EP1428017B1 - Micromechanical heat conductivity sensor having a porous cover - Google Patents
Micromechanical heat conductivity sensor having a porous cover Download PDFInfo
- Publication number
- EP1428017B1 EP1428017B1 EP02758161A EP02758161A EP1428017B1 EP 1428017 B1 EP1428017 B1 EP 1428017B1 EP 02758161 A EP02758161 A EP 02758161A EP 02758161 A EP02758161 A EP 02758161A EP 1428017 B1 EP1428017 B1 EP 1428017B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- thermal conductivity
- conductivity sensor
- membrane
- sensor according
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007789 gas Substances 0.000 claims description 60
- 239000012528 membrane Substances 0.000 claims description 57
- 229910052710 silicon Inorganic materials 0.000 claims description 49
- 239000010703 silicon Substances 0.000 claims description 45
- 238000010438 heat treatment Methods 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 22
- 230000001419 dependent effect Effects 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 14
- 238000005245 sintering Methods 0.000 claims description 12
- 229910010293 ceramic material Inorganic materials 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 10
- 229910021426 porous silicon Inorganic materials 0.000 claims description 10
- 238000009792 diffusion process Methods 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 239000001307 helium Substances 0.000 claims description 5
- 229910052734 helium Inorganic materials 0.000 claims description 5
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 239000010931 gold Substances 0.000 claims description 4
- 238000002161 passivation Methods 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 238000004445 quantitative analysis Methods 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 150000003377 silicon compounds Chemical class 0.000 claims description 2
- 210000004379 membrane Anatomy 0.000 description 49
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 47
- 239000010410 layer Substances 0.000 description 18
- 239000000919 ceramic Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/14—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
- G01N27/18—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/18—Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
Definitions
- the present invention relates to a micromechanical thermal conductivity sensor.
- a micromechanical thermal conductivity sensor which comprises a thermally insulated membrane formed by recessing a base plate having poor thermal conductivity, at least one heating element applied to the membrane, at least one temperature dependent electrical resistance applied to the membrane for measuring the temperature of the membrane (T M ), and at least another temperature-dependent electrical resistance applied to the base plate outside the membrane for measuring the ambient temperature (T U ).
- the invention relates to methods for producing the thermal conductivity sensor according to the invention, as well as its use.
- the measurement of the thermal conductivity is often for analysis of gases, in particular the quantitative analysis of two-component Gas mixtures used.
- the thermal conductivity of a gas or gas mixture varies with the mass of the gas molecules, their concentration and the temperature. If the (mixed) thermal conductivity of the gas or gas mixture is measured at a known gas temperature and known components, the concentrations of individual components of the gas mixture can be determined precisely via the thermal conductivity.
- the concentrations of hydrogen (H 2 ) and helium (He) may be mixed with other gases such as air, oxygen (O 2 ), nitrogen (N 2 ), ammonia (NH 3 ), argon (Ar), carbon dioxide (CO 2 ), carbon monoxide (CO), chlorine (Cl 2 ), hydrogen sulfide (H 2 S), methane (CH 3 ), nitrogen monoxide (NO), nitrous oxide (N 2 O) and water vapor (H 2 O) are measured well because these gases have a particularly high thermal conductivity compared to the other gases.
- T K T K -T U
- the heating power P H required for this purpose is a measure of the thermal conductivity of the surrounding gas or gas mixture.
- micromechanical thermal conductivity sensors Silicon base developed. In contrast to conventional thermal conductivity sensors These sensors stand out a low power consumption, which is essentially not is greater than the power consumption of the signal processing necessary electronics. In addition, the miniaturized Sensors with short response times (time constants), which in the conventional sensors in general only by accepting a forced influx with the sample gas, d. H. to achieve a flow dependence are. However, this ultimately makes a universal use impossible. Finally, such micromechanical Silicon-based thermal conductivity sensors economical in the production, because of common manufacturing processes recourse to integrated semiconductor components can.
- FIG. 1 The construction of a typical conventional micromechanical Silicon-based thermal conductivity sensor is shown in FIG. 1 and will be discussed below.
- a fundamental problem in the measurement of thermal conductivity of a surrounding gas is by convection of the Gases caused heat transfer with a concomitant Falsification of the actual thermal conductivity value.
- One convective heat transport can result from external gas movements, which are noticeable in the sensor, but also from the for measuring necessary temperature difference between heating element or membrane and gas.
- thermal conductivity sensor Although a forced flow of the thermal conductivity sensor be quite desirable with the gas to be measured a fast gas exchange and thus short response times however, micromechanical thermal conductivity sensors are used with very low measuring volumes and one thus allowing inherent fast gas exchange of any convective heat transport considered disadvantageous.
- the Sensor usually used so that the gas volume in the membrane remains at rest. This can be z. B. by Covering the membrane can be achieved with a cover plate.
- DE 37 115 11 C1 describes a micromechanical Thermal conductivity sensor for measuring the thermal conductivity a gas mixture in which on a support plate made of silicon, an insulator layer is applied on the by vapor deposition or sputtering meandering thin film resistors are applied.
- the insulator layer is undercut, leaving a pit in the Support plate is formed, which is the lower part of the measuring chamber of the sensor.
- On the carrier plate with the thin-film resistors rests a cover plate of silicon, in the height the thin - film resistors a pit is etched, the forms the upper part of the measuring chamber.
- the cover plate has an opening which, as a diffusion channel, enters the gas mixture allows for the measuring chamber.
- the gas exchange in the bottom Pit of the measuring chamber takes place through breakthroughs in the Insulator layer.
- a disadvantage of this thermal conductivity sensor is that the In any case, so choose dimensions of the diffusion channel are that on the one hand by a large opening the gas in the Measuring chamber replaced as quickly as possible by diffusion but on the other hand gas movements outside the measuring chamber occur, not be transferred to the measuring chamber, which requires a small opening.
- this task can only solved as a compromise between the two requirements be a given interpretation of the diffusion channel in general universal use no longer possible.
- Object of the present invention is to overcome the disadvantages of known in the art micromechanical thermal conductivity sensors to overcome.
- a universal be specified usable thermal conductivity sensor in which a convective heat transport through the to be measured Gas or gas mixture is largely avoided.
- a micromechanical thermal conductivity sensor which one by recess of a thermally conductive base plate formed thermally isolated membrane, at least one applied on the membrane Heating element, at least one applied to the membrane temperature-dependent electrical resistance for measurement the temperature of the membrane, as well as at least one other outside the membrane on the base plate applied temperature-dependent electrical resistance for measuring the ambient temperature includes, the membrane being supported on one or both sides thereof the gas exchange by diffusion permitting porous cover plate is covered, between membrane and porous Cover plate a cavity is recessed, the porous cover plate is fixed to the base plate and the porous Cover plate made of a porous ceramic material or at least partially made of porous silicon.
- the inventive Thermal conductivity sensor can thus with one or two porous Cover plates be equipped, d. H. one or two cavities between membrane and cover plate (s) have.
- a diffusion of the surrounding gas or gas mixture in the allows the measuring space forming cavity without doing that Measurement result falsified by a convection flow of the gas is. Due to the small size of the cavity (s), in particular by their low height, which is due to the Temperature difference between membrane or heating element and Cover plate caused convective heat transport in the direction of a Cover plate significantly reduced, leaving a convection flow of the gas to be measured in a cavity in total minimized and substantially prevented. The response time The sensor is replaced by the fast gas exchange greatly reduced. Furthermore, the sensitivity of the Sensors are increased because of the minimized convection flow the gas or gas mixture to be measured the possibility exists, a relatively large temperature difference between Insert membrane and sample gas. In addition there is the possibility of the sensor regardless of the installation situation to be used universally.
- the porous cover plate can be placed on a or both sides of the (flat) membrane are applied. If the porous cover plate on the one side of the base plate applied, which the recess for forming the Membrane, this recess forms after application of the Cover plate a cavity, which uses as a measuring space for the sensor becomes. Will the porous cover plate on this side applied opposite side of the base plate, so must the porous cover plate one of the membrane arranged opposite Have recess which after applying the Cover plate forms a cavity. This cavity then forms a Measuring chamber for the thermal conductivity sensor. The sensor Thus, either via one or two cavities (or Measuring chambers) for the gas (mixture) to be measured.
- the base plate is preferably made of silicon. This has the advantage that to further processing on in the Semiconductor technology used methods, such as Vapor deposition, sputtering, photolithographic Method, etching method and passivation method recourse can be. Such is a cost-effective production the sensors possible. In particular, from a single Silicon wafer a variety of sensors according to the invention getting produced.
- the porous cover plate is preferably made of SiC and Al 2 O 3 .
- the thermal expansion coefficient of the ceramic material is substantially equal, or this at least adjacent.
- cover plate (s) and base plate or membrane a same thermal Expansion, which advantageously thermally induced Tensions after application of the cover plate on the Base plate can be avoided or minimized.
- the thickness of the base plate used for the production of the sensor is preferably in the range of 200-600 ⁇ m, while the membrane preferably has a thickness in the range of 0.6-2 ⁇ m. Further, the membrane is characterized by a surface which is preferably in the range of 0.25 - 4 mm 2 .
- the passing Gas (mixture) in a very advantageous manner during diffusion be filtered.
- the pore size of the porous material can by this filtering foreign substances, for example Soot and dust particles or microbiological contaminants, be removed from the gas (mixture).
- the heating element and the temperature-dependent electrical resistances are preferably silver (Ag), gold (Au), nickel (Ni) or platinum (Pt) manufactured.
- the cross section of the heating element in the contact area and in the Heating zone varies in size. This can be advantageous in the Sintering the cover plate can be used on the base plate.
