[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1413842B1 - Wärmeübertrager - Google Patents

Wärmeübertrager Download PDF

Info

Publication number
EP1413842B1
EP1413842B1 EP03020684A EP03020684A EP1413842B1 EP 1413842 B1 EP1413842 B1 EP 1413842B1 EP 03020684 A EP03020684 A EP 03020684A EP 03020684 A EP03020684 A EP 03020684A EP 1413842 B1 EP1413842 B1 EP 1413842B1
Authority
EP
European Patent Office
Prior art keywords
wall
heat exchanger
fluid
exhaust gas
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03020684A
Other languages
English (en)
French (fr)
Other versions
EP1413842A3 (de
EP1413842A2 (de
Inventor
Uwe Dr. Krüger
Rainer Lutz
Martin Schindler
Michael Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1413842A2 publication Critical patent/EP1413842A2/de
Publication of EP1413842A3 publication Critical patent/EP1413842A3/de
Application granted granted Critical
Publication of EP1413842B1 publication Critical patent/EP1413842B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0234Header boxes; End plates having a second heat exchanger disposed there within, e.g. oil cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/029Other particular headers or end plates with increasing or decreasing cross-section, e.g. having conical shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/26Safety or protection arrangements; Arrangements for preventing malfunction for allowing differential expansion between elements

