[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1406349B1 - Active wide-band reception antenna with regulation of the receiving level - Google Patents

Active wide-band reception antenna with regulation of the receiving level Download PDF

Info

Publication number
EP1406349B1
EP1406349B1 EP03019899A EP03019899A EP1406349B1 EP 1406349 B1 EP1406349 B1 EP 1406349B1 EP 03019899 A EP03019899 A EP 03019899A EP 03019899 A EP03019899 A EP 03019899A EP 1406349 B1 EP1406349 B1 EP 1406349B1
Authority
EP
European Patent Office
Prior art keywords
frequency
active
antenna
input
fact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03019899A
Other languages
German (de)
French (fr)
Other versions
EP1406349A3 (en
EP1406349A2 (en
Inventor
Heinz Lindenmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Delco Electronics Europe GmbH
Original Assignee
Fuba Automotive GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuba Automotive GmbH and Co KG filed Critical Fuba Automotive GmbH and Co KG
Publication of EP1406349A2 publication Critical patent/EP1406349A2/en
Publication of EP1406349A3 publication Critical patent/EP1406349A3/en
Application granted granted Critical
Publication of EP1406349B1 publication Critical patent/EP1406349B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the invention relates to an active broadband receiving antenna, comprising a passive antenna part 1 with a frequency-dependent effective length l e , whose output terminals are connected to the input terminals of an amplifier circuit 21 high frequency.
  • Electrically long antennas or antennas that are in direct coupling with electrically large bodies have a frequency-dependent open-circuit voltage when excited with an electrical field strength held constant above the frequency, which is expressed by the effective length l e (f).
  • the antenna noise temperature T A in terrestrial environment - coming from low frequencies - has fallen so far that for bipolar transistors from the side of the passive antenna part, a source impedance in the vicinity of the optimal impedance for the transistor impedance Z opt is required for noise adaptation, so as not to suffer any significant sensitivity loss due to the transistor noise.
  • the basic form of an active antenna of this kind is in Fig. 2b shown and is known for example from DT-AS 23 10 616, the DT-AS 15 91 300 and AS 1919749.
  • active broadband antennas which are not channel selective, but are tuned to a frequency band, such as the FM radio frequency band broadband is it is necessary to transform the antenna impedance Z S (f) of a short radiator in Z A (f) into the vicinity of Z opt (see VHF range in DT-AS 23 10 616) or to design the radiator itself in such a way that the antenna impedance Z S (f) itself lies in the vicinity of Z opt (see FM range in AS 1919749).
  • the high electrical field strengths in the vicinity of the transmitter can lead to strong interference due to intermodulation and limiting effects in the electronic amplifier of the active receiving antenna, since this is highly sensitive in terms of high sensitivity and in terms of broadband compliance with the electrical Characteristics is dimensioned.
  • the technique used is usually very complex, with the effort with increasing demand for intermodulation strength increases greatly.
  • active receiving antennas which use a rectifier circuit with control circuit to determine the signal level, but cheaper amplifier can be used, since they are able to lower the gain of the active receiving antenna when a predetermined receive level is exceeded in order to receive interference by intermodulation and To avoid limiting effects in the amplifier and in the secondary circuit.
  • Narrow bandwidth receivers typically do not need to be protected from nonlinear effects by level overload.
  • U.S. Patent 4,875,019 is z.
  • Example a receiver preamplifier with a matched to the fixed frequency for the narrow-band reception of Loran signals input resonant circuit specified. Measures to reduce the reception level are therefore not provided.
  • the DE 43 23 014 describes an active broadband antenna in which the antenna impedance to be measured is transformed by means of a low-loss transformation network into the optimal source impedance of the subsequent electronic amplifier to achieve an optimal signal-to-noise ratio. To protect the subsequent receiving system against non-linear effects due to level overload is often necessary to lower the gain of the active antenna. In the DE 43 23 014 the exceeding of a predetermined reception level is detected by means of a rectifier circuit and lowered by means of a control amplifier, the gain of the active antenna.
  • Active antennas according to this prior art for example, mounted on a large scale above the high frequency range with antenna arrangements in a motor vehicle window, together with a heater for the window heating , such as in EP 0 396 033 .
  • EP 0 346 591 and in EP 0 269 723 described.
  • the structures of the heating fields used as passive antenna part 1 are not originally intended for use as an antenna vehicle parts, which are only slightly changed due to their function for heating.
  • an active antenna according to the prior art as in Fig. 2b realized, the existing impedance on the heating field by means of a primary matching circuit in the vicinity of the impedance Z opt for noise adaptation to transform and to smooth the frequency response of the active antenna by means of an output-side matching network.
  • This approach requires the relatively complicated dimensioning of two filter circuits, which can not be done separately for each filter for an advantageous overall behavior of the active antenna due to the mutual dependence of each other.
  • the amplifier circuit is not intended to provide sufficient linearity characteristics as a simple amplifying element as in Fig. 2b can be designed, whereby the creative freedom of the two matching networks is considerably narrowed.
  • the design of two filters associated with increased effort.
  • the object of the invention is therefore to design an active broadband receiving antenna according to claim 1 so that an effective means for reducing the gain of the active antenna is given when exceeding a predetermined reception level for protection against non-linear effects.
  • the advantages attainable with the invention consist in particular in the reduction of the economic outlay and in the simplicity to achieve an optimum in terms of signal-to-noise ratio and the risk of non-linear effects optimal received signal.
  • the achievable by the features of the main claim high linearity of the three-pole amplifying element 2 allow to make the reduction of the gain of the active antenna at the output of this element in conjunction with a simultaneously achieved increase in the linearizing negative feedback. Due to the omission of a primary matching network in conjunction with the input-side high impedance of the amplifier circuit results in a very advantageous freedom in the design of complex multi-antenna systems whose passive antenna parts are in radio coupling to each other.
  • Active broadband receiving antenna with an amplifier circuit 21 connected directly to the passive antenna part 1 with a three-pole amplifying element 2, with input admittance 7 of the transmission network 31 with adjustable transmission element 34 located in the source line, eg in the form of a series resistor implemented as an adjustable electronic element 32, a downstream low-loss filter circuit 3 and an effective resistor 5 and control amplifier 33 on the output side.
  • adjustable transmission element 34 located in the source line, eg in the form of a series resistor implemented as an adjustable electronic element 32, a downstream low-loss filter circuit 3 and an effective resistor 5 and control amplifier 33 on the output side.
  • Active broadband receiving antenna according to Fig. 1
  • an adjustable transmission member 34 having a plurality of series-connected resistors 35 each having a resistance 35 in parallel and designed as a switching diode 36 adjustable electronic element 34 for lowering the reception level in stages.
  • Active broadband receiving antenna as in the FIGS. 1 . 3 and 4 but with an adjustable longitudinal adjustable element 30 as a frequency-dependent dipole 47 with a similar to the input admittance 7 of the low-loss filter circuit 3, but substantially with a two-pole mean 46 smaller by a frequency-independent factor (t-1) than the matterssadmittanz 7 of the low-loss filter circuit 3 with a frequency-dependent two-terminal 47 connected in parallel switching diode 36th
  • Active broadband receiving antenna as in Fig. 2a with a plurality of low-loss filter circuits, which are controlled via switching diodes 36 alternatively between the input and the output of the transmission network 31 for alternative reduction of the internal gain of the active antenna.
  • Active broadband receiving antenna as in Fig. 6 but with a filter circuit 3 with fixed blind elements 20 and with dummy elements 20a, which are switched on and off by means of adjustable electronic elements 32 for lowering the internal gain.
  • Each of the transmission paths is assigned an adjustable transmission element 34, 34 'and a control amplifier 33, 33' frequency-selectively.
  • Group antenna for the design of directivity with a passive antenna array 27 with electrical radiation coupling between the connection points 18, which are each connected to an amplifier circuit 21 and a high-frequency line 10 and whose signals are combined in the antenna combiner 22.
  • Scanning diversity antenna system with an arrangement as in Fig. 13 but with electronic switches 25 in place of the antenna combiner 22 and each one spare load resistor 26 for loading the non-switched antenna branches.
  • Scanning diversity antenna system formed from printed on the window heating fields with diversity moderately positioned junction 18 to achieve diversity Independent received signals 8.
  • Active antenna according to the invention but with a transformer 24 with sufficiently high-impedance primary inductance and sufficiently large gear ratio for broadband increase of the effective length 1 e .
  • Fig. 1 an antenna according to the basic form of the invention is shown.
  • the heating field of a motor vehicle printed on a window pane shows that the passive antenna part 1 can not be shaped in such a way that it is suitable for use
  • antenna in the meter and Dezimeterwellen Scheme has particular desired properties and thus has a random frequency dependence of both the effective length I e and their impedance according to their geometric structure and the metallic border of the window.
  • the essence of the present invention is to realize an active antenna, which allows to absorb this randomness of the frequency dependence of the given passive antenna part 1 with the help of a low-cost, easy to detect and easy to implement active antenna and with respect to noise, linearity and Frequency response to make free and between the incident wave with the electric field strength E and the high-frequency received signal 8 to achieve a predetermined frequency response.
