is fabricated on an amagnetic substrate (9), the means (4) for initiating movement of mobile magnetic part (1) being embedded in the substrate.
- Matrix of magnetic actuators characterized in that it comprises a plurality of magnetic actuators (A) as in any of claims 1 to 23, these magnetic actuators being grouped together on one same carrier (9).
- Device characterized in that it comprises at least one magnetic actuator as in any of claims 1 to 23.
- Method for fabricating a magnetic actuator, characterized in that it comprises the following steps:- on a first substrate (91;93) forming chambers (51) able to receive a fixed magnetic part and a mobile magnetic part with magnet,- depositing fixed magnetic part (3) and mobile magnetic part (1) with magnet (1-1) in chambers (51);- depositing a dielectric layer (54) and etching the latter to expose the mobile magnetic part (1) and its surround as far as fixed magnetic part (3);- on a second substrate (92) forming at least one chamber (55) able to receive a conductor intended to initiate movement of the mobile magnetic part;- depositing conductor (4-1) in chamber (55);- assembling the two substrates (91 or 93, 92) by placing them face to face;- full or partial removal of the first substrate (91,93) so as to free mobile magnetic part (1).
- Method as in claim 26, characterized in that it comprises a step to magnetize magnet (1-1) of mobile magnetic part (1) and optionally of fixed magnetic part (3) before freeing mobile magnetic part (1).
- Method as in either of claims 26 or 27, characterized in that the etching step of dielectric layer (54) of the first substrate (91,93) is also intended to form at least one opening (46) to access at least one electric contact supplying conductor (4-1).
- Method as in any of claims 26 to 28, characterized in that it comprises a step to fabricate at least one electric contact (47) to supply conductor (4-1) on the second substrate after depositing the conductor and before assembling the two substrates (91 or 93, 92).
- Method as in any of claims 26 to 28, characterized in that it comprises a step to deposit a dielectric material (59) on the surface of the second substrate (92) before assembling the two substrates (91 or 93, 92) to protect conductor (4-1).
- Method as in any of claims 26 to 30, characterized in that the substrates are solid semiconductor substrates or of SOI type (93).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0110081A FR2828000B1 (en) | 2001-07-27 | 2001-07-27 | MAGNETIC ACTUATOR WITH MOBILE MAGNET |
FR0110081 | 2001-07-27 | ||
PCT/FR2002/002666 WO2003012805A2 (en) | 2001-07-27 | 2002-07-25 | Mobile-magnet actuator |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1428232A2 EP1428232A2 (en) | 2004-06-16 |
EP1428232B1 true EP1428232B1 (en) | 2006-10-11 |
EP1428232B8 EP1428232B8 (en) | 2006-12-06 |
Family
ID=8866001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02772452A Expired - Lifetime EP1428232B8 (en) | 2001-07-27 | 2002-07-25 | Mobile-magnet actuator |
Country Status (6)
Country | Link |
---|---|
US (1) | US7106159B2 (en) |
EP (1) | EP1428232B8 (en) |
AT (1) | ATE342572T1 (en) |
DE (1) | DE60215367T2 (en) |
FR (1) | FR2828000B1 (en) |
WO (1) | WO2003012805A2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6894593B2 (en) * | 2003-02-12 | 2005-05-17 | Moog Inc. | Torque motor |
FR2857777A1 (en) * | 2003-07-17 | 2005-01-21 | Commissariat Energie Atomique | Magnetic actuator, has movable magnetic part with magnets and portions, where consecutive magnets and portions cooperate with consecutive sections of displacement triggering unit after triggering of displacement |
FR2857778B1 (en) * | 2003-07-17 | 2006-02-03 | Commissariat Energie Atomique | MAGNETIC ACTUATOR WITH LEVITATION WITH REDUCED SWITCHING TIME AND / OR ACTUATION CURRENT. |
US7394332B2 (en) * | 2005-09-01 | 2008-07-01 | International Business Machines Corporation | Micro-cavity MEMS device and method of fabricating same |
WO2008019054A2 (en) * | 2006-08-03 | 2008-02-14 | Deak David G | Electromotive device |
EP1914792A2 (en) * | 2006-10-17 | 2008-04-23 | Samsung Electronics Co., Ltd. | Method of manufacturing a coil |