Definitions

  • the invention relates to a heat exchanger, in particular an exhaust gas heat exchanger for a motor vehicle, with pipes and a head piece.
  • the local exhaust gas cooler is of elongate shape, has at its front ends in each case a bottom, in which the ends of a plurality of tubes are inserted, which are arranged one below the other at a distance.
  • the resulting tube bundle is surrounded by a jacket which is provided with connections through which coolant is supplied and removed.
  • the exhaust gas cooler At the bottom at a front end of the exhaust gas cooler is followed by an approximately funnel-shaped tapered distribution chamber, which communicates with the plurality of tubes. On the opposite side of the floor, the distribution chamber merges into a flange, which is connected to a secondary exhaust pipe.
  • the object of the invention is to provide a heat exchanger in which a safe and possibly improved function is ensured.
  • a heat exchanger comprises a tube block forming tubes, which are flowed through by a first fluid and a second fluid flow around it, so that heat from the first to the second fluid or vice versa transferable. Furthermore, the heat exchanger comprises a head piece, in which there is a distribution chamber communicating with the tubes, so that the first fluid can be distributed to the tubes.
  • the object of the invention is advantageously achieved in that the head at least partially comprises an inner and an outer wall.
  • the basic idea of the invention is to reduce an immediate transfer of heat from the first fluid flowing into the distribution chamber to the contact area between the head piece and the tube block. This ensures that during operation of the heat exchanger, the temperature difference between the head piece in the contact area and the tube block is smaller than in a one-wall only Head piece, so that less thermal stresses between the head piece and the tube block occur.
  • an inner wall according to the present invention for example, a guide plate to understand, which is inserted into a head piece according to the prior art.
  • An outer wall is then formed by the prior art header.
  • a gap or cavity occurring between the inner and outer walls causes a thermal insulation between the inner and the outer wall and thus also between the distribution chamber and the outer wall, so that the object underlying the invention is achieved in a very simple manner.
  • the inner and the outer wall are supported against each other with support means.
  • the support means are integrated as a knob-like characteristics, as circumferential or interrupted rib or ribs or as deformed statements in the inner and / or in the outer wall, whereby a simple and therefore cost-effective design is possible.
  • a channel is formed between the inner and the outer wall, which via an inlet opening in the outer wall can be acted upon by a third fluid.
  • the channel can have any shape, but for reasons of space, a flat channel along an inner wall of the outer wall is advantageous.
  • the inner wall is fastened to the outer wall in a region of the head piece facing away from the tubes, so that the distance for the heat conduction from the inner wall to the outer wall in the contact area between the head piece and the tube block is increased and increased warmth Transfer is reduced from the flowing into the distribution chamber fluid to the contact area.
  • a heat-resistant connection such as a welded joint
  • At least the outer wall is additionally coolable, whereby the contact area between the head piece and the tube block thermally even better decoupled from the first fluid flowing into the distribution chamber.
  • thermal stresses between the header and the tube block and associated leaks are even better avoided.
  • the third fluid can be conducted through the channel into the distribution chamber and / or into the tubes.
  • the associated mixture of first and third fluid in the heat exchanger an additional heat transfer and thus improved performance of the heat exchanger is possible.
  • a prerequisite for this embodiment is a functional compatibility of the first fluid with the third fluid, for example an equality of the third with the first fluid, and a pressure level of the third fluid that is at least as great as that of the first fluid in the distribution chamber, since the Otherwise, the first fluid exits through the channel from the heat exchanger.
  • the first fluid is an exhaust gas from an internal combustion engine and the third fluid is air.
  • the third fluid is air.
  • the third fluid can be passed out of the channel through an outlet opening in the outer wall.
  • the channel in a closed circuit for example, in a cooling circuit can be integrated, whereby a cooling of the outer wall in a simple manner by means of existing devices, such as the engine cooling circuit, is possible.
  • the third fluid is equal to the second fluid, in particular coolant, whereby cooling of the head piece of cooling of the tube block can be preceded or followed.
  • Fig. 1 is a heat exchanger 100, which is used as a coolant-cooled exhaust gas cooler, shown in a broken view.
  • the heat exchanger 100 consists of a tube block 110 which is composed of a plurality of tubes 120 and a jacket 130.
  • the spaced-apart tubes 120 are inserted at the front ends of the tube block 110 in tube sheets, which are not visible except for a circumferential edge 140 from the outside.
  • the jacket 130 is itself tubular and has in its end regions circumferential chambers 150, which are provided with connections 160 for a coolant.
  • an approximately funnel-shaped head piece 170 is inserted and welded, so that a non-visible distribution chamber in the head piece 170 communicates with the tubes 120.
  • the head piece merges into a flange 180, which can be connected to an exhaust line, not shown.
  • the header 170 is heated up considerably due to the usually high exhaust gas temperatures. Subsequently, the exhaust gas flows through the tubes 120 where it can deliver heat to the tube walls. Subsequently, the exhaust gas is collected in another header and led out of the approximately symmetrically constructed exhaust gas cooler.
  • the peripheral chamber 150 of the shell 130 is supplied via the port 160 with a coolant from the cooling circuit of the internal combustion engine, so that the coolant can flow around the tubes 120 and absorb heat from the pipe walls, after which the coolant is led out through a further connection from the exhaust gas cooler.
  • the head piece 210 has a wall 220 which is very strongly heated during operation of the exhaust gas cooler 200 due to the direct contact with the hot, flowing into the distribution chamber 230 exhaust gas stream 240.
  • the tube block 280 consisting of the tubes 250, the tubesheet 260 and the jacket 270 is directly cooled by the coolant 290, so that the tube block 280 is heated far less than the wall 220 of the header 210.