  • the receive voltage present at a connection point 18 is fed to the amplifier circuit 21, which contains at the input a three-pole amplifying element 2, preferably an element with the character of a field effect transistor 2, which is negative-feedback in its source line to the input admittance 7 of a low-loss filter circuit 3, which is completed at its output with an effective resistance 5.
  • the input admittance 7 for example, to be designed such that the strong frequency dependence, which is the receive idle voltage, expressed by the effective length l e of the thus designed passive antenna part 1 in the high-frequency received signal 8 is largely balanced.
  • an adjustable longitudinal element 30 is provided in the adjustable transmission element 34, which acts as a through-connection in the range of small reception levels. If the longitudinal element 30 is set to high impedance in the region of too high a reception level, it causes on the one hand the lowering of the high-frequency received signal 8 as well as an increase in the impedance acting countercurrently in the source line of the transistor or a reduction of the admittance 7 'present there.
  • the field effect transistor 2 is linearized by the measure and protects the continuative circuit from excessive reception levels.
  • the operation and the design principle of an antenna according to the invention are based on the electrical equivalent circuit diagrams of FIGS. 2a and 5 explains:
  • the suitability of a predefined passive antenna part 1 for the design of a sufficiently noise-sensitive active antenna can be estimated on the basis of the antenna temperature prevailing in the transmission frequency range.
  • Field effect transistors usually have an extremely small parallel noise current source i r so that their contribution i r * Z A at negligible small gate-source and gate-drain capacitances C 2 and C 1 and the occurring in practice antenna impedances Z A compared to the series noise voltage source u r of the field effect transistor, expressed by its equivalent noise resistance R f , is always negligibly small.
  • the sufficient sensitivity criterion for negligible capacitances C 1 , C 2 is therefore merely the requirement that is easy to test R A > R a ⁇ ⁇ F * T 0 / T A to fulfill.
  • Modern gallium arsenide transistors have negligible capacitances C 1 and C 2 in comparison with the other circuits and a negligible effect of i r as a cause for the noise temperature T N0, which is extremely small in the case of noise adaptation of such transistors.
  • the equivalent noise resistance depends on the quiescent current and can be set above 30 MHz broadband with 30 ohms and less.
  • an antenna for the FM frequency range and a prevailing antenna temperature of about 1000 K is thus in terms of noise sensitivity for the real part of the complex antenna impedance, which represents the radiation resistance at low-loss field effect transistor 2, within the transmission frequency range exclusively R A ( f)> about 10 ohms as sufficient condition to demand.
  • Fig. 5 the noise contribution of an amplifier unit 11 is considered at the end of the high-frequency line 10 connected to the low-loss filter circuit 3 on the output side. With sufficient gain in the amplifier circuit 21, this contribution is kept correspondingly small. To protect the downstream amplifier unit 11 against non-linear effects, it is often necessary to make this gain largely frequency-independent within the transmission frequency range. This is achieved by corresponding preferably lossless transformation of the effective effective resistance 5 at the output of the low-loss filter circuit 3 into a suitably frequency-dependent input admittance 7. Is the frequency dependence required due to the frequency dependency of the effective length l e (f) for the input admittance 7 As is known, a circuit of reactances for the low-loss filter circuit 3 can be found, which largely corresponds to this requirement.
  • the inventive criterion for the exemplary design of a necessary and frequency-independent reception power within the transmission frequency range for the terrestrial broadcasting reception of an active vehicle antenna with respect to the reception power in the downstream receiving arrangement on the basis of Figure 5 explained.
  • the largely frequency-independent reception behavior is to be demanded, on the one hand not to significantly reduce the sensitivity of the overall system by the noise contribution of the active antenna downstream receiving system and on the other hand to avoid non-linear effects due to gain peaks as a result of frequency-dependent reception behavior within a transmission frequency range.
  • G (f) denotes the frequency-dependent real part of the input admittance 7 of the low-loss filter circuit 3. This noise contribution is then insignificant with respect to the inevitable received sound of the rushing with T A R A, if: G f ⁇ ( F V - 1 ) ⁇ T 0 4 ⁇ T A ⁇ 1 R A f
  • the frequency dependence of the real part G (f) of the input admittance 7 of the low-loss filter circuit 3 is reciprocal to the frequency response of the real part R A (f) of the complex antenna impedance.
  • G (f) ⁇ 1 / (3 * R A (f)) would have to be chosen approximately.
  • G (f) in order to protect the receiver from excessive reception levels, it is desirable not to select the power amplification of the active antenna substantially greater than the optimum overall system sensitivity, and thus G (f) approximately as indicated in the right part of equation (3).
  • the great advantage associated with the invention is that the frequency response given for G (f) from R A (f) can therefore be easily fulfilled because neither the input impedance of the low-impedance filter circuit 3, which is given by 1 / g m of the field-effect transistor 2 is still the effective effective resistance 5 at the output of the low-loss filter circuit 3 unavoidable essential reactive components have.
  • the frequency-dependent radiator impedance Z S (f) exists forcibly and inseparably as source impedance of the primary-side transformation network. Their frequency behavior limits the achievable bandwidth of the impedance transformed into the vicinity of Z opt and thus the bandwidth of the signal-to-noise ratio at the output of the active circuit.
  • the exemplary configuration of the frequency characteristic of G (f) of an active vehicle antenna according to the invention is described, if it is required that the received power P a at the input of the receiving system connected downstream of the active antenna is greater by a factor V than with a passive reference antenna , For example, a passive rod antenna on the vehicle at their resonance length. Due to the forcibly different directional diagrams, this factor is based on the azimuthal average values at a defined constant elevation angle ⁇ of the wave incidence.
  • the active antenna downstream receiving system which in Fig. 5 is represented by the amplifier unit 11, is usually based on the line impedance Z L of the high-frequency line system.
  • is the case of a lossy passive antenna part 1 to the Efficiency in equation (8) of the directivity factor D ⁇ to replace at (f) by the D (f) *.
  • the remaining sizing rules are not changed.
  • FIGS. 18a and b are the real parts of in FIGS. 18a and b represented passive antenna parts 1 on the frequency of 76 to 108 MHz applied.
  • the frequency response of the real part of the invention to be designed input admittance 7 at the input of the low-loss filter circuit 3 is therefore inverted to those in Fig. 18d shown curves according to aspects as they were discussed in connection with the equations (3) and (8) to make.
  • equation (6) can be assigned to a maximum tolerable azimuthal mean value l em with a known azimuthal directivity factor D am (f) a maximum tolerable active component R Amax .
  • the value range with R A > R Amax that is not allowed for sizing is in the Figures 18c and 18d also marked hatched.
  • the radiation resistances R A of the impedance values of particularly favorable structures for use as a passive antenna part 1 are therefore outside the hatched value range with R Amin ⁇ R A ⁇ R Amax .
  • a predetermined antenna structure by using a low-loss transformer with the transmission ratio ü, as in Fig. 17 specified, added, which forms the passive antenna part 1 together with the antenna structure - eg a heating field on the window pane.
  • the broadband transmission ratio is advantageously selected such that the impedance measurable at the output of the transformer is placed with its real part in the value range with R Amin ⁇ R A ⁇ R Amax . It is advantageous here to make the primary inductance sufficiently high-impedance.
  • the linearity requirement is met by a sufficiently large negative feedback through the input admittance 7 located in the source line.
  • This requires a comparatively low negative feedback in the transmission range, which is dimensioned in accordance with the amplification requirement, for example, according to equation (8), but which is as large as possible outside the transmission range.
  • preferably T-half filters or T-filters or chain circuits of such filters are used to implement such low-loss filter circuits 3.
  • Such filters are shown in their basic structure in the figures. To correspond to a more complicated frequency response of the G (f), the individual elements be supplemented by other reactive elements.
  • Fig. 6 indicated to make the amplifier unit 11 as the active output stage of the amplifier circuit 21.
  • This can be provided with an output resistance equal to the characteristic impedance Z L of conventional coaxial cables.
  • the effective effective resistance 5 is formed by the input impedance of the amplifier unit 11.
  • G (f) is to be designed analogously to the above-mentioned embodiments with the aid of a low-loss filter circuit 3 completed with this impedance.
  • the voltage reduction after the first amplifying element of the active antenna is advantageous in particular because it allows an optimum effect with regard to the frequency dependence of the expected intermodulation interference.
  • the influence on the sensitivity of the entire receiving system is thus determined only by the influence of the increased voltage to the voltage reduction noise figure of the subsequent circuit.
  • a mean resistance value must therefore be selected for the reduction at high reception levels, which is too small for intermodulation received signals at frequencies with a large real part of the antenna impedances and too large at frequencies with a small real part of the antenna impedances. This involves the risk that intermodulation received signals at frequencies with a large real part of the antenna impedances due to the smaller negative feedback effect cause too much intermodulation and on the other hand, the remaining gain at frequencies with a small real part of the antenna impedance is too small and the arrangement is too insensitive at these frequencies.
  • adjustable transmission elements 34 which reduce the admittances set at small reception levels 7 independent of frequency by a suitable factor.