- the temperature-dependent electrical resistances or the heating element can be protected by a passivation layer against the influence of chemically aggressive gases or gas mixtures.
- a passivation layer silicon compounds such as silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ) are particularly suitable.
- the thermal conductivity sensor according to the invention can be produced by placing the porous cover plate on the base plate is glued.
- An adhesion of base and cover plate is particularly suitable if the materials used a different thermal expansion coefficient because an adhesive bond is capable of compensate for a different thermal expansion. This avoids thermally induced stresses in the connected Materials.
- adhesives in particular silver-filled Adhesives with adjusted thermal expansion coefficients be used.
- the heat required for the sintering process can be supplied from the outside become.
- the Sintering process solely by the heating heat of the heating element is effected.
- the diameter of the heating element For example, a platinum wire, in the heating zone essential thicker than in the area of its contact.
- the cover layer removed by the heating heat of the heating element and so a cavity defined dimensions are formed.
- the thermal conductivity sensor according to the invention while avoiding the joining process between the base and cover plate be made monolithic.
- a Layer of porous silicon on the actual sensor base material made of silicon this being done, that between the subsequently formed membrane and the Layer of porous silicon, a cavity is formed.
- the base plate 2 forms, together with the applied electrical structures, a silicon sensor chip for measuring the thermal conductivity.
- the membrane 1 is formed as a recess of the base plate 2.
- the heat output of the heating element required to keep the difference between T M and T U constant is determined. Due to the low mass of the thin membrane and the materials deposited thereon, very low thermal time constants, typically on the order of milliseconds and less, can be achieved. Moreover, because of the thin membrane, the heat dissipation through the surrounding gas is substantially greater than over the membrane material itself, resulting in a high sensitivity of the sensor to changes in the thermal conductivity of the surrounding gas. The high sensitivity of the sensor also opens up the possibility of reducing overall heat dissipation, ie to lower the temperature difference ⁇ T between the membrane and the environment, which is reflected in a reduction in the electrical power loss of the sensor.
- Fig. 2 is an embodiment of the thermal conductivity sensor according to the invention shown.
- a cover plate 8 made of porous ceramic.
- the Recess of the base plate 2 forms together with the cover plate 8 a cavity 6, which is used as a measuring space for the sensor becomes.
- a Recess formed in the cover plate 8 which after application the cover plate 8 on the base plate 2 a cavity. 4 forms, which serves as another measuring space for the sensor.
- the Both cover plates 8 are each on the silicon sensor chip glued.
- the adhesive layers 9 are suitable, any differences in the thermal expansion of the ceramic cover plates 8 and compensate for the silicon sensor chip.
- Fig. 3 shows a further embodiment of the invention Thermal conductivity sensor.
- the both sides of Membrane 1 a cover plate made of porous ceramic material sintered on the silicon sensor chip.
- the sintering of the Cover plates 8 is different because of the lack of possibility thermal expansions between cover plates and Silicon sensor chip to compensate, only at very similar or same thermal expansion coefficient of the ceramic Material of the cover plates and the silicon sensor chip attached.
- a paste or dispersion of the ceramic material for the cover plates 8 on the silicon sensor chip is in the range of the heating element 3 and / or the Membrane 1 applied a cover 22, which after the Sintering of the ceramic material is removed. In the place of previous cover layer 22 remain the cavities 4, 6 left.
- FIG. 3 shows the silicon sensor chip 2.
- Fig. 3b shows the silicon sensor chip 2 with applied cover layer 22.
- Fig. 3c shows the silicon sensor chip 2 with applied cover layer 22, as well as on both sides of the silicon sensor chip applied ceramic material of the cover plates 8.
- Fig. 4d shows after the sintering and removal the cover layer 22 resulting cavities 4, 6th
- Both the sintering of the ceramic material of the cover plates 8, as well as the removal of the cover layer 22 may by the Heating heat of the Pt heating wire 3 are effected.
- the cover layer of a less heat-resistant, for example organic (sacrificial) material.
- this decomposing material during the sintering process can be a defined cavity between Pt heating wire and porous ceramic enclosure are created.
- the Pt heating wire 3 has a different cross-section for this purpose Contacting and in the area of the heating zone.
- To the electric Contacting is a bonding connection 11 on the silicon sensor chip 2 applied.
- Fig. 4 shows two further embodiments of the invention Thermal conductivity sensor. In these embodiments is replaced by a porous ceramic for the cover plates. 8 used porous silicon. Because of the same thermal Expansion coefficients of cover plates and silicon sensor chip are thermally induced material stresses from the outset avoided.
- Fig. 4a shows the silicon sensor chip 2.
- Fig. 4b is a Silicon wafer 12 shown with a porous region 13, wherein the silicon wafer 12 in the porous region 13 a recess having.
- the silicon wafer 12 is on both sides of Membrane 1 is added to the silicon sensor chip 2, wherein the porous Region 13 in each case over the membrane 1 comes to rest.
- 4 c) shows a variant in which the silicon wafer 12 on the side of the membrane 1, on which the recess of the Silicon sensor chips 2 is located so arranged that the Cavities of the silicon wafer 12 and the silicon sensor chip. 2 form a common cavity with larger volumes.
- Fig. 4d shows a further variant in which the silicon wafer 12 on the side of the diaphragm 1, on which the recess of the silicon sensor chip 2 is arranged so that the cavity of the silicon sensor chip 2 unchanged remains.
- the arrangement of the silicon wafer 12 on the respectively opposite membrane side is in both variants of the Fig. 4c) and 4d) the same.
- the complex joining process can be avoided be by already on the sensor chip 2 a layer of porous silicon is generated, wherein between the membrane. 1 and the porous silicon layer is formed a cavity. This creates a monolithic thermal conductivity sensor.
- micromechanical micherieleitschreib-Sors invention is used advantageously for the analysis of gases and gas mixtures, which are analyzed in particular with regard to their nature and concentration.
- binary gas mixtures are suitable for a quantitative analysis. Because of their comparatively high thermal conductivity, hydrogen gas (H 2 ) and helium (He) can be analyzed easily and quickly.
Landscapes
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measuring Volume Flow (AREA)
Description
Die vorliegende Erfindung betrifft einen mikromechanischen Wärmeleitfähigkeitssensor. Insbesondere betrifft sie einen mikromechanischen Wärmeleitfähigkeitssensor, welcher eine durch Aussparung einer schlecht wärmeleitfähigen Grundplatte gebildete thermisch isolierte Membran, wenigstens ein auf der Membran aufgebrachtes Heizelement, wenigstens einen auf der Membran aufgebrachten temperaturabhängigen elektrischen Widerstand zur Messung der Temperatur der Membran (TM), sowie wenigstens einen weiteren außerhalb der Membran auf der Grundplatte aufgebrachten temperaturabhängigen elektrischen Widerstand zur Messung der Umgebungstemperatur (TU) umfasst. Ferner betrifft die Erfindung Verfahren zur Herstellung des erfindungsgemäßen Wärmeleitfähigkeitssensors, sowie dessen Verwendung.The present invention relates to a micromechanical thermal conductivity sensor. In particular, it relates to a micromechanical thermal conductivity sensor which comprises a thermally insulated membrane formed by recessing a base plate having poor thermal conductivity, at least one heating element applied to the membrane, at least one temperature dependent electrical resistance applied to the membrane for measuring the temperature of the membrane (T M ), and at least another temperature-dependent electrical resistance applied to the base plate outside the membrane for measuring the ambient temperature (T U ). Furthermore, the invention relates to methods for producing the thermal conductivity sensor according to the invention, as well as its use.
Die Messung der Wärmeleitfähigkeit wird vielfach zur Analyse von Gasen, insbesondere der quantitativen Analyse zweikomponentiger Gasgemische eingesetzt.The measurement of the thermal conductivity is often for analysis of gases, in particular the quantitative analysis of two-component Gas mixtures used.
Grundsätzlich gilt, dass die Wärmeleitfähigkeit eines Gases bzw. Gasgemisches mit der Masse der Gasmoleküle, ihrer Konzentration und der Temperatur variiert. Wird die (Misch-) Wärmeleitfähigkeit des Gases bzw. Gasgemisches bei bekannter Gastemperatur und bekannten Komponenten gemessen, so können über die Wärmeleitfähigkeit die Konzentrationen einzelner Komponenten des Gasgemisches genau bestimmt werden. Vor allem können die Konzentrationen von Wasserstoff (H2) und Helium (He) im Gemisch mit anderen Gasen, wie beispielsweise Luft, Sauerstoff (O2) , Stickstoff (N2), Ammoniak (NH3) , Argon (Ar) , Kohlendioxid (CO2), Kohlenmonoxid (CO), Chlor (Cl2) , Schwefelwasserstoff (H2S), Methan (CH3), Stickstoffmonoxid (NO), Distickstoffmonoxid (N2O) und Wasserdampf (H2O) gut gemessen werden, weil diese Gase im Vergleich zu den anderen Gasen ein besonders hohe Wärmeleitfähigkeit haben. So beträgt die Wärmeleitfähigkeit von Wasserstoff (H2) λwasserstoff = 0,84 Wm-1K-1 und Helium (He) ) λHelium = 0. 6 Wm-1K-1, während die Wärmeleitfähigkeit von Luft λLuft = 0, 012 Wm-1K-1 ungefähr um einen Faktor 5-7 kleiner ist.In principle, the thermal conductivity of a gas or gas mixture varies with the mass of the gas molecules, their concentration and the temperature. If the (mixed) thermal conductivity of the gas or gas mixture is measured at a known gas temperature and known components, the concentrations of individual components of the gas mixture can be determined precisely via the thermal conductivity. Above all, the concentrations of hydrogen (H 2 ) and helium (He) may be mixed with other gases such as air, oxygen (O 2 ), nitrogen (N 2 ), ammonia (NH 3 ), argon (Ar), carbon dioxide (CO 2 ), carbon monoxide (CO), chlorine (Cl 2 ), hydrogen sulfide (H 2 S), methane (CH 3 ), nitrogen monoxide (NO), nitrous oxide (N 2 O) and water vapor (H 2 O) are measured well because these gases have a particularly high thermal conductivity compared to the other gases. Thus, the thermal conductivity of hydrogen (H 2 ) λ hydrogen = 0.84 Wm -1 K -1 and helium (He)) λ helium = 0. 6 Wm -1 K -1 , while the thermal conductivity of air λ air = 0 , 012 Wm -1 K -1 is smaller by about a factor of 5-7.