  • a section of a heat exchanger 300 according to the present invention is shown in cross-section.
  • the head piece 310 consists of an outer wall 320 and designed as a guide plate inner wall 330, between which a gap-shaped cavity 325 is formed.
  • the baffle 330 is inserted into the outer wall during manufacture of the exhaust gas cooler 300 and welded, with other attachment methods are conceivable.
  • the baffle 330 prevents a direct flow of the contact point 340 between the outer wall 320 and the tube block 350 and the tube plate 360 with flowing into the distribution chamber 370 exhaust gas 380.
  • the gap-shaped cavity 325 serves as a kind of thermal insulation between the distribution chamber 370 and the pad 340, so that the outer wall 320 and the contact point 340 are less strongly heated by the exhaust stream 380. This will be thermal Tensions between the header 310 and the tube block 350 are reduced and the risk of leakage is reduced.
  • the inner wall 330 and the outer wall 320 may be fastened to each other at several points, in particular welded together.
  • the walls 320, 330 are advantageously welded together only in a region 390 facing away from the tube block 350 in order to delay as much as possible a heat conduction from the guide plate 330 to the contact point 340 within the material of the head piece 310.
  • the outer wall 320 and the guide plate 330 are in an area facing the tube block 350 with support nubs 395, which in the exemplary embodiment in FIG Fig. 3 are integrated into the guide plate 330, supported against each other.
  • the support nubs can also be integrated into the outer wall 320 or in both walls.
  • FIG. 4 shows a detail of a further embodiment example of an exhaust gas cooler 400 according to the invention in a cross section.
  • a head 410 in turn consists of an outer wall 420 and an inner wall formed as a guide plate 430, between which a gap-shaped cavity 425 is formed, whereby a contact point 435 between the outer wall 420 and the tube block 440 or the tubesheet 445 is thermally insulated from exhaust gas 455 flowing into the distribution chamber 450.
  • the inner wall 430 and the outer wall 420 are welded together only in a region 460 facing away from the tube block 440 and are supported against one another in a region facing the tube block 440 with supporting knobs 465 integrated into the inner wall 430.
  • the outer wall has an inlet opening 470, so that the gap-shaped cavity 425 can be acted upon via a connecting flange 475 with air 480.
  • the communicating with the distribution chamber 450 cavity 425 serves as a flow channel, which leads the air flow 485 between the outer wall 420 and the inner wall 420 in the distribution chamber 450.
  • the indicated by the arrow 485 air flow is mixed with the exhaust stream 455, so that an already pre-cooled exhaust gas-air mixture enters the tube block 440.
  • the exhaust gas as a whole is cooled more effectively and the performance of the exhaust gas cooler 400 is increased.
  • the pressure of the air 480 is higher than the pressure of the exhaust gas 455 in the distribution chamber 450.
  • compressed air or charge air which is compressed by an air conveyor.
  • FIG. 3 illustrates a cross section of a further embodiment possibility for an exhaust gas cooler 500 in the cutout.
  • an inner wall 510 of a head piece 520 is welded to a tube plate 530 and a tube block 540.
  • An outer wall 550 is fixed in a liquid-tight manner to the inner wall 510, for example welded, in a region 560 facing the tube block 540 as well as in a region 570 facing away from the tube block 540.
  • the outer wall 550 has a connecting piece 580 for a coolant inlet and a further, not shown connecting piece for a coolant outlet.
  • the channel 590 formed by the cavity between the inner wall 510 and the outer wall 550 flows through coolant 600 of a cooling circuit.
  • the contact point 610 between the header 520, the tube sheet 530 and the tube block 540 is located directly on the hot exhaust gas stream 620 in the distribution chamber 630, the temperature difference between the header 520 and the tube block 540 is reduced by the cooling effect of the coolant 600 , Thus, the mechanical stress of the contact point 610 and thus the danger reduced by leaks.
  • the performance of the exhaust gas cooler 500 is increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft einen Wärmeübertrager, insbesondere einen Abgaswärmeübertrager für ein Kraftfahrzeug, mit Rohren und einem Kopfstück.
  • Zu einer Verringerung von Emissionen eines Verbrennungsmotors ist bekannt, dem Verbrennungsmotor Abgas rückzuführen. Aufgrund der hohen Abgastemperaturen wird das Abgas zuvor durch einen als Abgaskühler ausgebildeten Wärmeübertrager geleitet, um das Abgas auf ein für eine Verbrennung günstiges Temperaturniveau abzukühlen.
  • Der dortige Abgaskühler ist von langgestreckter Gestalt, besitzt an seinen Stirnenden jeweils einen Boden, in welchen die Enden einer Vielzahl von Rohren eingesetzt sind, die untereinander in Abstand angeordnet sind. Das dadurch entstandene Rohrbündel ist mit einem Mantel umgeben, der mit Anschlüssen versehen ist, durch die Kühlmittel zu- und abgeführt wird.
  • An den Boden an einem Stirnende des Abgaskühlers schließt sich eine sich in etwa trichterförmig verjüngende Verteilkammer an, die mit der Vielzahl von Rohren kommuniziert. Auf der dem Boden gegenüberliegenden Seite geht die Verteilkammer in einen Flansch über, der mit einer weiterführenden Abgasleitung verbunden wird.
  • Wenn bei derartigen Wärmeübertragern während eines Betriebes ein heißes Fluid in die Verteilkammer geleitet wird, von wo es in die Rohre strömt, wird die Verteilkammer beziehungsweise eine die Verteilkammer einfassende Wandung stärker aufgeheizt als beispielsweise der das Rohrbündel umgebende Mantel, der von Kühlmittel durchströmt wird. Die dadurch entstehenden thermischen Spannungen zwischen Verteilkammerwandung und Mantel rufen unter Umständen Undichtigkeiten insbesondere an einer Kontaktstelle zwischen Verteilkammerwandung und Mantel hervor und wirken sich negativ auf die Lebensdauer des Wärmeübertragers aus.
  • Aus der US 4,685,292 ist ein Kühlsystem für Abgase eines Motors bekannt.
  • Aus der US 6,311,C78 B1 ist ein Wärmetauscher bekannt, der in den Ansaugkreislauf eines Verbrennungsmotors integriert ist.
  • Die Aufgabe der Erfindung ist es, einen Wärmeübertrager bereitzustellen, bei dem eine sichere und gegebenenfalls eine verbesserte Funktion gewährleistet ist.
  • Diese Aufgabe wird durch einen Wärmeübertrager mit den Merkmalen des Anspruchs 1 gelöst.
