EP1428013A1 - Measuring a substance in a biological sample - Google Patents
Measuring a substance in a biological sampleInfo
- Publication number
- EP1428013A1 EP1428013A1 EP02756523A EP02756523A EP1428013A1 EP 1428013 A1 EP1428013 A1 EP 1428013A1 EP 02756523 A EP02756523 A EP 02756523A EP 02756523 A EP02756523 A EP 02756523A EP 1428013 A1 EP1428013 A1 EP 1428013A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- electromagnetic radiation
- wavelength bands
- infrared
- organic substance
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000126 substance Substances 0.000 title claims abstract description 133
- 239000012472 biological sample Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 claims abstract description 136
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 108
- 239000008103 glucose Substances 0.000 claims description 145
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 143
- 238000002835 absorbance Methods 0.000 claims description 62
- 238000001228 spectrum Methods 0.000 claims description 52
- 238000005259 measurement Methods 0.000 claims description 47
- 238000001514 detection method Methods 0.000 claims description 45
- 239000013060 biological fluid Substances 0.000 claims description 43
- 239000012530 fluid Substances 0.000 claims description 40
- 239000000523 sample Substances 0.000 claims description 36
- 238000011002 quantification Methods 0.000 claims description 26
- 238000013178 mathematical model Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 20
- 238000012545 processing Methods 0.000 claims description 15
- 230000004044 response Effects 0.000 claims description 15
- 230000003595 spectral effect Effects 0.000 claims description 15
- 238000002834 transmittance Methods 0.000 claims description 12
- 239000000706 filtrate Substances 0.000 claims description 10
- 241000124008 Mammalia Species 0.000 claims 3
- 210000001124 body fluid Anatomy 0.000 claims 1
- 239000010839 body fluid Substances 0.000 claims 1
- 238000004891 communication Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 39
- 238000005102 attenuated total reflection Methods 0.000 description 23
- 238000012417 linear regression Methods 0.000 description 19
- 230000005855 radiation Effects 0.000 description 19
- 210000004369 blood Anatomy 0.000 description 16
- 239000008280 blood Substances 0.000 description 16
- 239000000835 fiber Substances 0.000 description 16
- 238000000862 absorption spectrum Methods 0.000 description 12
- 239000013078 crystal Substances 0.000 description 12
- 230000003993 interaction Effects 0.000 description 12
- 241000700159 Rattus Species 0.000 description 10
- 206010012601 diabetes mellitus Diseases 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 239000013307 optical fiber Substances 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 8
- 238000002790 cross-validation Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 239000012153 distilled water Substances 0.000 description 7
- 230000002452 interceptive effect Effects 0.000 description 7
- 210000002966 serum Anatomy 0.000 description 7
- 239000000306 component Substances 0.000 description 6
- 238000010200 validation analysis Methods 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- -1 LRS Chemical compound 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- 229920005372 Plexiglas® Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003750 conditioning effect Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 201000004569 Blindness Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241001377010 Pila Species 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 239000012042 active reagent Substances 0.000 description 1
- GZCGUPFRVQAUEE-SLPGGIOYSA-N aldehydo-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-SLPGGIOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 235000013405 beer Nutrition 0.000 description 1
- 239000012503 blood component Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000001508 eye Anatomy 0.000 description 1
- 210000002216 heart Anatomy 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 238000010238 partial least squares regression Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 1
- 229960001052 streptozocin Drugs 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 210000001138 tear Anatomy 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1495—Calibrating or testing of in-vivo probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14507—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
- A61B5/1451—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
- A61B5/14514—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid using means for aiding extraction of interstitial fluid, e.g. microneedles or suction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
Definitions
- the present invention generally relates to a method of measuring an amount of an organic substance contained within a sample.
- the present invention particularly relates to a method of measuring the amount of an organic substance contained within a biological sample utilizing a limited number of selected infrared wavelength bands.
- diabetes An estimated 16 million Americans (approximately 7% of the total population in the United States) have diabetes, a disease which can cause severe damage to the heart, kidneys, eyes, and nerves. Diabetics need to monitor their blood glucose levels frequently, often as much as six times a day, to maintain a proper level of insulin in their blood. Intense testing and treatment of diabetes can reduce the complications, including blindness, kidney failure and heart attack, by as much as 70%.
- Methods of measuring glucose are broadly divided into two categories: i.e., those based on chemical methods and those based on optical methods.
- Chemical methods of measuring blood glucose typically require the physical contact of a biological fluid with a sensing element utilized in the chemical method.
- a blood glucose meter designed to measure the level of glucose in a sample of a patient's blood.
- a small amount of a suitable reagent is printed or otherwise deposited onto an elongate plastic strip which can be inserted into the blood glucose meter after contacting a blood sample from the patient.
- the meter includes a reflectometry based measuring system which detects a change in the color of the printed reagent due to a reaction between the active reagent and glucose present in the blood sample. It should be appreciated that the accuracy of the meter is important where a patient determines an insulin treatment regime based upon blood glucose measurements obtained from a blood glucose meter. This requires very precise calibration of the meter. Initial calibration of the meter is normally carried out during and immediately following manufacturing, with certain calibration data being stored in permanent memory of the meter.
- Additional drawbacks to chemical methods include the manner in which they typically obtain the biological fluid.
- obtaining a blood sample typically involves pricking a finger of the diabetic patient.
- the aforementioned pricking is invasive, painful, and has a risk of infection.
- the self- pricking also requires a conscious and mindful patient.
- chemical methods which involve pricking are inconvenient, and they often prevent the diabetic patient from performing the needed frequent testing.
- chemical methods typically include components which require periodic replacement, utilizing these methods can be costly.
- a method of measuring an amount of an organic substance contained within a biological sample The organic substance has an infrared absorption spectrum which includes a set (n) of wavelength regions, wherein each of the wavelength regions substantially correspond to an absorption band of the absorption spectrum.
- the method includes (a) detecting the intensity of a number of selected wavelength bands of infrared electromagnetic radiation influenced by the organic substance contained within the biological sample with a detection system, wherein (i) each of the selected wavelength bands substantially corresponds to one of the wavelength regions, and (ii) the number of the selected wavelength bands is equal to n-1 or less, (b) generating an electrical signal in response to detecting the intensity of the number of the selected wavelength bands, (c) receiving the electrical signal with a signal processor configured to process the electrical signal with a quantification algorithm, and (d) processing the electrical signal with the quantification algorithm so as to provide a measurement of the amount of the organic substance contained within the biological sample.
- a method of measuring an amount of glucose in a biological fluid is provided.
- the glucose has an infrared absorption spectrum which includes a set (n) of infrared wavelength regions, wherein each of the infrared wavelength regions substantially correspond to an infrared absorption band of the infrared absorption spectrum.
- the method includes (a) detecting the transmittance of a number of selected wavelength bands of infrared electromagnetic radiation absorbed by the glucose contained within the biological fluid with a detection system, wherein (i) each of the selected wavelength bands substantially corresponds to one of the wavelength regions, and (ii) the number of the selected wavelength bands is equal to n-1 or less, (b) generating an electrical signal in response to detecting the transmittance of the infrared electromagnetic radiation, (c) receiving the electrical signal with a signal processor configured to process the electrical signal with a quantification algorithm, and (d) processing the electrical signal with the quantification algorithm so as to provide a measurement of the amount of the glucose contained within the biological fluid.
- a method of measuring a concentration of an organic substance contained within a biological fluid has an infrared absorption spectrum which includes a set (n) of infrared wavelength regions, wherein each of the infrared wavelength regions substantially correspond to an infrared absorption band of the infrared absorption spectrum.
- the method includes (a) detecting the transmittance of a number of selected wavelength bands of infrared electromagnetic radiation absorbed by the organic substance contained within the biological fluid with a detection system, wherein (i) each of the selected wavelength bands substantially corresponds to one of the wavelength regions, and (ii) the number of the selected wavelength bands is equal to n-1 or less, (b) generating an electrical signal in response to detecting the transmittance of the selected infrared electromagnetic radiation wavelength bands, (c) receiving the electrical signal with a signal processor configured to process the electrical signal with a mathematical model, and (d) processing the electrical signal with the mathematical model so as to provide a measurement of the concentration of the organic substance contained within the biological fluid.
- a method of measuring an amount of an organic substance contained within a biological sample The organic substance has an infrared absorption spectrum which includes a set (n) of wavelength regions, wherein each of the wavelength regions substantially correspond to an absorption band of the absorption spectrum.
- the method includes (a) illuminating the biological sample with infrared electromagnetic radiation, wherein the infrared electromagnetic radiation includes (i) one or more wavelength bands of the infrared electromagnetic radiation which are absorbed by the organic substance contained within the biological sample, and (ii) one or more reference wavelength bands which are not substantially absorbed by the organic substance contained within the biological sample, (b) selecting a number the wavelength bands of the infrared electromagnetic radiation, wherein (i) each of the selected wavelength bands substantially corresponds to one of the wavelength regions and (ii) the number of the selected wavelength bands is a subset of (n), (c) selecting a number of reference wavelength bands, (d) detecting the intensity of only (i) the subset of the selected wavelength bands absorbed by the organic substance contained within the biological sample with a detection system, and (ii) the number of reference wavelength bands, (e) generating one or more electrical signals in response to detecting the intensity of only (i) the subset of the selected wavelength bands (ii) the number of reference wavelength bands, (f) receiving
- a method of measuring an amount of an organic substance contained within a biological sample is provided.