Zur Messung der Wärmeleitfähigkeit wird ein Körper auf eine
Temperatur TK gebracht, die höher ist als die Umgebungstemperatur
TU. Ein den Körper umgebendes Gas(-gemisch) befindet
sich im allgemeinen auf Umgebungstemperatur. Wird beispielsweise
die Temperaturdifferenz ΔT = TK-TU konstant gehalten,
so ist die hierzu benötigte Heizleistung PH ein Maß für die
Wärmeleitfähigkeit des umgebenden Gases bzw. Gasgemisches.
Die Heizleistung PH ist direkt proportional zur konstant gehaltenen
Temperaturdifferenz ΔT, wobei sich die Proportionalitätskonstante
aus dem Produkt der Wärmeleitfähigkeit λ und
einem von der Messvorrichtung abhängigen (konstanten) Geometriefaktor
K ergibt. Dieser Zusammenhang ist in Gleichung (1)
beschrieben:
Zur Bestimmung der Wärmeleitfähigkeit werden in letzter Zeit zunehmend mikromechanische Wärmeleitfähigkeitssensoren auf Siliziumbasis entwickelt. Im Gegensatz zu herkömmlichen Wärmeleitfähigkeitssensoren zeichnen sich diese Sensoren durch eine geringe Leistungsaufnahme aus, die im wesentlichen nicht größer ist, als die Leistungsaufnahme der zur Signalverarbeitung notwendigen Elektronik. Darüber hinaus verfügen die miniaturisierten Sensoren über kurze Ansprechzeiten (Zeitkonstanten), welche bei den herkömmlichen Sensoren im allgemeinen nur durch Inkaufnahme einer erzwungenen Beströmung mit dem Messgas, d. h. einer Strömungsabhängigkeit zu erzielen sind. Dies macht jedoch einen universellen Einsatz letztendlich unmöglich. Schließlich sind solche mikromechanischen Wärmeleitfähigkeitssensoren auf Siliziumbasis wirtschaftlich in der Herstellung, weil auf übliche Verfahren bei der Fertigung integrierter Halbleiterbauelemente zurückgegriffen werden kann.To determine the thermal conductivity are lately increasingly micromechanical thermal conductivity sensors Silicon base developed. In contrast to conventional thermal conductivity sensors These sensors stand out a low power consumption, which is essentially not is greater than the power consumption of the signal processing necessary electronics. In addition, the miniaturized Sensors with short response times (time constants), which in the conventional sensors in general only by accepting a forced influx with the sample gas, d. H. to achieve a flow dependence are. However, this ultimately makes a universal use impossible. Finally, such micromechanical Silicon-based thermal conductivity sensors economical in the production, because of common manufacturing processes recourse to integrated semiconductor components can.
Der Aufbau eines typischen herkömmlichen mikromechanischen Wärmeleitfähigkeitssensors auf Siliziumbasis ist in Fig. 1 dargestellt und wird weiter unten diskutiert.The construction of a typical conventional micromechanical Silicon-based thermal conductivity sensor is shown in FIG. 1 and will be discussed below.
Ein grundsätzliches Problem bei der Messung der Wärmeleitfähigkeit eines umgebenden Gases ist der durch Konvektion des Gases bewirkte Wärmetransport mit einer damit einher gehenden Verfälschung des eigentlichen Wärmeleitfähigkeitswerts. Ein konvektiver Wärmetransport kann sich aus externen Gasbewegungen, die sich im Sensor bemerkbar machen, aber auch aus der zur Messung notwendigen Temperaturdifferenz zwischen Heizelement bzw. Membran und Gas ergeben.A fundamental problem in the measurement of thermal conductivity of a surrounding gas is by convection of the Gases caused heat transfer with a concomitant Falsification of the actual thermal conductivity value. One convective heat transport can result from external gas movements, which are noticeable in the sensor, but also from the for measuring necessary temperature difference between heating element or membrane and gas.
Zwar kann eine erzwungene Beströmung des Wärmeleitfähigkeitssensors mit dem zu messenden Gas durchaus erwünscht sein um einen schnellen Gasaustausch und damit kurze Ansprechzeiten zu ermöglichen, jedoch wird bei mikromechanischen Wärmeleitfähigkeitssensoren mit sehr geringen Messvolumina und einem damit ermöglichten inherent schnellen Gasaustausch jeglicher konvektive Wärmetransport als nachteilig angesehen.Although a forced flow of the thermal conductivity sensor be quite desirable with the gas to be measured a fast gas exchange and thus short response times however, micromechanical thermal conductivity sensors are used with very low measuring volumes and one thus allowing inherent fast gas exchange of any convective heat transport considered disadvantageous.
Um den konvektiven Wärmetransport zu unterbinden, wird der Sensor üblicherweise so eingesetzt, dass das Gasvolumen in der Nähe der Membran in Ruhe bleibt. Dies kann z. B. durch Abdecken der Membran mit eine Deckplatte erreicht werden.To prevent the convective heat transfer, the Sensor usually used so that the gas volume in the membrane remains at rest. This can be z. B. by Covering the membrane can be achieved with a cover plate.
Beispielsweise beschreibt die DE 37 115 11 C1 einen mikromechanischen Wärmeleitfähigkeitssensor zur Messung der Wärmeleitfähigkeit eines Gasgemisches, bei dem auf eine Trägerplatte aus Silizium eine Isolatorschicht aufgetragen ist, auf der durch Aufdampfen oder Sputtern mäanderförmige Dünnfilmwiderstände aufgebracht sind. Im Bereich der Dünnfilmwiderstände ist die Isolatorschicht unterätzt, so dass eine Grube in der Trägerplatte entsteht, die den unteren Teil der Messkammer des Sensors bildet. Auf der Trägerplatte mit den Dünnfilmwiderständen ruht eine Deckplatte aus Silizium, in die in Höhe der Dünnfilmwiderstände eine Grube eingeätzt ist, die den oberen Teil der Messkammer bildet. Die Deckplatte besitzt eine Öffnung, die als Diffusionskanal dem Gasgemisch den Zutritt zur Messkammer ermöglicht. Der Gasaustausch in der unteren Grube der Messkammer erfolgt durch Durchbrüche in der Isolatorschicht.For example, DE 37 115 11 C1 describes a micromechanical Thermal conductivity sensor for measuring the thermal conductivity a gas mixture in which on a support plate made of silicon, an insulator layer is applied on the by vapor deposition or sputtering meandering thin film resistors are applied. In the field of thin-film resistors the insulator layer is undercut, leaving a pit in the Support plate is formed, which is the lower part of the measuring chamber of the sensor. On the carrier plate with the thin-film resistors rests a cover plate of silicon, in the height the thin - film resistors a pit is etched, the forms the upper part of the measuring chamber. The cover plate has an opening which, as a diffusion channel, enters the gas mixture allows for the measuring chamber. The gas exchange in the bottom Pit of the measuring chamber takes place through breakthroughs in the Insulator layer.
Nachteilig bei diesem Wärmeleitfähigkeitssensor ist, dass die Abmessungen des Diffusionskanals jedenfalls so zu wählen sind, dass zum einen durch eine große Öffnung das Gas in der Messkammer möglichst schnell durch Diffusion ausgetauscht wird, zum anderen aber Gasbewegungen, die außerhalb der Messkammer auftreten, nicht in die Messkammer übertragen werden, was eine kleine Öffnung verlangt. Diese Aufgabe kann jedoch nur als Kompromiß zwischen den beiden Anforderungen gelöst werden, wobei eine gegebene Auslegung des Diffusionskanals im allgemeinen keinen universellen Einsatz mehr ermöglicht.A disadvantage of this thermal conductivity sensor is that the In any case, so choose dimensions of the diffusion channel are that on the one hand by a large opening the gas in the Measuring chamber replaced as quickly as possible by diffusion but on the other hand gas movements outside the measuring chamber occur, not be transferred to the measuring chamber, which requires a small opening. However, this task can only solved as a compromise between the two requirements be a given interpretation of the diffusion channel in general universal use no longer possible.
Weitere Wärmeleitfähigkeitssensoren mit einer Abdeckung sind aus JP1193638, DE 3837951 und US 5535614 bekannt.Further thermal conductivity sensors with a cover are known from JP1193638, DE 3837951 and US 5535614 known.