  • Gemäß Anspruch 1 umfaßt ein erfindungsgemäßer Wärmeübertrager einen Rohrblock bildende Rohre, die von einem ersten Fluid durchströmbar und von einem zweiten Fluid umströmbar sind, damit Wärme von dem ersten auf das zweite Fluid oder umgekehrt übertragbar ist. Desweiteren umfaßt der Wärmeübertrager ein Kopfstück, in dem sich eine mit den Rohren kommunizierende Verteilkammer befindet, damit das erste Fluid auf die Rohre verteilbar ist. Die Aufgabe der Erfindung wird vorteilhaft dadurch gelöst, daß das Kopfstück zumindest bereichsweise eine innere und eine äußere Wandung umfaßt.
  • Der Grundgedanke der Erfindung besteht darin, einen unmittelbaren Wärmeübertrag von dem in die Verteilkammer strömenden ersten Fluid auf den Kontaktbereich zwischen dem Kopfstück und dem Rohrblock zu verringern. Dadurch wird erreicht, daß im Betrieb des Wärmeübertragers der Temperaturunterschied zwischen dem Kopfstück in dem Kontaktbereich und dem Rohrblock kleiner ist als bei einem nur aus einer Wandung bestehenden Kopfstück, so daß weniger thermische Spannungen zwischen dem Kopfstück und dem Rohrblock auftreten.
  • Unter einer inneren Wandung im Sinne der vorliegenden Erfindung ist beispielsweise ein Leitblech zu verstehen, das in ein Kopfstück nach dem Stand der Technik einsteckbar ist. Eine äußere Wandung wird dann durch das vorherige Kopfstück nach dem Stand der Technik gebildet. Ein zwischen innerer und äußerer Wandung auftretender Spalt oder Hohlraum bewirkt eine thermische Isolierung zwischen der inneren und der äußeren Wandung und damit auch zwischen der Verteilkammer und der äußeren Wandung , so daß die der Erfindung zugrundeliegende Aufgabe auf sehr einfache Weise gelöst ist.
  • Um eine unerwünschte Hin- und Herbewegung der inneren Wandung gegenüber der äußeren Wandung zu vermeiden, sind gemäß der Erfindung die innere und die äußere Wandung mit Stützmitteln gegeneinander abgestützt. Erfindungsgemäß sind die Stützmittel als noppenartige Ausprägungen, als umlaufende oder unterbrochene Rippe oder Rippen oder als umgeformte Aufstellungen in die innere und/oder in die äußere Wandung integriert, wodurch eine einfache und damit kostengünstige Bauweise ermöglicht ist.
  • Erfindungsgemäß bildet sich zwischen der inneren und der äußeren Wandung ein Kanal aus, der über eine Eintrittsöffnung in der äußeren Wandung mit einem dritten Fluid beaufschlagbar ist. Der Kanal kann dabei eine beliebige Form besitzen, aus Platzgründen ist jedoch ein flacher Kanal entlang einer Innenwand der äußeren Wandung vorteilhaft.
  • Vorteilhafte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.
  • Eine Wärmeleitung von der inneren Wandung auf die äußere Wandung geschieht naturgemäß über Befestigungsstellen zwischen den beiden Wandungen. Deshalb ist die innere Wandung gemäß einer bevorzugten Ausführungsform in einem von den Rohren abgewandten Bereich des Kopfstücks an die äußere Wandung befestigt, so daß die Strecke für die Wärmeleitung von der inneren Wandung zur äußeren Wandung in dem Kontaktbereich zwischen dem Kopfstück und dem Rohrblock vergrößert und ein Wärme übertrag von dem in die Verteilkammer strömenden Fluid auf den Kontaktbereich verringert wird. Insbesondere bei sehr heißen Fluiden ist es vorteilhaft, eine hitzebeständige Verbindung, wie beispielsweise eine Schweißverbindung, zwischen innerer und äußerer Wandung vorzusehen.
  • Mit dem dritten Fluid ist zumindest die äußere Wandung zusätzlich kühlbar, wodurch der Kontaktbereich zwischen dem Kopfstück und dem Rohrblock thermisch noch besser von dem in die Verteilkammer strömenden ersten Fluid entkoppelt ist. Damit werden thermische Spannungen zwischen dem Kopfstück und dem Rohrblock und damit verbundene Undichtigkeiten noch besser vermieden.
  • Gemäß einer bevorzugten Weiterbildung ist das dritte Fluid durch den Kanal in die Verteilkammer und/oder in die Rohre leitbar. Durch die damit verbundene Mischung von erstem und drittem Fluid in dem Wärmeübertrager ist ein zusätzlicher Wärmeübertrag und damit eine verbesserte Leistungsfähigkeit des Wärmeübertragers möglich. Voraussetzung für diese Ausgestaltungsform ist allerdings eine funktionelle Verträglichkeit des ersten Fluids mit dem dritten Fluid, beispielsweise eine Gleichheit des dritten mit dem ersten Fluid, und ein Druckniveau des dritten Fluids, das mindestens so groß ist wie das des ersten Fluids in der Verteilkammer, da das erste Fluid ansonsten durch den Kanal aus dem Wärmeübertrager austritt.
  • Besonders bevorzugt ist das erste Fluid ein Abgas aus einem Verbrennungsmotor und das dritte Fluid Luft. Wegen der im Betrieb üblicherweise hohen Abgastemperaturen ist bei einem solchen sogenannten Abgas-Wärmeübertrager der Effekt des Grundgedankens der Erfindung, nämlich der Verringerung eines Wärmeübertrags beziehungsweise von Temperaturunterschieden besonders groß und vorteilhaft.
  • Bei einer anderen Ausführungsform ist das dritte Fluid durch eine Austrittsöffnung in der äußeren Wandung aus dem Kanal herausleitbar. Dadurch ist der Kanal in einen geschlossenen Kreislauf, beispielsweise in einen Kühlkreislauf integrierbar, wodurch eine Kühlung der äußeren Wandung auf einfache Weise mit Hilfe vorhandener Vorrichtungen, wie beispielsweise des Motorkühlkreislaufs, möglich ist.
  • Besonders bevorzugt ist das dritte Fluid gleich dem zweiten Fluid, insbesondere Kühlmittel, wodurch eine Kühlung des Kopfstücks einer Kühlung des Rohrblocks vor- oder nachgeschaltet werden kann.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1:
    Einen Wärmeübertrager;
    Fig.2:
    einen ausschnittsweisen Querschnitt eines Wärmeübertragers nach dem Stand der Technik;
    Fig. 3:
    einen ausschnittsweisen Querschnitt eines Wärmeübertragers gemäß der vorliegenden Erfindung;
    Fig. 4:
    einen ausschnittsweisen Querschnitt eines Wärmeübertragers gemäß der vorliegenden Erfindung;
    Fig. 5:
    einen ausschnittsweisen Querschnitt eines Wärmeübertragers gemäß der vorliegenden Erfindung.
  • In Fig. 1 ist ein Wärmeübertrager 100, der als kühlmittelgekühlter Abgaskühler verwendbar ist, in aufgebrochener Darstellung gezeigt. Der Wärmeübertrager 100 besteht aus einem Rohrblock 110, der aus einer Vielzahl von Rohren 120 und einem Mantel 130 zusammengesetzt ist. Die voneinander beabstandeten Rohre 120 sind an den Stirnenden des Rohrblocks 110 in Rohrböden eingesetzt, die bis auf eine umlaufende Kante 140 nicht von außen zu sehen sind. Um die Rohre 120 in sich aufzunehmen, ist der Mantel 130 selbst rohrförmig ausgebildet und weist in seinen Stirnbereichen umlaufende Kammern 150 auf, die mit Anschlüssen 160 für ein Kühlmittel versehen sind.
  • In die umlaufende Kante 140 eines Rohrbodens ist ein sich in etwa trichterförmiges Kopfstück 170 eingesteckt und eingeschweißt, so daß eine nicht sichtbare Verteilkammer in dem Kopfstück 170 mit den Rohren 120 kommuniziert. Auf der der Rohrbodenkante 140 gegenüberliegenden Seite geht das Kopfstück in einen Flansch 180 über, der an eine nicht dargestellte Abgasleitung anschließbar ist.