- the organic substance has an infrared absorption spectrum which includes a set (n) of wavelength regions, wherein each of the wavelength regions substantially correspond to an absorption band of the absorption spectrum.
- the method includes
- a method of measuring an amount of an organic substance contained within a sample is provided.
- the organic substance has an infrared absorption spectrum which includes a set (n) of wavelength regions, wherein each of the wavelength regions substantially correspond to an absorption band of the absorption spectrum.
- the method includes (a) illuminating the sample with infrared electromagnetic radiation, wherein the infrared electromagnetic radiation includes (i) one or more wavelength bands of the infrared electromagnetic radiation which are absorbed by the organic substance contained within the sample (ii) one or more reference wavelength bands which are substantially not absorbed by the organic substance contained within the sample, (b) selecting a number the wavelength bands of the infrared electromagnetic radiation, wherein (i) each of the selected wavelength bands substantially corresponds to one of the wavelength regions and (ii) the number of the selected wavelength bands is a subset of (n), (c) selecting a number of reference wavelength bands, and (d) detecting with a detection system the intensity of only (i) the subset of the selected wavelength bands absorbed by the organic substance contained within the sample and (ii) the number of reference wavelength bands.
- a method of measuring an amount of an organic substance contained within a biological sample is provided.
- the organic substance has an infrared abso ⁇ tion spectrum which includes a set (n) of wavelength regions, wherein each of the wavelength regions substantially correspond to an abso ⁇ tion band of the abso ⁇ tion spectrum.
- the method includes (a) illuminating the biological sample with infrared electromagnetic radiation, wherein the infrared electromagnetic radiation includes (i) one or more wavelength bands of the infrared electromagnetic radiation which are absorbed by the organic substance contained within the biological sample and (ii) one or more reference wavelength bands which are substantially not absorbed by the organic substance contained within the biological sample, (b) selecting a number the wavelength bands of the infrared electromagnetic radiation, wherein (i) each of the selected wavelength bands substantially corresponds to one of the wavelength regions and (ii) the number of the selected wavelength bands is a subset of (n), (c) selecting a number of reference wavelength bands, (d) detecting with a detection system the intensity of the infrared electromagnetic radiation, and (e) processing with a mathematical model spectral data only from (i) the subset of the selected wavelength bands absorbed by the organic substance contained within the biological sample and (ii) the number of reference wavelength bands.
- FIG. 1 is an ATR spectra of distilled water, LRS, glucose dissolved in distilled water, and glucose dissolved in LRS;
- FIG. 2 is a schematic representation of a sensor
- FIG. 3 is another schematic representation of a sensor
- FIG. 4 is still another schematic representation of a sensor
- FIG. 5 A is yet another schematic representation of a sensor
- FIG. 5B is still another schematic representation of a sensor
- FIG. 5C is yet another schematic representation of a sensor
- FIG. 6A is a graph showing calibration results
- FIG. 6B is a graph showing cross validation results
- FIG. 7A is a graph showing calibration results
- FIG. 7B is a graph showing cross validation results
- FIG. 8A is a graph showing pure quadratic calibration results
- FIG. 8B is a graph showing pure quadratic delete-1 -calibration results
- FIG. 9 A is a graph showing pure quadratic calibration results
- FIG. 9B is a graph showing pure quadratic delecte-1 -calibration results
- FIG. 10 is a baseline corrected ATR spectra of aqueous glucose solutions
- FIG. 11 A is a graph showing multiple linear regression calibration, linear fit, results
- FIG. 1 IB is a graph showing multiple linear regression calibration, quadratic fit, results
- FIG. 12A is a graph showing multiple linear regression calibration, linear fit, results
- FIG. 12B is a graph showing multiple linear regression calibration, quadratic fit, results
- FIG. 13A is a graph showing multivariate calibration results
- FIG. 13B is a graph showing multivariate cross validation results
- FIG. 14 is a baseline corrected ATR spectra of an LRS glucose solution
- FIG. 15A is a graph showing multiple linear regression calibration, linear fit, results
- FIG. 15B is a graph showing multiple linear regression calibration, quadratic fit, results
- FIG. 16A is a graph showing multiple linear regression calibration, linear fit, results
- FIG. 16B is a graph showing multiple linear regression calibration, quadratic fit, results
- FIG. 17A is a graph showing multivariate calibration results
- FIG. 17B is a graph showing cross validation results
- FIG. 18 is a baseline corrected ATR spectra of a number of CFC fluid sample collected from pre and post diabetic rats;
- FIG. 19A is a graph showing multiple linear regression calibration in CFC fluid, linear fit, results;
- FIG. 19B is a graph showing multiple linear regression calibration in CFC fluid, quadratic fit, results
- FIG. 20A is a graph showing multiple linear regression calibration in
- FIG. 20B is a graph showing multiple linear regression calibration in CFC fluid, quadratic fit, results
- FIG. 21 A is a graph showing multivariate calibration results
- FIG. 21B is a graph showing multivariate cross-validation results
- FIG. 22 is a baseline corrected ATR spectra of human serum samples with known but varied quantities of glucose added thereto;
- FIG. 23 A is a graph showing multiple linear regression calibration in human serum, linear fit, results
- FIG. 23B is a graph showing multiple linear regression calibration in human serum, quadratic fit, results.
- Organic substances can influence electromagnetic radiation. For example, when electromagnetic radiation encounters an organic substance the radiation can be absorbed or transmitted, depending upon the nature of the organic molecules it encounters. If the electromagnetic radiation is absorbed, then the abso ⁇ tion gives rise to abso ⁇ tion bands at particular wavelength regions of an abso ⁇ tion spectrum of the organic substance. (Note that examples of ways to express wavelength regions include, but are not limited to, frequency, wavelength, or wavenumber.) With respect to coherent or incoherent infrared electromagnetic radiation, it should be understood that, as discussed in greater detail below, an organic substance has an infrared abso ⁇ tion spectrum which includes a set (n) of wavelength regions with each wavelength region corresponding to an abso ⁇ tion band of the abso ⁇ tion spectrum. For example, FIG.
- FIG. 1 shows the infrared abso ⁇ tion spectrum of distilled water alone (see curve A) and 0.5% glucose in distilled water (see curve B).
- FIG. 1 also shows the infrared abso ⁇ tion spectrum of lactated ringers solution (LRS) alone (see curve C) and 0.5% glucose in LRS (see curve D).
- LRS contains lactate, sodium, potassium, calcium, and chloride ions and is used, for example, in the rehydration of animals in an emergency.
- LRS contains lactate, sodium, potassium, calcium, and chloride ions and is used, for example, in the rehydration of animals in an emergency.
- LRS contains lactate, sodium, potassium, calcium, and chloride ions and is used, for example, in the rehydration of animals in an emergency.
- LRS contains lactate, sodium, potassium, calcium, and chloride ions and is used, for example, in the rehydration of animals in an emergency.
- LRS contains lactate, sodium, potassium, calcium, and chlor
- abso ⁇ tion of the infrared electromagnetic radiation by glucose is seen in the about 1200 cm “1 to about 950 cm “1 range of the spectrum.
- the infrared abso ⁇ tion spectrum of FIG. 1 shows abso ⁇ tion bands centered at about 1107 cm “1 , about 1080 cm “1 , about 1035 cm “1 , about 1150 cm “ l , and about 993 cm “1 for glucose dissolved in distilled water and for glucose dissolved in LRS.
- glucose has a set (n) of abso ⁇ tion bands within the about 1200 cm “1 to about 950 cm “1 range of the spectrum.
- each abso ⁇ tion band occurs between two selected wavenumbers.
- the abso ⁇ tion band centered at about 1107 cm “1 occurs between wavenumbers about 1094 cm “1 and about 1118 cm “1 .
- the area of the spectrum between two wavenumbers, at which an abso ⁇ tion band occurs is referred to herein as a wavelength region.
- each abso ⁇ tion band has a substantially corresponding selected wavelength region.
- the abso ⁇ tion band at about 1107 cm “1 has a substantially corresponding wavelength region of about 1094 cm “1 to about 1118 cm “1 .
- the abso ⁇ tion band at about 1080 cm “1 has a substantially corresponding wavelength region of about 1075 cm “1 to about 1090 cm “1 .
- the abso ⁇ tion band at about 1035 cm “1 has a substantially corresponding wavelength region of about 1018 cm “1 to about 1048 cm “ .
- the abso ⁇ tion band at about 1150 cm “1 has a substantially corresponding wavelength region of about 1137 cm “1 to about 1175 cm “1 .
- the abso ⁇ tion band at about 993 cm “1 has a substantially corresponding wavelength region of about 983 cm “1 to about 1003 cm -I . Therefore, it should be appreciated that each abso ⁇ tion spectrum also has a set (n) of wavelength regions, and since each abso ⁇ tion band has a substantially corresponding wavelength region, the set (n) of wavelength regions equals the set (n) of abso ⁇ tion bands. For example, with respect to the abso ⁇ tion spectrum of glucose shown in FIG. 1, the set (n) of abso ⁇ tion bands equals 5 and accordingly the set (n) of wavelength regions also equals 5.