  • the internal gain of the active antenna is frequency-independently reduced by a desired factor and the above-mentioned frequency-dependent intermodulation effect does not occur.
  • this is achieved for example by a transformer arrangement as in Fig. 4 and in Fig. 6 reached.
  • FIG. 5 Another method for achieving a frequency-independent negative feedback is by the arrangement in Fig. 5 given.
  • the frequency-independent lowering of the high-frequency received signals 8 the adjustable longitudinal element 30 is designed as a frequency-dependent dipole 47.
  • This is similar to a dividedsadmittanz 7 of the low-loss filter circuit 3, but essentially with a frequency-independent factor t-1 smaller Zweipoladmittanz 46 than the matterssadmittanz 7 of the transmission network 31 at low receive levels.
  • the transmission network 31 with filter character in Fig. 8 designed as a low-loss filter circuit 3 with fixed blind elements 20.
  • switchable dummy elements 20a are used which are switched on and off with the aid of adjustable electronic elements 32 such that falls below a predetermined receive level, the desired frequency dependence of the greater conductance G (f) of effective at the source terminal 24 makessadmittanz 7 for higher internal gain of the active Antenna is given on the one hand.
  • the desired frequency dependence of the correspondingly reduced frequency conductance G '(f) is set with the same frequency dependence of the input admittance 7' for the lowered internal amplification of the active antenna.
  • the passive antenna part 1 is designed with a connection point 18, whose two terminals are up against the mass 0. Each of the two terminals is connected to a respective control terminal 15a or 15b of a three-pole amplifying element 2.
  • the source terminals 24a and 24b are connected to the primary side of a transformer 38 designed as an isolating transformer, the secondary side of which has different outputs for forming different transformation ratios t.
  • the adjustable transmission member 34 is thus formed from the transformer and the switching diodes 36.
  • the drain terminals 53a and 53b of the three-pole amplifying elements 2a and 2b are connected to the ground O, respectively.
  • the three-pole reinforcing element 2 as in Fig. 9a , designed as an extended three-pole reinforcing element.
  • the three-pole reinforcing element 2 is in Fig. 9b combined as an extended three-pole amplifying element of an input bipolar transistor 49 and another bipolar transistor 50 in emitter follower circuit.
  • the emitter terminal 12 of the bipolar transistor 50 forms the source terminal 24 of the three-pole amplifying element 2.
  • Fig. 9c is the three-pole amplifying element 2 designed as an extended three-pole amplifying element of an input bipolar transistor 49 and input field effect transistor 13, whose collector terminal or drain terminal to the source or. Emitter terminal of an additional transistor 51 is connected and whose base or gate terminal is connected to the emitter or source terminal of the input bipolar transistor 49 and input field effect transistor 13, respectively. Through this connection, the source terminal 24 of the three-pole amplifying element 2 is formed.
  • An extended three-pole amplifying element of this form prevents by voltage tracking at the drain or collector terminal of the input transistor, the disturbing influence of a voltage-dependent capacitance between the control electrode and the drain and collector electrode.
  • the three-pole amplifying element 2 is designed as an extended three-pole amplifying element, in which an electronically controllable quiescent current source I S0 or / and an electronically controllable rest voltage source U D0 is present.
  • the quiescent current I S0 or / and the quiescent voltage U D0 in the input bipolar transistor 49 or input field-effect transistor 13 are set increased when large reception levels occur in connection with the inventive lowering of the internal amplification of the active antenna.
  • a plurality of bipolar transistors 14, 14 ' for expanding the three-pole amplifying element 2 and for the combined formation of a plurality of three-pole amplifying elements 2, 2'.
  • the base electrodes are connected to the source of a common input transistor 13 and to the source of an extended three-pole amplifying element, respectively FIGS. 9a to 9d connected.
  • the bipolar transistors 14,14 ' are each connected in emitter follower circuit to the input of a low-loss filter circuit 3,3' to form separate transmission paths for the respective frequency bands.
  • each of the transmission paths are each an adjustable transmission element 34,34 'and a control amplifier 33,33', which is supplied via filter measures only the respective transmission path associated frequency band from the high-frequency received signal 8 respectively.
  • the control signal 42, 42 ' is in each case the associated adjustable transmission element 34,34' supplied.
  • the control signals 42, 42 ' by means of selection and control amplifier 33, 33' in Receiver 44 derived from the output signal of the active antenna and the active antenna via control lines 41 supplied.
  • the present active antenna is used repeatedly in an antenna system whose passive antenna parts 1 with frequency-dependent and with respect to incident waves by amount and or only in phase different directional diagrams of the effective lengths l e possess, however, in electromagnetic Radiation coupling to each other and together form a passive antenna array 27 with multiple connection points 18a, b, c.
  • each is connected in each case to an amplifier circuit 21 according to the invention and supplemented to form an active antenna according to the invention. Due to the high impedance of the amplifier inputs is given by the coupling of the high-frequency received signals 8 to the passive antenna parts 1 no significant mutual influence of the receiving voltages.
  • Such an antenna arrangement is generally in Fig. 13 shown.
  • the present at the output of the amplifier circuit 21 receive signals 8 are superimposed weighted for the design of a group antenna arrangement with predetermined receiving properties with respect to directivity and antenna gain without retroactivity to the voltage applied to the passive antenna parts 1 high-frequency reception signals in a Antennencombiner 22 present for this purpose.
  • a common control amplifier 33 the control signals 42a, b, c the transmission networks 31 a, b, c is fed into the active antennas for lowering the summed high-frequency received signal 8, perform the level monitoring.
  • the level monitoring and attenuation take place separately in each active antenna with the aid of a control amplifier 33 respectively accommodated there.
  • an antenna according to the invention as an active window pane antenna, it is advantageously possible to accommodate the amplifier circuit 21 invisible in the very narrow edge area of the vehicle window. Therefore, it is desirable to miniaturize the part to be attached to the connection point 18 and to attach only the parts of the amplifier circuit 21 which are functionally necessary there.
  • the other parts of the low-loss filter circuit 3 are placed remotely and turned on via the high-frequency line 10.
  • the active antenna is designed as a multi-region antenna for several frequency ranges.
  • Fig. 19a for the frequency ranges FM radio broadcasting and VHF and UHF television broadcasting the fundamental frequency characteristics of reactances X 1 , X 3 and the susceptibility B 2 of a T-filter arrangement of the in Fig. 19b specified low-loss filter circuit 3 exemplified.
  • the T-filter configuration in this case ensures the input-side high-impedance of the low-loss filter circuit 3 to achieve a sufficiently large negative feedback of the field effect transistor 2 in the stopband areas.
  • the low-loss filter circuit 3 is designed as a T-half filter or T-filter or as a chain circuit such filter whose or series branch or parallel branch is formed in each case from a combination of reactances such that both the absolute value of a reactance in the series branch 28 than Also, the absolute value of a susceptance in the parallel branch 29 each within a transmission frequency range sufficiently small and outside such is sufficiently large and the high-frequency received signal 8 is supplied to the control amplifier 33 at the output and from the control signal 42, the adjustable transmission element 34 is controlled.
  • another field effect transistor 2 having the same electrical properties is used in a further advantageous embodiment of the invention in addition to the field effect transistor 2.
  • the input terminals of the amplifier circuit 21 are formed by the two control terminals of the field effect transistors 15a and 15b, and the input of the low-loss filter circuit 3 is connected to the source terminals 19a and 19b.
  • a Umsymmetrierglied in the low-loss filter circuit 3 is used for the Umsymmetri réelle the high-frequency received signals 8.
  • Circuit can advantageously also be connected to a connection point 18 with two connections leading to ground voltage.
  • antenna diversity systems The efficiency of antenna diversity systems is determined by the number of available, mutually independent antenna signals. This independence is reflected in the correlation factor between the received voltages occurring in a Rayleigh wave field during travel.
  • Such systems, in which the connection points 18 are selected from this point of view and taking into account technical aspects of the vehicle, are exemplary in the FIGS. 15 and 16 shown.
  • connection points 18 Due to the electromagnetic radiation couplings existing between the connection points 18, this independence then applies only to the connection points 18 operated at idling.
  • the connection points 18 By wiring the connection points 18 with the amplifier circuits 21 according to the invention, the high-frequency received signals 8 are tapped at the antenna outputs due to their negligible capacitive input conductance.
  • the diversity of the independence of the received signals at the connection points 18 is thus not affected by this measure in an advantageous manner and this independence is therefore in the same way for the received signals 8 at the antenna outputs.
  • mutually independent receive signals 8 are available at the antenna outputs for selection in a scanning diversity system or for further processing in one of the other known diversity methods.
  • the foregoing considerations indicate that with the mutual interdependence of the open circuit voltages U10 and U20, specific values for Y1 and Y2 can be found which reduce or eliminate the interdependence in the amplifier input voltages U1 and U2 through the transformation described in Equation 15.
  • Active antennas according to the invention have the decisive advantage that the definition of such suitable reactive elements can be made largely independent of sensitivity considerations.
  • a separate control amplifier 33 for monitoring the high-frequency received signal 8 at the relevant antenna output is assigned to the amplifier circuits 21 of the active antennas.