  • Strömt ein von einem Verbrennungsmotor kommendes Abgas durch den Flansch 180 in die Verteilkammer, wird aufgrund der üblicherweise hohen Abgastemperaturen das Kopfstück 170 stark aufgeheizt. Anschließend strömt das Abgas durch die Rohre 120, wo es Wärme an die Rohrwandungen abgeben kann. Anschließend wird das Abgas in einem weiteren Kopfstück gesammelt und aus dem in etwa symmetrisch gebauten Abgaskühler herausgeleitet. Die umlaufende Kammer 150 des Mantels 130 wird über den Anschluß 160 mit einem Kühlmittel aus dem Kühlkreislauf des Verbrennungsmotors beaufschlagt, damit das Kühlmittel die Rohre 120 umströmen und Wärme von den Rohrwandungen aufnehmen kann, wonach das Kühlmittel über einen weiteren Anschluß aus dem Abgaskühler herausgeführt wird.
  • Bei einem Abgaskühler 200 nach dem Stand der Technik, wie in Fig. 2 ausschnittsweise im Querschnitt zu sehen ist, weist das Kopfstück 210 eine Wandung 220 auf, die während eines Betriebes des Abgaskühlers 200 infolge des unmittelbaren Kontaktes mit dem heißen, in die Verteilkammer 230 strömenden Abgasstrom 240 sehr stark aufgeheizt wird. Im Gegensatz dazu wird der aus den Rohren 250, dem Rohrboden 260 und dem Mantel 270 bestehende Rohrblock 280 von dem Kühlmittel 290 unmittelbar gekühlt, so daß der Rohrblock 280 weit weniger aufgeheizt wird als die Wandung 220 des Kopfstücks 210.
  • Aufgrund der damit verbundenen unterschiedlichen thermischen Ausdehnung des Rohrblocks 280 und des Kopfstücks 210 entstehen thermische Spannungen, die die Schweißnaht 295, die den Mantel 270 und den Rohrboden 260 mit der Wandung 220 des Kopfstücks 210 verbindet, mechanisch belasten. Dies kann zu Undichtigkeiten im Bereich der Schweißnaht 295 und damit zu einer Verkürzung der Lebensdauer des Abgaskühlers 200 führen.
  • In Fig. 3 ist ein Ausschnitt eines Wärmeübertragers 300 gemäß der vorliegenden Erfindung im Querschnitt dargestellt. Hier besteht das Kopfstück 310 aus einer äußeren Wandung 320 und einer als Leitblech ausgebildeten inneren Wandung 330, zwischen denen ein spaltförmiger Hohlraum 325 ausgebildet ist. Das Leitblech 330 wird während der Fertigung des Abgaskühlers 300 in die äußere Wandung eingesteckt und verschweißt, wobei auch andere Befestigungsmethoden denkbar sind.
  • Das Leitblech 330 verhindert eine direkte Beströmung der Kontaktstelle 340 zwischen der äußeren Wandung 320 und dem Rohrblock 350 beziehungsweise dem Rohrboden 360 mit in die Verteilkammer 370 einströmendem Abgas 380. Der spaltförmige Hohlraum 325 dient gewissermaßen als thermische Isolierung zwischen der Verteilkammer 370 und der Kontaktstelle 340, so daß die äußere Wandung 320 und auch die Kontaktstelle 340 weniger stark durch den Abgasstrom 380 aufgeheizt werden. Dadurch werden thermische Spannungen zwischen dem Kopfstück 310 und dem Rohrblock 350 verringert und die Gefahr von Undichtigkeiten reduziert.
  • Die innere Wandung 330 und die äußere Wandung 320 können an mehreren Stellen aneinander befestigt, insbesondere miteinander verschweißt sein. Bei dem Ausführungsbeispiel in Fig. 3 sind die Wandungen 320, 330 vorteilhafterweise nur in einem von dem Rohrblock 350 abgewandten Bereich 390 miteinander verschweißt, um eine Wärmeleitung von dem Leitblech 330 zu der Kontaktstelle 340 innerhalb des Materials des Kopfstücks 310 möglichst zu verzögern.
  • Um ein Hin- und Herwackeln des Leitblechs 330 innerhalb der Verteilkammer 370 zu verhindern, sind die äußere Wandung 320 und das Leitblech 330 in einem dem Rohrblock 350 zugewandten Bereich mit Stütznoppen 395, die bei dem Ausführungsbeispiel in Fig. 3 in das Leitblech 330 integriert sind, gegeneinander abgestützt. Genauso gut können die Stütznoppen aber auch in die äußere Wandung 320 oder in beide Wandungen integriert sein.
  • Fig. 4 zeigt ausschnittsweise ein weiteres Ausgestaltungsbeispiel eines erfindungsgemäßen Abgaskühlers 400 in einem Querschnitt. Ein Kopfstück 410 besteht wiederum aus einer äußeren Wandung 420 und einer als Leitblech ausgebildeten inneren Wandung 430, zwischen denen ein spaltförmiger Hohlraum 425 ausgebildet ist, wodurch eine Kontaktstelle 435 zwischen der äußeren Wandung 420 und dem Rohrblock 440 beziehungsweise dem Rohrboden 445 thermisch von in die Verteilkammer 450 einströmendem Abgas 455 isoliert wird.
  • Die innere Wandung 430 und die äußere Wandung 420 sind nur in einem von dem Rohrblock 440 abgewandten Bereich 460 miteinander verschweißt und in einem dem Rohrblock 440 zugewandten Bereich mit in die innere Wandung 430 integrierten Stütznoppen 465 gegeneinander abgestützt. Die äußere Wandung weist eine Eintrittsöffnung 470 auf, so daß der spaltförmige Hohlraum 425 über einen Anschlußflansch 475 mit Luft 480 beaufschlagbar ist.
  • Der mit der Verteilkammer 450 kommunizierende Hohlraum 425 dient als Strömungskanal, der den Luftstrom 485 zwischen der äußeren Wandung 420 und der inneren Wandung 420 in die Verteilkammer 450 führt. Dort wird der durch den Pfeil 485 angedeutete Luftstrom mit dem Abgasstrom 455 vermischt, so daß ein bereits vorgekühltes Abgas-Luft-Gemisch in den Rohrblock 440 eintritt. Dadurch wird das Abgas insgesamt effektiver gekühlt und die Leistungsfähigkeit des Abgaskühlers 400 gesteigert.
  • Um ein Einströmen der Luft 480 in den Abgaskühler 400 sicherzustellen, muß Sorge dafür getragen werden, daß der Druck der Luft 480 höher ist als der Druck des Abgases 455 in der Verteilkammer 450. Es kann sich beispielsweise um Preßluft oder um Ladeluft handeln, die jeweils von einer Luftfördereinrichtung verdichtet wird.
  • Fig. 5 stellt einen Querschnitt einer weiteren Ausgestaltungsmöglichkeit für einen Abgaskühler 500 im Auschnitt dar. Hier ist eine innere Wandung 510 eines Kopfstückes 520 mit einem Rohrboden 530 und einem Rohrblock 540 verschweißt. Eine äußere Wandung 550 ist sowohl in einem dem Rohrblock 540 zugewandten Bereich 560 als auch in einem von dem Rohrblock 540 abgewandten Bereich 570 flüssigkeitsdicht an der inneren Wandung 510 befestigt, beispielsweise verschweißt.
  • Darüberhinaus weist die äußere Wandung 550 einen Anschlußstutzen 580 für einen Kühlmitteleintritt und einen weiteren, nicht gezeigten Anschlußstutzen für einen Kühlmittelaustritt auf. Dadurch wird der durch den Hohlraum zwischen der inneren Wandung 510 und der äußeren Wandung 550 gebildete Kanal 590 von Kühlmittel 600 eines Kühlkreislaufes durchströmt.
  • Obwohl sich bei diesem Ausführungsbeispiel die Kontaktstelle 610 zwischen dem Kopfstück 520, dem Rohrboden 530 und dem Rohrblock 540 unmittelbar am heißen Abgasstrom 620 in der Verteilkammer 630 befindet, wird der Temperaturunterschied zwischen dem Kopfstück 520 und dem Rohrblock 540 durch die kühlende Wirkung des Kühlmittels 600 verringert. Somit ist die mechanische Belastung der Kontaktstelle 610 und damit auch die Gefahr von Undichtigkeiten reduziert. Außerdem wird durch die zusätzliche Kühlung des Abgases 620 die Leistungsfähigkeit des Abgaskühlers 500 erhöht.
  • Die vorliegende Erfindung wurde am Beispiel eines Abgaskühlers für ein Kraftfahrzeug beschrieben. Es wird jedoch darauf hingewiesen, daß der erfindungsgemäße Wärmeübertrager auch für andere Anwendungszwecke geeignet ist.