- the glucose abso ⁇ tion spectrum of FIG. 1 has 5 abso ⁇ tion bands respectively centered at about 1107 cm “1 , about 1080 cm “1 , about
- glucose not only absorbs infrared electromagnetic radiation at each particular wavenumber mentioned above, but also at higher and lower wavenumbers around each of the aforementioned centered wavenumbers.
- an abso ⁇ tion band of an organic substance e.g., glucose
- a wavelength region is the area of the spectrum between two wavenumbers at which an abso ⁇ tion band occurs.
- a wavelength band is the range of wavenumbers (or other methods of measuring electromagnetic radiation including, but not limited to, frequency or wavelengths) within a wavelength region at which an organic substance absorbs electromagnetic radiation.
- each wavelength band substantially corresponds to a wavelength region.
- wavelength region and a wavelength band do not necessarily have to be a range if the organic substance of interest and the nature of the electromagnetic radiation is such that a single wavenumber (frequency or wavelength) can be utilized in the methods described herein.
- the terms “wavelength region” and “wavelength band” can be a range or can consist of a single wavenumber (frequency or wavelength). It should also be understood that, while examples of the methods described herein utilize incoherent infrared electromagnetic radiation, coherent infrared electromagnetic radiation can also be utilized.
- a reference wavelength band is similar to one of the above described wavelength bands, however in contrast to a wavelength band, a reference wavelength band is a range of wavenumbers at which (i) the organic substance of interest does not substantially influence the electromagnetic radiation but other compounds present within the biological sample do influence the electromagnetic radiation or (ii) no organic substance present within the biological sample substantially influences the electromagnetic radiation.
- a range of wavenumbers at which the organic substance of interest does not substantially absorb infrared electromagnetic radiation, while other organic substances present in the biological sample do absorb infrared electromagnetic radiation can be utilized as a reference wavelength band in the methods described herein.
- a range of wavenumbers at which no organic substance present in the biological fluid substantially absorbs infrared electromagnetic radiation can be utilized as a reference wavelength band in the methods described herein, h particular, the organic substance of interest with respect to the abso ⁇ tion spectrum shown in FIG. 1 is glucose, accordingly potential wavenumber ranges which can serve as reference wavelength bands are (i) those wavenumber ranges at which glucose substantially does not absorb the infrared electromagnetic radiation while other compounds present in the sample do absorb the infrared electromagnetic radiation and (ii) those wavenumber ranges at which no organic substance substantially absorbs the infrared electromagnetic radiation.
- a reference wavelength band is selected where no organic substance substantially influences or absorbs the electromagnetic radiation, however this is not necessary for the performance of the methods described herein.
- spectral data e.g., absorbance
- This baseline measurement data is also processed with the aforementioned mathematical model to obtain a measurement of the amount of the organic substance of interest present within the biological sample.
- Two specific examples of reference wavelength bands are shown in FIG. 1, i.e., one at about 1090 cm “1 to about 1095 cm “1 and another one at about 1170 cm “1 to about 1180 cm -1 .
- the biological sample is illuminated with electromagnetic radiation, such as infrared electromagnetic radiation.
- electromagnetic radiation such as infrared electromagnetic radiation.
- a beam of incoherent infrared electromagnetic radiation can be passed through a biological fluid, such as capillary filtrate fluid, so that the organic substance of interest contained within the biological fluid influences the electromagnetic radiation.
- the organic substance contained within the biological fluid absorbs the electromagnetic radiation so as to create an abso ⁇ tion spectrum which, as discussed above, includes a set (n) of wavelength regions where each of the wavelength regions substantially correspond to an abso ⁇ tion band of the abso ⁇ tion spectrum.
- the intensity (e.g., detecting the transmittance) of the wavelength bands and reference wavelength bands are detected with a detection system.
- the intensity of only the wavelength bands and the reference bands are detected with the detection system.
- not all of the wavelength bands and reference wavelength bands are detected.
- only a select number of wavelength bands of the abso ⁇ tion spectrum are detected along with only a select number of reference wavelength bands. Therefore, it should be appreciated that only the selected wavelength bands and reference wavelength bands are detected with the detection system while the rest of the electromagnetic radiation is substantially prevented from being detected by the detection system.
- the electromagnetic radiation not included in the selected wavelength bands and reference wavelength bands can be substantially filtered out prior to reaching the detection system.
- the detection of the wavelength bands and reference wavelength bands is restricted to a select number of wavelength bands of electromagnetic radiation and a select number of reference wavelength bands of electromagnetic radiation.
- the number of selected wavelength bands of electromagnetic radiation is equal to n-1 or less. That is, the number of selected wavelength bands of electromagnetic radiation is a subset of (n).
- which particular wavelength band, or combination of wavelength bands, is/are selected for detection is dependent upon which wavelength band(s), in combination with the selected reference wavelength band(s), yields spectral data for processing with a mathematical model so as to provide a useful measurement of the amount of organic substance contained within the biological sample.
- “useful” measurement is that the measurement of the amount of organic substance contained with the biological sample is accurate and/or precise enough such that it would be acceptable to utilize in a particular measurement, assay, or application.
- the wavelength band(s) and reference wavelength band(s) must be selected so that the spectral data supplied to the mathematical model from the combination of these bands results in a glucose measurement that is accurate and/or precise enough such that it informs the patient as to his or her glucose levels within acceptable limits.
- Factors to consider when selecting which wavelength band(s) to detect include for example (i) ensuring that the abso ⁇ tion band contained within the wavelength band is, or includes, an abso ⁇ tion band of the organic substance of interest, (ii) selecting a wavelength band which has relatively strong abso ⁇ tion, and (iii) selecting a wavelength band where the strength of the wavelength band correlates well with the amount of organic substance of interest contained in the biological sample.
- the selected wavelength band(s) is relatively free of interference from abso ⁇ tion bands caused by substances other than the organic substance of interest present in the sample (e.g., the selected wavelength band is separated from the wavelength band of the potentially interfering substance).
- the selected wavelength band(s) does not have to be free of interfering abso ⁇ tion bands caused by substances other than the organic substance of interest. Accordingly, a selected wavelength band(s) may be relatively free of interference from abso ⁇ tion bands caused by substances other than the organic substance of interest, or the selected wavelength band(s) may include interfering abso ⁇ tion bands caused by substances other than the organic substance of interest.
- the selected wavelength band(s) can (i) be relatively free of interference from abso ⁇ tion bands caused by substances other than the organic substance of interest present in the sample, (ii) include interfering abso ⁇ tion bands caused by substances other than the organic substance of interest present in the sample, or (iii) be a combination of selected wavelength bands in which some are relatively free of interference from abso ⁇ tion bands caused by substances other than the organic substance of interest while others include interfering abso ⁇ tion bands caused by substances other than the organic substance of interest.
- the particular mathematical model (e.g., algorithm) and wavelength band(s) and reference wavelength band(s) selected for a particular sensor configuration are determined by the performance of the calibration procedure (discussed below) used for a specific biological sample.
- the mathematical model, selected wavelength band(s), and selected reference wavelength band(s) may differ depending upon the nature of the biological sample the organic substance of interest is contained within. For example, different selected wavelength band(s) and selected reference wavelength band(s), in addition to a different mathematical model may be needed depending upon whether the organic substance is contained within for example, plasma or capillary filtrate fluid.
- the detection system generates an electrical signal as a result of detecting the intensity of the selected wavelength band(s) and reference wavelength band(s).
- the electrical signal is processed to yield data which is utilized to provide a useful measurement of the amount of the organic substance of interest contained within the biological sample.
- data generated by the electrical signal can be processed by a mathematical model, such as a quantification algorithm, so as to provide a useful measurement of the amount of the organic substance of interest contained within the biological sample.
- detecting and processing spectral data only from the selected wavelength band(s) and reference wavelength band(s) simplifies the process of providing a useful measurement of the amount of an organic substance of interest contained within a biological sample.
- an apparatus for performing a method described herein since an apparatus for performing a method described herein only detects and processes spectral data from a select number of wavelength bands and reference wavelength bands it is less complex as compared to an apparatus configured to detect and process spectral data from all of the wavelength bands of an abso ⁇ tion spectrum. Accordingly, an apparatus configured to perform one of the methods described herein lends itself to being smaller, compact and portable.
- an alternative embodiment of a method for measuring an amount of an organic substance contained within a biological sample is to detect all of the wavelength bands, but only process the spectral data from the aforementioned selected wavelength bands with the mathematical model.
- FIG. 2 there is shown an example of a fiber optic evanescent wave sensor 10 which can be utilized in the methods described herein.
- the spectral data obtained from this type of sensor 10 can be utilized in the quantification of an organic substance contained in a biological fluid.
- a fiber optic evanescent wave sensor of the type shown in FIG. 2 is described by Karlowatz, M., Kraft, M., Eitenberger, E., Mizaikoff, B. and Katzir, A. in "Chemically Tapered Silver Halide Fibers: An Approach for Increasing the Sensitivity of Mid-Infrared Evanescent Wave Sensors," Applied Spectroscopy, 54(11), pp.