CH697642B1 (en) * | 2007-05-15 | 2008-12-31 | Philippe Saint Ger Ag | Magnetic coupling influencing method for e.g. permanent magnet, involves displacing magnetic field present between bodies out of field displacement area of field displacement device in prescribed manner by corresponding actuation of device |
FR2938112A1 (en) * | 2008-10-31 | 2010-05-07 | Constance Guisset | Interrupter forming device for e.g. light fixture, has electronic circuit changing state of output of device based on presence/absence of mobile part in levitation position, where mobile part is in shape of person, animal or celestial body |
EP2270813B1 (en) * | 2009-06-29 | 2016-01-06 | Taiwan Semiconductor Manufacturing Co., Ltd. | Non-volatile memory |
US8159320B2 (en) * | 2009-09-14 | 2012-04-17 | Meichun Ruan | Latching micro-magnetic relay and method of operating same |
WO2013016683A2 (en) * | 2011-07-27 | 2013-01-31 | Sri International | Manufacturing using levitated manipulator robots |
US9343931B2 (en) | 2012-04-06 | 2016-05-17 | David Deak | Electrical generator with rotational gaussian surface magnet and stationary coil |
US9741918B2 (en) | 2013-10-07 | 2017-08-22 | Hypres, Inc. | Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit |
US10574100B2 (en) * | 2016-03-31 | 2020-02-25 | Intel Corporation | Magnetic circuits for MEMS devices |
FR3050339B1 (en) | 2016-04-15 | 2020-08-28 | Enerbee | ELECTRICITY GENERATOR INCLUDING A MAGNETO-ELECTRIC CONVERTER AND ITS MANUFACTURING PROCESS |
EP4436017A2 (en) | 2017-10-30 | 2024-09-25 | WePower Technologies LLC | Magnetic momentum transfer generator |
US11368079B2 (en) | 2019-11-06 | 2022-06-21 | David Deak, SR. | Offset triggered cantilever actuated generator |
EP4062522A1 (en) | 2019-11-21 | 2022-09-28 | WePower Technologies LLC | Tangentially actuated magnetic momentum transfer generator |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1985004044A1 (en) * | 1984-03-05 | 1985-09-12 | Mitsubishi Mining & Cement Co., Ltd. | Electromagnetic actuator apparatus |
CH655983A5 (en) * | 1984-03-30 | 1986-05-30 | Inrad Sa | Bistable pneumatic valve |
FR2612276B1 (en) * | 1987-03-13 | 1989-08-04 | Pilato Maurice | METHODS AND DEVICES FOR BISTABLE ELECTROMAGNETIC INDUCERS FOR SOLENOID VALVES AND RELATED ELECTRONIC CIRCUITS, WITH VERY LOW POWER CONSUMPTION; WITH APPLICATION TO AUTOMATIC SPRINKLING SERVED TO THE NEED OF PLANT WATER AT THE DESIRED DEPTH |
JP3405881B2 (en) * | 1996-03-15 | 2003-05-12 | 株式会社東芝 | Magnetically levitated linear actuator |
WO2001016484A2 (en) * | 1999-09-02 | 2001-03-08 | Teledyne Technologies, Inc. | A magnetically-assisted shape memory alloy actuator |
JP4969749B2 (en) * | 1999-10-18 | 2012-07-04 | タートルテック・デザイン・インコーポレイテッド | Rotating display spherical device |
-
2001
- 2001-07-27 FR FR0110081A patent/FR2828000B1/en not_active Expired - Fee Related
-
2002
- 2002-07-25 WO PCT/FR2002/002666 patent/WO2003012805A2/en active IP Right Grant
- 2002-07-25 DE DE60215367T patent/DE60215367T2/en not_active Expired - Lifetime
- 2002-07-25 EP EP02772452A patent/EP1428232B8/en not_active Expired - Lifetime
- 2002-07-25 US US10/485,193 patent/US7106159B2/en not_active Expired - Fee Related
- 2002-07-25 AT AT02772452T patent/ATE342572T1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
WO2003012805A2 (en) | 2003-02-13 |
ATE342572T1 (en) | 2006-11-15 |
US20040183382A1 (en) | 2004-09-23 |
DE60215367D1 (en) | 2006-11-23 |
US7106159B2 (en) | 2006-09-12 |
WO2003012805A3 (en) | 2003-10-02 |
FR2828000A1 (en) | 2003-01-31 |
FR2828000B1 (en) | 2003-12-05 |
EP1428232A2 (en) | 2004-06-16 |
DE60215367T2 (en) | 2007-08-23 |
EP1428232B8 (en) | 2006-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1428232B1 (en) | Mobile-magnet actuator | |
EP1519213B1 (en) | Bimorphically actuated, oscillating micromirror | |
EP0974185B1 (en) | Improved linear actuator | |
EP1525595B1 (en) | Magnetic levitation actuator | |
EP1698041B1 (en) | Electrostatic control device | |
US6894823B2 (en) | Magnetically actuated microelectromechanical devices and method of manufacture | |
EP2106024A1 (en) | Magnetic nano-resonator | |
FR2985085A1 (en) | ELECTROMAGNETIC ACTUATOR WITH PERMANENT MAGNETS AND MECHANICAL DISCONNECT SWITCH-ACTUATOR ACTUATED BY SUCH ACTUATOR | |