Claims (7)

  1. Wärmeübertrager, insbesondere Abgaswärmeübertrager (100, 300, 400,500) für ein Kraftfahrzeug, mit Rohren (120), die von einem ersten Fluid durchströmbar und von einem zweiten Fluid umströmbar sind, und mit einem Kopfstück (170, 310, 410, 520), in dem sich eine mit den Rohren (120) kommunizierende Verteilkammer (370, 450, 630) befindet, wobei das Kopfstück (170, 310, 410, 520) zumindest bereichsweise eine innere und eine äußere Wandung (320, 330, 420, 430, 510, 550) umfasst, dadurch gekennzeichnet, dass die innere und die äußere Wandung (320, 330, 420, 430, 510, 550) mit Stützmitteln (395, 465) gegeneinander abgestützt sind und ein sich zwischen der inneren und der äußeren Wandung (320, 330, 430, 510, 550) ausbildender Kanal (425, 590) über eine Eintrittsöffnung in der äußeren Wandung (320, 420, 550) mit einem dritten Fluid beaufschlagbar ist.
  2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, daß die innere Wandung (330,430, 510) in einem von den Rohren (120) abgewandten Bereich des Kopfstücks (170, 310, 410, 520) an die äußere Wandung (320, 420, 530) befestigt, insbesondere geschweißt ist.
  3. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, daß die Stützmittel (395, 465) als noppenartige Ausprägungen, als umlaufende oder unterbrochene Rippe oder Rippen oder als umgeformte Aufstellungen in die innere und/oder in die äußere Wandung (320, 330, 420, 430, 510, 550) integriert sind.
  4. Wärmeübertrager nach Anspruch 3, dadurch gekennzeichnet, daß das dritte Fluid durch den Kanal (425, 590) in die Verteilkammer (370, 450, 630) und/oder in die Rohre (120) leitbar ist.
  5. Wärmeübertrager nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß das erste Fluid ein Abgas aus einem Verbrennungsmotor und das dritte Fluid Luft ist.
  6. Wärmeübertrager nach Anspruch 3, dadurch gekennzeichnet, daß das dritte Fluid durch eine Austrittsöffnung in der äußeren Wandung (320, 420, 550) aus dem Kanal (425, 590) herausleitbar ist.
  7. Wärmeübertrager nach Anspruch 6, dadurch gekennzeichnet, daß das dritte Fluid gleich dem zweiten Fluid, insbesondere Kühlmittel ist.
EP03020684A 2002-10-14 2003-09-11 Wärmeübertrager Expired - Lifetime EP1413842B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10247837A DE10247837A1 (de) 2002-10-14 2002-10-14 Wärmeübertrager
DE10247837 2002-10-14