Aufgabe der vorliegenden Erfindung ist es, die Nachteile der im Stand der Technik bekannten mikromechanischen Wärmeleitfähigkeitssensoren zu überwinden. Insbesondere soll ein universell einsetzbarer Wärmeleitfähigkeitssensor angegeben werden, bei dem ein konvektiver Wärmetransport durch das zu messende Gas bzw. Gasgemisch weitestgehend vermieden wird.Object of the present invention is to overcome the disadvantages of known in the art micromechanical thermal conductivity sensors to overcome. In particular, should be a universal be specified usable thermal conductivity sensor, in which a convective heat transport through the to be measured Gas or gas mixture is largely avoided.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs
1 erfüllt. Vorteilhafte Ausgestaltungen der Erfindung
sind durch die Merkmale der abhängigen Ansprüche angegeben.This object is achieved by the characterizing features of the
Erfindungsgemäß wird ein mikromechanischen Wärmeleitfähigkeitssensor gezeigt, welcher eine durch Aussparung einer schlecht wärmeleitfähigen Grundplatte gebildete thermisch isolierte Membran, wenigstens ein auf der Membran aufgebrachtes Heizelement, wenigstens einen auf der Membran aufgebrachten temperaturabhängigen elektrischen Widerstand zur Messung der Temperatur der Membran, sowie wenigstens einen weiteren außerhalb der Membran auf der Grundplatte aufgebrachten temperaturabhängigen elektrischen Widerstand zur Messung der Umgebungstemperatur umfasst, wobei die Membran auf einer oder beiden ihrer Seiten von einer den Gasaustausch durch Diffusion ermöglichenden porösen Deckplatte abgedeckt ist, zwischen Membran und poröser Deckplatte eine Kavität ausgespart ist, die poröse Deckplatte auf der Grundplatte befestigt ist und die poröse Deckplatte aus einem porösen keramischen Material oder wenigstens teilweise aus porösem Silizium gefertigt ist. Der erfindungsgemäße Wärmeleitfähigkeitssensor kann also mit einer oder zwei porösen Deckplatten ausgestattet sein, d. h. eine oder zwei Kavitäten zwischen Membran und Deckplatte(n) aufweisen. According to the invention, a micromechanical thermal conductivity sensor which one by recess of a thermally conductive base plate formed thermally isolated membrane, at least one applied on the membrane Heating element, at least one applied to the membrane temperature-dependent electrical resistance for measurement the temperature of the membrane, as well as at least one other outside the membrane on the base plate applied temperature-dependent electrical resistance for measuring the ambient temperature includes, the membrane being supported on one or both sides thereof the gas exchange by diffusion permitting porous cover plate is covered, between membrane and porous Cover plate a cavity is recessed, the porous cover plate is fixed to the base plate and the porous Cover plate made of a porous ceramic material or at least partially made of porous silicon. The inventive Thermal conductivity sensor can thus with one or two porous Cover plates be equipped, d. H. one or two cavities between membrane and cover plate (s) have.
In vorteilhafter Weise wird durch die poröse(n) Deckplatte(n) eine Diffusion des umgebenden Gases bzw. Gasgemisches in die den Messraum bildende Kavität ermöglicht, ohne dass dabei das Messergebnis durch eine Konvektionsströmung des Gases verfälscht ist. Aufgrund der geringen Abmessung der Kavität(en), insbesondere durch deren geringe Höhe, wird der durch die Temperaturdifferenz zwischen Membran bzw. Heizelement und Deckplatte bewirkte konvektive Wärmetransport in Richtung einer Deckplatte wesentlich vermindert, so dass eine Konvektionsströmung des zu messenden Gases in einer Kavität insgesamt minimiert und im wesentlichen unterbunden wird. Die Ansprechzeit des Sensors wird durch den schnell stattfindenden Gasaustausch stark verringert. Ferner kann die Sensitivität des Sensors erhöht werden, weil durch die minimierte Konvektionsströmung des zu messenden Gases bzw. Gasgemisches die Möglichkeit besteht, eine relativ große Temperaturdifferenz zwischen Membran und Messgas einzusetzen. Darüber hinaus besteht die Möglichkeit den Sensor unabhängig von der Einbausituation universell einzusetzen.Advantageously, by the porous (n) cover plate (s) a diffusion of the surrounding gas or gas mixture in the allows the measuring space forming cavity without doing that Measurement result falsified by a convection flow of the gas is. Due to the small size of the cavity (s), in particular by their low height, which is due to the Temperature difference between membrane or heating element and Cover plate caused convective heat transport in the direction of a Cover plate significantly reduced, leaving a convection flow of the gas to be measured in a cavity in total minimized and substantially prevented. The response time The sensor is replaced by the fast gas exchange greatly reduced. Furthermore, the sensitivity of the Sensors are increased because of the minimized convection flow the gas or gas mixture to be measured the possibility exists, a relatively large temperature difference between Insert membrane and sample gas. In addition there is the possibility of the sensor regardless of the installation situation to be used universally.
Wie oben dargestellt, kann die poröse Deckplatte auf eine oder beide Seiten der (flächigen) Membran aufgebracht werden. Wird die poröse Deckplatte auf diejenige Seite der Grundplatte aufgebracht, welche die Aussparung zur Formung der Membran aufweist, bildet diese Aussparung nach Aufbringen der Deckplatte eine Kavität, die als Messraum für den Sensor verwendet wird. Wird die poröse Deckplatte auf die dieser Seite gegenüberliegende Seite der Grundplatte aufgebracht, so muss die poröse Deckplatte eine der Membran gegenüberliegend angeordnete Aussparung aufweisen, welche nach Aufbringen der Deckplatte eine Kavität bildet. Diese Kavität bildet dann einen Messraum für den Wärmeleitfähigkeitssensor. Der Sensor kann somit wahlweise über eine oder zwei Kavitäten (bzw. Messräume) für das zu messende Gas(-gemisch) verfügen.As shown above, the porous cover plate can be placed on a or both sides of the (flat) membrane are applied. If the porous cover plate on the one side of the base plate applied, which the recess for forming the Membrane, this recess forms after application of the Cover plate a cavity, which uses as a measuring space for the sensor becomes. Will the porous cover plate on this side applied opposite side of the base plate, so must the porous cover plate one of the membrane arranged opposite Have recess which after applying the Cover plate forms a cavity. This cavity then forms a Measuring chamber for the thermal conductivity sensor. The sensor Thus, either via one or two cavities (or Measuring chambers) for the gas (mixture) to be measured.
Die Grundplatte ist vorzugsweise aus Silizium gefertigt. Dies hat den Vorteil, dass zu weiteren Bearbeitung auf die in der Halbleitertechnik eingesetzten Verfahren, wie beispielsweise Aufdampfverfahren, Sputterverfahren, photolithographische Verfahren, Ätzverfahren und Passivierungsverfahren zurückgegriffen werden kann. So ist eine kostengünstige Herstellung der Sensoren möglich. Insbesondere können aus einem einzigen Silizium-Wafer eine Vielzahl von erfindungsgemäßen Sensoren hergestellt werden.The base plate is preferably made of silicon. This has the advantage that to further processing on in the Semiconductor technology used methods, such as Vapor deposition, sputtering, photolithographic Method, etching method and passivation method recourse can be. Such is a cost-effective production the sensors possible. In particular, from a single Silicon wafer a variety of sensors according to the invention getting produced.
Die poröse Deckplatte ist vorzugsweise aus SiC und Al2O3 gefertigt.The porous cover plate is preferably made of SiC and Al 2 O 3 .
Es ist bevorzugt, dass der thermische Ausdehnungskoeffizient des keramischen Materials dem thermischen Ausdehnungskoeffizienten von Silizium im wesentlichen gleich kommt, oder diesem zumindest benachbart ist. In diesem Fall haben Deckplatte(n) und Grundplatte bzw. Membran eine gleiche thermische Ausdehnung, wodurch in vorteilhafter Weise thermisch bedingte Spannungen nach Aufbringen der Deckplatte auf die Grundplatte vermieden bzw. minimiert werden können.It is preferable that the thermal expansion coefficient of the ceramic material the thermal expansion coefficient of silicon is substantially equal, or this at least adjacent. In this case, cover plate (s) and base plate or membrane a same thermal Expansion, which advantageously thermally induced Tensions after application of the cover plate on the Base plate can be avoided or minimized.
Die Dicke der zur Fertigung des Sensors verwendeten Grundplatte liegt vorzugsweise im Bereich von 200 - 600 µm, während die Membran vorzugsweise eine Dicke im Bereich von 0,6 - 2 µm aufweist. Ferner ist die Membran durch eine Fläche gekennzeichnet, die vorzugsweise im Bereich von 0,25 - 4 mm2 liegt. The thickness of the base plate used for the production of the sensor is preferably in the range of 200-600 μm, while the membrane preferably has a thickness in the range of 0.6-2 μm. Further, the membrane is characterized by a surface which is preferably in the range of 0.25 - 4 mm 2 .
Werden die Poren des porösen Materials der Deckplatte ausreichend klein gewählt werden, kann das passierende Gas (-gemisch) in äußerst vorteilhafter Weise während der Diffusion gefiltert werden. Je nach Porengröße des porösen Materials können durch diese Filterung Fremdstoffe, beispielsweise Ruß- und Staubpartikel oder mikrobiologische Verunreinigungen, aus dem Gas(-gemisch) entfernt werden.If the pores of the porous material of the cover plate are sufficient can be chosen small, the passing Gas (mixture) in a very advantageous manner during diffusion be filtered. Depending on the pore size of the porous material can by this filtering foreign substances, for example Soot and dust particles or microbiological contaminants, be removed from the gas (mixture).