- FIG. 2 Another fiber optic evanescent wave sensor of the type shown in FIG. 2 is described by Han, L., Lucas, D., Littlejohn, D., and Kyauk, S. in "NIR Fiber-Optic Method with Multivariate Calibration Analysis for Determination of Inorganic Compounds in Aqueous Solutions," Applied
- sensor 10 shown in FIG. 2 includes a number of optic fibers, for example sensor 10 can include an optical fiber bundle 18 having a coupler 20 which splits into optical fibers 22, 24, and 26.
- the number of optical fibers sensor 10 includes is determined by the number of selected wavelength bands and reference wavelength bands utilized in determining the amount of the organic substance contained in the biological fluid.
- sensor 10 includes 3 optical fibers, one for a first selected wavelength band, one for a second selected wavelength band, and one for a reference wavelength band.
- Sensor 10 also includes a modulated infrared source 12, a regulated power supply 14, and focusing optics 16 which focuses the modulated infrared beam into optical fiber bundle 18 and thus into optical fibers 22, 24, and 26.
- Sensor 10 further includes filters 36, a detection system 52 having a number of detection elements 38, a mode-lock amplifier 40, and a signal processor 42.
- Modulated infrared source 12 and signal processor 42 are electrically coupled to mode-lock amplifier 42 via electrical lines 44 and 46, respectively.
- each detection element 38 is electrically coupled to mode-lock amplifier 42 via an electrical line 48 and an electrical line 50.
- a receiving end 30 of each optical fiber 22, 24, and 26 is operatively coupled to a filter 36, which in turn is operatively coupled to a detection element 38.
- optic fibers 22, 24, and 26 are unclad through a portion of their length where biological fluid 34 flows over the fiber. The length of this portion is determined by the signal-to-noise ratio requirements.
- the transmitting and receiving ends are continuous, i.e., made of the same fibers.
- the attenuation or absorbance of electromagnetic radiation advanced through optic fibers 22, 24, and 26 due to the organic substances contained within biological fluid 34 takes place via the aforementioned evanescent wave phenomenon.
- filters 36 are optical bandpass filters that limit the range of wavelengths of electromagnetic radiation which pass therethrough, h particular, filters 36 are configured so that only the select wavelength bands and the select reference wavelength band are allowed to substantially pass therethrough and thus be detected by detection elements 38.
- power supply 14 provides power to infrared source 12 such that infrared source 12 generates a beam of incoherent infrared electromagnetic radiation directed toward focusing optics 16.
- Focusing optics 16 focuses the radiation onto coupler 20 which in turn directs the radiation through fiber bundle 18.
- the radiation is transmitted through optic fibers 22, 24, and 26, and thus pass through biological fluid 34 as biological fluid 34 is advanced through a sample cell 84 in the direction indicated by arrow 86.
- Certain wavelengths of the radiation are absorbed by organic substances contained within biological fluid 34 as the radiation passes therethrough.
- filters 36 restrict the infrared electromagnetic radiation allowed to substantially pass therethrough to the selected wavelength bands and the selected reference wavelength band.
- Each selected wavelength band and the selected reference wavelength band interacts with a detection element 38.
- Each detection element 38 generates an electrical signal in response to interacting with a wavelength band or the reference wavelength band.
- the electrical signal is communicated to mode-lock amplifier 40 via the aforementioned electrical lines.
- Each electrical signal is then communicated to processor 42 (such as an integrated circuit) via electrical line 46.
- Processor 42 then processes the electrical signals with a mathematical model, such as a quantification algorithm, so as to provide a useful measurement of the amount of the organic substance of interest (e.g., glucose) contained within biological fluid 34.
- a mathematical model such as a quantification algorithm
- FIG. 3 there is shown an example of an attenuated total reflection (ATR) fiber optic evanescent wave sensor 54 which can be utilized in the methods described herein.
- Sensor 54 is substantially similar to sensor 10 described above and thus the same reference numbers are used to indicate the corresponding components.
- sensor 54 is similar to sensor 10 and operates in a similar manner, only substantial differences between sensor 54 and sensor 10 are briefly discussed herein.
- the construction of sensor 54 is similar to sensor 10 except that transmitting ends 28 and receiving ends 30 of fibers 22, 24, and 26 are separate units and they both terminate at an ATR crystal 56 operatively coupled to one end thereof. Fluid 34 is in contact with each ATR crystal surface 58 but does not come in contact with optical fibers 22, 24, and 26 as fluid 34 flows past ATR crystal surfaces 58 in the direction indicated by arrow 82.
- Sensor 54 is also based on the evanescent wave principle mentioned above. However, with sensor 54 the evanescent wave penetrates into fluid 34 via ATR crystals 56 which are kept in contact with fluid 34. The electrical signals are generated and processed in a manner similar to that discussed above in reference to sensor 10.
- FIG. 4 there is shown an example of a fiber optic injection transmission sensor 60 which can be utilized in the methods described herein.
- Sensor 60 is substantially similar to sensor 10 described above and thus the same reference numbers are used to indicate the corresponding components, hi addition, since sensor 60 is similar to sensor 10 and operates in a similar manner, only substantial differences between sensor 60 and sensor 10 are briefly discussed herein.
- a fiber optic fluid injection transmission sensor of the type shown in FIG. 4 is described by Lendl, B., Schindler, R., Frank, J., and Keilner, R. (1997), in “Fourier Transform Infrared Detection in Miniaturized Total Analysis Systems for Sucrose Analysis," Analytical Chemistry, 69(15), pp.
- transmitting ends 28 and receiving ends 30 of optical fibers 22, 24, and 26 terminate at infrared transmitting windows 62 which are positioned tens of microns apart.
- Transmitting windows 62 define a biological sample cell 64 (for example about 10 microns wide).
- Biological fluid 34 is positioned within, or flows through (in the direction indicated by arrow 80), sample cell 64 which defines the pathlength for the infrared abso ⁇ tion.
- Sensor 66 includes a miniature pulsable infrared emitter source 68 with a parabolic reflector.
- An example of a miniature pulsable infrared emitter source 68 which can be utilized with the methods described herein is commercially available from Ion Optics, which is located in Waltham, Massachusetts.
- Source 68 includes an electrically coupled infrared source power supply and modulator circuit 74.
- An example of a power supply and modulator circuit 74 which can be utilized with the methods described herein is commercially available from Boston Electronics, located in Brookline, Massachusetts.
- Source 68 also includes a multi-channel miniature pyroelectric infrared detector 70.
- Detector 70 includes an electrically coupled pyroelectric detector preamplifier and signal processing circuit 76.
- An example of a multi-channel miniature pyroelectric infrared detector 70 which can be utilized with the methods described herein is commercially available from InfraTec GmbH, located in Dresden, Germany. Additional infrared detectors which can be utilized in the methods described herein are commercially available from Wilks Ente ⁇ rise, Inc. located in South Norwalk, Connecticut.
- Sensor 66 further includes a biological sample cell 78 inte ⁇ osed between source 68 and detector 70. Cell 78 has a sample space 72 defined therein so that a biological fluid can be advanced therethrough in the direction indicated by arrow 88.
- a biological fluid such as capillary filtrate collected from a capillary filtrate collector.
- capillary filtrate collector which can be utilized in the methods described herein is described by Ash S.R. et al. in "Subcutaneous Ultrafiltration Fibers for Chemical Sampling of Blood: The Capillary Filtrate Collector (CFC)" in Leung WW-F. ed. Proceedings of the National Meeting of the American Filtration Society. Chicago : Advances in Filtration and Separation Technology, Vol. 7, 1993 :316-319, which is inco ⁇ orated herein by reference.
- CFC Capillary Filtrate Collector
- source 68 generates a low frequency infrared electromagnetic radiation pulse.
- Circuit 74 is configured to optimize the signal-to-noise ratio of the pulse reaching the biological fluid contained within sample space 72.
- the radiation is transmitted through sample space 72 and thus passes through the biological fluid contained therein.
- certain wavelengths of the radiation are absorbed by organic substances contained within the biological fluid 34 as the radiation passes therethrough.
- detector 70 which is configured so that only the select wavelength bands and the select reference wavelength band are substantially detected by detector 70.
- circuit 76 Upon detecting the select wavelength bands and the select reference wavelength band an electrical signal is sent to circuit 76 which processes the electrical signal with a mathematical model to provide a useful measurement of the amount of the organic substance of interest contained within the biological fluid.
- circuit 76 has a frequency synchronization connection 90 that ensures that high signal-to-noise ratios are maintained through modulated signal detection.
- sensor 92 is a reflection-abso ⁇ tion based infrared sensor.
- sensor 92 includes a base 94 having a receptacle area 110 defined therein.
- Receptacle area 110 has a floor 114 with a reflective surface 116 defined thereon.
- Sensor 92 also includes a regulated power supply 96 operatively coupled to base 94.
- Sensor 92 further includes a modulated infrared source 98 and focusing optics 100.
- Modulated infrared source 98 is operatively coupled to power supply 96 and focusing optics 100.
- modulated infrared source 98 and focusing optics 100 are positioned relative to receptacle area 110 such that infrared electromagnetic radiation generated by modulated infrared source 98 is directed onto receptacle area 110 by focusing optics 100.
- Sensor 92 also includes a detection element 102 operatively coupled to a filter assembly 108. Detection element 102 is operatively coupled to base 94 such that infrared electromagnetic radiation reflected off of reflective surface 116 impinges onto filter assembly 108 and detection element 102.