Publications (3)

Publication Number Publication Date
EP1413842A2 EP1413842A2 (de) 2004-04-28
EP1413842A3 EP1413842A3 (de) 2005-12-28
EP1413842B1 true EP1413842B1 (de) 2008-12-24

Family

ID=32038648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03020684A Expired - Lifetime EP1413842B1 (de) 2002-10-14 2003-09-11 Wärmeübertrager

Country Status (3)

Country Link
US (1) US7121325B2 (de)
EP (1) EP1413842B1 (de)
DE (2) DE10247837A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20316688U1 (de) 2003-10-29 2004-03-11 Behr Gmbh & Co. Kg Wärmetauscher
DE102005022389A1 (de) * 2005-05-14 2006-11-16 Daimlerchrysler Ag Kühleinrichtung für rückgeführte Abgase
US20070062679A1 (en) * 2005-06-30 2007-03-22 Agee Keith D Heat exchanger with modified diffuser surface
US20080251242A1 (en) * 2005-10-20 2008-10-16 Behr Gmbh & Co. Kg Heat Exchanger
US7461639B2 (en) * 2006-04-25 2008-12-09 Gm Global Technology Operations, Inc. Coated heat exchanger
US8794299B2 (en) * 2007-02-27 2014-08-05 Modine Manufacturing Company 2-Pass heat exchanger including thermal expansion joints
CN101688763B (zh) * 2007-04-11 2014-08-20 贝洱两合公司 热交换器
US8225852B2 (en) * 2008-04-30 2012-07-24 Dana Canada Corporation Heat exchanger using air and liquid as coolants
JP5048695B2 (ja) * 2009-02-27 2012-10-17 株式会社小松製作所 Egrクーラ
JP5486858B2 (ja) * 2009-07-07 2014-05-07 日本発條株式会社 熱交換器
EP2546491B1 (de) * 2010-03-12 2016-03-09 Yanmar Co., Ltd. Motorabgaswärmetauscher und energieversorgungsvorrichtung zu dessen verwendung
FR2958385B1 (fr) * 2010-03-31 2013-01-18 Valeo Systemes Thermiques Echangeur de chaleur a performances accrues
DE102014006761A1 (de) 2013-06-21 2014-12-24 Modine Manufacturing Company Abgaskühler
WO2015038111A1 (en) * 2013-09-11 2015-03-19 International Engine Intellectual Property Company, Llc Thermal screen for an egr cooler
KR20180010364A (ko) * 2016-07-20 2018-01-31 현대자동차주식회사 Egr쿨러 결합구조
JP6361704B2 (ja) * 2016-07-26 2018-07-25 マツダ株式会社 エンジンの排気構造
DE102018106936A1 (de) * 2018-03-23 2019-09-26 Hanon Systems Ladeluftkühler aus einem flüssigkeitsgekühlten Vorkühler und einem luftgekühlten Hauptkühler
US11371786B2 (en) * 2020-10-21 2022-06-28 General Electric Company Heat exchanger for a gas turbine engine
US11867472B2 (en) * 2021-04-30 2024-01-09 Hamilton Sundstrand Corporation Heated header for subfreezing heat exchanger
US20240118044A1 (en) * 2022-10-06 2024-04-11 Hamilton Sundstrand Corporation Heat exchanger with header embedded cooling channels