Landscapes

  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

The device has a passive part with output connections connected to amplifier stage input connections and reduced internal impedance if a defined reception level is exceeded. The amplifier input stage amplifying element's high impedance control port has a HF connection to the passive part. An electronic element reduces the reception level in a transfer network whose linearising input admittance is lower when the HF input signal is attenuated. The device consists of a passive part (1) whose output connections are connected to the input connections of an amplifier stage (21) and its internal impedance is reduced when a defined reception level is exceeded. The amplifier-input stage contains a 3-pole amplifying element (2) whose high impedance control port (15) has a high frequency connection to the first connection of the passive part. The amplifier has an electronic element (32) for reducing the reception level in a transfer network (31), whose linearising input admittance (7') is lower when the high frequency input signal is attenuated.

Description

Die Erfindung betrifft eine aktive Breitbandempfangsantenne, bestehend aus einem passiven Antennenteil 1 mit einer frequenzabhängigen effektiven Länge le, dessen Ausgangsanschlüsse mit den Eingangsanschlüssen einer Verstärkerschaltung 21 hochfrequent verbunden sind. Elektrisch lange Antennen oder Antennen, die sich in direkter Kopplung mit elektrisch großen Körpern befinden, besitzen bei Erregung mit einer über der Frequenz konstant gehaltenen elektrischen Feldstärke eine frequenzabhängige Leerlaufspannung, die sich durch die effektive Länge le(f) ausdrückt. Insbesondere im Frequenzbereich oberhalb 30 MHz ist die Antennenrauschtemperatur TA bei terrestrischer Umgebung - von tiefen Frequenzen kommend - soweit abgesunken, dass für Bipolartransistoren von Seiten des passiven Antennenteils eine Quellimpedanz in der Nähe der für den Transistor optimalen Impedanz Z opt für Rauschanpassung zu fordern ist, um keinen wesentlichen Empfindlichkeitsverlust durch das Transistorrauschen zu erleiden. Die Grundform einer aktiven Antenne dieser Art ist in Fig. 2b dargestellt und ist bekannt z.B. aus der DT-AS 23 10 616, der DT-AS 15 91 300 bzw. AS 1919749. Bei aktiven Breitbandantennen, welche nicht kanalselektiv, sondern auf ein Frequenzband, wie z.B. dem UKW-Rundfunkfrequenzbereich breitbandig abgestimmt sind, ist es notwendig, die Antennenimpedanz Z S (f) eines kurzen Strahlers in Z A(f) in die Nähe von Z opt zu transformieren (sh. UKW-Bereich in der DT-AS 23 10 616) oder den Strahler selbst derart zu gestalten, dass die Antennenimpedanz Z S (f) selbst in der Nähe von Z opt liegt (sh. UKW-Bereich in der AS 1919749). Dies führt sowohl bei elektrisch großen als auch bei elektrisch kleinen Antennen zu einer frequenzabhängigen Leerlaufspannung am Transistoreingang, welche sich als stark frequenzabhängige effektive Länge le(f) des passiven Antennenteils ausdrückt, woraus sich in Verbindung mit der Frequenzabhängigkeit des Spannungsteilungsfaktors zwischen Z opt und dem davon abweichenden Eingangswiderstand des Transistors die Notwendigkeit ergibt, den daraus resultierenden Frequenzgang des Empfangssignals am Lastwiderstand ZL mit Hilfe einer Anpassungsschaltung am Ausgang der aktiven Schaltung zu glätten. Dies ist auch zum Schutz der nachfolgenden Empfangsanlage gegen nichtlineare Effekte durch Pegelüberlastung notwendig.The invention relates to an active broadband receiving antenna, comprising a passive antenna part 1 with a frequency-dependent effective length l e , whose output terminals are connected to the input terminals of an amplifier circuit 21 high frequency. Electrically long antennas or antennas that are in direct coupling with electrically large bodies have a frequency-dependent open-circuit voltage when excited with an electrical field strength held constant above the frequency, which is expressed by the effective length l e (f). Especially in the frequency range above 30 MHz, the antenna noise temperature T A in terrestrial environment - coming from low frequencies - has fallen so far that for bipolar transistors from the side of the passive antenna part, a source impedance in the vicinity of the optimal impedance for the transistor impedance Z opt is required for noise adaptation, so as not to suffer any significant sensitivity loss due to the transistor noise. The basic form of an active antenna of this kind is in Fig. 2b shown and is known for example from DT-AS 23 10 616, the DT-AS 15 91 300 and AS 1919749. In active broadband antennas, which are not channel selective, but are tuned to a frequency band, such as the FM radio frequency band broadband is it is necessary to transform the antenna impedance Z S (f) of a short radiator in Z A (f) into the vicinity of Z opt (see VHF range in DT-AS 23 10 616) or to design the radiator itself in such a way that the antenna impedance Z S (f) itself lies in the vicinity of Z opt (see FM range in AS 1919749). This leads both in electrically large and in electrically small antennas to a frequency-dependent open circuit voltage at the transistor input, which expresses as a strong frequency-dependent effective length l e (f) of the passive antenna part, resulting in connection with the frequency dependence of the voltage division factor between Z opt and the deviating input resistance of the transistor results in the need to smooth the resulting frequency response of the received signal at the load resistor Z L by means of a matching circuit at the output of the active circuit. This is also necessary to protect the subsequent receiving system against non-linear effects due to level overload.

Bei breitbandigen Empfangsantennen kann es durch die hohen elektrischen Feldstärken in Sendemähe, z.B.auch durch bordeigene Sender, durch Intermodulations- und Begrenzungseffekte im elektronischen Verstärker der aktiven Empfangsantenne zu starken Empfangsstörungen kommen, da dieser im Hinblick auf hohe Empfindlichkeit und im Hinblick auf die breitbandige Einhaltung der elektrischen Eigenschaften dimensioniert ist. Die dabei angewandte Technik ist in der Regel sehr aufwändig, wobei der Aufwand mit wachsender Anforderung an die Intermodulationsfestigkeit stark zunimmt. Bei aktiven Empfangsantennen, die zur Feststellung der Signalpegel eine Gleichrichterschaltung mit Regelschaltung verwenden, können jedoch kostengünstigere Verstärker eingesetzt werden, da sie in der Lage sind, bei Überschreiten eines vorgegebenen Empfangspegels die Verstärkung der aktiven Empfangsantenne abzusenken, um auf diese Weise Empfangsstörungen durch Intermodulations- und Begrenzungseffekte im Verstärker und in der weiterführenden Schaltung zu vermeiden.
Empfangsanlagen mit schmaler Bandbreite müssen in der Regel nicht vor nichtlinearen Effekten durch Pegelüberlastung geschützt werden. In der US-A-4 875 019 ist z. B. ein Empfänger-Vorverstärker mit einem auf die Festfrequenz für den schmalbandigen Empfang von Loran-Signalen abgestimmten Eingangs-Resonanzkreis angegeben. Maßnahmen zu Absenkung des Empfangspegels sind deshalb nicht vorgesehen.
In the case of broadband receiving antennas, the high electrical field strengths in the vicinity of the transmitter, for example also by on-board transmitters, can lead to strong interference due to intermodulation and limiting effects in the electronic amplifier of the active receiving antenna, since this is highly sensitive in terms of high sensitivity and in terms of broadband compliance with the electrical Characteristics is dimensioned. The technique used is usually very complex, with the effort with increasing demand for intermodulation strength increases greatly. In active receiving antennas, which use a rectifier circuit with control circuit to determine the signal level, but cheaper amplifier can be used, since they are able to lower the gain of the active receiving antenna when a predetermined receive level is exceeded in order to receive interference by intermodulation and To avoid limiting effects in the amplifier and in the secondary circuit.
Narrow bandwidth receivers typically do not need to be protected from nonlinear effects by level overload. In the U.S. Patent 4,875,019 is z. Example, a receiver preamplifier with a matched to the fixed frequency for the narrow-band reception of Loran signals input resonant circuit specified. Measures to reduce the reception level are therefore not provided.

In der DE 43 23 014 ist eine aktive Breitbandantenne beschrieben, bei welcher die zu messende Antennenimpedanz mittels eines verlustarmen Transformationsnetzwerks in die optimale Quellimpedanz des nachfolgenden elektronischen Verstärkers zur Erzielung eines optimalen Signal-Rauschverhältnisses transformiert ist. Zum Schutz der nachfolgenden Empfangsanlage gegen nichtlineare Effekte durch Pegelüberlastung ist häufig eine Absenkung der Verstärkung der aktiven Antenne notwendig. In der DE 43 23 014 wird die Überschreitung eines vorgegebenen Empfangspegels mit Hilfe einer Gleichrichterschaltung festgestellt und mit Hilfe eines Regelverstärkers die Verstärkung der aktiven Antenne abgesenkt. Dies erfolgt in der Weise, dass ein passives, signalbedämpfendes Netzwerk vorhanden ist, das den aktiven Antennenteil überbrückt, und die Absenkung der Verstärkung der aktiven Empfangsantenne dadurch erfolgt, dass der Signalweg über den elektronischen Verstärker an seinem Eingang, oder an seinem Ausgang oder an seinem Eingang und Ausgang durch die elektronischen Schalter aufgetrennt ist. Hierbei zeigt sich die am Verstärkereingang auftretende Belastung durch das überbrückende signalbedämpfende Netzwerk zusammen mit den dort anzubringenden Umschaltmaßnahmen als störend.In the DE 43 23 014 describes an active broadband antenna in which the antenna impedance to be measured is transformed by means of a low-loss transformation network into the optimal source impedance of the subsequent electronic amplifier to achieve an optimal signal-to-noise ratio. To protect the subsequent receiving system against non-linear effects due to level overload is often necessary to lower the gain of the active antenna. In the DE 43 23 014 the exceeding of a predetermined reception level is detected by means of a rectifier circuit and lowered by means of a control amplifier, the gain of the active antenna. This is done by providing a passive, signal dampening network that bridges the active antenna portion and reducing the gain of the active receive antenna by providing the signal path through the electronic amplifier at its input, or at its output or at its output Input and output is separated by the electronic switch. In this case, the load occurring at the amplifier input by the bridging signal-damping network together with the switching measures to be applied there is distracting.