- Sensor 92 further includes a mode-lock amplifier 106 which is operatively coupled to detection element 102 and power supply 96 via electrical lines 104 and electrical line 118, respectively.
- power supply 96 provides power to infrared source 98 such that infrared source 98 generates a beam of infrared electromagnetic radiation directed toward focusing optics 100.
- Focusing optics 100 directs the radiation through a fluid film 112 positioned within receptacle area 110. The radiation is transmitted through fluid film 112 and is reflected off of reflective surface 110 so that it interacts with filter assembly 108.
- filter assembly 108 restricts the infrared electromagnetic radiation allowed to substantially pass therethrough to the selected wavelength bands and the selected reference wavelength band.
- Each selected wavelength band and the selected reference wavelength band interacts with a detection element 102 which generates an electrical signal in response to interacting with a wavelength band or the reference wavelength band.
- the electrical signal is communicated to mode-lock amplifier 106 via the aforementioned electrical lines.
- Each electrical signal is then communicated to a processor (such as an integrated circuit; not shown) via an electrical line (not shown).
- the processor then processes the electrical signals with a mathematical model, such as a quantification algorithm, so as to provide a useful measurement of the amount of the organic substance of interest (e.g., glucose) contained within fluid film 112.
- a mathematical model such as a quantification algorithm
- Sensor 120 includes a base 122, a regulated power supply 124 operatively coupled to base 122 and a detector signal conditioning and amplification circuit 126 also operatively coupled to base 122.
- Sensor 120 further includes an infrared source 126 and focusing optics 128 operatively coupled to power supply 124. Infrared source 126 and focusing optics 128 are positioned relative to an ATR crystal 130 so that infrared electromagnetic radiation generated by infrared source 126 is directed through ATR crystal 130 and into a sample 132 by focusing optics 128.
- Sensor 120 also includes a detection element 134, such as a multichannel detector, operatively coupled to a filter assembly 136.
- Detection element 134 is positioned relative to ATR crystal 130 such that infrared electromagnetic radiation being emitted through ATR crystal 130 impinges onto filter assembly 136 and detection element 134.
- Sensor 120 further includes a mode-lock amplifier 140 which is operatively coupled to detector signal conditioning and amplification circuit 126 and power supply 124 via electrical lines 138 and electrical line 142, respectively.
- power supply 124 provides power to infrared source 126 such that infrared source 126 generates abeam of infrared electromagnetic radiation directed toward focusing optics 128.
- Focusing optics 128 directs the radiation through sample 132 positioned in contact with ATR crystal 130.
- certain wavelengths of the radiation are absorbed by organic substances contained within sample 132 as the radiation passes therethrough.
- the radiation exits the ATR crystal 130 positioned in contact with sample 132 and interacts with filter assembly 136.
- Filter assembly 136 restricts the infrared electromagnetic radiation allowed to substantially pass therethrough to the selected wavelength bands and the selected reference wavelength band.
- Each selected wavelength band and one or more selected reference wavelength bands interact with detection element 134 which generates an electrical signal in response to interacting with a wavelength band or the reference wavelength band.
- the electrical signal is communicated to mode-lock amplifier 140 via the aforementioned electrical lines.
- Each electrical signal is then communicated to a processor (such as an integrated circuit; not shown) via an electrical line (not shown).
- the processor then processes the electrical signals with a mathematical model, such as a quantification algorithm, so as to provide a useful measurement of the amount of the organic substance of interest contained within sample 132.
- the following example illustrates utilizing one wavelength band and one reference wavelength band for providing a measurement of the amount of glucose contained within LRS.
- eight known concentrations of glucose dissolved in LRS were prepared, i.e., 0%, 0.05%, 0.075%, 0.1%, 0.2%, 0.3% 0.4%, and 0.5% glucose.
- the selected wavelength band for this example is the range of wavenumbers from about 1075 cm "1 to about 1090 cm “1 (see FIG. 1).
- the selected reference wavelength band for this example is the range of wavenumbers from about 1090 cm “1 to about 1095 cm “1 (see FIG. 1).
- Each glucose solution was illuminated with incoherent electromagnetic radiation and the abso ⁇ tion band corresponding to the selected wavelength band and the selected reference wavelength band was measured.
- the abso ⁇ tion band corresponding to the wavelength band i.e., the wavenumbers from about 1075 cm “1 to about 1090 cm “1 for each glucose concentration was integrated.
- the abso ⁇ tion band corresponding to the reference wavelength band i.e., the wavenumbers from about 1090 cm “1 to about 1095 cm “1 for each glucose concentration was also integrated. Note that the integrated absorbances were divided by their corresponding band widths to avoid scaling effects. Thereafter, a mean-centered integrated absorbance band ratio for the wavelength band and the reference wavelength band was calculated for each glucose concentration.
- the absorbance band ratio was calculated by dividing the mean-centered integration value for the absorbance of the selected wavelength band by the mean-centered integration value for the absorbance of the selected reference wavelength band. Accordingly, each of the above described glucose concentrations has a mean-centered integrated absorbance ratio associated with it as shown in Table 1 below. TABLE 1
- C g - Po + P ⁇ IAR ⁇ ;1 + P 2 IAR 2 ⁇ )1 (equ. 1)
- C g is the mean-centered concentration of glucose in the sample measured using methods other than IR abso ⁇ tion
- Pj are calibration constants
- IAR ⁇ , ⁇ is a mean-centered integrated absorbance ratio for the selected wavelength band and selected reference wavelength band.
- the variables are mean-centered.
- This code mean centers the concentration and absorbance and does a multiple linear regression on the given absorbance matrix and concentration vector (quadratic uses constant, linear, crossproduct and square terms). Note that the values of the calibration constants are used in the validation. Further note that validation of the calibration constants is done by reworking the calibration after deleting 1 point. The resulting fit is used to predict the deleted point. The results of the computations utilizing the Matlab program to process the aforementioned data are shown below in Table 2.
- a sensor such as one of the sensors described herein, can utilize calibration constants obtained in the above described manner and give a useful measurement of the glucose concentration in a biological sample based upon the absorbance signal from the wavelength band and the reference wavelength band.
- the method is similar to that described above for utilizing one wavelength band and one reference wavelength band.
- eight known concentrations of glucose dissolved in LRS were prepared, i.e., 0%, 0.05%, 0.075%, 0.1%, 0.2%, 0.3% 0.4%, and 0.5% glucose.
- the selected wavelength bands for this example are the range of wavenumbers from about 1075 cm “1 to about 1090 cm “1 (see FIG. 1) and the range of wavenumbers from about 1137 cm “1 to about 1175 cm “1 .
- the selected reference wavelength band for this example is the range of wavenumbers from about 1170 cm “1 to about 1180 cm “1 (see FIG. 1).
- each glucose solution was illuminated with incoherent electromagnetic radiation and the abso ⁇ tion bands corresponding to the selected wavelength bands and the selected reference wavelength band was measured.
- the abso ⁇ tion band corresponding to the wavelength bands i.e., the wavenumbers from about 1075 cm “1 to about 1090 cm “1 and the wavenumbers from about 1137 cm “1 to about 1175 cm “1 , for each glucose concentration was integrated.
- the abso ⁇ tion band corresponding to the reference wavelength band i.e., the wavenumbers from about 1170 cm “1 to about 1180 cm “1 for each glucose concentration was also integrated. Note that, as before, the integrated absorbances were divided by their corresponding band widths to avoid scaling effects.
- a mean-centered integrated absorbance band ratio for each of the wavelength bands and the reference wavelength band was calculated for each glucose concentration.
- the absorbance band ratio was calculated by dividing the mean- centered integration value for the absorbance of each of the selected wavelength bands by the mean-centered integration value for the absorbance of the selected reference wavelength band. Accordingly, each of the above described glucose concentrations has a mean-centered integrated absorbance ratio associated with it as shown in Table 3 below.
- C g Po + P ⁇ IAR ⁇ jl + P 2 IAR ⁇ , 2 + PsIAR 2 ⁇ + P 4 IAR 2 ⁇ >2 + P 5 IAR M IAR X , 2 (equ. 2)
- C g is the mean-centered concentration of glucose in the sample measured using methods other than IR abso ⁇ tion
- Pj are calibration constants
- IAR ⁇ j is a mean-centered integrated absorbance ratio of two of the selected infrared wavelength bands and the selected reference wavelength band.
- the variables are mean-centered.
- the values of the calibration constants are calculated by Matlab as discussed above utilizing the following code: Clc;
- this code mean centers the concentration and absorbance and does a multiple linear regression on the given absorbance matrix and concentration vector (quadratic uses constant, linear, crossproduct and square terms). Note that the values of the calibration constants are used in the validation. Further note that validation of the calibration constants is done by reworking the calibration after deleting 1 point. The resulting fit is used to predict the deleted point. The results of the utilizing the Matlab program to process the aforementioned data are shown below in Table 4.
- lactate in the glucose LRS solutions presents a challenge to the methods described herein since lactate and glucose have abso ⁇ tion bands in the same mid infrared region.
- useful correlations can be obtained through the proper selection of wavelength bands, reference wavelength band, and calibration method which can be identified via routine experimentation.
