EP1406349B1 - Active wide-band reception antenna with regulation of the receiving level - Google Patents
Active wide-band reception antenna with regulation of the receiving level Download PDFInfo
- Publication number
- EP1406349B1 EP1406349B1 EP03019899A EP03019899A EP1406349B1 EP 1406349 B1 EP1406349 B1 EP 1406349B1 EP 03019899 A EP03019899 A EP 03019899A EP 03019899 A EP03019899 A EP 03019899A EP 1406349 B1 EP1406349 B1 EP 1406349B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- frequency
- active
- antenna
- input
- fact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002829 reductive effect Effects 0.000 claims abstract description 8
- 238000012546 transfer Methods 0.000 claims abstract description 4
- 230000005540 biological transmission Effects 0.000 claims description 92
- 230000005669 field effect Effects 0.000 claims description 30
- 230000001419 dependent effect Effects 0.000 claims description 29
- 230000003321 amplification Effects 0.000 claims description 15
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 15
- 238000013461 design Methods 0.000 claims description 14
- 230000009467 reduction Effects 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 230000009022 nonlinear effect Effects 0.000 claims description 11
- 230000005855 radiation Effects 0.000 claims description 11
- 230000000694 effects Effects 0.000 claims description 8
- 238000012544 monitoring process Methods 0.000 claims description 7
- 230000005670 electromagnetic radiation Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 230000002349 favourable effect Effects 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims 4
- 230000001105 regulatory effect Effects 0.000 claims 3
- 239000000969 carrier Substances 0.000 claims 1
- 230000007850 degeneration Effects 0.000 claims 1
- 230000007717 exclusion Effects 0.000 claims 1
- 230000010287 polarization Effects 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 230000008054 signal transmission Effects 0.000 claims 1
- 230000002238 attenuated effect Effects 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 description 12
- 230000008878 coupling Effects 0.000 description 11
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 8
- 230000009466 transformation Effects 0.000 description 7
- 230000003014 reinforcing effect Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 108010014172 Factor V Proteins 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/32—Adaptation for use in or on road or rail vehicles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
Definitions
- the invention relates to an active broadband receiving antenna, comprising a passive antenna part 1 with a frequency-dependent effective length l e , whose output terminals are connected to the input terminals of an amplifier circuit 21 high frequency.
- Electrically long antennas or antennas that are in direct coupling with electrically large bodies have a frequency-dependent open-circuit voltage when excited with an electrical field strength held constant above the frequency, which is expressed by the effective length l e (f).
- the antenna noise temperature T A in terrestrial environment - coming from low frequencies - has fallen so far that for bipolar transistors from the side of the passive antenna part, a source impedance in the vicinity of the optimal impedance for the transistor impedance Z opt is required for noise adaptation, so as not to suffer any significant sensitivity loss due to the transistor noise.
- the basic form of an active antenna of this kind is in Fig. 2b shown and is known for example from DT-AS 23 10 616, the DT-AS 15 91 300 and AS 1919749.
- active broadband antennas which are not channel selective, but are tuned to a frequency band, such as the FM radio frequency band broadband is it is necessary to transform the antenna impedance Z S (f) of a short radiator in Z A (f) into the vicinity of Z opt (see VHF range in DT-AS 23 10 616) or to design the radiator itself in such a way that the antenna impedance Z S (f) itself lies in the vicinity of Z opt (see FM range in AS 1919749).
- the high electrical field strengths in the vicinity of the transmitter can lead to strong interference due to intermodulation and limiting effects in the electronic amplifier of the active receiving antenna, since this is highly sensitive in terms of high sensitivity and in terms of broadband compliance with the electrical Characteristics is dimensioned.
- the technique used is usually very complex, with the effort with increasing demand for intermodulation strength increases greatly.
- active receiving antennas which use a rectifier circuit with control circuit to determine the signal level, but cheaper amplifier can be used, since they are able to lower the gain of the active receiving antenna when a predetermined receive level is exceeded in order to receive interference by intermodulation and To avoid limiting effects in the amplifier and in the secondary circuit.
- Narrow bandwidth receivers typically do not need to be protected from nonlinear effects by level overload.
- U.S. Patent 4,875,019 is z.
- Example a receiver preamplifier with a matched to the fixed frequency for the narrow-band reception of Loran signals input resonant circuit specified. Measures to reduce the reception level are therefore not provided.
- the DE 43 23 014 describes an active broadband antenna in which the antenna impedance to be measured is transformed by means of a low-loss transformation network into the optimal source impedance of the subsequent electronic amplifier to achieve an optimal signal-to-noise ratio. To protect the subsequent receiving system against non-linear effects due to level overload is often necessary to lower the gain of the active antenna. In the DE 43 23 014 the exceeding of a predetermined reception level is detected by means of a rectifier circuit and lowered by means of a control amplifier, the gain of the active antenna.
- Active antennas according to this prior art for example, mounted on a large scale above the high frequency range with antenna arrangements in a motor vehicle window, together with a heater for the window heating , such as in EP 0 396 033 .
- EP 0 346 591 and in EP 0 269 723 described.
- the structures of the heating fields used as passive antenna part 1 are not originally intended for use as an antenna vehicle parts, which are only slightly changed due to their function for heating.
- an active antenna according to the prior art as in Fig. 2b realized, the existing impedance on the heating field by means of a primary matching circuit in the vicinity of the impedance Z opt for noise adaptation to transform and to smooth the frequency response of the active antenna by means of an output-side matching network.
- This approach requires the relatively complicated dimensioning of two filter circuits, which can not be done separately for each filter for an advantageous overall behavior of the active antenna due to the mutual dependence of each other.
- the amplifier circuit is not intended to provide sufficient linearity characteristics as a simple amplifying element as in Fig. 2b can be designed, whereby the creative freedom of the two matching networks is considerably narrowed.
- the design of two filters associated with increased effort.
- the object of the invention is therefore to design an active broadband receiving antenna according to claim 1 so that an effective means for reducing the gain of the active antenna is given when exceeding a predetermined reception level for protection against non-linear effects.
- the advantages attainable with the invention consist in particular in the reduction of the economic outlay and in the simplicity to achieve an optimum in terms of signal-to-noise ratio and the risk of non-linear effects optimal received signal.
- the achievable by the features of the main claim high linearity of the three-pole amplifying element 2 allow to make the reduction of the gain of the active antenna at the output of this element in conjunction with a simultaneously achieved increase in the linearizing negative feedback. Due to the omission of a primary matching network in conjunction with the input-side high impedance of the amplifier circuit results in a very advantageous freedom in the design of complex multi-antenna systems whose passive antenna parts are in radio coupling to each other.
- Active broadband receiving antenna with an amplifier circuit 21 connected directly to the passive antenna part 1 with a three-pole amplifying element 2, with input admittance 7 of the transmission network 31 with adjustable transmission element 34 located in the source line, eg in the form of a series resistor implemented as an adjustable electronic element 32, a downstream low-loss filter circuit 3 and an effective resistor 5 and control amplifier 33 on the output side.
- adjustable transmission element 34 located in the source line, eg in the form of a series resistor implemented as an adjustable electronic element 32, a downstream low-loss filter circuit 3 and an effective resistor 5 and control amplifier 33 on the output side.
- Active broadband receiving antenna according to Fig. 1
- an adjustable transmission member 34 having a plurality of series-connected resistors 35 each having a resistance 35 in parallel and designed as a switching diode 36 adjustable electronic element 34 for lowering the reception level in stages.
- Active broadband receiving antenna as in the FIGS. 1 . 3 and 4 but with an adjustable longitudinal adjustable element 30 as a frequency-dependent dipole 47 with a similar to the input admittance 7 of the low-loss filter circuit 3, but substantially with a two-pole mean 46 smaller by a frequency-independent factor (t-1) than the matterssadmittanz 7 of the low-loss filter circuit 3 with a frequency-dependent two-terminal 47 connected in parallel switching diode 36th
- Active broadband receiving antenna as in Fig. 2a with a plurality of low-loss filter circuits, which are controlled via switching diodes 36 alternatively between the input and the output of the transmission network 31 for alternative reduction of the internal gain of the active antenna.
- Active broadband receiving antenna as in Fig. 6 but with a filter circuit 3 with fixed blind elements 20 and with dummy elements 20a, which are switched on and off by means of adjustable electronic elements 32 for lowering the internal gain.
- Each of the transmission paths is assigned an adjustable transmission element 34, 34 'and a control amplifier 33, 33' frequency-selectively.
- Group antenna for the design of directivity with a passive antenna array 27 with electrical radiation coupling between the connection points 18, which are each connected to an amplifier circuit 21 and a high-frequency line 10 and whose signals are combined in the antenna combiner 22.
- Scanning diversity antenna system with an arrangement as in Fig. 13 but with electronic switches 25 in place of the antenna combiner 22 and each one spare load resistor 26 for loading the non-switched antenna branches.
- Scanning diversity antenna system formed from printed on the window heating fields with diversity moderately positioned junction 18 to achieve diversity Independent received signals 8.
- Active antenna according to the invention but with a transformer 24 with sufficiently high-impedance primary inductance and sufficiently large gear ratio for broadband increase of the effective length 1 e .
- Fig. 1 an antenna according to the basic form of the invention is shown.
- the heating field of a motor vehicle printed on a window pane shows that the passive antenna part 1 can not be shaped in such a way that it is suitable for use
- antenna in the meter and Dezimeterwellen Scheme has particular desired properties and thus has a random frequency dependence of both the effective length I e and their impedance according to their geometric structure and the metallic border of the window.
- the essence of the present invention is to realize an active antenna, which allows to absorb this randomness of the frequency dependence of the given passive antenna part 1 with the help of a low-cost, easy to detect and easy to implement active antenna and with respect to noise, linearity and Frequency response to make free and between the incident wave with the electric field strength E and the high-frequency received signal 8 to achieve a predetermined frequency response.
- the receive voltage present at a connection point 18 is fed to the amplifier circuit 21, which contains at the input a three-pole amplifying element 2, preferably an element with the character of a field effect transistor 2, which is negative-feedback in its source line to the input admittance 7 of a low-loss filter circuit 3, which is completed at its output with an effective resistance 5.
- the input admittance 7 for example, to be designed such that the strong frequency dependence, which is the receive idle voltage, expressed by the effective length l e of the thus designed passive antenna part 1 in the high-frequency received signal 8 is largely balanced.
- an adjustable longitudinal element 30 is provided in the adjustable transmission element 34, which acts as a through-connection in the range of small reception levels. If the longitudinal element 30 is set to high impedance in the region of too high a reception level, it causes on the one hand the lowering of the high-frequency received signal 8 as well as an increase in the impedance acting countercurrently in the source line of the transistor or a reduction of the admittance 7 'present there.
- the field effect transistor 2 is linearized by the measure and protects the continuative circuit from excessive reception levels.
- the operation and the design principle of an antenna according to the invention are based on the electrical equivalent circuit diagrams of FIGS. 2a and 5 explains:
- the suitability of a predefined passive antenna part 1 for the design of a sufficiently noise-sensitive active antenna can be estimated on the basis of the antenna temperature prevailing in the transmission frequency range.
- Field effect transistors usually have an extremely small parallel noise current source i r so that their contribution i r * Z A at negligible small gate-source and gate-drain capacitances C 2 and C 1 and the occurring in practice antenna impedances Z A compared to the series noise voltage source u r of the field effect transistor, expressed by its equivalent noise resistance R f , is always negligibly small.
- the sufficient sensitivity criterion for negligible capacitances C 1 , C 2 is therefore merely the requirement that is easy to test R A > R a ⁇ ⁇ F * T 0 / T A to fulfill.
- Modern gallium arsenide transistors have negligible capacitances C 1 and C 2 in comparison with the other circuits and a negligible effect of i r as a cause for the noise temperature T N0, which is extremely small in the case of noise adaptation of such transistors.
- the equivalent noise resistance depends on the quiescent current and can be set above 30 MHz broadband with 30 ohms and less.
- an antenna for the FM frequency range and a prevailing antenna temperature of about 1000 K is thus in terms of noise sensitivity for the real part of the complex antenna impedance, which represents the radiation resistance at low-loss field effect transistor 2, within the transmission frequency range exclusively R A ( f)> about 10 ohms as sufficient condition to demand.