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1745492A (en) * 1925-12-31 1930-02-04 Kelch Ventilating Heater Compa Combined heater and muffler for automobiles
US3201938A (en) * 1963-06-27 1965-08-24 Gen Electric Recuperative arrangement for gas turbine engines
US3552487A (en) * 1967-11-29 1971-01-05 Idemitsu Petrochemical Co Quenching apparatus for use with thermal cracking system
US4173615A (en) * 1974-07-08 1979-11-06 Mitsui Toatsu Chemicals, Incorporated Chemical apparatus for corrosive materials
DE3419442A1 (de) * 1983-05-25 1984-12-20 Kogata Gasu Reibo-gijutsu Kenkyu Kumiai, Tokio/Tokyo Waermetauscher
EP0138677A3 (de) * 1983-09-21 1985-05-22 Office National d'Etudes et de Recherches Aérospatiales (O.N.E.R.A.) Wärmetauscherrohre, Wärmetauscher mit solchen Rohren und Gasturbineanlagen mit solchen Wärmetauschern
EP0149466B1 (de) * 1984-01-10 1988-06-01 Klöckner-Humboldt-Deutz Aktiengesellschaft Wärmetauscher für zwei Medien, insbesondere ein Ladeluftkühler für eine Brennkraftmaschine
US4685292A (en) * 1985-09-09 1987-08-11 Zwick Energy Research Organization, Inc. Exhaust cooling system for internal combustion engine
US4903760A (en) * 1989-05-24 1990-02-27 General Motors Corporation Integral oil cooler and radiator tank
DE4431135C2 (de) * 1994-09-01 2003-02-13 Johann Himmelsbach Rohrbündelwärmetauscher für den Wärmetausch mit einem pulsierenden Strömungsmedium
DE19711789C2 (de) * 1997-03-21 2000-05-25 Zeuna Staerker Kg Kraftfahrzeug-Abgasreinigungsvorrichtung und Verfahren zu ihrer Herstellung
JPH11280564A (ja) * 1998-03-31 1999-10-12 Isuzu Motors Ltd Egrクーラ
US20030111209A1 (en) * 1999-01-20 2003-06-19 Hino Motors, Ltd. EGR cooler
FR2792968B1 (fr) * 1999-04-29 2001-06-29 Westaflex Automobile Echangeur thermique en plastique et acier destine a etre dispose dans un circuit d'admission d'air d'un moteur, notamment dans un repartiteur comportant deux chambres et element du circuit d'admission d'air d'un moteur
DE10233407B4 (de) * 2001-07-26 2016-02-18 Denso Corporation Abgaswärmeaustauscher
DE10144827A1 (de) * 2001-09-12 2003-03-27 Behr Gmbh & Co Abgaswärmeübertrager

Also Published As

Publication number Publication date
DE50310964D1 (de) 2009-02-05
US7121325B2 (en) 2006-10-17
DE10247837A1 (de) 2004-04-22
US20040188070A1 (en) 2004-09-30
EP1413842A3 (de) 2005-12-28
EP1413842A2 (de) 2004-04-28

Similar Documents

Publication Publication Date Title
EP1413842B1 (de) Wärmeübertrager
EP1214514B1 (de) Fluideinleitung für ein heisses fluid in einer hohlraumstruktur
DE60004919T2 (de) Wärme tauscher aus Plastik und Stahl zum Einbau in einem Stromkreis des Lufteinlasses einer Brennkraftmaschine
EP1682767B1 (de) Wärmetauscher
EP1800078B1 (de) Luftgekühlter abgaswärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
EP1999423B1 (de) Abgaskühler für ein kraftfahrzeug
EP0290812B1 (de) Wärmetauscher, insbesondere zum Kühlen von Spaltgas
EP1922520B1 (de) Abgaswärmeübertrager
WO2007048603A2 (de) Wärmetauscher, verfahren zur herstellung eines wärmetauschers
EP1955001A1 (de) Kühlvorrichtung für eine verbrennungskraftmaschine
EP2678627B1 (de) Abgaskühler
EP3108194B1 (de) Abgaswärmeübertrager
DE102006051000A1 (de) Wärmetauscher, Verfahren zur Herstellung eines Wärmetauschers
DE112013007041B4 (de) Wärmetauscher
DE102013100885B4 (de) Wärmetauscher für ein Kraftfahrzeug
EP2710318A1 (de) Lamellenwärmeübertrager
EP1681519A2 (de) Wärmetauscherkörper und Fahrzeugheizgerät mit einem Wärmetauscherkörper
DE102008056810B4 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
EP0994322B1 (de) Wärmetauscher mit einem Verbindungsstück
WO2019072853A1 (de) Abgaswärmeübertrager
DE102005045098A1 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
DE102010001635A1 (de) Wärmeübertrager
DE102014222158A1 (de) Abgaswärmeübertrager
EP1690057B1 (de) Wärmetauscher, insbesondere abgaswärmetauscher
DE102009050888A1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR GMBH & CO. KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20060628

AKX Designation fees paid

Designated state(s): CZ DE ES FR GB IT

17Q First examination report despatched

Effective date: 20070111

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CZ DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50310964

Country of ref document: DE

Date of ref document: 20090205

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090925

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090911

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50310964

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50310964

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150324

Ref country code: DE

Ref legal event code: R081

Ref document number: 50310964

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181001

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50310964

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401