- equations 1 and 2 to calibrate the glucose in the sample solution
- equations 3 and 4 can be utilized:
- C g P 0 + PiLA + P 2 IA ⁇ )2 + P 3 iA 2 w + P 4 IA 2 ⁇ , 2 + PsIA ⁇ IA ⁇ (equ. 3)
- C g is the mean centered concentration of glucose in solution measured using methods other than IR abso ⁇ tion
- Pj are calibration constants
- IA ⁇ jl and IA ⁇ ]2 are the mean centered integrated absorbance for the selected wavelength band and the selected reference wavelength band
- C g Po + PxIAj, ! + P 2 IA ⁇ )2 + P 3 IA ⁇ , 3 + P 4 IA 2 ⁇ >1 + P 5 IA 2 ⁇ )2 + P 6 IA , 3 + P 7 IA ⁇ jl IA ⁇ , 2 + P 8 IA IA W + P 9 iA ⁇ )2 IA ⁇ ,3 (equ. 4)
- C g is the mean centered concentration of glucose in solution measured using methods other than IR abso ⁇ tion
- Pj are calibration constants
- IA ⁇ j is the mean centered integrated absorbance for band j.
- equations 3 and 4 use integrated absorbance rather than integrated absorbance ratios as shown in equations 1 and 2 above, i.e., the reference band is used as additional absorbance terms instead of being used in the denominator term in equations 3 and 4.
- the following discussion is directed to obtaining useful measurements of the amount of glucose contained within water, LRS, and CFC fluid (i.e., capillary filtrate collector fluid) utilizing ATR (i.e., Attenuated Total Reflectance) measurements in the mid infrared (about 1200 cm “1 to about 900 cm “1 ) region.
- ATR i.e., Attenuated Total Reflectance
- the measurements were made using a Nicolet Nexus 7 670 spectrometer equipped for mid infrared measurements with a liquid nitrogen-cooled MCT-A detector and an XT-KBr beamsplitter. Multi-bounce ATR measurements were made by taking the background measurements before each sample measurement. The resolution was set at 4 cm "1 and 64 scans were collected and averaged. Using a sealed and dessicated system minimized the atmospheric water vapor and carbon dioxide abso ⁇ tion effects. Further, sufficient period of time was allowed between the mounting of the sample and the actual measurement in order to let the system reach equilibrium.
- aqueous glucose solutions and the LRS solutions were made by dissolving appropriate quantities of d-glucose in distilled water and LRS.
- the solutions were prepared in large quantities for the lower concentrations and in small quantities for the higher concentrations with a view to maintaining the uncertainties due to weight measurement constant. Concentrations of glucose in these solutions varied in the range of 0.05%-0.5 % or 50-500 mg/dL.
- Another fluid obtained for the analysis was from a CFC implanted in a rat's blood stream.
- the fluid collected was taken and analyzed the same day with minimum refrigeration in between.
- the amount of fluid obtained in this manner was 1-2 mL. Therefore, a plexiglass insert was designed and used to compress the fluid down to the required volume. This design was useful in wetting the ATR crystal surface without loss of significant amount of fluid.
- the plexiglass material is transparent. Therefore, it helped ensure that the crystal was completely wetted via visible inspection.
- the fluid volume was reduced to 40 ⁇ L through this modification.
- a total of 52 samples of CFC fluid were obtained in this manner from the same rat on different days.
- the quantification methods utilized were Inverse Multiple Linear Regression (DVILR) of absorbance bands which correspond to (i) one wavelength band and one reference wavelength band and (ii) two wavelength bands and one reference wavelength band, with linear, interaction and quadratic terms and Partial Least Squares (PLS) considered.
- VILR Inverse Multiple Linear Regression
- PLS Partial Least Squares
- mean- centered absorbance values from the selected wavelength band(s) and selected reference wavelength band were used along with the above described ratio of wavelength band(s) absorbance values/ reference wavelength band absorbance values.
- the integrated absorbance in one wavelength band (e.g., 9.17 um - 9.3 urn; 1090 cm “1 - 1075 cm “1 ) and one reference wavelength band (e.g., 9.13 um - 9.17 um; 1095 cm “1 - 1090 cm “1 ) were calculated from the measured spectra of the solutions at different concentrations.
- the reference wavelength band is used as a reference/baseline band and is used to ratio out the reference signal variations.
- the integrated absorbances are divided by the bandwidth to avoid scaling effects. Mean-centered values of the concentrations and integrated absorbance ratios are used to generate a regression model and to obtain the calibration constants.
- the concentration of glucose in solution was calibrated by using the above discussed equation 1. Both linear (using only the first two terms in equ. 1) and quadratic (using all the terms in equ. 1) regression fits were considered.
- wavelength bands and one reference wavelength band were considered as illustrated as an example in Table 1 below.
- the choice of wavelengths utilized in the methods described herein are specific to the type of sample fluid being assayed.
- the wavelength bands set forth in Table 1 below were selected for glucose in LRS utilizing the criteria described herein (e.g., ensuring that the abso ⁇ tion band contained within the wavelength band is an abso ⁇ tion band of the organic substance of interest, selecting a wavelength band which has relatively strong abso ⁇ tion, and selecting a wavelength band in which abso ⁇ tion is relatively free of interference, or separated from, adjacent abso ⁇ tion bands) .
- the wavelength bands set forth in Table 2 below were selected for glucose in rat CFC utilizing the criteria described herein. As shown in Table 2, the wavelength bands selected for glucose in rat CFC are different from those selected from glucose in LRS.
- Partial Least Squares is a multispectral calibration method that uses the absorbance data at many different wavelengths. PLS uses the concentration and absorbance information and represents them in terms of "latent" variables. These latent variables are fitted with a regression equation using a least squares technique. The number of variables is reduced using a principal component analysis (PCA) step. More details of the method can be found in Geladi P. et al. Partial Least-Squares Regression: A tutorial, Analytica Chimica Acta 1986 1-17, which is inco ⁇ orated herein by reference.
- PCA principal component analysis
- the ATR spectra of aqueous glucose solutions in the spectral range of about 1200 cm “1 to about 975 cm “1 (8.3-10.3 ⁇ m) are shown in FIG. 10.
- the major abso ⁇ tion peaks due to glucose are identifiable along with the less prominent ones.
- One wavelength band and one reference wavelength band in this region correlate well with glucose concentrations and were selected for the calibration. With respect to the selected reference wavelength band, it was chosen based on its moderately invariant effect with respect to glucose concentration. These selections were based on the best results for the LRS glucose solution spectra discussed below.
- FIGS. 11 A and 1 IB show the results of the one wavelength band and one reference wavelength band IMLR with linear and quadratic fits respectively. Both the fits show good performance with a correlation coefficient of 0.999 as is to be expected in the absence of interferences. There is a marginal improvement in the correlation with a quadratic fit.
- FIGS. 12A and 12B show the results of the two wavelength band and one reference wavelength band IMLR.
- the correlation is improved for a quadratic fit.
- this fit shows slightly poorer correlation compared to the one wavelength band fit. This may be due to the fact that the reference wavelength band was selected with the LRS interferences to glucose in mind and therefore, the performance worsened in the case of the aqueous glucose solution.
- FIGS. 13 A and 13B show the results of the Partial Least Squares calibration (PLS) in the about 1190 cm “1 to about 980 cm “1 (8.4-10.2 ⁇ m) wavenumber range. Since this region contains the glucose absorbance information the correlations are expected to be high.
- FIG. 13 A shows a high correlation coefficient of 0.9999 for the calibration.
- FIG. 13B shows the results of leave-1-out cross validation, the correlation coefficient being 0.997. These values are close to those obtained in the case of the IMLR methods indicating that most of the glucose absorbance information is contained within the bands chosen for the IMLR analysis.
- LRS was spiked with glucose in the 0.05-0.5% concentration range and the spectra of these solutions in the spectral range of about 1200 cm “1 to about 975 cm “1 (8.3-10.3 ⁇ m) are shown in FIG. 14.
- the ions sodium, potassium, calcium and chloride present in the solution cause a large shift in baseline. These shifts have been accounted for through a baseline correction procedure in FIG. 14.
- the glucose abso ⁇ tion and the peaks due to lactate are seen.
- the glucose peaks appear shifted and distorted compared to the ones in the case of aqueous glucose solutions. This is due to the effect of the peaks due to the lactate which are present in the same region as the glucose.
- FIGS. 15A and 15B show the results of a one wavelength band and one reference wavelength band IMLR with linear and quadratic fits respectively.
- the correlations are down to 0.98 for the linear fit due to the presence of the lactate interferences. However, this is improved to 0.99 for the quadratic fit as the interaction effects are being accounted for.
- FIGS. 16A and 16B show the results of a two wavelength band and a one reference wavelength band IMLR with linear and quadratic fits respectively. Correlations are down to 0.98 for the linear fit but a quadratic fit is seen to improve the correlation coefficient dramatically giving a correlation coefficient of 0.999.
- FIGS. 17A and 17B show the results of the multivariate (PLS) calibration in the about 1190 cm “1 to about 980 cm “1 (8.4-10.2 ⁇ m) range for LRS spiked with glucose. This region selection is broad and a multivariate method is able to correlate the glucose concentration to the spectral information in the presence of interfering spectra.