- Fig. 5 the noise contribution of an amplifier unit 11 is considered at the end of the high-frequency line 10 connected to the low-loss filter circuit 3 on the output side. With sufficient gain in the amplifier circuit 21, this contribution is kept correspondingly small. To protect the downstream amplifier unit 11 against non-linear effects, it is often necessary to make this gain largely frequency-independent within the transmission frequency range. This is achieved by corresponding preferably lossless transformation of the effective effective resistance 5 at the output of the low-loss filter circuit 3 into a suitably frequency-dependent input admittance 7. Is the frequency dependence required due to the frequency dependency of the effective length l e (f) for the input admittance 7 As is known, a circuit of reactances for the low-loss filter circuit 3 can be found, which largely corresponds to this requirement.
- the inventive criterion for the exemplary design of a necessary and frequency-independent reception power within the transmission frequency range for the terrestrial broadcasting reception of an active vehicle antenna with respect to the reception power in the downstream receiving arrangement on the basis of Figure 5 explained.
- the largely frequency-independent reception behavior is to be demanded, on the one hand not to significantly reduce the sensitivity of the overall system by the noise contribution of the active antenna downstream receiving system and on the other hand to avoid non-linear effects due to gain peaks as a result of frequency-dependent reception behavior within a transmission frequency range.
- G (f) denotes the frequency-dependent real part of the input admittance 7 of the low-loss filter circuit 3. This noise contribution is then insignificant with respect to the inevitable received sound of the rushing with T A R A, if: G f ⁇ ( F V - 1 ) ⁇ T 0 4 ⁇ T A ⁇ 1 R A f
- the frequency dependence of the real part G (f) of the input admittance 7 of the low-loss filter circuit 3 is reciprocal to the frequency response of the real part R A (f) of the complex antenna impedance.
- G (f) ⁇ 1 / (3 * R A (f)) would have to be chosen approximately.
- G (f) in order to protect the receiver from excessive reception levels, it is desirable not to select the power amplification of the active antenna substantially greater than the optimum overall system sensitivity, and thus G (f) approximately as indicated in the right part of equation (3).
- the great advantage associated with the invention is that the frequency response given for G (f) from R A (f) can therefore be easily fulfilled because neither the input impedance of the low-impedance filter circuit 3, which is given by 1 / g m of the field-effect transistor 2 is still the effective effective resistance 5 at the output of the low-loss filter circuit 3 unavoidable essential reactive components have.
- the frequency-dependent radiator impedance Z S (f) exists forcibly and inseparably as source impedance of the primary-side transformation network. Their frequency behavior limits the achievable bandwidth of the impedance transformed into the vicinity of Z opt and thus the bandwidth of the signal-to-noise ratio at the output of the active circuit.
- the exemplary configuration of the frequency characteristic of G (f) of an active vehicle antenna according to the invention is described, if it is required that the received power P a at the input of the receiving system connected downstream of the active antenna is greater by a factor V than with a passive reference antenna , For example, a passive rod antenna on the vehicle at their resonance length. Due to the forcibly different directional diagrams, this factor is based on the azimuthal average values at a defined constant elevation angle ⁇ of the wave incidence.
- the active antenna downstream receiving system which in Fig. 5 is represented by the amplifier unit 11, is usually based on the line impedance Z L of the high-frequency line system.
- ⁇ is the case of a lossy passive antenna part 1 to the Efficiency in equation (8) of the directivity factor D ⁇ to replace at (f) by the D (f) *.
- the remaining sizing rules are not changed.
- FIGS. 18a and b are the real parts of in FIGS. 18a and b represented passive antenna parts 1 on the frequency of 76 to 108 MHz applied.
- the frequency response of the real part of the invention to be designed input admittance 7 at the input of the low-loss filter circuit 3 is therefore inverted to those in Fig. 18d shown curves according to aspects as they were discussed in connection with the equations (3) and (8) to make.
- equation (6) can be assigned to a maximum tolerable azimuthal mean value l em with a known azimuthal directivity factor D am (f) a maximum tolerable active component R Amax .
- the value range with R A > R Amax that is not allowed for sizing is in the Figures 18c and 18d also marked hatched.
- the radiation resistances R A of the impedance values of particularly favorable structures for use as a passive antenna part 1 are therefore outside the hatched value range with R Amin ⁇ R A ⁇ R Amax .
- a predetermined antenna structure by using a low-loss transformer with the transmission ratio ü, as in Fig. 17 specified, added, which forms the passive antenna part 1 together with the antenna structure - eg a heating field on the window pane.
- the broadband transmission ratio is advantageously selected such that the impedance measurable at the output of the transformer is placed with its real part in the value range with R Amin ⁇ R A ⁇ R Amax . It is advantageous here to make the primary inductance sufficiently high-impedance.
- the linearity requirement is met by a sufficiently large negative feedback through the input admittance 7 located in the source line.
- This requires a comparatively low negative feedback in the transmission range, which is dimensioned in accordance with the amplification requirement, for example, according to equation (8), but which is as large as possible outside the transmission range.
- preferably T-half filters or T-filters or chain circuits of such filters are used to implement such low-loss filter circuits 3.
- Such filters are shown in their basic structure in the figures. To correspond to a more complicated frequency response of the G (f), the individual elements be supplemented by other reactive elements.
- Fig. 6 indicated to make the amplifier unit 11 as the active output stage of the amplifier circuit 21.
- This can be provided with an output resistance equal to the characteristic impedance Z L of conventional coaxial cables.
- the effective effective resistance 5 is formed by the input impedance of the amplifier unit 11.
- G (f) is to be designed analogously to the above-mentioned embodiments with the aid of a low-loss filter circuit 3 completed with this impedance.
- the voltage reduction after the first amplifying element of the active antenna is advantageous in particular because it allows an optimum effect with regard to the frequency dependence of the expected intermodulation interference.
- the influence on the sensitivity of the entire receiving system is thus determined only by the influence of the increased voltage to the voltage reduction noise figure of the subsequent circuit.
- a mean resistance value must therefore be selected for the reduction at high reception levels, which is too small for intermodulation received signals at frequencies with a large real part of the antenna impedances and too large at frequencies with a small real part of the antenna impedances. This involves the risk that intermodulation received signals at frequencies with a large real part of the antenna impedances due to the smaller negative feedback effect cause too much intermodulation and on the other hand, the remaining gain at frequencies with a small real part of the antenna impedance is too small and the arrangement is too insensitive at these frequencies.
- adjustable transmission elements 34 which reduce the admittances set at small reception levels 7 independent of frequency by a suitable factor.
- the internal gain of the active antenna is frequency-independently reduced by a desired factor and the above-mentioned frequency-dependent intermodulation effect does not occur.
- this is achieved for example by a transformer arrangement as in Fig. 4 and in Fig. 6 reached.
- FIG. 5 Another method for achieving a frequency-independent negative feedback is by the arrangement in Fig. 5 given.
- the frequency-independent lowering of the high-frequency received signals 8 the adjustable longitudinal element 30 is designed as a frequency-dependent dipole 47.
- This is similar to a dividedsadmittanz 7 of the low-loss filter circuit 3, but essentially with a frequency-independent factor t-1 smaller Zweipoladmittanz 46 than the matterssadmittanz 7 of the transmission network 31 at low receive levels.
- the transmission network 31 with filter character in Fig. 8 designed as a low-loss filter circuit 3 with fixed blind elements 20.
- switchable dummy elements 20a are used which are switched on and off with the aid of adjustable electronic elements 32 such that falls below a predetermined receive level, the desired frequency dependence of the greater conductance G (f) of effective at the source terminal 24 makessadmittanz 7 for higher internal gain of the active Antenna is given on the one hand.
- the desired frequency dependence of the correspondingly reduced frequency conductance G '(f) is set with the same frequency dependence of the input admittance 7' for the lowered internal amplification of the active antenna.
- the passive antenna part 1 is designed with a connection point 18, whose two terminals are up against the mass 0. Each of the two terminals is connected to a respective control terminal 15a or 15b of a three-pole amplifying element 2.
- the source terminals 24a and 24b are connected to the primary side of a transformer 38 designed as an isolating transformer, the secondary side of which has different outputs for forming different transformation ratios t.
- the adjustable transmission member 34 is thus formed from the transformer and the switching diodes 36.
- the drain terminals 53a and 53b of the three-pole amplifying elements 2a and 2b are connected to the ground O, respectively.
- the three-pole reinforcing element 2 as in Fig. 9a , designed as an extended three-pole reinforcing element.
- the three-pole reinforcing element 2 is in Fig. 9b combined as an extended three-pole amplifying element of an input bipolar transistor 49 and another bipolar transistor 50 in emitter follower circuit.
- the emitter terminal 12 of the bipolar transistor 50 forms the source terminal 24 of the three-pole amplifying element 2.
- Fig. 9c is the three-pole amplifying element 2 designed as an extended three-pole amplifying element of an input bipolar transistor 49 and input field effect transistor 13, whose collector terminal or drain terminal to the source or. Emitter terminal of an additional transistor 51 is connected and whose base or gate terminal is connected to the emitter or source terminal of the input bipolar transistor 49 and input field effect transistor 13, respectively. Through this connection, the source terminal 24 of the three-pole amplifying element 2 is formed.
- An extended three-pole amplifying element of this form prevents by voltage tracking at the drain or collector terminal of the input transistor, the disturbing influence of a voltage-dependent capacitance between the control electrode and the drain and collector electrode.
- the three-pole amplifying element 2 is designed as an extended three-pole amplifying element, in which an electronically controllable quiescent current source I S0 or / and an electronically controllable rest voltage source U D0 is present.
- the quiescent current I S0 or / and the quiescent voltage U D0 in the input bipolar transistor 49 or input field-effect transistor 13 are set increased when large reception levels occur in connection with the inventive lowering of the internal amplification of the active antenna.
- a plurality of bipolar transistors 14, 14 ' for expanding the three-pole amplifying element 2 and for the combined formation of a plurality of three-pole amplifying elements 2, 2'.
- the base electrodes are connected to the source of a common input transistor 13 and to the source of an extended three-pole amplifying element, respectively FIGS. 9a to 9d connected.
- the bipolar transistors 14,14 ' are each connected in emitter follower circuit to the input of a low-loss filter circuit 3,3' to form separate transmission paths for the respective frequency bands.
- each of the transmission paths are each an adjustable transmission element 34,34 'and a control amplifier 33,33', which is supplied via filter measures only the respective transmission path associated frequency band from the high-frequency received signal 8 respectively.
- the control signal 42, 42 ' is in each case the associated adjustable transmission element 34,34' supplied.
- the control signals 42, 42 ' by means of selection and control amplifier 33, 33' in Receiver 44 derived from the output signal of the active antenna and the active antenna via control lines 41 supplied.
- the present active antenna is used repeatedly in an antenna system whose passive antenna parts 1 with frequency-dependent and with respect to incident waves by amount and or only in phase different directional diagrams of the effective lengths l e possess, however, in electromagnetic Radiation coupling to each other and together form a passive antenna array 27 with multiple connection points 18a, b, c.
- each is connected in each case to an amplifier circuit 21 according to the invention and supplemented to form an active antenna according to the invention. Due to the high impedance of the amplifier inputs is given by the coupling of the high-frequency received signals 8 to the passive antenna parts 1 no significant mutual influence of the receiving voltages.
- Such an antenna arrangement is generally in Fig. 13 shown.
- the present at the output of the amplifier circuit 21 receive signals 8 are superimposed weighted for the design of a group antenna arrangement with predetermined receiving properties with respect to directivity and antenna gain without retroactivity to the voltage applied to the passive antenna parts 1 high-frequency reception signals in a Antennencombiner 22 present for this purpose.
- a common control amplifier 33 the control signals 42a, b, c the transmission networks 31 a, b, c is fed into the active antennas for lowering the summed high-frequency received signal 8, perform the level monitoring.
- the level monitoring and attenuation take place separately in each active antenna with the aid of a control amplifier 33 respectively accommodated there.
- an antenna according to the invention as an active window pane antenna, it is advantageously possible to accommodate the amplifier circuit 21 invisible in the very narrow edge area of the vehicle window. Therefore, it is desirable to miniaturize the part to be attached to the connection point 18 and to attach only the parts of the amplifier circuit 21 which are functionally necessary there.
- the other parts of the low-loss filter circuit 3 are placed remotely and turned on via the high-frequency line 10.
- the active antenna is designed as a multi-region antenna for several frequency ranges.
- Fig. 19a for the frequency ranges FM radio broadcasting and VHF and UHF television broadcasting the fundamental frequency characteristics of reactances X 1 , X 3 and the susceptibility B 2 of a T-filter arrangement of the in Fig. 19b specified low-loss filter circuit 3 exemplified.