Die Grundform aktiver Antennen mit einem Transformationsnetzwerk am Verstärkereingang, wie sie z.B. als Breitbandantennen für den UKW-Bereich eingesetzt werden, ist in Fig. 2b dargestellt und ist bekannt z.B. aus der DT-AS 23 10 616, der DT-AS 15 91 300. Aktive Antennen nach diesem Stand der Technik werden z.B. in großem Umfang oberhalb des Hochfrequenzbereichs mit Antennenanordnungen in einer Kraftfahrzeugfensterscheibe zusammen mit einem Heizfeld für die Scheibenheizung angebracht, wie z.B. in EP 0 396 033 , EP 0 346 591 und in EP 0 269 723 beschrieben. Bei den als passiver Antennenteil 1 verwendeten Strukturen der Heizfelder handelt es sich um ursprünglich nicht für die Nutzung als Antenne vorgesehene Fahrzeugteile, welche aufgrund ihrer Funktion zur Heizung nur wenig veränderbar sind. Wird an einem derartigen Antennenelement eine aktive Antenne nach dem Stande der Technik wie in Fig. 2b realisiert, so ist die am Heizfeld vorliegende Impedanz mit Hilfe einer primären Anpassschaltung in die Nähe der Impedanz Zopt für Rauschanpassung zu transformieren und der Frequenzgang der aktiven Antenne mit Hilfe eines ausgangsseitigen Anpassungsnetzwerks zu glätten. Dieses Vorgehen bedingt die relativ umständliche Dimensionierung zweier Filterschaltungen, welche für ein vorteilhaftes Gesamtverhalten der aktiven Antenne aufgrund der gegenseitigen Abhängigkeit voneinander nicht für jedes Filter getrennt erfolgen kann. Hinzu kommt, dass die Verstärkerschaltung zur Erzielung hinreichender Linearitätseigenschaften nicht als einfaches verstärkendes Element wie in Fig. 2b gestaltet werden kann, wodurch die gestalterische Freiheit der beiden Anpassnetzwerke nennenswert eingeengt ist. Zusätzlich ist mit der Gestaltung von zwei Filtern ein erhöhter Aufwand verbunden. Als weiterer nennenswerter Nachteil einer aktiven Antenne dieser Art zeigt sich die Belastung der an das Heizfeld angeschlossenen Anpassschaltung mit nachgeschaltetem Verstärker, wenn aus demselben Heizfeld mehrere aktive Antennen zur Bildung eines Antennendiversitysystems bzw. einer Gruppenantenne mit besonderen Richteigenschaften oder anderen Zwecken gestaltet sind. Dieser nachteilige Sachverhalt liegt bei allen Antennenanordnungen vor, deren passive Antennenteile in nennenswerter elektromagnetischer Strahlungskopplung zueinander stehen. Beispielsweise werden nach dem Stand der Technik bei einem aus dem Heizfeld gebildeten Mehrantennen-Scanning-Diversitysystem an den am Heizfeld gebildeten Anschlussstellen für die Antennenverstärker Schaltdioden angebracht, welche jeweils nur diejenige Anpassungsschaltung mit Verstärker anschaltet, deren Signal zum Empfänger durchgeschaltet wird und welche die übrigen Anschlussstellen frei schalten. Dies führt in solchen Systemen zu einem erheblichen Aufwand und zu der zusätzlichen Forderung der genau mit der Antennenauswahl synchronen Umschaltung der Dioden.The basic form of active antennas with a transformation network at the amplifier input, as they are used as broadband antennas for the FM area, is in Fig. 2b shown and is known, for example from DT-AS 23 10 616, the DT-AS 15 91 300. Active antennas according to this prior art, for example, mounted on a large scale above the high frequency range with antenna arrangements in a motor vehicle window, together with a heater for the window heating , such as in EP 0 396 033 . EP 0 346 591 and in EP 0 269 723 described. The structures of the heating fields used as passive antenna part 1 are not originally intended for use as an antenna vehicle parts, which are only slightly changed due to their function for heating. If such an antenna element, an active antenna according to the prior art as in Fig. 2b realized, the existing impedance on the heating field by means of a primary matching circuit in the vicinity of the impedance Z opt for noise adaptation to transform and to smooth the frequency response of the active antenna by means of an output-side matching network. This approach requires the relatively complicated dimensioning of two filter circuits, which can not be done separately for each filter for an advantageous overall behavior of the active antenna due to the mutual dependence of each other. In addition, the amplifier circuit is not intended to provide sufficient linearity characteristics as a simple amplifying element as in Fig. 2b can be designed, whereby the creative freedom of the two matching networks is considerably narrowed. In addition, the design of two filters associated with increased effort. Another significant disadvantage of an active antenna of this kind is the load of the matching circuit connected to the heating field with downstream amplifier, if from the same heating field several active antennas are designed to form an antenna diversity system or a group antenna with special Richteigenschaften or other purposes. This disadvantageous situation exists in all antenna arrangements whose passive antenna parts are in appreciable electromagnetic radiation coupling with one another. For example, according to the state of the art in a multi-antenna scanning diversity system formed from the heating field at the connection points formed for the antenna amplifier switching diodes attached, which in each case only those matching circuit with amplifier turns on, whose signal is turned on to the receiver and which the other connection points unlock. This leads in such systems to a considerable effort and to the additional requirement of the synchronous switching of the diodes, which is exactly synchronized with the antenna selection.

Eine aktive Breitbandempfangsantenne, welche die letztgenannten Nachteile nicht besitzt ist in der nicht vorveröffentlichten europäischen Patentanmeldung EP 02004597 , veröffentlich als EP 1 246 294 , in Fig. 1 beschrieben. Sie besitzt jedoch den verbleibenden Nachteil, dass keine wirkungsvolle Einrichtung zur Absenkung der Verstärkung der aktiven Antenne bei Überschreiten eines vorgegebenen Empfangspegels zum Schutz gegen nichtlineare Effekte gegeben ist.An active broadband receiving antenna which does not possess the latter disadvantages is disclosed in the non-prepublished European patent application EP 02004597 , published as EP 1 246 294 , in Fig. 1 described. However, it has the remaining disadvantage that there is no effective means for lowering the gain of the active antenna when exceeding a predetermined reception level for protection against non-linear effects.

Aufgabe der Erfindung ist es deshalb, eine aktive Breitband-Empfangsantenne nach dem Anspruch 1 so zu gestalten, dass eine wirkungsvolle Einrichtung zur Absenkung der Verstärkung der aktiven Antenne bei Überschreiten eines vorgegebenen Empfangspegels zum Schutz gegen nichtlineare Effekte gegeben ist.The object of the invention is therefore to design an active broadband receiving antenna according to claim 1 so that an effective means for reducing the gain of the active antenna is given when exceeding a predetermined reception level for protection against non-linear effects.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.This object is achieved by the features of claim 1.

Die mit der Erfindung erzielbaren Vorteile bestehen im Besonderen in der Reduzierung des wirtschaftlichen Aufwands und in der Einfachheit zur Erzielung eines hinsichtlich des Signalrauschverhältnisses und hinsichtlich der Gefährdung durch nichtlineare Effekte optimalen Empfangssignals. Die durch die Merkmale des Hauptanspruchs erreichbare hohe Linearität des dreipoligen verstärkenden Elements 2 erlauben es, die Absenkung der Verstärkung der aktiven Antenne am Ausgang dieses Elements in Verbindung mit einer zugleich erzielten Erhöhung der linearisierenden Gegenkopplung zu gestalten. Aufgrund des Wegfallens eines primären Anpassnetzwerkes in Verbindung mit der eingangsseitigen Hochohmigkeit der Verstärkerschaltung ergibt sich eine äußerst vorteilhafte Freiheit bei der Gestaltung komplizierter Mehrantennensysteme, deren passive Antennenteile in Strahlungskopplung zueinander stehen. Daraus ergibt sich die vorteilhafte Eigenschaft, dass für Mehrantennenanordnungen die mehrfache Auskopplung von Empfangssignalen aus einer passiven Antennenanordnung mit mehreren Anschlussstellen, welche in elektromagnetischer Strahlungskopplung zueinander stehen, durch die Bildung der aktiven Antennen keine merkliche gegenseitige Beeinflussung der Empfangssignale gegeben ist. Im Zusammenhang mit der Diversityanordnung können die oben erwähnten Schaltdioden zur Freischaltung vonThe advantages attainable with the invention consist in particular in the reduction of the economic outlay and in the simplicity to achieve an optimum in terms of signal-to-noise ratio and the risk of non-linear effects optimal received signal. The achievable by the features of the main claim high linearity of the three-pole amplifying element 2 allow to make the reduction of the gain of the active antenna at the output of this element in conjunction with a simultaneously achieved increase in the linearizing negative feedback. Due to the omission of a primary matching network in conjunction with the input-side high impedance of the amplifier circuit results in a very advantageous freedom in the design of complex multi-antenna systems whose passive antenna parts are in radio coupling to each other. This results in the advantageous property that for multiple antenna arrangements, the multiple coupling out of received signals from a passive antenna arrangement with several connection points, which are in electromagnetic radiation coupling to each other, given by the formation of active antennas no significant mutual influence of the received signals. In connection with the diversity arrangement, the above-mentioned switching diodes for enabling