- FIG. 17A shows a high correlation coefficient of 0.9999 for the calibration.
- FIG. 17B shows the results of leave- 1 -out cross validation, the correlation coefficient being 0.9863.
- FIGS. 20A and 20B show the results of a two wavelength band one reference wavelength band IMLR calibration with a linear and quadratic fit, respectively.
- the correlation with the linear calibration is about 0.73.
- An improvement in the correlation is obtained by inclusion of a third wavelength giving a correlation coefficient of 0.83 with the quadratic.
- FIGS. 21A and 21B show the results of the multivariate (PLS) calibration in the about 1190 cm “1 to about 980 cm “1 (8.4-10.2 ⁇ m) range for glucose in CFC fluid.
- FIG. 21A shows a correlation coefficient of 0.814 for the calibration.
- FIG. 2 IB shows the results of leave- 1 -out cross validation, the correlation coefficient being down to 0.74 indicating the stability of the calibration.
- the pure component spectra extracted from the above measurements show excellent agreement with the abso ⁇ tion peaks in the pure glucose spectrum further validating the correlation with the glucose concentration.
- the correlation coefficient for the multivariate analysis is close to that obtained for the quadratic fit IMLR. This indicates that most of the information that correlates with the glucose concentration is captured by the quadratic fit IMLR.
- FIGS. 23 A and 23B show the results of a one-wavelength band and one reference wavelength band IMLR with linear and quadratic fits, respectively.
- the wavelength bands chosen for this case were about 1195 cm “1 to about 1185 cm “1 (8.37-8.44 um) for the reference wavelength band and about 1090 cm “1 to about 1065 cm “1 (9.17-9.39 um) for the glucose wavelength band.
- the quadratic calibration shows a better fit as shown in FIG. 23B.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Optics & Photonics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Emergency Medicine (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US31216501P | 2001-08-14 | 2001-08-14 | |
US312165P | 2001-08-14 | ||
PCT/US2002/022899 WO2003016882A1 (en) | 2001-08-14 | 2002-07-18 | Measuring a substance in a biological sample |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1428013A1 true EP1428013A1 (en) | 2004-06-16 |
EP1428013A4 EP1428013A4 (en) | 2007-10-31 |
Family
ID=23210165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02756523A Withdrawn EP1428013A4 (en) | 2001-08-14 | 2002-07-18 | Measuring a substance in a biological sample |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1428013A4 (en) |
CA (1) | CA2457753A1 (en) |
WO (1) | WO2003016882A1 (en) |
Families Citing this family (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040147034A1 (en) * | 2001-08-14 | 2004-07-29 | Gore Jay Prabhakar | Method and apparatus for measuring a substance in a biological sample |
US6958809B2 (en) | 2001-11-08 | 2005-10-25 | Optiscan Biomedical Corporation | Reagent-less whole-blood glucose meter |
US7050157B2 (en) | 2001-11-08 | 2006-05-23 | Optiscan Biomedical Corp. | Reagent-less whole-blood glucose meter |
US7061593B2 (en) | 2001-11-08 | 2006-06-13 | Optiscan Biomedical Corp. | Device and method for in vitro determination of analyte concentrations within body fluids |
US6989891B2 (en) | 2001-11-08 | 2006-01-24 | Optiscan Biomedical Corporation | Device and method for in vitro determination of analyte concentrations within body fluids |
US7288768B2 (en) | 2002-07-18 | 2007-10-30 | Purdue Research Foundation | Method for measuring the amount of an organic substance in a food product with infrared electromagnetic radiation |
EP1464273B1 (en) * | 2003-04-03 | 2006-11-29 | Matsushita Electric Industrial Co., Ltd. | Method and device for measuring concentration of specific component |
US8626257B2 (en) | 2003-08-01 | 2014-01-07 | Dexcom, Inc. | Analyte sensor |
US20190357827A1 (en) | 2003-08-01 | 2019-11-28 | Dexcom, Inc. | Analyte sensor |
US8060173B2 (en) * | 2003-08-01 | 2011-11-15 | Dexcom, Inc. | System and methods for processing analyte sensor data |
US8761856B2 (en) | 2003-08-01 | 2014-06-24 | Dexcom, Inc. | System and methods for processing analyte sensor data |
DE10351160B3 (en) * | 2003-11-03 | 2005-03-31 | Roche Diagnostics Gmbh | Continuous-flow cuvette and mid-range infra-red transmission spectrometer for biological fluids, comprises flow channel with two separate optical paths |
US8774886B2 (en) | 2006-10-04 | 2014-07-08 | Dexcom, Inc. | Analyte sensor |
JP2008518205A (en) | 2004-10-21 | 2008-05-29 | オプテイスカン・バイオメデイカル・コーポレーシヨン | Method and apparatus for determining analyte concentration in an interfering sample |
US7722537B2 (en) | 2005-02-14 | 2010-05-25 | Optiscan Biomedical Corp. | Method and apparatus for detection of multiple analytes |
US20070081626A1 (en) | 2005-02-14 | 2007-04-12 | Peter Rule | Method and apparatus for enhancing accuracy of an analyte detection system |
US8936755B2 (en) | 2005-03-02 | 2015-01-20 | Optiscan Biomedical Corporation | Bodily fluid composition analyzer with disposable cassette |
US20060194325A1 (en) | 2005-02-14 | 2006-08-31 | Gable Jennifer H | Fluid handling cassette with a fluid control interface |
US8251907B2 (en) | 2005-02-14 | 2012-08-28 | Optiscan Biomedical Corporation | System and method for determining a treatment dose for a patient |
US7785258B2 (en) | 2005-10-06 | 2010-08-31 | Optiscan Biomedical Corporation | System and method for determining a treatment dose for a patient |
US9561001B2 (en) | 2005-10-06 | 2017-02-07 | Optiscan Biomedical Corporation | Fluid handling cassette system for body fluid analyzer |
US8417311B2 (en) | 2008-09-12 | 2013-04-09 | Optiscan Biomedical Corporation | Fluid component analysis system and method for glucose monitoring and control |
WO2008144575A2 (en) | 2007-05-18 | 2008-11-27 | Optiscan Biomedical Corporation | Fluid injection and safety system |
US8597190B2 (en) | 2007-05-18 | 2013-12-03 | Optiscan Biomedical Corporation | Monitoring systems and methods with fast initialization |
US8412293B2 (en) | 2007-07-16 | 2013-04-02 | Optiscan Biomedical Corporation | Systems and methods for determining physiological parameters using measured analyte values |
EP3868284A1 (en) | 2007-10-10 | 2021-08-25 | Optiscan Biomedical Corporation | Fluid component analysis system and method for glucose monitoring and control |
US8417312B2 (en) | 2007-10-25 | 2013-04-09 | Dexcom, Inc. | Systems and methods for processing sensor data |
US7959598B2 (en) | 2008-08-20 | 2011-06-14 | Asante Solutions, Inc. | Infusion pump systems and methods |
US9149220B2 (en) | 2011-04-15 | 2015-10-06 | Dexcom, Inc. | Advanced analyte sensor calibration and error detection |
US8928877B2 (en) | 2011-07-06 | 2015-01-06 | Optiscan Biomedical Corporation | Sample cell for fluid analysis system |
US10475529B2 (en) | 2011-07-19 | 2019-11-12 | Optiscan Biomedical Corporation | Method and apparatus for analyte measurements using calibration sets |
US9091676B2 (en) | 2010-06-09 | 2015-07-28 | Optiscan Biomedical Corp. | Systems and methods for measuring multiple analytes in a sample |
WO2011011462A1 (en) | 2009-07-20 | 2011-01-27 | Optiscan Biomedical Corporation | Adjustable connector and dead space reduction |
US9554742B2 (en) | 2009-07-20 | 2017-01-31 | Optiscan Biomedical Corporation | Fluid analysis system |
WO2011140073A2 (en) | 2010-05-03 | 2011-11-10 | Optiscan Biomedical Corporation | Adjustable connector, improved fluid flow and reduced clotting risk |
CN102042967B (en) * | 2010-11-18 | 2012-07-04 | 上海衡伟信息技术有限公司 | Glucose aqueous solution quick identification method based on near infrared spectrum technology |
US9561324B2 (en) | 2013-07-19 | 2017-02-07 | Bigfoot Biomedical, Inc. | Infusion pump system and method |
WO2015095239A1 (en) | 2013-12-18 | 2015-06-25 | Optiscan Biomedical Corporation | Systems and methods for detecting leaks |
GB2523989B (en) | 2014-01-30 | 2020-07-29 | Insulet Netherlands B V | Therapeutic product delivery system and method of pairing |
US10737024B2 (en) | 2015-02-18 | 2020-08-11 | Insulet Corporation | Fluid delivery and infusion devices, and methods of use thereof |
WO2017123525A1 (en) | 2016-01-13 | 2017-07-20 | Bigfoot Biomedical, Inc. | User interface for diabetes management system |
US10610643B2 (en) | 2016-01-14 | 2020-04-07 | Bigfoot Biomedical, Inc. | Occlusion resolution in medication delivery devices, systems, and methods |
CN108495665B (en) | 2016-01-14 | 2021-04-09 | 比格福特生物医药公司 | Adjusting insulin delivery rate |
EP3515535A1 (en) | 2016-09-23 | 2019-07-31 | Insulet Corporation | Fluid delivery device with sensor |