Das Heizelement und die temperaturabhängigen elektrischen Widerstände sind vorzugsweise aus Silber (Ag), Gold (Au), Nickel (Ni) oder Platin (Pt) gefertigt. Bei einer besonders vorteilhaften Ausgestaltung der Erfindung ist der Querschnitt des Heizelements im Bereich der Kontaktierung und in der Heizzone unterschiedlich groß. Dies kann vorteilhaft beim Aufsintern der Deckplatte auf die Grundplatte eingesetzt werden.The heating element and the temperature-dependent electrical resistances are preferably silver (Ag), gold (Au), nickel (Ni) or platinum (Pt) manufactured. In a particularly advantageous Embodiment of the invention is the cross section of the heating element in the contact area and in the Heating zone varies in size. This can be advantageous in the Sintering the cover plate can be used on the base plate.
Die temperaturabhängigen elektrischen Widerstände bzw. das Heizelement können durch eine Passivierungsschicht gegen den Einfluss chemisch agressiver Gase bzw. Gasgemische geschützt werden. Als Substanzen für die Passivierungsschicht bieten sich vor allem Siliziumverbindung wie Siliziumoxid (SiO2) und Siliziumnitrid (Si3N4) an.The temperature-dependent electrical resistances or the heating element can be protected by a passivation layer against the influence of chemically aggressive gases or gas mixtures. As substances for the passivation layer, silicon compounds such as silicon oxide (SiO 2 ) and silicon nitride (Si 3 N 4 ) are particularly suitable.
Der erfindungsgemäße Wärmeleitfähigkeitssensor kann hergestellt werden, indem die poröse Deckplatte auf die Grundplatte geklebt wird. Eine Klebung von Grund- und Deckplatte bietet sich insbesondere dann an, wenn die verwendeten Materialien einen unterschiedlichen thermischen Ausdehnungskoeffizienten haben, da eine Klebeverbindung in der Lage ist, eine unterschiedliche thermische Ausdehnung auszugleichen. Dies vermeidet thermisch bedingte Spannungen in den verbundenen Materialien. Als Klebstoffe können insbesondere silbergefüllte Klebstoffe mit angepassten Wärmeausdehnungskoeffiziente verwendet werden.The thermal conductivity sensor according to the invention can be produced by placing the porous cover plate on the base plate is glued. An adhesion of base and cover plate is particularly suitable if the materials used a different thermal expansion coefficient because an adhesive bond is capable of compensate for a different thermal expansion. This avoids thermally induced stresses in the connected Materials. As adhesives, in particular silver-filled Adhesives with adjusted thermal expansion coefficients be used.
Bei einem nur geringen Unterschied der thermischen Ausdehnungskoeffizienten zwischen der beispielsweise aus einem porösen keramischen Material bestehenden porösen Deckplatte und der Grundplatte ist auch eine direkte Umhüllung der Grundplatte mit Keramik durch Aufsintern möglich. Hierfür wird vor dem Aufbringen des zu sinternden Materials der porösen Deckplatte eine nach dem Sintern zu entfernende Abdeckschicht zur Bildung der Kavität in der porösen Deckplatte auf die Grundplatte aufgebracht.With only a small difference in the thermal expansion coefficient between the example of a porous ceramic material existing porous cover plate and the base plate is also a direct cladding of the base plate with ceramic by sintering possible. For this purpose will be the application of the material to be sintered the porous cover plate a cover layer to be removed after sintering Formation of the cavity in the porous cover plate on the base plate applied.
Die für den Sinterprozess notwendige Wärme kann von außen zugeführt werden. Jedoch besteht auch die Möglichkeit, dass der Sinterprozess allein durch die Heizwärme des Heizelemements bewirkt wird. In diesem Fall kann der Durchmesser des Heizelements, beispielsweise ein Platindraht, in der Heizzone wesentlich dicker als im Bereich seiner Kontaktierung sein. In besonders vorteilhafter Weise kann auch die Abdeckschicht durch die Heizwärme des Heizelements entfernt und so eine Kavität definierter Abmessungen gebildet werden.The heat required for the sintering process can be supplied from the outside become. However, there is also the possibility that the Sintering process solely by the heating heat of the heating element is effected. In this case, the diameter of the heating element, For example, a platinum wire, in the heating zone essential thicker than in the area of its contact. In Particularly advantageously, the cover layer removed by the heating heat of the heating element and so a cavity defined dimensions are formed.
Ferner kann der erfindungsgemäße Wärmeleitfähigkeitssensor unter Vermeidung des Fügeprozesses zwischen Grund- und Deckplatte monolithisch gefertigt werden. Hierfür wird eine Schicht aus porösem Silizium auf dem eigentlichen Sensorgrundmaterial aus Silizium erzeugt, wobei dies so erfolgt, dass zwischen der anschließend ausgebildeten Membran und der Schicht aus porösem Silizium eine Kavität ausgebildet wird. Furthermore, the thermal conductivity sensor according to the invention while avoiding the joining process between the base and cover plate be made monolithic. For this is a Layer of porous silicon on the actual sensor base material made of silicon, this being done, that between the subsequently formed membrane and the Layer of porous silicon, a cavity is formed.
Im folgenden werden unter Bezugnahme auf die beigefügten
Zeichnungen mehrere Ausführungsbeispiele des erfindungsgemäßen
Wärmeleitfähigkeitssensors, sowie Verfahren zu deren Herstellung
dargestellt.
Wie aus dem unteren Teil von Fig. 1 erkennbar ist, werden bei
einem typischen herkömmlichen mikromechanischen Wärmeleitfähigkeitssensor
ein Heizelement 3 in Form eines Pt-Heizdrahtes
und ein temperaturabhängiger elektrischer Widerstand 5 zur
Erfassung der Temperatur der Membran TM mäanderförmig auf der
Grundplatte 2 bzw. der Membran 1 aus Silizium angeordnet. Außerhalb
der Membran 1 befindet sich ein weiterer temperaturabhängiger
elektrischer Widerstand 16 zur Erfassung der Umgebungstemperatur
TU. Die Grundplatte 2 bildet zusammen mit den
aufgebrachten elektrischen Strukturen einen Siliziumsensorchip
zur Messung der Wärmeleitfähigkeit. Im oberen Teil von
Fig. 1 ist zu erkennen, dass die Membran 1 als Aussparung der
Grundplatte 2 ausgebildet ist.As can be seen from the lower part of Fig. 1, in a typical conventional micromechanical thermal conductivity sensor, a
Zur Messung der Wärmeleitfähigkeit des umgebenden Gases bzw. Gasgemisches wird beispielsweise die zur Konstanthaltung der Differenz zwischen TM und TU benötigte Heizleistung des Heizelements bestimmt. Aufgrund der geringen Masse der dünnen Membran und der darauf aufgebrachten Materialien, können sehr geringe thermische Zeitkonstanten erreicht werden, die üblicherweise in der Größenordnung von Millisekunden und darunter liegen. Darüber hinaus ist wegen der dünnen Membran die Wärmeableitung über das umgebende Gas wesentlich größer als über das Membranmaterial selbst, wodurch eine große Empfindlichkeit des Sensors gegenüber Änderungen der Wärmeleitfähigkeit des umgebenden Gases resultiert. Die hohe Empfindlichkeit des Sensors eröffnet auch die Möglichkeit die Wärmeableitung insgesamt zu vermindern, d. h. die Temperaturdifferenz ΔT zwischen Membran und Umgebung abzusenken, was sich in einer Verminderung der elektrischen Verlustleistung des Sensors widerspiegelt.To measure the thermal conductivity of the surrounding gas or gas mixture, for example, the heat output of the heating element required to keep the difference between T M and T U constant is determined. Due to the low mass of the thin membrane and the materials deposited thereon, very low thermal time constants, typically on the order of milliseconds and less, can be achieved. Moreover, because of the thin membrane, the heat dissipation through the surrounding gas is substantially greater than over the membrane material itself, resulting in a high sensitivity of the sensor to changes in the thermal conductivity of the surrounding gas. The high sensitivity of the sensor also opens up the possibility of reducing overall heat dissipation, ie to lower the temperature difference ΔT between the membrane and the environment, which is reflected in a reduction in the electrical power loss of the sensor.
In Fig. 2 ist eine Ausführungsform des erfindungsgemäßen Wärmeleitfähigkeitssensors
dargestellt. Auf beiden Seiten des
Siliziumsensorchips, der sich aus der Grundplatte 2 mit den
aufgebrachten stromleitenden Strukturen 3, 5 zusammensetzt,
ist eine Deckplatte 8 aus porösem Keramik aufgebracht. Die
Aussparung der Grundplatte 2 bildet zusammen mit der Deckplatte
8 eine Kavität 6, die als Messraum für den Sensor eingesetzt
wird. Auf der anderen Seite der Membran 1 ist eine
Aussparung in der Deckplatte 8 ausgebildet, die nach Aufbringen
der Deckplatte 8 auf die Grundplatte 2 eine Kavität 4
formt, die als weiterer Messraum für den Sensor dient. Die
beiden Deckplatten 8 sind jeweils auf den Siliziumsensorchip
aufgeklebt. Die Klebeschichten 9 sind geeignet, etwaige Differenzen
in den thermischen Ausdehnung der keramischen Deckplatten
8 und des Siliziumsensorchips auszugleichen.In Fig. 2 is an embodiment of the thermal conductivity sensor according to the invention
shown. On both sides of the
Silicon sensor chips, resulting from the
Fig. 3 zeigt eine weitere Ausführungsform des erfindungsgemäßen
Wärmeleitfähigkeitssensors. Hierbei ist beiderseits der
Membran 1 eine Deckplatte aus porösem keramischen Material
auf den Siliziumsensorchip aufgesintert. Das Aufsintern der
Deckplatten 8 ist wegen der fehlenden Möglichkeit unterschiedliche
thermische Ausdehnungen zwischen Deckplatten und
Silizumsensorchip auszugleichen, nur bei sehr ähnlichen bzw.
gleichem thermischen Ausdehnungskoeffizienten des keramischen
Materials der Deckplatten und des Siliziumsensorchips angebracht.