Ausführungsbeispiele erfindungsgemäßer aktiver Breitbandempfangsantennen und Antennensysteme sind in den Zeichnungen dargestellt und werden im Folgenden näher beschrieben. Im Einzelnen zeigt:Embodiments of inventive active broadband receiving antennas and antenna systems are shown in the drawings and will be described in more detail below. In detail shows:

Fig. 1:Fig. 1:

Aktive Breitbandempfangsantenne nach der Erfindung mit einer direkt an den passiven Antennenteil 1 angeschlossenen Verstärkerschaltung 21 mit einem dreipoligen verstärkenden Element 2, mit in der Quellenleitung befindlicher Eingangsadmittanz 7 des Übertragungsnetzwerks 31 mit einstellbarem Übertragungsglied 34, z.B. in Form eines als einstellbares elektronisches Element 32 realisierten Längswiderstands, einer nachgeschalteten verlustarmen Filterschaltung 3 und einem ausgangsseitig wirksamen Wirkwiderstand 5 und Regelverstärker 33.Active broadband receiving antenna according to the invention with an amplifier circuit 21 connected directly to the passive antenna part 1 with a three-pole amplifying element 2, with input admittance 7 of the transmission network 31 with adjustable transmission element 34 located in the source line, eg in the form of a series resistor implemented as an adjustable electronic element 32, a downstream low-loss filter circuit 3 and an effective resistor 5 and control amplifier 33 on the output side.

Fig. 2:Fig. 2:

  • a) Elektrisches Ersatzschaltbild einer aktiven Breitbandempfangsantenne nach der Erfindung mit Serienrauschspannungsquelle ur und in ihrer Wirkung vernachlässigbarer Parallelrauschstromquelle ir eines Feldeffekttransistors als dreipoliges verstärkendes Element 2 mit einer außerhalb des Übertragungsbereichs eingangsseitig hochohmigen verlustarmen Filterschaltung 3.a) Electrical equivalent circuit diagram of an active broadband receiving antenna according to the invention with series noise source u r and negligible in effect Parallelrauschstromquelle i r a field effect transistor as a three-pole amplifying element 2 with an outside of the transmission range on the input side high-impedance low-loss filter circuit 3rd
  • b) Elektrisches Ersatzschaltbild einer aktiven Breitbandempfangsantenne nach dem Stand der Technik mit Rauschanpassungsnetzwerk und frequenzabhängiger effektiver Länge des passiven Antennenteils 1 am Anschlusspunkt des Transistors und ausgangsseitigem Anpassungsnetzwerk zur Glättung des Frequenzgangs.b) Electrical equivalent circuit diagram of a prior art active broadband receiving antenna with noise matching network and frequency dependent effective length of the passive antenna part 1 at the connection point of the transistor and output matching network for smoothing the frequency response.
Fig. 3:3:

Aktive Breitbandempfangsantenne gemäß Fig. 1 jedoch mit einem einstellbares Übertragungsglied 34 mit mehreren in Serie geschalteten Widerständen 35 mit jeweils einem dem Widerstand 35 parallel geschalteten und als Schaltdiode 36 ausgeführten einstellbaren elektronischen Element 34 zur Absenkung des Empfangspegels in Stufen.Active broadband receiving antenna according to Fig. 1 However, with an adjustable transmission member 34 having a plurality of series-connected resistors 35 each having a resistance 35 in parallel and designed as a switching diode 36 adjustable electronic element 34 for lowering the reception level in stages.

Fig. 4:4:

Aktive Breitbandempfangsantenne wie in den Figuren 1 und 3, jedoch mit einem einstellbarem Übertragungsglied 34 aus einem Übertrager 38 mit in Stufen verfügbarem Übersetzungsverhältnis (t), Schaltdioden 36 als einstellbare elektronische Elemente 32 zur Einstellung eines großen Übersetzungsverhältnisses (t) und damit eines großen Verhältnisses der Eingangsspannung UE zur Ausgangsspannung UA bei großen Empfangspegeln .Active broadband receiving antenna as in the FIGS. 1 and 3 However, with an adjustable transmission member 34 of a transformer 38 with available in stages gear ratio (t), switching diodes 36 as adjustable electronic elements 32 for setting a large transmission ratio (t) and thus a large ratio of the input voltage U E to the output voltage U A at large Reception levels.

Fig. 5:Fig. 5:

Aktive Breitbandempfangsantenne wie in den Figuren 1, 3 und 4, jedoch mit einem einstellbarem einstellbaren Längselement 30 als ein frequenzabhängiger Zweipol 47 mit einer zur Eingangsadmittanz 7 der verlustarmen Filterschaltung 3 ähnlichen, jedoch im Wesentlichen mit einer um einen frequenzunabhängigen Faktor (t-1) kleineren Zweipoladmittanz 46 als die Eingangsadmittanz 7 der verlustarmen Filterschaltung 3 mit einer dem frequenzabhängigen Zweipol 47 parallel geschalteten Schaltdiode 36.Active broadband receiving antenna as in the FIGS. 1 . 3 and 4 but with an adjustable longitudinal adjustable element 30 as a frequency-dependent dipole 47 with a similar to the input admittance 7 of the low-loss filter circuit 3, but substantially with a two-pole mean 46 smaller by a frequency-independent factor (t-1) than the Eingangsadmittanz 7 of the low-loss filter circuit 3 with a frequency-dependent two-terminal 47 connected in parallel switching diode 36th

Fig. 6:Fig. 6:

Aktive Breitbandempfangsantenne wie in Fig. 4 mit Verstärkereinheit 11 mit der Rauschzahl Fv als weiterführende Schaltung; Gestaltung des Realteils G der bei kleinen Empfangspegeln wirksamen Admittanz 7 als hinreichend groß, so dass der Rauschbeitrag der Verstärkereinheit 11 kleiner ist als der Rauschbeitrag des Feldeffekttransistors 2.Active broadband receiving antenna as in Fig. 4 with amplifier unit 11 with the noise figure F v as a further circuit; Design of the real part G of the effective at small receive levels admittance 7 as sufficiently large, so that the noise contribution of the amplifier unit 11 is smaller than the noise contribution of the field effect transistor. 2

Fig. 7:Fig. 7:

Aktive Breitbandempfangsantenne wie in Fig. 2a mit mehreren verlustarmen Filterschaltungen, welche über Schaltdioden 36 alternativ zwischen dem Eingang und dem Ausgang des Übertragungsnetzwerks 31 zur alternativen Absenkung der inneren Verstärkung der aktiven Antenne angesteuert werden.Active broadband receiving antenna as in Fig. 2a with a plurality of low-loss filter circuits, which are controlled via switching diodes 36 alternatively between the input and the output of the transmission network 31 for alternative reduction of the internal gain of the active antenna.

Fig. 8:Fig. 8:

Aktive Breitbandempfangsantenne wie in Fig. 6 jedoch mit einer Filterschaltung 3 mit fest eingestellten Blindelementen 20 und mit Blindelementen 20a, welche mit Hilfe einstellbarer elektronischer Elemente 32 zur Absenkung der inneren Verstärkung zu- und abgeschaltet werden.Active broadband receiving antenna as in Fig. 6 but with a filter circuit 3 with fixed blind elements 20 and with dummy elements 20a, which are switched on and off by means of adjustable electronic elements 32 for lowering the internal gain.

Fig. 9:Fig. 9:

Gestaltung des dreipoligen verstärkenden Elements 2 als erweitertes dreipoliges verstärkendes Element

  1. a) aus einem Eingangs-Feldeffekttransistoi 13 und einem Bipolartransistor 14 in Emitterfolgerschaltung
  2. b) aus einem Eingangs-Bipolartransistor 49 und einem weiteren Bipolartransistor 50 in Emitterfolgerschaltung
  3. c) aus einem Eingangstransistor und einem weiteren Transistor zur hochfrequenten Nachführung der Drain- bzw. der Kollektorelektrode des Eingangstransistors.
  4. d) aus einer kombinierten Transistorschaltung zur elektronischen Steuerung der Ruhespannungsquelle UD0 45 und des Ruhestroms IS0 50 des Eingangstransistors im Zusammenhang mit der Absenkung der inneren Verstärkung der aktiven Antenne aufgrund zu hoher Empfangspegel.
Design of the three-pole reinforcing element 2 as an extended three-pole reinforcing element
  1. a) from an input field effect transistor 13 and a bipolar transistor 14 in emitter follower circuit
  2. b) of an input bipolar transistor 49 and another bipolar transistor 50 in emitter follower circuit
  3. c) from an input transistor and a further transistor for high-frequency tracking of the drain and the collector electrode of the input transistor.
  4. d) from a combined transistor circuit for the electronic control of the rest voltage source U D0 45 and the quiescent current I S0 50 of the input transistor in connection with the lowering of the internal gain of the active antenna due to high reception levels.