WO2018111928A1 (en) | 2016-12-12 | 2018-06-21 | Mazlish Bryan | Alarms and alerts for medication delivery devices and related systems and methods |
EP3568859A1 (en) | 2017-01-13 | 2019-11-20 | Bigfoot Biomedical, Inc. | Insulin delivery methods, systems and devices |
US10881792B2 (en) | 2017-01-13 | 2021-01-05 | Bigfoot Biomedical, Inc. | System and method for adjusting insulin delivery |
USD928199S1 (en) | 2018-04-02 | 2021-08-17 | Bigfoot Biomedical, Inc. | Medication delivery device with icons |
CA3099113A1 (en) | 2018-05-04 | 2019-11-07 | Insulet Corporation | Safety constraints for a control algorithm-based drug delivery system |
CA3112209C (en) | 2018-09-28 | 2023-08-29 | Insulet Corporation | Activity mode for artificial pancreas system |
WO2020077223A1 (en) | 2018-10-11 | 2020-04-16 | Insulet Corporation | Event detection for drug delivery system |
USD920343S1 (en) | 2019-01-09 | 2021-05-25 | Bigfoot Biomedical, Inc. | Display screen or portion thereof with graphical user interface associated with insulin delivery |
US11801344B2 (en) | 2019-09-13 | 2023-10-31 | Insulet Corporation | Blood glucose rate of change modulation of meal and correction insulin bolus quantity |
US11935637B2 (en) | 2019-09-27 | 2024-03-19 | Insulet Corporation | Onboarding and total daily insulin adaptivity |
EP4069082B1 (en) | 2019-12-06 | 2024-06-05 | Insulet Corporation | Techniques and devices providing adaptivity and personalization in diabetes treatment |
US11833329B2 (en) | 2019-12-20 | 2023-12-05 | Insulet Corporation | Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns |
AU2021206190A1 (en) | 2020-01-06 | 2022-08-18 | Insulet Corporation | Prediction of meal and/or exercise events based on persistent residuals |
US11551802B2 (en) | 2020-02-11 | 2023-01-10 | Insulet Corporation | Early meal detection and calorie intake detection |
US11547800B2 (en) | 2020-02-12 | 2023-01-10 | Insulet Corporation | User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system |
US11986630B2 (en) | 2020-02-12 | 2024-05-21 | Insulet Corporation | Dual hormone delivery system for reducing impending hypoglycemia and/or hyperglycemia risk |
US11324889B2 (en) | 2020-02-14 | 2022-05-10 | Insulet Corporation | Compensation for missing readings from a glucose monitor in an automated insulin delivery system |
US11607493B2 (en) | 2020-04-06 | 2023-03-21 | Insulet Corporation | Initial total daily insulin setting for user onboarding |
EP4185348A1 (en) | 2020-07-22 | 2023-05-31 | Insulet Corporation | Open-loop insulin delivery basal parameters based on insulin delivery records |
US11684716B2 (en) | 2020-07-31 | 2023-06-27 | Insulet Corporation | Techniques to reduce risk of occlusions in drug delivery systems |
WO2022072332A1 (en) | 2020-09-30 | 2022-04-07 | Insulet Corporation | Drug delivery device with integrated optical-based glucose monitor |
EP4221588A1 (en) | 2020-09-30 | 2023-08-09 | Insulet Corporation | Secure wireless communications between a glucose monitor and other devices |
US11160925B1 (en) | 2021-01-29 | 2021-11-02 | Insulet Corporation | Automatic drug delivery system for delivery of a GLP-1 therapeutic |
US11904140B2 (en) | 2021-03-10 | 2024-02-20 | Insulet Corporation | Adaptable asymmetric medicament cost component in a control system for medicament delivery |
US11738144B2 (en) | 2021-09-27 | 2023-08-29 | Insulet Corporation | Techniques enabling adaptation of parameters in aid systems by user input |
US11439754B1 (en) | 2021-12-01 | 2022-09-13 | Insulet Corporation | Optimizing embedded formulations for drug delivery |
WO2024147928A1 (en) | 2023-01-06 | 2024-07-11 | Insulet Corporation | Automatically or manually initiated meal bolus delivery with subsequent automatic safety constraint relaxation |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1981000622A1 (en) * | 1979-08-23 | 1981-03-05 | Zeiss C Fa | Process and device of molecular spectroscopy particularly for determining metabolites |
DE3806008A1 (en) * | 1987-02-25 | 1988-09-08 | Ash Medical Systems Inc | CAPILLARY FILTRATION AND COLLECTOR AND METHOD FOR LONG-TERM MONITORING OF BLOOD COMPONENTS |
WO1991011136A1 (en) * | 1990-02-02 | 1991-08-08 | Boston Advanced Technologies, Inc. | Systems for material analysis based on reflectance ratio detection |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5321265A (en) * | 1992-07-15 | 1994-06-14 | Block Myron J | Non-invasive testing |
EP0670143B1 (en) * | 1993-08-12 | 2003-05-28 | Kurashiki Boseki Kabushiki Kaisha | Non invasive method and instrument for measuring blood sugar level |
US5743262A (en) * | 1995-06-07 | 1998-04-28 | Masimo Corporation | Blood glucose monitoring system |
US6025597A (en) * | 1995-10-17 | 2000-02-15 | Optiscan Biomedical Corporation | Non-invasive infrared absorption spectrometer for measuring glucose or other constituents in a human or other body |
EP0923335B1 (en) * | 1996-07-08 | 2006-08-23 | Animas Corporation | Implantable sensor and system for in vivo measurement and control of fluid constituent levels |
US6157041A (en) * | 1998-10-13 | 2000-12-05 | Rio Grande Medical Technologies, Inc. | Methods and apparatus for tailoring spectroscopic calibration models |
-
2002
- 2002-07-18 CA CA002457753A patent/CA2457753A1/en not_active Abandoned
- 2002-07-18 WO PCT/US2002/022899 patent/WO2003016882A1/en not_active Application Discontinuation
- 2002-07-18 EP EP02756523A patent/EP1428013A4/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1981000622A1 (en) * | 1979-08-23 | 1981-03-05 | Zeiss C Fa | Process and device of molecular spectroscopy particularly for determining metabolites |
DE3806008A1 (en) * | 1987-02-25 | 1988-09-08 | Ash Medical Systems Inc | CAPILLARY FILTRATION AND COLLECTOR AND METHOD FOR LONG-TERM MONITORING OF BLOOD COMPONENTS |
WO1991011136A1 (en) * | 1990-02-02 | 1991-08-08 | Boston Advanced Technologies, Inc. | Systems for material analysis based on reflectance ratio detection |
Non-Patent Citations (1)
Title |
---|
See also references of WO03016882A1 * |
Also Published As
Publication number | Publication date |
---|---|
CA2457753A1 (en) | 2003-02-27 |
WO2003016882A1 (en) | 2003-02-27 |
EP1428013A4 (en) | 2007-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1428013A1 (en) | Measuring a substance in a biological sample | |
US20040147034A1 (en) | Method and apparatus for measuring a substance in a biological sample | |
US4882492A (en) | Non-invasive near infrared measurement of blood analyte concentrations | |
US6582964B1 (en) | Method and apparatus for rapid measurement of HbA1c | |
US7277740B2 (en) | Analysis system for reagent-free determination of the concentration of an analyte in living tissue | |
Vonach et al. | Application of mid-infrared transmission spectrometry to the direct determination of glucose in whole blood | |
US20240335146A1 (en) | Systems and methods for the detection and quantification of ammonia and ammonium in fluids | |
US6741875B1 (en) | Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths | |
WO2001016578A1 (en) | Method for determination of analytes using near infrared, adjacent visible spectrum and an array of longer near infrared wavelengths | |
AU5798896A (en) | A method and apparatus to perform trans-cutaneous analyte monitoring | |
CA2383725A1 (en) | Method for determination of analytes using nir, adjacent visible spectrum and discrete nir wavelengths | |
CN1314368C (en) | Method and apparatus for measuring a concentration of a component in a subject | |
EP0282505A1 (en) | Method and apparatus for determining the level of an analyte in a sample of whole blood | |
CN115399759A (en) | Non-invasive blood analysis | |
US8523785B2 (en) | Method and apparatus for measuring analytes | |
US20050203356A1 (en) | Joint-diagnostic in vivo & in vitro apparatus | |
WO2009071102A1 (en) | Optical method and device for measuring concentrations of substances in biological fluids | |
JP3642602B2 (en) | Urine component measuring device | |
CA2523486A1 (en) | Joint-diagnostic spectroscopic and biosensor meter | |
Scheggi et al. | Optical Fibre Sensors And Applications With Particular Reference To Chemical Sensing | |
Shih et al. | Introduction to spectroscopy for noninvasive glucose sensing | |
WO2008062439A2 (en) | Non-invasive blood glucose measurement using mid-infrared absorption spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20040310 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: SANTHANAKRISHNAN, SIVAKUMAR Inventor name: GORE, JAYAVANT, P. |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20071004 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 21/35 20060101ALI20070927BHEP Ipc: A61B 5/00 20060101AFI20070927BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080422 |