FR2607315A1 (en) | ELECTROMAGNETIC CONTROL ORDER | |
FR2865724A1 (en) | Micro-electromechanical system for e.g. aerospace field, has beam that is switched between open and closed positions to establish and break contact between two conductors, where positions correspond to beams` buckling positions | |
EP1836714B1 (en) | Microsystem with electromagnetic control | |
FR2929753A1 (en) | Magnetic actuator e.g. linear controllable electromagnetic actuator, for assisting e.g. machining operation, has magnets whose magnetization is perpendicular to sides of stator poles for forming static magnetic circuits in air gaps | |
JPH10511209A (en) | Information recording unit with electromagnetic lift device | |
EP1664896B1 (en) | Electrically rotatable micromirror or microlens | |
FR2826504A1 (en) | MAGNETIC ACTUATOR WITH REDUCED RESPONSE TIME | |
EP1647034B1 (en) | Levitation magnetic actuator | |
JP4254220B2 (en) | Electromagnetic actuator and mechanical quantity sensor | |
EP2351114B1 (en) | Process and device for magnetic actuating | |
FR2927466A1 (en) | Bistable actuator for use as bistable double power switch for e.g. motor vehicle, has magnetic maintaining units with magnet for maintaining actuator in stable position, where units generate magnetic field perpendicular to support plane | |
FR2857777A1 (en) | Magnetic actuator, has movable magnetic part with magnets and portions, where consecutive magnets and portions cooperate with consecutive sections of displacement triggering unit after triggering of displacement | |
KR20060065086A (en) | Optical pickup head for magneto-optical recording/regenerating and manufacturing method thereof | |
WO2006072628A1 (en) | Microsystem with integrated reluctant magnetic circuit | |
JP2003121765A (en) | Optical switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040120 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20061011 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061011 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061011 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061011 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061011 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061011 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061011 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS Owner name: INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60215367 Country of ref document: DE Date of ref document: 20061123 Kind code of ref document: P |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE EN CENTRE NATION Effective date: 20061102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070111 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070111 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070122 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070111 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070319 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070712 |
|
BERE | Be: lapsed |
Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNR Effective date: 20070731 Owner name: INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE Effective date: 20070731 Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE Effective date: 20070731 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070731 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070112 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070731 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061011 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061011 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140711 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140731 Year of fee payment: 13 Ref country code: GB Payment date: 20140717 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20140716 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60215367 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150725 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150725 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150725 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160202 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150731 |