Fig. 10:Fig. 10:

Passiver Antennenteil 1 mit einer Anschlussstelle 18, deren beide Anschlüsse gegenüber dem Masseanschluss hochliegen, mit einem Feldeffekttransistor 2a und einem weiteren Feldeffekttransistor 2b und einem als Trenntransformator ausgeführten Übertrager 38 mit Schaltdioden 36 zur Einstellung des ÜbersetzungsverhältnissesPassive antenna part 1 with a connection point 18, the two terminals are up against the ground terminal, with a field effect transistor 2a and another field effect transistor 2b and a transformer designed as an isolation transformer 38 with switching diodes 36 for setting the transmission ratio

Fig. 11:Fig. 11:

Gestaltung von mehreren Übertragungsfrequenzbändern über mehrere getrennte Übertragungswege für die betreffenden Frequenzbänder. Jedem der Übertragungswege ist jeweils ein einstellbares Übertragungsglied 34, 34' und ein Regelverstärker 33, 33' frequenzselektiv zugeordnet.Design of several transmission frequency bands over several separate transmission paths for the respective frequency bands. Each of the transmission paths is assigned an adjustable transmission element 34, 34 'and a control amplifier 33, 33' frequency-selectively.

Fig. 12:Fig. 12:

Anordnung wie in Fig. 11, jedoch mit im Empfänger 44 selektiv angesteuerten Regelverstärkern 33, 33' zur Ansteuerung der einstellbaren Übertragungsglieder 34, 34' in der aktiven Antenne.Arrangement as in Fig. 11 but with control amplifiers 33, 33 'selectively driven in the receiver 44 for controlling the adjustable transmission elements 34, 34' in the active antenna.

Fig. 13:Fig. 13:

Gruppenantenne zur Gestaltung von Richtwirkungen mit einer passiven Antennenanordnung 27 mit elektrischer Strahlungskopplung zwischen den Anschlussstellen 18, welche jeweils mit einer Verstärkerschaltung 21 und einer Hochfrequenzleitung 10 beschaltet sind und deren Signale im Antennencombiner 22 zusammengefasst sind. Es ist ein gemeinsamer Regelverstärker 33 zur Überwachung des hochfrequenten Empfangssignals 8 am Antennenausgang vorhanden.Group antenna for the design of directivity with a passive antenna array 27 with electrical radiation coupling between the connection points 18, which are each connected to an amplifier circuit 21 and a high-frequency line 10 and whose signals are combined in the antenna combiner 22. There is a common control amplifier 33 for monitoring the high-frequency received signal 8 at the antenna output.

Fig. 14:Fig. 14:

Scanningdiversity-Antennenanlage mit einer Anordnung wie in Fig. 13, jedoch mit elektronischen Umschaltern 25 an Stelle des Antennencombiners 22 und jeweils einem Ersatzlastwiderstand 26 zur Belastung der nicht durchgeschalteten Antennenzweige. Es ist ein gemeinsamer Regelverstärker 33 zur Überwachung des ausgewählten hochfrequenten Empfangssignals vorhanden.Scanning diversity antenna system with an arrangement as in Fig. 13 but with electronic switches 25 in place of the antenna combiner 22 and each one spare load resistor 26 for loading the non-switched antenna branches. There is a common control amplifier 33 for monitoring the selected high-frequency received signal.

Fig. 15:Fig. 15:

Scanningdiversity-Antennenanlage gebildet aus auf die Fensterscheibe gedruckten Heizfeldern mit diversitätsmäßig geeignet positionierten Anschlussstellen 18 zur Erreichung diversitätsmäßig unabhängiger Empfangssignale 8. Es ist ein gemeinsamer Regelverstärker 33 in zur Überwachung des ausgewählten hochfrequenten Empfangssignals im elektronischen Umschalter 25 vorhanden.Scanning diversity antenna system formed from printed on the window heating fields with diversity moderately positioned junction 18 to achieve diversity Independent received signals 8. There is a common control amplifier 33 in to monitor the selected high-frequency received signal in the electronic switch 25 is present.

Fig. 16:Fig. 16:

Scanningdiversity-Antennenanlage wie in Fig. 15, jedoch mit gesondert ermittelten Blindleitwerten 23 zur Verbesserung der diversitätsmäßigen Unabhängigkeit der Empfangssignale der passiven Antennenteile 1. Jeder aktiven Antenne ist ein gesonderter Regelverstärker 33 zugeordnet.Scanning diversity antenna system as in Fig. 15 , but with separately determined susceptible values 23 for improving the diversity-related independence of the received signals of the passive antenna parts 1. Each active antenna is assigned a separate control amplifier 33.

Fig. 17:Fig. 17:

Aktive Antenne nach der Erfindung, jedoch mit einem Übertrager 24 mit hinreichend hochohmiger Primärinduktivität und hinreichend großem Übersetzungsverhältnis zur breitbandigen Erhöhung der effektiven Länge 1e.Active antenna according to the invention, but with a transformer 24 with sufficiently high-impedance primary inductance and sufficiently large gear ratio for broadband increase of the effective length 1 e .

Fig. 18:Fig. 18:

  • a) und b): Beispielhafte Antennenkonfigurationen möglicher passiver Antennenteile 1a) and b): Exemplary antenna configurations of possible passive antenna parts 1
  • c) Impedanzverläufe der Antennenstrukturen A1, A2 und A3 in der Impedanzebene im Frequenzbereich von 76 bis 108 MHz und schraffierte Bereiche für RA< RAmin und RA > RAmax c) impedance profiles of the antenna structures A1, A2 and A3 in the impedance plane in the frequency range of 76 to 108 MHz and hatched areas for R A <R amine and R A > R Amax
  • d) Realteile der Antennenimpedanzen nach c) mit zulässigem Wertebereich RAmin < RA < RAmax d) Real parts of the antenna impedances according to c) with permissible value range R Amin <R A <R Amax
Fig. 19:Fig. 19:

  1. a) Verlauf der seriellen Blindwiderstände X1 und X3 sowie des parallelen Blindleitwerts B2 der erfindungsgemäßen T-Filteranordnung in Fig. 6b über der Frequenz am Beispiel der breitbandigen Abdeckung der Rundfunkbereiche UKW-Hörrundfunk sowie VHF- und UHF-Femsehrundfunk.a) course of the series reactances X 1 and X 3 and the parallel susceptance B 2 of the T-filter arrangement according to the invention in Fig. 6b over the frequency with the example of the broadband coverage of the radio areas VHF radio and VHF and UHF-Femsehrundfunk.
  2. b) Elektrisches Ersatzschaltbild einer Antenne nach der Erfindung für die unter a) genannten Frequenzbereiche.b) Electrical equivalent circuit diagram of an antenna according to the invention for the frequency ranges mentioned under a).