- the T-filter configuration in this case ensures the input-side high-impedance of the low-loss filter circuit 3 to achieve a sufficiently large negative feedback of the field effect transistor 2 in the stopband areas.
- the low-loss filter circuit 3 is designed as a T-half filter or T-filter or as a chain circuit such filter whose or series branch or parallel branch is formed in each case from a combination of reactances such that both the absolute value of a reactance in the series branch 28 than Also, the absolute value of a susceptance in the parallel branch 29 each within a transmission frequency range sufficiently small and outside such is sufficiently large and the high-frequency received signal 8 is supplied to the control amplifier 33 at the output and from the control signal 42, the adjustable transmission element 34 is controlled.
- another field effect transistor 2 having the same electrical properties is used in a further advantageous embodiment of the invention in addition to the field effect transistor 2.
- the input terminals of the amplifier circuit 21 are formed by the two control terminals of the field effect transistors 15a and 15b, and the input of the low-loss filter circuit 3 is connected to the source terminals 19a and 19b.
- a Umsymmetrierglied in the low-loss filter circuit 3 is used for the Umsymmetri réelle the high-frequency received signals 8.
- Circuit can advantageously also be connected to a connection point 18 with two connections leading to ground voltage.
- antenna diversity systems The efficiency of antenna diversity systems is determined by the number of available, mutually independent antenna signals. This independence is reflected in the correlation factor between the received voltages occurring in a Rayleigh wave field during travel.
- Such systems, in which the connection points 18 are selected from this point of view and taking into account technical aspects of the vehicle, are exemplary in the FIGS. 15 and 16 shown.
- connection points 18 Due to the electromagnetic radiation couplings existing between the connection points 18, this independence then applies only to the connection points 18 operated at idling.
- the connection points 18 By wiring the connection points 18 with the amplifier circuits 21 according to the invention, the high-frequency received signals 8 are tapped at the antenna outputs due to their negligible capacitive input conductance.
- the diversity of the independence of the received signals at the connection points 18 is thus not affected by this measure in an advantageous manner and this independence is therefore in the same way for the received signals 8 at the antenna outputs.
- mutually independent receive signals 8 are available at the antenna outputs for selection in a scanning diversity system or for further processing in one of the other known diversity methods.
- the foregoing considerations indicate that with the mutual interdependence of the open circuit voltages U10 and U20, specific values for Y1 and Y2 can be found which reduce or eliminate the interdependence in the amplifier input voltages U1 and U2 through the transformation described in Equation 15.
- Active antennas according to the invention have the decisive advantage that the definition of such suitable reactive elements can be made largely independent of sensitivity considerations.
- a separate control amplifier 33 for monitoring the high-frequency received signal 8 at the relevant antenna output is assigned to the amplifier circuits 21 of the active antennas.
Landscapes
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
Die Erfindung betrifft eine aktive Breitbandempfangsantenne, bestehend aus einem passiven Antennenteil 1 mit einer frequenzabhängigen effektiven Länge le, dessen Ausgangsanschlüsse mit den Eingangsanschlüssen einer Verstärkerschaltung 21 hochfrequent verbunden sind. Elektrisch lange Antennen oder Antennen, die sich in direkter Kopplung mit elektrisch großen Körpern befinden, besitzen bei Erregung mit einer über der Frequenz konstant gehaltenen elektrischen Feldstärke eine frequenzabhängige Leerlaufspannung, die sich durch die effektive Länge le(f) ausdrückt. Insbesondere im Frequenzbereich oberhalb 30 MHz ist die Antennenrauschtemperatur TA bei terrestrischer Umgebung - von tiefen Frequenzen kommend - soweit abgesunken, dass für Bipolartransistoren von Seiten des passiven Antennenteils eine Quellimpedanz in der Nähe der für den Transistor optimalen Impedanz Z opt für Rauschanpassung zu fordern ist, um keinen wesentlichen Empfindlichkeitsverlust durch das Transistorrauschen zu erleiden. Die Grundform einer aktiven Antenne dieser Art ist in
Bei breitbandigen Empfangsantennen kann es durch die hohen elektrischen Feldstärken in Sendemähe, z.B.auch durch bordeigene Sender, durch Intermodulations- und Begrenzungseffekte im elektronischen Verstärker der aktiven Empfangsantenne zu starken Empfangsstörungen kommen, da dieser im Hinblick auf hohe Empfindlichkeit und im Hinblick auf die breitbandige Einhaltung der elektrischen Eigenschaften dimensioniert ist. Die dabei angewandte Technik ist in der Regel sehr aufwändig, wobei der Aufwand mit wachsender Anforderung an die Intermodulationsfestigkeit stark zunimmt. Bei aktiven Empfangsantennen, die zur Feststellung der Signalpegel eine Gleichrichterschaltung mit Regelschaltung verwenden, können jedoch kostengünstigere Verstärker eingesetzt werden, da sie in der Lage sind, bei Überschreiten eines vorgegebenen Empfangspegels die Verstärkung der aktiven Empfangsantenne abzusenken, um auf diese Weise Empfangsstörungen durch Intermodulations- und Begrenzungseffekte im Verstärker und in der weiterführenden Schaltung zu vermeiden.
Empfangsanlagen mit schmaler Bandbreite müssen in der Regel nicht vor nichtlinearen Effekten durch Pegelüberlastung geschützt werden. In der
Narrow bandwidth receivers typically do not need to be protected from nonlinear effects by level overload. In the
In der
Die Grundform aktiver Antennen mit einem Transformationsnetzwerk am Verstärkereingang, wie sie z.B. als Breitbandantennen für den UKW-Bereich eingesetzt werden, ist in
Eine aktive Breitbandempfangsantenne, welche die letztgenannten Nachteile nicht besitzt ist in der nicht vorveröffentlichten
Aufgabe der Erfindung ist es deshalb, eine aktive Breitband-Empfangsantenne nach dem Anspruch 1 so zu gestalten, dass eine wirkungsvolle Einrichtung zur Absenkung der Verstärkung der aktiven Antenne bei Überschreiten eines vorgegebenen Empfangspegels zum Schutz gegen nichtlineare Effekte gegeben ist.The object of the invention is therefore to design an active broadband receiving antenna according to
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.This object is achieved by the features of
Die mit der Erfindung erzielbaren Vorteile bestehen im Besonderen in der Reduzierung des wirtschaftlichen Aufwands und in der Einfachheit zur Erzielung eines hinsichtlich des Signalrauschverhältnisses und hinsichtlich der Gefährdung durch nichtlineare Effekte optimalen Empfangssignals. Die durch die Merkmale des Hauptanspruchs erreichbare hohe Linearität des dreipoligen verstärkenden Elements 2 erlauben es, die Absenkung der Verstärkung der aktiven Antenne am Ausgang dieses Elements in Verbindung mit einer zugleich erzielten Erhöhung der linearisierenden Gegenkopplung zu gestalten. Aufgrund des Wegfallens eines primären Anpassnetzwerkes in Verbindung mit der eingangsseitigen Hochohmigkeit der Verstärkerschaltung ergibt sich eine äußerst vorteilhafte Freiheit bei der Gestaltung komplizierter Mehrantennensysteme, deren passive Antennenteile in Strahlungskopplung zueinander stehen. Daraus ergibt sich die vorteilhafte Eigenschaft, dass für Mehrantennenanordnungen die mehrfache Auskopplung von Empfangssignalen aus einer passiven Antennenanordnung mit mehreren Anschlussstellen, welche in elektromagnetischer Strahlungskopplung zueinander stehen, durch die Bildung der aktiven Antennen keine merkliche gegenseitige Beeinflussung der Empfangssignale gegeben ist. Im Zusammenhang mit der Diversityanordnung können die oben erwähnten Schaltdioden zur Freischaltung vonThe advantages attainable with the invention consist in particular in the reduction of the economic outlay and in the simplicity to achieve an optimum in terms of signal-to-noise ratio and the risk of non-linear effects optimal received signal. The achievable by the features of the main claim high linearity of the three-pole amplifying
Ausführungsbeispiele erfindungsgemäßer aktiver Breitbandempfangsantennen und Antennensysteme sind in den Zeichnungen dargestellt und werden im Folgenden näher beschrieben. Im Einzelnen zeigt:Embodiments of inventive active broadband receiving antennas and antenna systems are shown in the drawings and will be described in more detail below. In detail shows:
Aktive Breitbandempfangsantenne nach der Erfindung mit einer direkt an den passiven Antennenteil 1 angeschlossenen Verstärkerschaltung 21 mit einem dreipoligen verstärkenden Element 2, mit in der Quellenleitung befindlicher Eingangsadmittanz 7 des Übertragungsnetzwerks 31 mit einstellbarem Übertragungsglied 34, z.B. in Form eines als einstellbares elektronisches Element 32 realisierten Längswiderstands, einer nachgeschalteten verlustarmen Filterschaltung 3 und einem ausgangsseitig wirksamen Wirkwiderstand 5 und Regelverstärker 33.Active broadband receiving antenna according to the invention with an
-
a) Elektrisches Ersatzschaltbild einer aktiven Breitbandempfangsantenne nach der Erfindung mit Serienrauschspannungsquelle ur und in ihrer Wirkung vernachlässigbarer Parallelrauschstromquelle ir eines Feldeffekttransistors als dreipoliges verstärkendes Element 2 mit einer außerhalb des Übertragungsbereichs eingangsseitig hochohmigen verlustarmen Filterschaltung 3.a) Electrical equivalent circuit diagram of an active broadband receiving antenna according to the invention with series noise source u r and negligible in effect Parallelrauschstromquelle i r a field effect transistor as a three-pole amplifying
element 2 with an outside of the transmission range on the input side high-impedance low-loss filter circuit 3rd -
b) Elektrisches Ersatzschaltbild einer aktiven Breitbandempfangsantenne nach dem Stand der Technik mit Rauschanpassungsnetzwerk und frequenzabhängiger effektiver Länge des passiven Antennenteils 1 am Anschlusspunkt des Transistors und ausgangsseitigem Anpassungsnetzwerk zur Glättung des Frequenzgangs.b) Electrical equivalent circuit diagram of a prior art active broadband receiving antenna with noise matching network and frequency dependent effective length of the
passive antenna part 1 at the connection point of the transistor and output matching network for smoothing the frequency response.
Aktive Breitbandempfangsantenne gemäß
Aktive Breitbandempfangsantenne wie in den
Aktive Breitbandempfangsantenne wie in den
Aktive Breitbandempfangsantenne wie in
Aktive Breitbandempfangsantenne wie in
Aktive Breitbandempfangsantenne wie in
Gestaltung des dreipoligen verstärkenden Elements 2 als erweitertes dreipoliges verstärkendes Element
- a) aus einem Eingangs-
Feldeffekttransistoi 13 und einem Bipolartransistor 14 in Emitterfolgerschaltung - b) aus einem Eingangs-
Bipolartransistor 49 und einem weiteren Bipolartransistor 50 in Emitterfolgerschaltung - c) aus einem Eingangstransistor und einem weiteren Transistor zur hochfrequenten Nachführung der Drain- bzw. der Kollektorelektrode des Eingangstransistors.
- d) aus einer kombinierten Transistorschaltung zur elektronischen Steuerung der
Ruhespannungsquelle U D0 45 und des Ruhestroms IS0 50 des Eingangstransistors im Zusammenhang mit der Absenkung der inneren Verstärkung der aktiven Antenne aufgrund zu hoher Empfangspegel.
- a) from an input
field effect transistor 13 and abipolar transistor 14 in emitter follower circuit - b) of an input
bipolar transistor 49 and anotherbipolar transistor 50 in emitter follower circuit - c) from an input transistor and a further transistor for high-frequency tracking of the drain and the collector electrode of the input transistor.
- d) from a combined transistor circuit for the electronic control of the rest
voltage source U D0 45 and the quiescent current I S0 50 of the input transistor in connection with the lowering of the internal gain of the active antenna due to high reception levels.