Vor dem Aufbringen einer Paste oder Dispersion des
keramischen Materials für die Deckplatten 8 auf den Siliziumsensorchip
wird im Bereich des Heizelements 3 und/oder der
Membran 1 eine Abdeckschicht 22 aufgebracht, die nach dem
Sintern des Keramikmaterials entfernt wird. An der Stelle der
vorherigen Abdeckschicht 22 bleiben die Kavitäten 4, 6 übrig.Fig. 3 shows a further embodiment of the invention
Thermal conductivity sensor. Here is the both sides of
Membrane 1 a cover plate made of porous ceramic material
sintered on the silicon sensor chip. The sintering of the
Diese Fertigungsfolge ist in Fig. 3 veranschaulicht. Fig. 3a)
zeigt den Siliziumsensorchip 2. Fig. 3b) zeigt den Siliziumsensorchip
2 mit aufgebrachter Abdeckschicht 22. Fig. 3c)
zeigt den Siliziumsensorchip 2 mit aufgebrachter Abdeck-schicht
22, sowie dem beiderseits des Siliziumsensorchips
aufgebrachten keramischen Material der Deckplatten 8. Fig.
4d), schließlich, zeigt die nach den Sintern und Entfernen
der Abdeckschicht 22 entstandenen Kavitäten 4, 6.This manufacturing sequence is illustrated in FIG. 3. Fig. 3a)
shows the
Sowohl das Sintern des keramischen Materials der Deckplatten
8, wie auch das Entfernen der Abdeckschicht 22 kann durch die
Heizwärme des Pt-Heizdrahtes 3 bewirkt werden. Hiefür besteht
die Abdeckschicht aus einem weniger hitzebeständigen, beispielsweise
organischen (Opfer-)Material. Über die Schichtdicke
dieses während des Sinterprozesses zerfallenden Materials
kann eine definierte Kavität zwischen Pt-Heizdraht und
poröser Keramikumhüllung erstellt werden. Der Pt-Heizdraht 3
weist hierfür einen unterschiedlichen Querschnitt für die
Kontaktierung und im Bereich der Heizzone auf. Zur elektrischen
Kontaktierung ist eine Bond-Verbindung 11 auf dem Siliziumsensorchip
2 aufgebracht.Both the sintering of the ceramic material of the
Fig. 4 zeigt zwei weitere Ausführungsformen des erfindungsgemäßen Wärmeleitfähigkeitssensors. Bei diesen Ausführungsformen wird anstelle einer porösen Keramik für die Deckplatten 8 poröses Silizium verwendet. Wegen des gleichen thermischen Ausdehnungskoeffizienten von Deckplatten und Siliziumsensorchip werden thermisch bedingte Materialspannungen von vorneherein vermieden.Fig. 4 shows two further embodiments of the invention Thermal conductivity sensor. In these embodiments is replaced by a porous ceramic for the cover plates. 8 used porous silicon. Because of the same thermal Expansion coefficients of cover plates and silicon sensor chip are thermally induced material stresses from the outset avoided.
Fig. 4a) zeigt den Siliziumsensorchip 2. In Fig. 4b) ist ein
Siliziumwafer 12 mit einem porösen Bereich 13 dargestellt,
wobei der Siliziumwafer 12 im porösen Bereich 13 eine Aussparung
aufweist. Der Siliziumwafer 12 wird beiderseits der
Membran 1 auf den Siliziumsensorchip 2 gefügt, wobei der poröse
Bereich 13 jeweils über der Membran 1 zu liegen kommt.Fig. 4a) shows the
Fig. 4c) zeigt eine Variante, bei der der Siliziumwafer 12
auf der Seite der Membran 1, auf der sich die Aussparung des
Siliziumsensorchips 2 befindet, so angeordnet ist, dass die
Kavitäten des Siliziumwafers 12 und des Siliziumsensor chips 2
eine gemeinsame Kavität mit größeren Volumen bilden.4 c) shows a variant in which the
Fig. 4d) zeigt eine weitere Variante, bei der der Siliziumwafer
12 auf der Seite der Membran 1, auf der sich die Aussparung
des Siliziumsensorchips 2 befindet, so angeordnet ist,
dass die Kavität des Siliziumsensorchips 2 unverändert
bleibt. Die Anordnung des Siliziumwafers 12 auf der jeweils
gegenüberliegenden Membranseite ist bei beiden Varianten der
Fig. 4c) und 4d) gleich.Fig. 4d) shows a further variant in which the
Bei einer besonders vorteilhaften Abwandlung der beiden oben genannten Varianten kann der aufwändige Fügevorgang vermieden werden, indem bereits auf dem Sensorchip 2 eine Schicht aus porösem Silizium erzeugt wird, wobei zwischen der Membran 1 und der porösen Siliziumschicht eine Kavität ausgebildet ist. Auf diese Weise entsteht ein monolithischer Wärmeleitfähigkeitssensor.In a particularly advantageous modification of the above two mentioned variants, the complex joining process can be avoided be by already on the sensor chip 2 a layer of porous silicon is generated, wherein between the membrane. 1 and the porous silicon layer is formed a cavity. This creates a monolithic thermal conductivity sensor.
Der erfindungsgemäße mikromechanische Wärmeleitfähigkeitssen-sors wird in vorteilhafter Weise zur Analyse von Gasen und Gasgemischen eingesetzt, wobei diese insbesondere bezüglich ihrer Art und Konzentration analysiert werden. Hierbei eignen sich vor allem binäre Gasgemische für eine quantitative Analyse. Wegen ihrer vergleichsweise hohen Wärmeleitfähigkeit können Wasserstoffgas (H2) und Helium (He) einfach und schnell analysiert werden. The micromechanical Wärmeleitfähigkeitssen-Sors invention is used advantageously for the analysis of gases and gas mixtures, which are analyzed in particular with regard to their nature and concentration. In particular, binary gas mixtures are suitable for a quantitative analysis. Because of their comparatively high thermal conductivity, hydrogen gas (H 2 ) and helium (He) can be analyzed easily and quickly.
- 11
- Membranmembrane
- 22
- Grundplattebaseplate
- 33
- Heizelementheating element
- 44
- Kavitätcavity
- 55
- temperaturabhängiger elektrischer Widerstand zur Erfassung der Membrantemperaturtemperature-dependent electrical resistance to Detection of the membrane temperature
- 66
- Kavitätcavity
- 77
- temperaturabhängiger elektrischer Widerstand zur Erfassung der Umgebungstemperaturtemperature-dependent electrical resistance to Detection of the ambient temperature
- 88th
- poröse Deckplatteporous cover plate
- 99
- Klebeschichtadhesive layer
- 1010
- Abdeckschichtcovering
- 1111
- Bond-VerbindungBond connection
- 1212
- Siliziumwafer mit porösem BereichSilicon wafer with porous area
- 1313
- pöröser Bereich des Siliziumwafersporous area of the silicon wafer
Claims (20)
- Micromechanical thermal conductivity sensor, which has a thermally insulated membrane (1) which is formed by a cut out in a poorly thermally conductive baseplate (2), at least one heating element (3) which is fitted on the membrane (1), at least one temperature-dependent electrical resistor (5) which is fitted on the membrane in order to measure the temperature of the membrane (TK), as well as at least one further temperature-dependent electrical resistor (7) which is fitted on the baseplate away from the membrane in order to measure the ambient temperature (TU), with the membrane (1) being covered on one or both of its faces by a porous covering plate (8) which allows gas exchange by diffusion, with a cavity (4, 6) being cut out between the membrane (1) and the porous covering plate (8), the porous covering plate (8) being mounted on the baseplate, and the porous covering plate (8) being manufactured from a porous ceramic material, or at least partially from porous silicon.
- Micromechanical thermal conductivity sensor according to Claim 1, characterized in that the porous covering plate (8) has a cutout (4) which forms the cavity.
- Micromechanical thermal conductivity sensor according to Claim 1 or 2, characterized in that the baseplate (2) is manufactured from silicon.
- Micromechanical thermal conductivity sensor according to one of the preceding claims, characterized in that the porous covering plate (8) is manufactured from SiC or A1203.
- Micromechanical thermal conductivity sensor according to Claim 4, characterized in that the thermal coefficient of expansion of the ceramic material is essentially the same as or similar to the thermal coefficient of expansion of silicon.
- Micromechanical thermal conductivity sensor according to one of the preceding claims, characterized in that the membrane (1) has a surface in the region of 0.25 to 2 µm.
- Micromechanical thermal conductivity sensor according to one of the preceding claims, characterized in that the membrane (1) has a thickness in the range from 0.6 to 2 µm.
- Micromechanical thermal conductivity sensor according to one of the preceding claims, characterized in that the cutout in the porous covering plate (8) has a depth in the range from 0.1 to 2 mm.
- Micromechanical thermal conductivity sensor according to one of the preceding claims, characterized in that the porous covering plate (8) provides filtering for the surrounding gas or gas mixture.
- Micromechanical thermal conductivity sensor according to one of the preceding claims, characterized in that the heating element (3) and the temperature-dependent electrical resistors (5, 7) are manufactured from silver (Ag), gold (Au), nickel (Ni) or platinum (Pt).
- Micromechanical thermal conductivity sensor according to one of the preceding claims, characterized in that the heating element (3) has a different cross section for making contact and in the area of the heating zone.
- Micromechanical thermal conductivity sensor according to one of the preceding claims, characterized in that the temperature-dependent electrical resistors (5, 7) are protected against the influence of chemically aggressive gases or gas mixtures by means of a passivation layer, in particular a silicon compound such as silicon oxide (SiO2) and silicon nitride (Si3N4).