Passiver Antennenteil 1 mit einer Anschlussstelle 18, deren beide Anschlüsse gegenüber dem Masseanschluss hochliegen, mit einem Feldeffekttransistor 2a und einem weiteren Feldeffekttransistor 2b und einem als Trenntransformator ausgeführten Übertrager 38 mit Schaltdioden 36 zur Einstellung des Übersetzungsverhältnisses
Gestaltung von mehreren Übertragungsfrequenzbändern über mehrere getrennte Übertragungswege für die betreffenden Frequenzbänder. Jedem der Übertragungswege ist jeweils ein einstellbares Übertragungsglied 34, 34' und ein Regelverstärker 33, 33' frequenzselektiv zugeordnet.Design of several transmission frequency bands over several separate transmission paths for the respective frequency bands. Each of the transmission paths is assigned an
Anordnung wie in
Gruppenantenne zur Gestaltung von Richtwirkungen mit einer passiven Antennenanordnung 27 mit elektrischer Strahlungskopplung zwischen den Anschlussstellen 18, welche jeweils mit einer Verstärkerschaltung 21 und einer Hochfrequenzleitung 10 beschaltet sind und deren Signale im Antennencombiner 22 zusammengefasst sind. Es ist ein gemeinsamer Regelverstärker 33 zur Überwachung des hochfrequenten Empfangssignals 8 am Antennenausgang vorhanden.Group antenna for the design of directivity with a
Scanningdiversity-Antennenanlage mit einer Anordnung wie in
Scanningdiversity-Antennenanlage gebildet aus auf die Fensterscheibe gedruckten Heizfeldern mit diversitätsmäßig geeignet positionierten Anschlussstellen 18 zur Erreichung diversitätsmäßig unabhängiger Empfangssignale 8. Es ist ein gemeinsamer Regelverstärker 33 in zur Überwachung des ausgewählten hochfrequenten Empfangssignals im elektronischen Umschalter 25 vorhanden.Scanning diversity antenna system formed from printed on the window heating fields with diversity moderately positioned
Scanningdiversity-Antennenanlage wie in
Aktive Antenne nach der Erfindung, jedoch mit einem Übertrager 24 mit hinreichend hochohmiger Primärinduktivität und hinreichend großem Übersetzungsverhältnis zur breitbandigen Erhöhung der effektiven Länge 1e.Active antenna according to the invention, but with a
-
a) und b): Beispielhafte Antennenkonfigurationen möglicher passiver Antennenteile 1a) and b): Exemplary antenna configurations of possible
passive antenna parts 1 - c) Impedanzverläufe der Antennenstrukturen A1, A2 und A3 in der Impedanzebene im Frequenzbereich von 76 bis 108 MHz und schraffierte Bereiche für RA< RAmin und RA > RAmax c) impedance profiles of the antenna structures A1, A2 and A3 in the impedance plane in the frequency range of 76 to 108 MHz and hatched areas for R A <R amine and R A > R Amax
- d) Realteile der Antennenimpedanzen nach c) mit zulässigem Wertebereich RAmin < RA < RAmax d) Real parts of the antenna impedances according to c) with permissible value range R Amin <R A <R Amax
-
a) Verlauf der seriellen Blindwiderstände X1 und X3 sowie des parallelen Blindleitwerts B2 der erfindungsgemäßen T-Filteranordnung in
Fig. 6b über der Frequenz am Beispiel der breitbandigen Abdeckung der Rundfunkbereiche UKW-Hörrundfunk sowie VHF- und UHF-Femsehrundfunk.a) course of the series reactances X 1 and X 3 and the parallel susceptance B 2 of the T-filter arrangement according to the invention inFig. 6b over the frequency with the example of the broadband coverage of the radio areas VHF radio and VHF and UHF-Femsehrundfunk. - b) Elektrisches Ersatzschaltbild einer Antenne nach der Erfindung für die unter a) genannten Frequenzbereiche.b) Electrical equivalent circuit diagram of an antenna according to the invention for the frequency ranges mentioned under a).
In
Die Funktionsweise und der Gestaltungsgrundsatz einer Antenne nach der Erfindung werden an Hand der elektrischen Ersatzschaltbilder der
Die Eignung eines vorgegebenen passiven Antennenteils 1 für die Gestaltung einer hinreichend rauschempfindlichen aktiven Antenne kann anhand der im Übertragungsfrequenzbereich herrschenden Antennentemperatur abgeschätzt werden. Feldeffekttransistoren besitzen in der Regel eine extrem kleine Parallelrauschstromquelle i r so dass deren Beitrag i r*Z A bei vernachlässigbar kleinen Gate-Source- und Gate-Drain-Kapazitäten C2 und C1 und den in der Praxis auftretenden Antennenimpedanzen Z A im Vergleich zur Serienrauschspannungsquelle u r des Feldeffekttransistors, ausgedrückt durch seinen äquivalenten Rauschwiderstand RäF, stets vernachlässigbar klein ist. Die Empfindlichkeitsforderung reduziert sich somit darauf, dass die Rauschspannungsquelle ur 2 = 4kToBRäF im Verhältnis zur empfangenen Rauschspannungsquelle urA 2 = 4kTAB RA, welche durch die Antennentemperatur TA und dem Realteil RA der Antennenimpedanz Z A gegeben ist, kleiner oder höchstens gleich groß ist. Bei gleich großen Rauschbeiträgen ist somit als hinreichendes Empfindlichkeitskriterium bei vernachlässigbar kleinen Kapazitäten C1, C2 lediglich die einfach zu prüfende Forderung
zu erfüllen. Moderne Gallium-Arsenid-Transistoren besitzen im Vergleich zur übrigen Beschaltung vernachlässigbare Kapazitäten C1 und C2 und eine im Hinblick auf die vorgesehene Anwendung vernachlässigbare Wirkung von ir als Ursache für die bei Rauschanpassung solcher Transstoren extrem kleinen Rauschtemperatur TN0. Der äquivalente Rauschwiderstand ist vom Ruhestrom abhängig und kann oberhalb 30 MHz breitbandig mit 30 Ohm und weniger angesetzt werden. Für das Beispiel einer Antenne für den UKW-Frequenzbereich und einer dort vorherrschende Antennentemperatur von ca. 1000 K ist somit im Hinblick auf die Rauschempfindlichkeit für den Realteil der komplexen Antennenimpedanz, welcher bei verlustarmem Feldeffekttransistor 2 den Strahlungswiderstand darstellt, innerhalb des Übertragungsfrequenzbereichs ausschließlich RA(f) > ca. 10 Ohm als hinreichende Bedingung zu fordern.The operation and the design principle of an antenna according to the invention are based on the electrical equivalent circuit diagrams of
The suitability of a predefined
to fulfill. Modern gallium arsenide transistors have negligible capacitances C 1 and C 2 in comparison with the other circuits and a negligible effect of i r as a cause for the noise temperature T N0, which is extremely small in the case of noise adaptation of such transistors. The equivalent noise resistance depends on the quiescent current and can be set above 30 MHz broadband with 30 ohms and less. For the example of an antenna for the FM frequency range and a prevailing antenna temperature of about 1000 K is thus in terms of noise sensitivity for the real part of the complex antenna impedance, which represents the radiation resistance at low-loss
In
Das erfindungsgemäße Kriterium für die beispielhafte Gestaltung einer notwendigen und frequenzunabhängigen Empfangsleistung innerhalb des Übertragungsfrequenzbereichs wird für den terrestrischen Rundfunkempfang einer aktiven Fahrzeugantenne im Hinblick auf die Empfangsleistung in der nachgeschalteten Empfangsanordnung an Hand von
Hierin ist mit G(f) der frequenzabhängige Realteil der Eingangsadmittanz 7 der verlustarmen Filterschaltung 3 bezeichnet. Dieser Rauschbeitrag ist dann unwesentlich gegenüber dem unvermeidlichen empfangenen Rauschen des mit TA rauschenden RA, wenn gilt:
Um die Empfindlichkeitsbedingung zu erfüllen, ist in einer vorteilhaften Ausführungsform einer aktiven Antenne nach der Erfindung die Frequenzabhängigkeit des Realteils G(f) der Eingangsadmittanz 7 der verlustarmen Filterschaltung 3 reziprok zum Frequenzgang des Realteils RA(f) der komplexen Antennenimpedanz zu wählen. Für das Beispiel eines UKW-Rundfunkempfängers mit FV ~ 4 wäre demnach angenähert G(f) < 1/(3*RA(f)) zu wählen. Zum Schutz des Empfängers vor zu großen Empfangspegeln ist es andererseits zweckmäßig, die Leistungsverstärkung der aktiven Antenne nicht wesentlich größer als für optimale Empfindlichkeit des Gesamtsystems und somit G(f) etwa so groß zu wählen wie im rechten Teil der Gleichung (3) angegeben.In order to satisfy the sensitivity condition, in an advantageous embodiment of an active antenna according to the invention, the frequency dependence of the real part G (f) of the
Mit der Erfindung ist der große Vorteil verbunden, dass der aus RA(f) vorgegebene Frequenzgang für G(f) deshalb leicht erfüllbar ist, weil weder die eingangsseitig ansteuernde Quellimpedanz der verlustarmen Filterschaltung 3, welche mit 1/gm des Feldeffekttransistors 2 gegeben ist, noch der wirksame Wirkwiderstand 5 am Ausgang der verlustarmen Filterschaltung 3 nicht vermeidbare wesentliche Blindkomponenten besitzen. Hieraus resultiert die vorteilhaft freie Gestaltbarkeit des Frequenzverhaltens der aktiven Antenne nach der vorliegenden Erfindung. Im Gegensatz hierzu ist bei einer aktiven Antenne nach dem Stand der Technik in
Im Folgenden wird die beispielhafte Gestaltung des Frequenzverlaufs von G(f) einer aktiven Fahrzeugantenne nach der Erfindung beschrieben, wenn die Forderung besteht, dass die Empfangsleistung Pa am Eingang des der aktiven Antenne nachgeschalteten Empfangssystems um einen Faktor V größer ist als mit einer passiven Referenzantenne, z.B. einer passiven Stabantenne am Fahrzeug bei deren Resonanzlänge. Aufgrund der zwangsweise unterschiedlichen Richtdiagramme wird dieser Faktor bezogen auf die azimutalen Mittelwerte unter einem definierten konstanten Elevationswinkel θ des Welleneinfalls. Durch vergleichende azimutale Richtfaktormessungen mit Hilfe einer Antennenmessstrecke mit Fahrzeugdrehstand am passiven Antennenteil 1 und an der Vergleichsantenne ergeben sich bei N Winkelschritten für eine volle Umdrehung und mit dem Richtfaktor Da(ϕn, θ) des vorgegebenen passiven Antennenteils 1 und entsprechend dem Richtfaktor Dp(ϕn, 0) der passiven Referenzantenne jeweils für den n-ten Winkelschritt die folgenden azimutalen Mittelwerte für die Richtfaktoren:
bzw. für die Referenzantenne bei der Bezugsfrequenz:
or for the reference antenna at the reference frequency:
Das der aktiven Antenne nachgeschaltete Empfangssystem, welches in
wobei lem 2(f) den bei jeder Frequenz auftretenden azimutalen Mittelwert der quadratischen fektiven Länge des passiven Antennenteils 1 unter Berücksichtigung der sich mit Dam(f) gem. Gleichung (2) ergebenden effektiven Fläche des passiven Antennenteils 1 wie folgt darstellt:
where l em 2 (f) is the azimuthal average value of the quadratic fective length of the
Die mittlere azimutale Empfangsleistung der passiven Referenzantenne beträgt mit Dpm aus Gleichung (5):
Unter Berücksichtigung der Verstärkungsforderung Pam/Ppm = V ergibt sich der erfindungsgemäß zu fordernde Frequenzverlauf für G(f) zu:
Für den Fall eines verlustbehafteten passiven Antennenteils 1 mit dem Wirkungsgrad η ist in Gleichung (8) der Richtfaktor Dam(f) durch Dam(f)* η zu ersetzen. Die übrigen Dimensionierungsregeln sind dadurch nicht geändert.Η is the case of a lossy
Für den Fall etwa gleicher azimutaler Mittelwerte Dpm und Dam(f) ist die Frequenzabhängigkeit von G(f) proportional zu 1/Ra(f) zu gestalten. Ist V so groß gewählt, dass
gilt, dann ist der Rauschbeitrag des der aktiven Antenne nachgeschalteten Empfangssystems zum Gesamtrauschen vernachlässigbar klein. Ist zusätzlich die in Gleichung (1) angegebene Bedingung erfüllt, dann ist die Empfindlichkeit ausschließlich durch die Richtwirkung des passiven Antennenteils 1 und von der herrschenden Störeinstrahlung abhängig. Die minimal notwendige mittlere azimutale Strahlungsdichte Sam für ein Signal-Störverhältnis = 1 lautet dann:
und steigt mit 1/η an, wenn Dam(f) durch Dam(f)* η zu ersetzen ist.For the case of approximately the same azimuthal mean values D pm and D am (f), the frequency dependence of G (f) is to be made proportional to 1 / R a (f). Is V chosen so large that
is true, then the noise contribution of the active antenna downstream receiving system to the total noise is negligible. If, in addition, the condition given in equation (1) is satisfied, then the sensitivity depends exclusively on the directivity of the
and increases with 1 / η, if D am (f) is replaced by D am (f) * η.
Unter Berücksichtigung der vom Fahrzeug selbst ausgehenden Störstrahlung kann die Auswahl einer für eine erfindungsgemäße Antenne geeigneten passiven Antennenteils 1 als am Fahrzeug befindliche Struktur in Verbindung mit der in Gleichung (1) angegebenen und im folgenden näher diskutierten Bedingung für RA(f) deshalb treffsicher dadurch erfolgen, dass das Verhältnis TA/Dam(f) für den Übertragungsfrequenzbereich als hinreichend groß festgestellt wird.Taking into account the interfering radiation emanating from the vehicle itself, the selection of a
In
Bei der erfindungsgemäßen Verstärkerschaltung 21 besteht naturgemäß aufgrund möglicher nichtlinearer Effekte, wie Intermodulation, auch eine obere Grenze für die Größe der am Eingang wirksamen tolerierbaren Spannung, welche sich im Empfangsfeld über die wirksame Länge le ergibt. Die maximal tolerierbare Spannung kann durch Auswahl eines geeigneten Feldeffekttransistors 2 und durch Wahl eines geeigneten Arbeitspunkts sowie durch andere an sich bekannte Schaltungsmaßnahmen gesteigert werden. Gleichung (6) kann erfindungsgemäß einem maximal tolerierbaren azimutalen Mittelwert lem bei bekanntem azimutalen Richtfaktor Dam(f) ein maximal tolerierbarer Wirkanteil RAmax zugeordnet werden. Der für die Dimensionierung unzulässige Wertebereich mit RA>RAmax ist in den
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird eine vorgegebene Antennenstruktur durch Verwendung eines verlustarmen Übertragers mit dem Übersetzungsverhältnis ü, wie in
Die Linearitätsforderung wird durch eine hinreichend große Gegenkopplung, durch die in der Sourceleitung befindliche Eingangsadmittanz 7 erfüllt. Dies erfordert eine im Übertragungsbereich vergleichsweise niedrige Gegenkopplung, welche gemäß der Verstärkungsforderung z.B. entsprechend Gleichung (8) dimensioniert ist, die jedoch außerhalb des Übertragungsbereichs so groß wie möglich ist. In einer vorteilhaften Ausgestaltung der Erfindung werden zur Realisierung solcher verlustarmer Filterschaltungen 3 bevorzugt T-Halbfilter oder T-Filter bzw. Kettenschaltungen solcher Filter eingesetzt. Solche Filter sind in ihrer Grundstruktur in den Figuren dargestellt. Zur Entsprechung eines komplizierteren Frequenzverlaufs des G(f) können die Einzelelemente durch weitere Blindelemente ergänzt werden. Im Interesse der eingangsseitigen Hochohmigkeit und der Sperrwirkung im Sperrbereich ist es zweckmäßig, Serien- bzw. Parallelzweig jeweils aus einer Kombination von Blindwiderständen derart zu bilden, dass sowohl der Absolutwert eines Blindwiderstands im Serienzweig 28 als auch der Absolutwert eines Blindleitwerts im Parallelzweig 29 jeweils innerhalb eines Übertragungsfrequenzbereichs hinreichend klein und außerhalb eines solchen hinreichend groß ist (
In einer weiteren vorteilhaften Anwendung der Erfindung wird vorgeschlagen, für verschiedene charakteristische Verläufe von G(f) entsprechende Grundstrukturen für verlustarme Filterschaltungen 3 mit zunächst unbekannten Werten für die Blindelemente in einem modernen Digitalrechner abzulegen und sowohl die Impedanz Z A des passiven Antennenteils 1 messtechnisch als auch den azimutalen Mittelwert Dam des Richtfaktors messtechnisch oder rechnerisch zu ermitteln und ebenfalls im Digitalrechner abzulegen. Der somit anhand von Gleichung (8) ermittelte Frequenzverlauf von G(f) ermöglicht die anschließende konkrete Ermittlung der Blindelemente der verlustarmen Filterschaltung 3 für eine geeignet ausgewählte Filtergrundstruktur mit Hilfe bekannter Strategien der Variationsrechnung für die vorgegebene Verstärkung V der aktiven Antenne.In a further advantageous application of the invention, it is proposed to store corresponding basic structures for low-
Insbesondere bei solchen Antennensystemen, bei denen mehrere Antennen gebildet sind, wie z.B. bei Antennendiversitysystemen, Gruppenantennenanlagen oder Mehrbereichsantennenanlagen, ist es in einer vorteihaften Weiterbildung der Erfindung hilfreich, wie in
Aufgrund der Wirkungslosigkeit des einstellbaren Übertragungsglieds 34 im Falle kleiner Empfangspegel wird diese Empfindlichkeitsbetrachtung nicht beeinträchtigt. Die Spannungsabsenkung nach dem ersten verstärkenden Element der aktiven Antenne ist insbesondere deshalb vorteilhaft, weil sie eine optimale Wirkung im Hinblick auf die Frequenzabhängigkeit der zu erwartenden Intermodulationsstörung zulässt. Der Einfluss auf die Empfindlichkeit der gesamten Empfangsanlage wird somit nur durch den Einfluss der um die Spannungsabsenkung vergrösserten Rauschzahl der nachfolgenden Schaltung bestimmt.Due to the inefficiency of the
Im Folgenden werden unterschiedliche Formen der Absenkung der inneren Verstärkung der aktiven Antenne gegenübergestellt. In den
In vorteilhafter Ausgestaltung der Erfindung werden deshalb solche Formen von einstellbaren Übertragungsgliedern 34 vorgeschlagen, welche die bei kleinen Empfangspegeln eingestellten Admittanzen 7 frequenzunabhängig um einen geeigneten Faktor herabsetzen. Bei den heute verfügbaren Verstärkerbauelementen ist z.B. für den UKW-Bereich und einer Anwendung im Kraftfahrzeug eine Pegelabsenkung zwischen 20*log(t) = 10 dB und 20*log(t) = 20dB praktikabel. Dadurch wird die innere Verstärkung der aktiven Antenne frequenzunabhängig um einen gewünschten Faktor reduziert und der oben genannte frequenzabhängige Intermodulationseffekt tritt nicht auf. Erfindungsgemäss wird dies zum Beispiel durch eine Übertrageranordnung wie in
Eine weitere Methode zur Erreichung einer frequenzunabhängigen Gegenkopplung ist durch die Anordnung in
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das Übertragungsnetzwerk 31 mit Filtercharakter in
Im Übertragungsnetzwerk 31 in der vorteilhaften Anordnung in
Bei der in
In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das dreipolige verstärkende Element 2, wie in
In einer weiteren vorteilhaften Ausführungsform ist das dreipolige verstärkende Element 2 in
In
In
Zur Gestaltung von mehreren Übertragungsfrequenzbändern sind in
In einer besonders vorteilhaften Ausgestaltung der Erfindung ist die vorliegende aktive Antenne in einer Antennenanlage mehrfach verwendet, deren passive Antennenteile 1 mit frequenzabhängigen und in Bezug auf einfallende Wellen nach Betrag und oder nur in Phase unterschiedlichen Richtdiagrammen der effektiven Längen le besitzen, welche jedoch in elektromagnetischer Strahlungskopplung zueinander stehen und zusammen eine passive Antennenanordnung 27 mit mehreren Anschlussstellen 18a,b,c bilden. Erfindungsgemäß ist dabei jede jeweils mit einer erfindungsgemäßen Verstärkerschaltung 21 beschaltet und zu einer aktiven Antenne nach der Erfindung ergänzt. Aufgrund der Hochohmigkeit der Verstärkereingänge ist durch die Auskopplung der hochfrequenten Empfangssignale 8 an den passiven Antennenteilen 1 keine merkliche gegenseitige Beeinflussung der Empfangsspannungen gegeben. Eine solche Antennenanordnung ist ganz allgemein in
Bei der Verwendung einer Antenne nach der Erfindung als eine aktive Fensterscheibenantenne ist es auf vorteilhafte Weise möglich, die Verstärkerschaltung 21 im sehr schmalen Randbereich des Fahrzeugfensters unsichtbar unterzubringen. Deshalb ist es wünschenswert, den an der Anschlussstelle 18 anzubringenden Teil miniaturisiert auszuführen und nur die dort funktionell notwendigen Teile der Verstärkerschaltung 21 anzubringen. Die weiteren Teile der verlustarmen Filterschaltung 3 sind abgesetzt platziert und über die Hochfrequenzleitung 10 angeschaltet.When using an antenna according to the invention as an active window pane antenna, it is advantageously possible to accommodate the
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die aktive Antenne als Mehrbereichsantenne für mehrere Frequenzbereiche ausgeführt. Hierfür sind in
Zur Kompensation von Effekten der Nichtlinearität geradzahliger Ordnung und der daraus resultierenden Interband-Frequenzkonversionen in der Verstärkerschaltung 21 wird in einer weiteren vorteilhaften Ausgestaltung der Erfindung neben dem Feldeffekttransistor 2 ein weiterer Feldeffekttransistor 2 mit gleichen elektrischen Eigenschaften eingesetzt. Hierbei werden die Eingangsanschlüsse der Verstärkerschaltung 21 durch die beiden Steueranschlüsse der Feldeffekttransistoren 15a und 15b gebildet und der Eingang der verlustarmen Filterschaltung 3 mit den Source-Anschlüssen 19a und 19b verbunden. Ein Umsymmetrierglied in der verlustarmen Filterschaltung 3 dient zur Umsymmetrierung der hochfrequenten Empfangssignale 8. Eine solche. Schaltung kann vorteilhaft ebenso an eine Anschlussstelle 18 mit zwei gegen Masse Spannung führenden Anschlüssen angeschlossen werden.In order to compensate for effects of even-numbered non-linearity and the resulting interband frequency conversions in the
Die Effizienz von Antennendiversitysystemen wird von der Anzahl der verfügbaren, voneinander diversitätsmäßig unabhängiger Antennensignale geprägt. Diese Unabhängigkeit drückt sich im Korrelationsfaktor zwischen den in einem Rayleigh-Wellenfeld während der Fahrt auftretenden Empfangsspannungen auf. In einer besonders vorteilhaften Weiterbildung der Erfindung sind mehrere aktive Empfangsantennen nach der Erfindung in einer Antennendiversityanlage für Fahrzeuge verwendet, wobei die passiven Antennenteile 1 derart gewählt sind, dass ihre in einem Rayleigh-Empfangsfeld im Leerlauf an den Anschlussstellen 18 vorliegenden Empfangssignale E*le diversitätsmäßig möglichst unabhängig voneinander sind. Solche Systeme, bei denen die Anschlussstellen 18 unter diesem Gesichtspunkt und unter Berücksichtigung von fahrzeugtechnischen Aspekten gewählt sind, sind beispielhaft in den
Im Gegensatz hierzu würde die Beschaltung der Anschlussstelle 18 mit einer Transformationsschaltung nach dem Stand der Technik gemaß
Sind U01 und U02 die Leerlaufspannungsamplituden an den Anschlussstellen 18 einer passiven Antennenanordnung 27 in
Der Korrelationsfaktor zwischen den Spannungsamplituden U1 und U2 und somit auch zwischen den Antennenausgangsspannungen ergibt sich mit Hilfe der zeitlichen Mittelwerte der Spannungen U1 und U2 zu:
Für den hier vorausgesetzten Fall ergeben sich bei einer Fahrt im Rayleigh-Empfangsfeld voneinander unabhängige Leerlauf-Empfangsspannungsamplituden U10 und U20. Dies drückt sich durch einen verschwindenden Korrelationsfaktor aus, d.h.:
Sind die Eingangsadmittanzen der Verstärker, mit denen die Anschlussstellen 18 belastet sind erfindungsgemäß vernachlässigbar klein, d.h. Y1=0 und Y2=0, dann ergeben sich die Spannungen U1 und U2 aus Gleichung (11) wie folgt:
Die mit der Zahl 0 besetzten Wechselwirkungen in der Einheitsmatrix in Gleichung (13) zeigen, dass die in Gleichung (13) beschriebene verschwindende Dekorrelation in den Spannungen U1 und U2 bei einer Verstärkerschaltung 21 nach der Erfindung erhalten bleibt. Die Auswertung von Gleichung (11) dagegen ergibt eine Verknüpfung der beiden Leerlaufspannungen über die Wechselwirkungsparameter Z12*Y2 bzw. Z12*Y1 mit den jeweiligen Spannungen bei Belastung, denn es gilt dann:
Es ist offensichtlich, dass bei nicht verschwindender Verkopplung der Anschlussstellen 18, d.h. nicht verschwindendem Z12, der Korrelationsfaktor nur dann verschwindet, wenn Y1 = Y2 = 0 beträgt.It will be appreciated that if coupling 18 is not permanently coupled, i. not vanishing Z12, the correlation factor disappears only if Y1 = Y2 = 0.