- Method for production of the micromechanical thermal conductivity sensor according to one of Claims 1-12, characterized in that the porous covering plate (8) is adhesively bonded to the baseplate (2).
- Method for production of the micromechanical thermal conductivity sensor according to one of Claims 1-12, characterized in that the porous covering plate (8) is sintered to the baseplate (2).
- Method according to Claim 14, characterized in that a covering layer (10), which can be removed after sintering, is applied to the baseplate (2) before the application of the material of the porous covering plate (8) to be sintered.
- Method according to Claim 14 or 15, characterized in that the heat which is required for sintering is produced by the heating element (3).
- Method according to Claims 15 and 16, characterized in that the covering layer (10) is removed by the heat produced by the heating element (3).
- Method for production of the micromechanical thermal conductivity sensor according to one of Claims 1-12, characterized in that the thermal conductivity sensor is manufactured monolithically by producing a layer of porous silicon, a membrane adjacent to the layer of porous silicon, as well as a cavity which is arranged between the layer of porous silicon and the membrane, on the baseplate.
- Use of the micromechanical thermal conductivity sensor according to one of Claims 1-12 for analysis, in particular quantitative analysis, of gases and gas mixtures.
- Use of the micromechanical thermal conductivity sensor according to Claim 19 for analysis of a gas mixture which contains hydrogen gas (H2) and/or helium (He).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10144873A DE10144873A1 (en) | 2001-09-12 | 2001-09-12 | Micromechanical heat conductivity sensor used for analyzing gas mixtures containing hydrogen and/or helium has a thermally insulating membrane covered on one or both of its sides by a porous covering plate which permits gas diffusion |
DE10144873 | 2001-09-12 | ||
PCT/DE2002/003130 WO2003025557A2 (en) | 2001-09-12 | 2002-08-27 | Micromechanical heat conductivity sensor having a porous cover |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1428017A2 EP1428017A2 (en) | 2004-06-16 |
EP1428017B1 true EP1428017B1 (en) | 2005-11-30 |
Family
ID=7698739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02758161A Expired - Lifetime EP1428017B1 (en) | 2001-09-12 | 2002-08-27 | Micromechanical heat conductivity sensor having a porous cover |
Country Status (5)
Country | Link |
---|---|
US (1) | US7452126B2 (en) |
EP (1) | EP1428017B1 (en) |
JP (1) | JP2005505758A (en) |
DE (2) | DE10144873A1 (en) |
WO (1) | WO2003025557A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101017146B (en) * | 2006-02-08 | 2010-05-12 | 周玉成 | Detecting analysis method for heat conduction efficiency of plate and system thereof |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2401183B (en) * | 2003-04-29 | 2006-10-18 | Terence Mcburney | Probe |
JP4578990B2 (en) * | 2004-03-30 | 2010-11-10 | シチズンホールディングス株式会社 | Exterior structure for gas sensor |
EP2282198A1 (en) * | 2004-11-24 | 2011-02-09 | Sensirion Holding AG | Method for applying a layer to a substrate |
JP2006153782A (en) * | 2004-11-30 | 2006-06-15 | Mitsuteru Kimura | Gas-sensing device having porous lid |
DE102005016002A1 (en) * | 2005-04-07 | 2006-10-12 | Robert Bosch Gmbh | Sensor module, in particular for an air conditioning system |
US20060276008A1 (en) * | 2005-06-02 | 2006-12-07 | Vesa-Pekka Lempinen | Thinning |
DE102005033867A1 (en) * | 2005-07-20 | 2007-01-25 | Robert Bosch Gmbh | Thermal conductivity sensor, for gas thermal conductivity measurement, has membrane with micro-mechanical surface together with heater and thermo element to measure temperature |
WO2007036983A1 (en) * | 2005-09-27 | 2007-04-05 | Yamatake Corporation | Thermal conductivity measuring method and device, and gas component ratio measuring device |
JP4868604B2 (en) * | 2005-09-27 | 2012-02-01 | 株式会社山武 | Thermal conductivity measuring device, gas component ratio measuring device |
DE102006031772A1 (en) * | 2006-07-10 | 2008-01-17 | Robert Bosch Gmbh | Method for producing a sensor element and sensor element |
US7670046B2 (en) * | 2007-06-18 | 2010-03-02 | Iliya Mitov | Filled hotwire elements and sensors for thermal conductivity detectors |
US7972865B2 (en) * | 2008-08-26 | 2011-07-05 | Ut-Battelle, Llc | Sensor for detecting and differentiating chemical analytes |
JP5055349B2 (en) * | 2009-12-28 | 2012-10-24 | 日立オートモティブシステムズ株式会社 | Thermal gas sensor |
US9128028B2 (en) * | 2010-07-29 | 2015-09-08 | Honeywell International Inc. | Thermal conductivity detectors |
JP5136868B2 (en) * | 2010-08-18 | 2013-02-06 | 横河電機株式会社 | Thermal conductivity detector and gas chromatograph using the same |
DE102010047159B4 (en) * | 2010-09-30 | 2015-03-05 | Dräger Medical GmbH | Apparatus and method for measuring the concentration of carbon dioxide in a gas sample |
US9568448B2 (en) | 2011-08-25 | 2017-02-14 | Georgia Tech Research Corporation | Gas sensors and methods of preparation thereof |
US9557285B2 (en) | 2011-08-25 | 2017-01-31 | Georgia Tech Research Corporation | Gas sensors and methods of preparation thereof |
DE102011121213B3 (en) * | 2011-12-06 | 2013-03-28 | Bundesrepublik Deutschland, vertr.d.d. Bundesministerium für Wirtschaft und Technologie, d.vertr.d.d. Präsidenten der Physikalisch-Technischen Bundesanstalt | Method for measuring e.g. heat conductivity of liquid, involves determining total transportation magnitude of fluid-filled body from measurement values, and determining thermal transportation magnitude from total transportation magnitude |
DE102012019657B3 (en) | 2012-10-08 | 2013-10-31 | Bundesrepublik Deutschland, endvertreten durch die Physikalisch-Technische Bundesanstalt | A method for determining a thermal transport size and a flow velocity in a flowing medium and thermal transport size measuring arrangement |
KR101993782B1 (en) | 2012-12-24 | 2019-07-02 | 한국전자통신연구원 | dual side micro gas sensor and manufacturing method of the same |
US9440847B2 (en) * | 2013-10-03 | 2016-09-13 | POSiFA MICROSYSTEMS, INC. | Single silicon wafer micromachined thermal conduction sensor |
US9335231B2 (en) * | 2014-03-25 | 2016-05-10 | Mks Instruments, Inc. | Micro-Pirani vacuum gauges |
CN105136871A (en) * | 2015-06-19 | 2015-12-09 | 上海集成电路研发中心有限公司 | Micro thermal conductivity detector structure and processing and manufacturing method thereof |
JP6722989B2 (en) * | 2015-08-31 | 2020-07-15 | 日立オートモティブシステムズ株式会社 | Gas sensor device |
DE102015222064A1 (en) * | 2015-11-10 | 2017-05-11 | Robert Bosch Gmbh | Apparatus and method for detecting a gas component |
DE102016216373A1 (en) | 2016-08-31 | 2018-03-01 | Robert Bosch Gmbh | Protective device for a sensor and sensor for detecting a concentration of carbon dioxide in air |
DE102017124256A1 (en) | 2016-10-29 | 2018-05-03 | Sendsor Gmbh | Sensor and method for measuring the properties of the respiratory gas |
US10852261B2 (en) * | 2016-10-29 | 2020-12-01 | Sendsor Gmbh | Sensor and method for measuring respiratory gas properties |
DE102016223834A1 (en) * | 2016-11-30 | 2018-05-30 | Robert Bosch Gmbh | Sensor element for detecting at least one property of a fluid medium in at least one measuring space |
DE102017215527A1 (en) * | 2017-09-05 | 2019-03-07 | Robert Bosch Gmbh | Gas sensor for measuring a concentration of an analysis gas |
DE102018207689B4 (en) * | 2018-05-17 | 2021-09-23 | Robert Bosch Gmbh | Method for producing at least one membrane arrangement, membrane arrangement for a micromechanical sensor and component |
DE102019130755A1 (en) * | 2019-11-14 | 2021-05-20 | Tdk Corporation | Sensor device, method for producing a sensor device and sensor assembly |
DE102022002808B3 (en) * | 2022-08-03 | 2023-03-02 | Sew-Eurodrive Gmbh & Co Kg | Device and method for measuring a thermal conductivity of a test piece |
DE102023109571A1 (en) | 2023-04-17 | 2024-10-17 | Archigas GmbH | Sensor element with membrane and combined heating and temperature measuring conductor tracks |
Family Cites Families (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE37252C (en) | H. PIEPER FILS in Lüttich | Apparatus for forming the arc in the electric arc lamp protected by patent no. 35423 | ||
US3793605A (en) * | 1971-07-16 | 1974-02-19 | Signetics Corp | Ion sensitive solid state device and method |
DE2830778C2 (en) * | 1978-07-13 | 1985-10-31 | Robert Bosch Gmbh, 7000 Stuttgart | Electrochemical measuring sensor with improved adhesive strength of the electrode system on the solid electrolyte |
DE2852647C2 (en) * | 1978-12-06 | 1986-04-30 | Robert Bosch Gmbh, 7000 Stuttgart | Process for the production of a layer system on solid electrolytes for electrochemical applications |