Andererseits zeigen die vorangegangenen Betrachtungen, dass bei bestehender gegenseitiger Abhängigkeit der Leerlaufspannungen U10 und U20, dass spezielle Werte für Y1 und Y2 gefunden werden können, welche über die in Gleichung 15 beschriebene Transformation die gegenseitige Abhängigkeit in den Verstärkereingangsspannungen U1 und U2 reduzieren oder verschwinden lassen. In einer vorteilhaften Weiterbildung der Erfindung ist es deshalb, wie in
-
Masse 0
Mass 0 -
Passiver Antennenteil 1
Passive antenna part 1 -
dreipoliges verstärkendes Element 2three-
pole reinforcing element 2 -
Verlustarme Filterschaltung 3Low-
loss filter circuit 3 -
Ausgang 4
Exit 4 -
Wirksame Impedanz 5 der weiterführenden Schaltung
Effective impedance 5 of the secondary circuit -
Eingang 6
Entrance 6 -
Eingangsadmittanz 7
Input admittance 7 -
Hochfrequentes Empfangssignal 8High-frequency received
signal 8 -
Lastwiderstand 9
Load resistor 9 -
Hochfrequenzleitung 10
High frequency line 10 -
Verstärkereinheit 11
Amplifier unit 11 -
Emitteranschluß 12
Emitter connection 12 -
Eingangs-Feldeffekttransistor 13Input
field effect transistor 13 -
Bipolartransistor 14
Bipolar transistor 14 -
Steueranschluß 15
Control connection 15 -
Anschlussstelle 18
Junction 18 -
fest eingestelltes Blindelement 20Fixed
blind element 20 - zuschaltbares Blindelement 20aswitchable blind element 20a
-
Verstärkerschaltung 21
Amplifier circuit 21 -
Antennencombiner 22
Antenna combiner 22 - Blindleitwert 23Susceptance 23
-
Quellenanschluß 24
Source connection 24 - Elektronischer Umschalter 25Electronic changeover switch 25
-
passive Antennenanordnung 27
passive antenna arrangement 27 - Serienzweig 28Serial branch 28
-
Parallelzweig 29
Parallel branch 29 -
einstellbares Längselement 30adjustable
longitudinal element 30 -
Übertragungsnetzwerk 31
Transmission network 31 -
einstellbares elektronisches Element 32adjustable
electronic element 32 -
Regelverstärker 33
Control amplifier 33 -
Einstellbares Übertragungsglied 34
Adjustable transmission member 34 -
Widerstand 35
Resistance 35 -
Schaltdiode 36
Switching diode 36 - Einstellbarer Widerstand 37Adjustable resistance 37
-
Übertrager 38
Transmitter 38 -
Steuerbare Gleichstromquelle 40
Controllable DC source 40 -
Steuerleitung 41
Control line 41 -
Regelsignal 42
Control signal 42 -
Empfänger 44
Receiver 44 -
Steuerbare Gleichspannungsquelle 45Controllable
DC voltage source 45 - Zweipoladmittanz 46Two pole admittance 46
- frequenzabhängiger Zweipol 47frequency-dependent dipole 47
- Zweipolfilterschaltung 48Two-pole filter 48
-
Eingangs-Bipolartransistor 49Input
bipolar transistor 49 - weiterer Bipolartransistor (50another bipolar transistor (50
-
zusätzlichen Transistors 51
additional transistor 51 -
Senkenanschluß 53
Drain connection 53
- Eingangsimpedanz ZInput impedance Z
- Rauschzahl Fv Noise figure F v
- Wirkleitwert GConductivity G
- effektive Länge leeffective length le
- Wellenlänge λWavelength λ
- Boltzmannkonstante kBoltzmann constant k
- Wellenwiderstand des freien Raums Z0 Characteristic impedance of free space Z 0
- Messbandbreite BMeasuring bandwidth B
- Übersetzungsverhältnis tGear ratio t
- Eingangsspannung UE Input voltage U E
- Ausgangsspannung UA Output voltage U A
- Gate-Source-Kapazität C2Gate-source capacitance C2
- Gate-Drain-Kapazität C1Gate-drain capacitance C1
- Rauschtemperatur TN0Noise temperature TN0
- Umgebungstemperatur T0Ambient temperature T0
Claims (39)
- Active wide-band receiver antennae consisting of a passive antenna component (1), its output connectors, consisting of a primary connector (18) and a secondary connector (1') are connected with the input connectors of a amplifier circuit (21), whereby the input circuit of the amplifier circuit (21) contains a three-pole amplifier element (2), whose high-impedance control connector (15) is connected to the primary connector (18) of the passive antenna (1), whereby, further, in the connection between the source connector (24) of the three-pole amplifier element (2) and the second connector (1') of the passive antenna element (1) the initial admittance (7) transmission networks (31) with filter character have a degenerating and linearizing effect and the transmission network (31) is loaded with the subsequent circuit at one output (4)
with the following further features:- in the transmission network (31) there is at least one adjustable electronic element (32) for the variable reduction of the reception level,- in the case of low-frequency reception signals (8), the transmission network (31) features a low level of loss- the linearizing initial admittance (7') of the transmission network (31) is lower if the adjustable electronic element (32) is set for a reduction of the high-frequency receiving signal (8), causing the reduction in the amplification of the active antenna at the output of the three-pole amplifying element 2 in connection with a simultaneously achieved increase in linearizing degeneration and- to reduce excessive receiving levels there is a regulating amplifier (33) to which the highfrequency reception signal (8) is fed and whose regulating signal (42) controls an adjustable transfer element (34) (Fig. 1). - Active wide-band receiver antenna according to claim 1 characterized by the fact that the transmission network (31), which has the character of a filter when the electronic element (32) or electronic elements (32) is/are set for small high-frequency reception levels, is formed as a low-loss filter circuit that is loaded with the effective impedance (5) of the subsequent circuit at its output (4) and the dummy element of the low-loss transmission network (31) is selected so that the frequency dependency of the conductance G(f) of the effective initial admittance (7) at the input of the transmission network (31) is set in such a way that when amplification is specified for the active antenna, the frequency response resulting from the frequency-dependent effective length le of the passive antenna part (1) in the high-frequency receiving signal (8) within a broad frequency band is organized according to freely chosen aspects.
- Active wide-band receiver antenna according to one of claims 1 to 2, characterized by the fact that the transmission network (31), which has the character of a filter from the chain circuit, consists of an adjustable transmission element (34) and a low-loss filter circuit (3) with a fixed dummy element that is loaded with the effective impedance (5) of the subsequent circuit at its output (4) and the adjustable transmission element (34) when a specified receiving level for non-frequency-dependent and low-loss signal transmission is formed and the dummy elements of the low-loss transmission network (31) are selected so that the frequency dependency of the conductance G(f) of the effective initial admittance (7) at the input of the source connection (24) is set in such a way that when amplification is specified for the active antenna, the frequency response resulting from the frequency-dependent effective length Ie of the passive antenna part (1) in the high-frequency receiving signal (8) within a broad frequency band is organized according to freely chosen aspects. (Fig. 1)
- Active wide-band receiver antenna according to one of claims 1 to 3 characterized by the fact that the transmission network (31), which has the character of a filter takes the form of a fixed dummy element (20) and that there is at least one connectible dummy element (20a) that can be switched on and off using an adjustable electronic element (32), so that if a specified receiving level is not reached, the required frequency dependency of the conductance G(f) of the effective initial admittance (7) at the input of the source connection (24) is set for higher amplification for the active antenna, and, if a given receiving level is reached, the required frequency dependency of the conductance G(f) of the effective initial admittance (7) at the input of the source connection (24) applies to the reduced amplification of the active antenna. (Fig. 8).
- Active wide-band receiver antenna according to one of claims 1 to 4 characterized by the fact that the transmission network (31), which has the character of a filter, has a sufficiently small dummy portion b(f) in the initial conductance (7) when a given reception level is not reached and when particular transmission patterns are required to avoid non-linear effects. (Fig. 1).
- Active wide-band receiver antenna according to one of claims 1 to 5 characterized by the fact that with all settings of the at least one adjustable electronic element (32) the level of the effective degenerating input admittance (7, 7') outside the utilizable frequency band in the stop frequency range of the transmission network (31) connected to the source connector (24) with filter character to avoid non-linear effects with all settings of the settable electronic element (32) or settable electronic elements (32) is sufficiently small.
- Active wide-band receiver antenna according to one of claims 1 to 6 characterized by the fact that the transmission network (31) is formed from the chain circuit of an adjustable transmission element (34) formed as a transmission block and a low-loss filter circuit (3) and the ration (t:1) of the input voltage (UE) to the output voltage (UA) of the adjustable transmission element (34) is set to a sufficient level with the help of a longitudinal element (30) contained there is a specified reception level is exceeded. (Figs. 1, 2a, 3, 4, 5, 6, 10, 11, 12).
- Active wide-band receiver antenna according to claim 7 characterized by the fact that the adjustable longitudinal element (30) is implemented by an adjustable resistor (37), for example a diode with the character of a PIN diode (Fig. 1).
- Active wide-band receiver antenna according to claim 5 characterized by the fact that the adjustable longitudinal element (30) is formed by a resistor (35) or several resistors switched in sequence (35) with an adjustable electronic element (32) switched in parallel with the resistor (35) and executed as a switching diode (36), whose setting in the block state renders the associated resistor fully effective and whose setting in the open state bridges the switching diode (36) of the resistor, so that when the switching diode (36) or switch diodes (36) are under control, the reception level drops in increments (Fig. 2a, 3).
- Active wide-band receiver antenna according to claim 7 characterized by the fact that for the purpose of the non-frequency-dependent reduction of reception signals (8), the adjustable longitudinal element (30) takes the form of a frequency-dependent two-pole network (47) with a two-pole admittance (46) similar to the input admittance of the low-loss filter circuit (3), but mainly smaller than the input admittance of the low-loss filter circuit (3) by a non-frequency-dependent factor (t-1) with a switching diode (36) switched in parallel with the frequency-dependent two pole network (47), whose blocked state setting renders the two pole admittance (46) effective and whose the open state setting bridges the two-pole admittance (46), so that when the switching diode (36) is blocked, the high-frequency reception signals (8) are reduced by a factor (t) that is largely independent of the frequency.
- Active wide-band receiver antenna according to claim 10 characterized by the fact that the frequency-dependent two-pole network (47) is formed by the input admittance of a two-terminal filter circuit (48) that is arranged according to the structure of the low-loss frequency circuit (3), at least in terms of the major dummy elements, and whose dummy elements are chosen to have a higher impedance than the corresponding dummy elements of the low-loss filter circuit (3) by a non-frequency-dependent factor (t-1) and the two-pole filter circuit (48) is terminated with an impedance of the same factor as the effective impedance (5) of the subsequent circuit (Fig. 8).
- Active wide-band receiver antenna according to one of claims 1 to 6 characterized by the fact that the adjustable transmission element (34) contains a repeater (38) with incremental transmission ratio (t) and switching diodes (36) exist as adjustable electronic elements (32) which are controlled in such a way that at high receiving levels the transmission ratio (t), and therefore the ratio of the input voltage UE to the output voltage UA of the adjustable transmission element (34) is set to a suitably high level (Fig. 4, 6)
- Active wide-band receiver antenna according to one of claims 1, 2, 4 to 6 characterized by the fact that there are several low-loss filter circuits (3) in the transmission network (31) with filter character, which are switched by means of switching diodes (36) or, alternatively, between the input and output of the transmission network (31) and whose input admittance (7, 7') are formed with fixed setting dummy elements (20) in such a way that, when a prescribed reception level is not reached, the required frequency-dependency of the conductance G(f) of the effective input admittance (7) at the source connector (24) for higher amplification of the active antenna, and, when a prescribed reception level is exceeded, the required frequency-dependency of the conductance G(f) of the effective input admittance (7') for reduced amplification of the active antenna at the source connection (24) are achieved with the help of the switching diodes (36) (Fig. 7).
- Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the 3-pole amplifying element (2) takes the form of a field effect transistor whose high impedance control port (15) is formed by the gate whose source port (24) is formed by the source and whose sink port (53) is formed by the drain port.
- Active wide-band receiver antenna for use above 30 MHz according to claim 14 characterized by the fact that the field-effect transistor (2) exhibits a negligible source of parallel noise current ir, a very small gate drain capacity C1 and a very small gate source capacity C2 and a negligible 1/f noise and whose minimum noise temperature TN0 during noise adjustment is substantially smaller than the ambient temperature T0 (Fig. 2).
- Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the 3-pole amplifying element (2) takes the form of an extended three-pole amplifying element, consisting of an input field effect transistor (13) whose source controls the bipolar transistor (14) in emitter successor circuit and whose emitter port (12) forms the source electrode of the extended field effect transistor (2) (Fig. 9a).
- Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the three-pole amplifier element (2) takes the form of an extended three-pole amplifier element, consisting of an input bipolar transistor (49) whose emitter controls another bipolar transistor (50) in emitter successor circuit and whose emitter port (12) forms the source port (24) of the three-pole amplifier element (2) and whose idle current is set at a lower level in the input bipolar transistor (49) than in the remaining bipolar transistor (50) (Fig. 9b).
- Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the three-pole amplifier element (2) takes the form of an extended three-pole amplifier element, consisting of an input bipolar transistor (49) or bipolar input effect transistor (13) whose collector port or drain port is connected to the source or emitter port of an additional transistor (51) and whose base or gate port is connected to the emitter or source port of the input bipolar transistor (49) or input field effect transistor (14), so that this connection forms the source connection (24) of the three-pole amplifier element (2) (Fig. 9c).
- Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the three-pole amplifier element (2) takes the form of an extended three-pole amplifier element containing an electronically controllable idle current source (IS0) and/or an electronically controllable idle voltage source (UD0) by means of which, in the context of the reduction in the amplification of the active antenna because of the excessively high reception level (in line with the invention), the idle current (JS0) and/or the idle voltage (UD0) in the input bipolar transistor (49) or input field effect transistor (13) is set at a higher level (Fig. 9d, 6).
- Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the passive part of the antenna (1) has a connection point (18) whose two ports are high in comparison with ground (0), each of which is connected to a control port (15, 16) of a three-pole amplifier element (2) whose source ports (24 a, b) are connected to the primary side of a repeater (38) in the form of an isolating transformer, whose secondary side has different outputs for arranging different transmission ratios (t) and from which - together with switching diodes (36) - form the adjustable transmission element (34) and connect the sink ports (53) to ground (0) (Fig. 10)
- Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that there are several bipolar transistors (14, 14') for expanding the three-pole amplifier elements (2) and for the combined formation of several three-pole amplifier elements (2, 3') used in producing several transmission frequency bands whose basic electrodes are connected to the source electrode of a common input transistor (13, 49) or to the source port of an expanded three-pole amplifier element according to claims 16, 17, 18 and 19 and which are connected in a subsequent emitter circuit with the input of a low-loss filter circuit (3, 3') for form isolated transmission routes for the relevant frequency bands and each of the transmission routes contains an adjustable transmission element (34, 34') and a control amplifier (33. 33') to which only the frequency band from the high-frequency reception signal (8) assigned to the relevant transmission route by means of filter measures is supplied and the control signal (42, 42') is supplied to the assigned adjustable transmission element (34, 34') (Fig. 11).
- Active wide-band receiver antenna according to claims 21 characterized by the fact that the control signals (42, 42') are derived from the output signal of the active antenna through a selection medium and control amplifier (33, 33') and are supplied to the active antenna by means of control lines (41) (Fig. 12).
- Active wide-band receiver antenna according to one of claims 1 to 22 characterized by the fact that there are several passive antenna parts (1) with frequency-dependent and, in respect of incident waves according to extent and phase different radiation patterns for the effective lengths Ie which coupled by electromagnetic radiation and together form a passive antenna setup (27) with several connector points (18 a, b, c), each of which is switched with an amplifier circuit (21 a, b, c) and is supplemented to form an active antenna in line with the invention, so that the connection of the amplifier circuits (21 a, b, c) at the passive antenna parts (1) does not cause noticeable mutual influence on the reception voltages and the high-frequency reception signals (8 a, b, c) are brought together in an antenna combiner (22) and the active receiver antennae each contain a control amplifier (33) for monitoring the high frequency reception signal (8) at the antenna output.
- Active wide-band receiver antenna according to one of claims 1 to 22 characterized by the fact that there are several passive antenna parts (1) with frequency-dependent and, in respect of incident waves according to extent and phase different radiation patterns for the effective lengths 1e which coupled by electromagnetic radiation and together form a passive antenna setup (27) with several connector points (18 a, b, c), each of which is switched with an amplifier circuit (21 a, b, c) and is supplemented to form an active antenna in line with the invention, so that the connection of the amplifier circuits (21 a, b, c) at the passive antenna parts (1) does not cause noticeable mutual influence on the reception voltages and the high-frequency reception signals (8 a, b, c) are brought together in an antenna combiner (22) and there is a common control amplifier (33) whose control signal (42 a, b, c) is supplied to the transmission networks (31 a, b, c) in the active antennae to reduce the accumulated high-frequency reception signal (8) (Fig. 13).
- Active wide-band receiver antenna according to claim 24 characterized by the fact that the active receiving antennae are used in an antenna diversity system for cars and the passive antenna parts (1) have been selected so that their reception signals in a Rayleigh reception field are as independent from one another as possible and the high-frequency reception signals (8) are made available for selection in a scanning diversity system or for further processing in one of the other known diversity processes in a non-reactive way, i.e. without influencing the diversity-based independence of the reception signals (Fig. 14).
- Active wide-band receiver antenna according to claim 25 characterized by the fact that the active receiving antennae are used in an antenna diversity system for cars and the passive antenna parts (1) have been selected so that their reception signals in a Rayleigh reception field are as independent from one another as possible and the high-frequency reception signals (8) are made available for selection in a scanning diversity system or for further processing in one of the other known diversity processes in a non-reactive way, i.e. without influencing the diversity-based independence of the reception signals and the level of the selected signal is fed to a common control amplifier (33) in which a control signal ((42) is formed and fed to the transmission networks (31) in the active reception antennae to reduce the selected high-frequency reception signal (8) (Fig. 14, 15).
- Active wide-band receiver antenna according to claim 25 characterized by the fact that the active reception antennae (21) each contain a control amplifier (33) for monitoring the high-frequency reception signal (8) at the antenna output (Fig. 16).
- Active wide-band receiver antenna according to claims 25 and 26 characterized by the fact that in order to improve the diversity-based independence of the reception signal of the passive antenna parts (1) their connection points (18) have specially determined dummy conductance values (23) in parallel with the input of the amplifier circuit (21) (Fig. 16).
- Active wide-band receiver antenna according to claims 1 to 28 characterized by the fact that when the transmission network (31) is set for small high frequency signals (8), the effective conductance at the output (4) of the low-loss filter circuit (3) is determined by the input resistor of a high-frequency line (10) with the load resistance (9) applied at the end at the load resistance (9) is formed by the input impedance of a further amplifier unit (11) with noise coefficient Fu and the teal part G of the effective admittance (7) is chosen to be sufficiently great so that the noise value of the amplifier unit (11) is less than the noise value of the field effect transistor (2) Fig. 5).
- Active wide-band receiver antenna according to claims 1 to 29 characterized by the fact that for the wide-band creation of favourable transmission conditions in the filter circuit (3) there us a repeater (24) with suitable transmission ratio U.
- Active wide-band receiver antenna according to claims 1 to 19 characterized by the fact that frequency-selective transmission routes are formed in the low-loss filter circuit (3) on the basis of signal branching for the purpose of frequency-selective exclusion of high-frequency reception signals (8) for different transmission frequency bands at several outputs.
- Active wide-band receiver antenna according to claims 1 to 31 characterized by the fact that the passive antenna layout (27) takes the form of conductor structures on a plastic carriers set into a groove in a conducting car body or mounted on a car window, e.g. in the form of one or more heated areas and/or conductor structures separate from the heating and these conductor structures have several connector points (18) for forming passive antenna parts (1) for connecting amplifier circuits (21) (Fig. 15, 16).
- Active wide-band receiver antenna according to claims 1 to 31 characterized by the fact that the passive antenna layout (27) takes the form of a largely cohesive conducting surface for suppressing the transmission of radiation in the infrared range with a sufficiently low surface resistance on the window of a car and in order to exclude reception signals at suitably positioned connecting points (18) with amplifier circuits (21) on the edge of the conducting surface not connected to the conducting bodywork whose high frequency reception signals (8) are supplied by means of high frequency lines (10) to produce a beam antenna for an antenna combiner (22) or to form a scanning diversity system for an electronic switch (25) or to form a diversity setup that operates according to some other process.
- Active wide-band receiver antenna according to claims 1 to 31 characterized by the fact that the passive antenna part is derived from a part of the car that was not originally intended for use an antenna and whose design cannot be changed very much and on which there is a connection point (18) for forming a passive antenna part (1) and for the applicable polarization and elevation of an incident wave in the usable frequency range a particular azimuth mean value Dm of the directivity is determined and the real part RA of impedance ZA of the passive antenna part (I) in the transmission frequency range is in the range between RAmin and a maximum value RAmax (Fig. 18 a, b, c).
- Active wide-band receiver antenna according to claims 1 to 34 characterized by the fact that there is a modem digital computer and both the impedance ZA of the passive antenna part (I) is recorded by measurement or calculation, as well as the azimuth mean value Dm of the directivity determined by measurement or calculation are stored in the digital computer and in which for various characteristic possible frequency patterns of antenna impedances suitable basic structures for low-loss filter circuits (3) are stored in the digital computer (3) and with the help of known strategies for calculating variations the dummy elements of the low-loss filter circuit (3) are determined for a specified mean gain in the active antenna.
- Active wide-band receiver antenna according to claims 1 to 35 characterized by the fact that the low-loss filter circuit (3) takes the form of a T semi-filter or T filter and/or of a chain of such filters, whose series and/or parallel branch are formed from a combination of dummy resistors in such a way that both the absolute value of a resistance in the series branch (28) and the absolute value of a susceptance in the parallel branch (29) in each case is sufficiently small within a transmission frequency range and sufficiently large outside of such a range and that high frequency reception signal (8) at the output is fed to the control amplifier (33) and whose regulating signal (42) controls the adjustable transmission element (34) (Fig. 19 a, b).
- Active wide-band receiver antenna according to claims 1 to 36 characterized by the fact that for the purposes of the separation of a miniaturized front-end of the active antenna in the low-loss filter circuit (3) a high-frequency line (10) as a element that transforms the effective admittance (7) on a frequency-dependent basis (Fig. 5).