DE2907032C2 (en) * | 1979-02-23 | 1984-06-20 | Robert Bosch Gmbh, 7000 Stuttgart | Polarographic oxygen sensor for gases, in particular for exhaust gases from internal combustion engines |
DE3118936C2 (en) * | 1981-05-13 | 1985-07-04 | Drägerwerk AG, 2400 Lübeck | Use of a measuring method for gaseous or vaporous media and a device for this |
DE3120159A1 (en) * | 1981-05-21 | 1982-12-09 | Bosch Gmbh Robert | ELECTROCHEMICAL PROBE FOR DETERMINING THE OXYGEN CONTENT IN GASES |
JPS5848846A (en) * | 1981-09-17 | 1983-03-22 | Matsushita Electric Ind Co Ltd | Sensor for oxygen density |
EP0095277A3 (en) * | 1982-05-26 | 1984-07-04 | City Technology Limited | Gas sensor |
DE3724966C3 (en) * | 1986-07-29 | 1996-03-21 | Sharp Kk | sensor |
DE3711511C1 (en) * | 1987-04-04 | 1988-06-30 | Hartmann & Braun Ag | Method for determining gas concentrations in a gas mixture and sensor for measuring thermal conductivity |
JPH01193638A (en) | 1988-01-27 | 1989-08-03 | Sharp Corp | Moisture detecting element |
DE3837951C3 (en) | 1988-11-09 | 1995-06-14 | Winter Gaswarnanlagen Gmbh U | Device for measuring the concentration of an undesired gas in air |
DE3921526A1 (en) * | 1989-06-30 | 1991-01-10 | Draegerwerk Ag | DIFFUSION BARRIER WITH TEMPERATURE PROBE FOR AN ELECTROCHEMICAL GAS SENSOR |
US5535614A (en) | 1993-11-11 | 1996-07-16 | Nok Corporation | Thermal conductivity gas sensor for measuring fuel vapor content |
GB2289944A (en) * | 1994-06-01 | 1995-12-06 | Ranks Hovis Mcdougall Plc | Gas sensing system |
GB9501461D0 (en) * | 1994-06-20 | 1995-03-15 | Capteur Sensors & Analysers | Detection of ozone |
US5557972A (en) * | 1994-09-13 | 1996-09-24 | Teledyne Industries, Inc. | Miniature silicon based thermal vacuum sensor and method of measuring vacuum pressures |
JP3162957B2 (en) | 1995-06-22 | 2001-05-08 | 株式会社ガスター | CO sensor |
US5841021A (en) * | 1995-09-05 | 1998-11-24 | De Castro; Emory S. | Solid state gas sensor and filter assembly |
JPH0996622A (en) * | 1995-09-29 | 1997-04-08 | Matsushita Electric Ind Co Ltd | Gas sensor and its manufacture |
US6327892B1 (en) * | 1997-05-16 | 2001-12-11 | Japan Pionics Co., Ltd. | Apparatus and method for measuring oxygen diffusing capacity and heating packet |
US5989398A (en) * | 1997-11-14 | 1999-11-23 | Motorola, Inc. | Calorimetric hydrocarbon gas sensor |
US6265222B1 (en) * | 1999-01-15 | 2001-07-24 | Dimeo, Jr. Frank | Micro-machined thin film hydrogen gas sensor, and method of making and using the same |
GB9919906D0 (en) * | 1999-08-24 | 1999-10-27 | Central Research Lab Ltd | Gas sensor and method of manufacture |
GB0019649D0 (en) * | 2000-08-10 | 2000-09-27 | Central Research Lab Ltd | A pellet resistor sensor |
DE10054484A1 (en) * | 2000-11-03 | 2002-05-08 | Bosch Gmbh Robert | Micromechanical component and corresponding manufacturing method |
DE10117486A1 (en) * | 2001-04-07 | 2002-10-17 | Bosch Gmbh Robert | Method for producing a semiconductor component and a semiconductor component produced using the method |
JP4009046B2 (en) * | 2001-04-10 | 2007-11-14 | 浜松ホトニクス株式会社 | Infrared sensor |
US6691554B2 (en) * | 2001-04-11 | 2004-02-17 | The University Of Chicago | Nanocrystalline films for gas-reactive applications |
DE10144862B4 (en) * | 2001-09-12 | 2006-06-29 | Drägerwerk AG | Electrochemical gas sensor with diamond electrode |
ATE421690T1 (en) * | 2001-11-15 | 2009-02-15 | Riken Keiki Kk | GAS SENSOR |
GR1004106B (en) * | 2002-01-24 | 2003-01-13 | Εκεφε "Δημοκριτος" Ινστιτουτο Μικροηλεκτρονικης | Low power silicon thermal sensors and microfluidic devices based on the use of porous silicon sealed air cavity technology or microchannel technology |
GB2392721A (en) * | 2002-09-03 | 2004-03-10 | E2V Tech Uk Ltd | Gas sensors |
US20040265440A1 (en) * | 2002-09-16 | 2004-12-30 | Agcert International, Llc | Food borne pathogen sensor and method |
US6807843B1 (en) * | 2003-10-11 | 2004-10-26 | C-Squared, Inc. | Gas sensor |
US7249490B2 (en) * | 2004-01-27 | 2007-07-31 | H2Scan, Llc | Isolated gas sensor configuration |
US7795723B2 (en) * | 2004-02-05 | 2010-09-14 | Analog Devices, Inc. | Capped sensor |
JP4424182B2 (en) * | 2004-12-06 | 2010-03-03 | 株式会社デンソー | Exhaust temperature estimation device for internal combustion engine |
JP4023503B2 (en) * | 2005-07-11 | 2007-12-19 | 株式会社デンソー | Gas concentration detector |
-
2001
- 2001-09-12 DE DE10144873A patent/DE10144873A1/en not_active Withdrawn
-
2002
- 2002-08-27 EP EP02758161A patent/EP1428017B1/en not_active Expired - Lifetime
- 2002-08-27 US US10/489,008 patent/US7452126B2/en not_active Expired - Lifetime
- 2002-08-27 JP JP2003529136A patent/JP2005505758A/en active Pending
- 2002-08-27 WO PCT/DE2002/003130 patent/WO2003025557A2/en active IP Right Grant
- 2002-08-27 DE DE50205133T patent/DE50205133D1/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101017146B (en) * | 2006-02-08 | 2010-05-12 | 周玉成 | Detecting analysis method for heat conduction efficiency of plate and system thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2005505758A (en) | 2005-02-24 |
DE50205133D1 (en) | 2006-01-05 |
DE10144873A1 (en) | 2003-03-27 |
US7452126B2 (en) | 2008-11-18 |
EP1428017A2 (en) | 2004-06-16 |
WO2003025557A2 (en) | 2003-03-27 |
WO2003025557A3 (en) | 2003-10-02 |
US20050025215A1 (en) | 2005-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1428017B1 (en) | Micromechanical heat conductivity sensor having a porous cover | |
DE3711511C1 (en) | Method for determining gas concentrations in a gas mixture and sensor for measuring thermal conductivity | |
EP3105571B1 (en) | Method and sensor system for measuring gas concentrations | |
DE3628017A1 (en) | THERMAL FLOW SENSOR | |
DE19710358C2 (en) | Microstructured sensor | |
WO2016102183A1 (en) | Method for producing a gas sensor device for sensing at least one gaseous analyte in a measurement medium, and method and gas sensor device for sensing at least one gaseous analyte in a measurement medium | |
DE10146321A1 (en) | Sensor module with a sensor element which is surrounded by a heating element | |
WO2009153099A1 (en) | Silicon-based microflow sensor for gas analysis and method for production thereof silizium-basierter mikroströmungsfühler für die gasanalyse und verfahren zu dessen herstellung | |
EP3546931A1 (en) | Thermoresistive gas sensor | |
DE4041578A1 (en) | SENSOR | |
EP1192459A1 (en) | Semiconductor gas sensor with housing and method for measuring of gas concentrations | |
DE4008150A1 (en) | CATALYTIC GAS SENSOR | |
DE19710559A1 (en) | Sensor especially mass flow sensor | |
DE102004038988B3 (en) | Gas mass flow measurement system for various applications has substrate with ceramic particles in organic matrix holding heating elements with temperature sensors | |
DE102006015384A1 (en) | Fluid e.g. particle-afflicted exhaust fluid, temperature sensing device, has sensing area with sensor element, thermally decoupled from substrate, and blowing element conducting portion of fluid and providing direct blowing for sensing area | |
DE102006021308B4 (en) | Paramagnetic oxygen measuring device, and method for producing and operating such an oxygen measuring device | |
DE102018207689B4 (en) | Method for producing at least one membrane arrangement, membrane arrangement for a micromechanical sensor and component | |
DE102019130755A1 (en) | Sensor device, method for producing a sensor device and sensor assembly | |
DE3513033A1 (en) | Sensor for catalytic combustion | |
DE102009033420B4 (en) | Device for determining the oxygen content in a gas | |
EP1060365B1 (en) | Thin film structured sensor | |
DE102016218211A1 (en) | Pressure sensor for detecting a pressure of a fluid medium in a measuring space | |
AT521213B1 (en) | Method of making a sensor and sensor made therewith | |
DE102005051182A1 (en) | Flow sensor unit cleaning method, involves arranging temperature measuring unit and heat unit on carrier unit, and heating temperature measuring unit with additional platinum thin-film resistor | |
DE8900142U1 (en) | Carrier for sensors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040413 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50205133 Country of ref document: DE Date of ref document: 20060105 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060314 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110829 Year of fee payment: 10 Ref country code: GB Payment date: 20110824 Year of fee payment: 10 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120827 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120827 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 50205133 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191021 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50205133 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210302 |