- Active wide-band receiver antenna for ultra-short wave reception in cars according to one of claims 1 to 32 characterized by the fact that the passive antenna part (I) takes the form of a conductor structure printed on a dielectric carrier, such as a window or plastic backing and the low-loss filter circuit (3) as a band-pass with admission in the ultra-short wave range and high input impedance outside the ultra-short wave frequency range (fig. 1),
- Active wide-band receiver antenna according to claims 1 to 38 characterized by the fact that there is a repeater (24) with sufficiently high-impedance primary inductivity and a suitably chosen transmission ratio for the wide-band increase of the effective length Ie of the passive antenna part (1) between its connecting point (18) and the input of the amplifier circuit (21) (Fig. 17).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10245813A DE10245813A1 (en) | 2002-10-01 | 2002-10-01 | Active broadband reception antenna with reception level control |
DE10245813 | 2002-10-01 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1406349A2 EP1406349A2 (en) | 2004-04-07 |
EP1406349A3 EP1406349A3 (en) | 2006-03-29 |
EP1406349B1 true EP1406349B1 (en) | 2008-05-28 |
Family
ID=31984324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03019899A Expired - Lifetime EP1406349B1 (en) | 2002-10-01 | 2003-09-02 | Active wide-band reception antenna with regulation of the receiving level |
Country Status (6)
Country | Link |
---|---|
US (1) | US6888508B2 (en) |
EP (1) | EP1406349B1 (en) |
KR (1) | KR100596126B1 (en) |
CN (1) | CN100440619C (en) |
AT (1) | ATE397304T1 (en) |
DE (2) | DE10245813A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115864000A (en) * | 2023-03-02 | 2023-03-28 | 武汉大学 | Kilo-frequency-range monopole low-frequency small-power low-noise high-sensitivity active antenna |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10245813A1 (en) * | 2002-10-01 | 2004-04-15 | Lindenmeier, Heinz, Prof. Dr.-Ing. | Active broadband reception antenna with reception level control |
DE102004038551A1 (en) * | 2004-08-06 | 2006-02-23 | Atmel Germany Gmbh | Signal amplifier for motor vehicle antenna, has a negative channel metal oxide semiconductor field effect transistor connected as a source follower along with drain and gate connections |
US20100034748A1 (en) * | 2008-08-07 | 2010-02-11 | Guizhi Li | Molecular imaging probes based on loaded reactive nano-scale latex |
DE102005033088A1 (en) * | 2005-07-15 | 2007-01-25 | Robert Bosch Gmbh | antenna array |
DE102006039357B4 (en) * | 2005-09-12 | 2018-06-28 | Heinz Lindenmeier | Antenna diversity system for radio reception for vehicles |
US20080076354A1 (en) * | 2006-09-26 | 2008-03-27 | Broadcom Corporation, A California Corporation | Cable modem with programmable antenna and methods for use therewith |
DE102007002167A1 (en) * | 2007-01-15 | 2008-07-17 | Volkswagen Ag | Information sending method for e.g. car, involves sending information using window defogger of motor vehicle, where defogger is utilized as antenna, and information is sent in form of electromagnetic field having frequency |
DE102007017478A1 (en) * | 2007-04-13 | 2008-10-16 | Lindenmeier, Heinz, Prof. Dr. Ing. | Receiving system with a circuit arrangement for the suppression of switching interference in antenna diversity |
EP2037593A3 (en) * | 2007-07-10 | 2016-10-12 | Delphi Delco Electronics Europe GmbH | Antenna diversity array for relatively broadband radio reception in automobiles |
DE102007039914A1 (en) * | 2007-08-01 | 2009-02-05 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna diversity system with two antennas for radio reception in vehicles |
DE102008003532A1 (en) * | 2007-09-06 | 2009-03-12 | Lindenmeier, Heinz, Prof. Dr. Ing. | Antenna for satellite reception |
PT2209221T (en) * | 2009-01-19 | 2018-12-27 | Fuba Automotive Electronics Gmbh | Receiver for summating phased antenna signals |
DE102009011542A1 (en) * | 2009-03-03 | 2010-09-09 | Heinz Prof. Dr.-Ing. Lindenmeier | Antenna for receiving circularly in a direction of rotation of the polarization of broadcast satellite radio signals |
DE102009023514A1 (en) * | 2009-05-30 | 2010-12-02 | Heinz Prof. Dr.-Ing. Lindenmeier | Antenna for circular polarization with a conductive base |
DE102009030344A1 (en) * | 2009-06-25 | 2010-12-30 | Bayerische Motoren Werke Aktiengesellschaft | Vehicle window with at least one heating conductor and at least one antenna |
DE102012003460A1 (en) | 2011-03-15 | 2012-09-20 | Heinz Lindenmeier | Multiband receiving antenna for the combined reception of satellite signals and terrestrial broadcasting signals |
JP5640912B2 (en) * | 2011-07-01 | 2014-12-17 | 山一電機株式会社 | Contact unit and printed circuit board connector including the same |
CN103213543B (en) * | 2012-01-18 | 2015-11-25 | 比亚迪股份有限公司 | A kind of battery-driven car running control system |
KR102434773B1 (en) | 2018-03-06 | 2022-08-22 | 삼성전자 주식회사 | Antenna structure and electronic device including the same |
CN110231614B (en) * | 2019-07-05 | 2024-01-26 | 电子科技大学 | Microwave ranging system based on passive frequency conversion |
US11431334B2 (en) | 2020-04-06 | 2022-08-30 | Analog Devices International Unlimited Company | Closed loop switch control system and method |
CN113676265B (en) * | 2021-08-11 | 2023-06-23 | 中国电波传播研究所(中国电子科技集团公司第二十二研究所) | Method for determining power gain of active monopole antenna |
CN114325134B (en) * | 2021-12-30 | 2024-05-31 | 北京交大思诺科技股份有限公司 | Automatic test system for frequency response characteristics of locomotive signal receiving antenna |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1591300B2 (en) | 1967-12-12 | 1973-04-05 | Meinke, Hans H., Prof. Dr.; Lindenmeier, Heinz, Dr.-Ing.; 8000 München | ANTENNA WITH A REINFORCING TRIPOLE CONNECTED DIRECTLY BETWEEN THE INPUT TERMINALS |
DE1919749C3 (en) | 1969-04-18 | 1982-05-13 | Hans Kolbe & Co, 3202 Bad Salzdetfurth | Active receiving antenna with dipole character |
US3942119A (en) | 1973-03-02 | 1976-03-02 | Hans Kolbe & Co. | Multiple-transmission-channel active antenna arrangement |
DE3618452C2 (en) | 1986-06-02 | 1997-04-10 | Lindenmeier Heinz | Diversity antenna arrangement for receiving frequency-modulated signals in the rear window of a motor vehicle with a heating field located therein |
DE3820229C1 (en) | 1988-06-14 | 1989-11-30 | Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier | |
US4875019A (en) * | 1988-07-21 | 1989-10-17 | Bahr Technologies, Inc. | Receiver preamplifier with tuned circuit adapted for Loran reception |
US5801663A (en) | 1989-05-01 | 1998-09-01 | Fuba Automotive Gmbh | Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires |
DE3914424A1 (en) | 1989-05-01 | 1990-12-13 | Lindenmeier Heinz | ANTENNA WITH VERTICAL STRUCTURE FOR TRAINING AN EXTENDED AREA CAPACITY |
US5266960A (en) | 1989-05-01 | 1993-11-30 | Fuba Hans Kolbe Co. | Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires |
US5408242A (en) * | 1991-02-05 | 1995-04-18 | Harada Kogyo Kabushiki Kaisha | Glass antenna for automobiles |
DE4323014A1 (en) * | 1993-07-09 | 1995-01-12 | Lindenmeier Heinz | Active receiving antenna having an active signal path and a passive signal path |
DE19612958A1 (en) * | 1996-04-01 | 1997-10-02 | Fuba Automotive Gmbh | Antenna amplifier on a window pane |
TW423180B (en) * | 1997-01-31 | 2001-02-21 | Terajima Fumitaka | Glass antenna device for an automobile |
DE19806834A1 (en) | 1997-03-22 | 1998-09-24 | Lindenmeier Heinz | Audio and television antenna for automobile |
KR20000022838A (en) * | 1998-09-03 | 2000-04-25 | 세야 히로미치 | Glass antenna device for an automobile |
DE10033336A1 (en) * | 1999-08-11 | 2001-04-12 | Heinz Lindenmeier | Diversity antenna for diversity system in vehicle has edge conductor on side of conducting surface with minimum length of about tenth of wavelength, forming low impedance coupling line |
DE10114769B4 (en) * | 2001-03-26 | 2015-07-09 | Heinz Lindenmeier | Active broadband antenna |
DE10245813A1 (en) * | 2002-10-01 | 2004-04-15 | Lindenmeier, Heinz, Prof. Dr.-Ing. | Active broadband reception antenna with reception level control |
-
2002
- 2002-10-01 DE DE10245813A patent/DE10245813A1/en not_active Withdrawn
-
2003
- 2003-09-02 DE DE50309908T patent/DE50309908D1/en not_active Expired - Lifetime
- 2003-09-02 AT AT03019899T patent/ATE397304T1/en not_active IP Right Cessation
- 2003-09-02 EP EP03019899A patent/EP1406349B1/en not_active Expired - Lifetime
- 2003-09-27 CN CNB031594956A patent/CN100440619C/en not_active Expired - Fee Related
- 2003-09-30 US US10/674,718 patent/US6888508B2/en not_active Expired - Lifetime
- 2003-10-01 KR KR1020030068339A patent/KR100596126B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115864000A (en) * | 2023-03-02 | 2023-03-28 | 武汉大学 | Kilo-frequency-range monopole low-frequency small-power low-noise high-sensitivity active antenna |
Also Published As
Publication number | Publication date |
---|---|
US6888508B2 (en) | 2005-05-03 |
CN1505206A (en) | 2004-06-16 |
CN100440619C (en) | 2008-12-03 |
EP1406349A3 (en) | 2006-03-29 |
KR20040030365A (en) | 2004-04-09 |
DE10245813A1 (en) | 2004-04-15 |
DE50309908D1 (en) | 2008-07-10 |
ATE397304T1 (en) | 2008-06-15 |
US20040113854A1 (en) | 2004-06-17 |
EP1406349A2 (en) | 2004-04-07 |
KR100596126B1 (en) | 2006-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1406349B1 (en) | Active wide-band reception antenna with regulation of the receiving level | |
EP1246294B1 (en) | Active broadband vehicle receiving antenna | |
DE69326271T2 (en) | Diversity window antenna for motor vehicles | |
DE3618452C2 (en) | Diversity antenna arrangement for receiving frequency-modulated signals in the rear window of a motor vehicle with a heating field located therein | |
DE69531655T2 (en) | Broadband monopole antenna in uniplanar printed circuit technology and transmitting and / or receiving device with such an antenna | |
DE19912465C2 (en) | Multi-area antenna system | |
DE102010040290A1 (en) | directional coupler | |
DE69913962T2 (en) | MORE BAND VEHICLE ANTENNA | |
DE19533105A1 (en) | High sensitivity non-directional loop antenna arrangement e.g for high frequency | |
DE69506435T2 (en) | ANTENNA | |
DE19955849A1 (en) | Active aerial for radar system includes inductive components providing compensation for temperature variation | |
DE2136759C2 (en) | Car radio windscreen aerial - comprises rectangular metal frame with an electrical width of approximately half signal wavelength and a unipole | |
DE102010019904A1 (en) | Arrangement for wireless connection of wireless device i.e. mobile phone, to high-frequency line, has electrically conductive layer deposited on surface for receiving radio waves from coupling antenna, and strip line applied on surface | |
DE4007824C2 (en) | Vehicle antenna for radio services with a rod-shaped antenna element | |
DE10015315B4 (en) | Antenna amplifier and adjustable actuator | |
EP0166387B1 (en) | Vehicle windshield antenna | |
DE4406240B4 (en) | Antenna arrangement on the rear window of a motor vehicle | |
DE102013211541A1 (en) | Duplex antenna arrangement used for transmitting and receiving in different frequency bands, has helical monopole antennas that are capacitively coupled with electrical antenna conductor by alternating arrangement of windings | |
DE69716146T2 (en) | RF power measurement device | |
EP1487052B1 (en) | Antenna system in the aperture of an electrical conducting car body | |
WO2007115422A1 (en) | High-sensitivity rfid read/write station | |
EP1813032B1 (en) | Antenna architecture and lc coupler | |
DE2446631C2 (en) | Active receiving antenna made of a conductive base and a conductive rod connected to it | |
AT519526B1 (en) | circuit | |
WO2018029273A1 (en) | Active antenna arrangement for radio reception in the cut-out of an electrically conductive vehicle body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20060420 |
|
17Q | First examination report despatched |
Effective date: 20060828 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: DELPHI DELCO ELECTRONICS EUROPE GMBH |
|
REF | Corresponds to: |
Ref document number: 50309908 Country of ref document: DE Date of ref document: 20080710 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: DELPHI DELCO ELECTRONICS EUROPE GMBH Effective date: 20080709 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: DELPHI DELCO ELECTRONICS EUROPE GMBH |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080828 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081028 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 |
|
BERE | Be: lapsed |
Owner name: FUBA AUTOMOTIVE G.M.B.H. & CO. KG Effective date: 20080930 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080930 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080828 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20090303 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080930 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080902 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080902 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081129 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080829 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170928 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 50309908 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180925 Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20191129 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190902 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50309908 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210401 |