In Fig. 1 ist eine Antenne nach der Grundform der Erfindung dargestellt. Am Beispiel des auf eine Fensterscheibe gedruckten Heizfeldes eines Kraftfahrzeugs ist ersichtlich, dass der passive Antennenteil 1 nicht in einer Form gestaltet werden kann, dass sie hinsichtlich der Verwendung als Antenne im Meter- und Dezimeterwellenbereich besondere gewünschte Eigenschaften besitzt und somit eine entsprechend ihrer geometrischen Struktur und der metallischen Umrandung des Fensters eine zufällige Frequenzabhängigkeit sowohl der effektiven Länge Ie als auch ihrer Impedanz besitzt. Das Wesen der vorliegenden Erfindung besteht nun darin, eine aktive Antenne zu realisieren, welche es erlaubt, diese Zufälligkeit der Frequenzabhängigkeit des vorgegebenen passiven Antennenteils 1 mit Hilfe einer wenig aufwändigen, einfach zu ermittelnden und einfach zu realisierenden aktiven Antenne aufzufangen und bezüglich Eigenrauschen, Linearität und Frequenzgang frei zu gestalten und zwischen der einfallenden Welle mit der elektrischen Feldstärke E und dem hochfrequenten Empfangssignal 8 einen vorgegebenen Frequenzgang zu erreichen. Erfindungsgemäß wird die an einer Anschlussstelle 18 vorliegende Empfangsspannung der Verstärkerschaltung 21 zugeführt, wobei diese am Eingang ein dreipoliges verstärkendes Element 2, vorzugsweise ein Element mit dem Charakter eines Feldeffekttransistors 2 enthält, welcher in seiner Sourceleitung mit der Eingangsadmittanz 7 einer verlustarmen Filterschaltung 3 gegengekoppelt ist, welche an ihrem Ausgang mit einem wirksamen Wirkwiderstand 5 abgeschlossen ist. Bei einer Antenne dieser Art ist die Eingangsadmittanz 7 erfindungsgemäß z.B. derart zu gestalten, dass die starke Frequenzabhängigkeit, welche die Empfangsleerlaufspannung, ausgedrückt durch die wirksame Länge le des so gestalteten passiven Antennenteils 1 im hochfrequenten Empfangssignal 8 weitgehend ausgeglichen ist. Zur Absenkung der Empfangspegel im Bereich zu grosser Empfangsfeldstärken ist ein einstellbares Längselement 30 im einstellbaren Übertragungsglied 34 vorhanden, welches im Bereich kleiner Empfangspegel als Durchschaltung wirkt. Wird das Längselement 30 im Bereich zu grosser Empfangspegel hochohmig eingestellt, so bewirkt es zum einen die Absenkung des hochfrequenten Empfangssignals 8 sowie eine Anhebung der in der Source-Leitung des Transistors gegenkoppelnd wirksamen Impedanz bzw. eine Verkleinerung der dort vorliegenden Admittanz 7'. Somit wird der Feldeffekttransistor 2 durch die Massnahme linearisiert und die weiterführende Schaltung vor zu grossen Empfangspegeln geschützt.In Fig. 1 an antenna according to the basic form of the invention is shown. By way of example, the heating field of a motor vehicle printed on a window pane shows that the passive antenna part 1 can not be shaped in such a way that it is suitable for use As antenna in the meter and Dezimeterwellenbereich has particular desired properties and thus has a random frequency dependence of both the effective length I e and their impedance according to their geometric structure and the metallic border of the window. The essence of the present invention is to realize an active antenna, which allows to absorb this randomness of the frequency dependence of the given passive antenna part 1 with the help of a low-cost, easy to detect and easy to implement active antenna and with respect to noise, linearity and Frequency response to make free and between the incident wave with the electric field strength E and the high-frequency received signal 8 to achieve a predetermined frequency response. According to the present invention, the receive voltage present at a connection point 18 is fed to the amplifier circuit 21, which contains at the input a three-pole amplifying element 2, preferably an element with the character of a field effect transistor 2, which is negative-feedback in its source line to the input admittance 7 of a low-loss filter circuit 3, which is completed at its output with an effective resistance 5. In an antenna of this type, the input admittance 7 according to the invention, for example, to be designed such that the strong frequency dependence, which is the receive idle voltage, expressed by the effective length l e of the thus designed passive antenna part 1 in the high-frequency received signal 8 is largely balanced. In order to reduce the reception level in the range of excessive reception field strengths, an adjustable longitudinal element 30 is provided in the adjustable transmission element 34, which acts as a through-connection in the range of small reception levels. If the longitudinal element 30 is set to high impedance in the region of too high a reception level, it causes on the one hand the lowering of the high-frequency received signal 8 as well as an increase in the impedance acting countercurrently in the source line of the transistor or a reduction of the admittance 7 'present there. Thus, the field effect transistor 2 is linearized by the measure and protects the continuative circuit from excessive reception levels.

Die Funktionsweise und der Gestaltungsgrundsatz einer Antenne nach der Erfindung werden an Hand der elektrischen Ersatzschaltbilder der Figuren 2a und 5 erläutert:
Die Eignung eines vorgegebenen passiven Antennenteils 1 für die Gestaltung einer hinreichend rauschempfindlichen aktiven Antenne kann anhand der im Übertragungsfrequenzbereich herrschenden Antennentemperatur abgeschätzt werden. Feldeffekttransistoren besitzen in der Regel eine extrem kleine Parallelrauschstromquelle i r so dass deren Beitrag i r*Z A bei vernachlässigbar kleinen Gate-Source- und Gate-Drain-Kapazitäten C2 und C1 und den in der Praxis auftretenden Antennenimpedanzen Z A im Vergleich zur Serienrauschspannungsquelle u r des Feldeffekttransistors, ausgedrückt durch seinen äquivalenten Rauschwiderstand RäF, stets vernachlässigbar klein ist. Die Empfindlichkeitsforderung reduziert sich somit darauf, dass die Rauschspannungsquelle ur 2 = 4kToBRäF im Verhältnis zur empfangenen Rauschspannungsquelle urA 2 = 4kTAB RA, welche durch die Antennentemperatur TA und dem Realteil RA der Antennenimpedanz Z A gegeben ist, kleiner oder höchstens gleich groß ist. Bei gleich großen Rauschbeiträgen ist somit als hinreichendes Empfindlichkeitskriterium bei vernachlässigbar kleinen Kapazitäten C1, C2 lediglich die einfach zu prüfende Forderung R A > R a ¨ F * T 0 / T A

Figure imgb0001

zu erfüllen. Moderne Gallium-Arsenid-Transistoren besitzen im Vergleich zur übrigen Beschaltung vernachlässigbare Kapazitäten C1 und C2 und eine im Hinblick auf die vorgesehene Anwendung vernachlässigbare Wirkung von ir als Ursache für die bei Rauschanpassung solcher Transstoren extrem kleinen Rauschtemperatur TN0. Der äquivalente Rauschwiderstand ist vom Ruhestrom abhängig und kann oberhalb 30 MHz breitbandig mit 30 Ohm und weniger angesetzt werden. Für das Beispiel einer Antenne für den UKW-Frequenzbereich und einer dort vorherrschende Antennentemperatur von ca. 1000 K ist somit im Hinblick auf die Rauschempfindlichkeit für den Realteil der komplexen Antennenimpedanz, welcher bei verlustarmem Feldeffekttransistor 2 den Strahlungswiderstand darstellt, innerhalb des Übertragungsfrequenzbereichs ausschließlich RA(f) > ca. 10 Ohm als hinreichende Bedingung zu fordern.The operation and the design principle of an antenna according to the invention are based on the electrical equivalent circuit diagrams of FIGS. 2a and 5 explains:
The suitability of a predefined passive antenna part 1 for the design of a sufficiently noise-sensitive active antenna can be estimated on the basis of the antenna temperature prevailing in the transmission frequency range. Field effect transistors usually have an extremely small parallel noise current source i r so that their contribution i r * Z A at negligible small gate-source and gate-drain capacitances C 2 and C 1 and the occurring in practice antenna impedances Z A compared to the series noise voltage source u r of the field effect transistor, expressed by its equivalent noise resistance R f , is always negligibly small. The sensitivity requirement is thus reduced to the fact that the noise voltage source u r 2 = 4kT o BR AF in relation to the received noise voltage source u rA 2 = 4kT A BR A , which is given by the antenna temperature T A and the real part R A of the antenna impedance Z A is smaller or at most the same size. With equally large noise contributions, the sufficient sensitivity criterion for negligible capacitances C 1 , C 2 is therefore merely the requirement that is easy to test R A > R a ¨ F * T 0 / T A
Figure imgb0001

to fulfill. Modern gallium arsenide transistors have negligible capacitances C 1 and C 2 in comparison with the other circuits and a negligible effect of i r as a cause for the noise temperature T N0, which is extremely small in the case of noise adaptation of such transistors. The equivalent noise resistance depends on the quiescent current and can be set above 30 MHz broadband with 30 ohms and less. For the example of an antenna for the FM frequency range and a prevailing antenna temperature of about 1000 K is thus in terms of noise sensitivity for the real part of the complex antenna impedance, which represents the radiation resistance at low-loss field effect transistor 2, within the transmission frequency range exclusively R A ( f)> about 10 ohms as sufficient condition to demand.

In Fig. 5 wird der Rauschbeitrag einer Verstärkereinheit 11 am Ende der an die verlustarme Filterschaltung 3 ausgangsseitig angeschlossenen Hochfrequenzleitung 10 betrachtet. Bei hinreichender Verstärkung in der Verstärkerschaltung 21 wird dieser Beitrag entsprechend klein gehalten. Zum Schutz der nachgeschalteten Verstärkereinheit 11 vor nichtlinearen Effekten ist es häufig notwendig, diese Verstärkung innerhalb des Übertragungsfrequenzbereichs weitgehend frequenzunabhängig zu gestalten. Dies wird durch entsprechende vorzugsweise verlustfreie Transformation des wirksamen Wirkwiderstands 5 am Ausgang der verlustarmen Filterschaltung 3 in eine geeignet frequenzabhängige Eingangsadmittanz 7 erreicht. Ist die aufgrund der Frequenzabhängigkeit der effektiven Länge le(f) für die Eingangsadmittanz 7 geforderte Frequenzabhängigkeit bekannt, so kann eine Schaltung aus Blindwiderständen für die verlustarme Filterschaltung 3 gefunden werden, welche dieser Forderung weitgehend entspricht.In Fig. 5 the noise contribution of an amplifier unit 11 is considered at the end of the high-frequency line 10 connected to the low-loss filter circuit 3 on the output side. With sufficient gain in the amplifier circuit 21, this contribution is kept correspondingly small. To protect the downstream amplifier unit 11 against non-linear effects, it is often necessary to make this gain largely frequency-independent within the transmission frequency range. This is achieved by corresponding preferably lossless transformation of the effective effective resistance 5 at the output of the low-loss filter circuit 3 into a suitably frequency-dependent input admittance 7. Is the frequency dependence required due to the frequency dependency of the effective length l e (f) for the input admittance 7 As is known, a circuit of reactances for the low-loss filter circuit 3 can be found, which largely corresponds to this requirement.

Das erfindungsgemäße Kriterium für die beispielhafte Gestaltung einer notwendigen und frequenzunabhängigen Empfangsleistung innerhalb des Übertragungsfrequenzbereichs wird für den terrestrischen Rundfunkempfang einer aktiven Fahrzeugantenne im Hinblick auf die Empfangsleistung in der nachgeschalteten Empfangsanordnung an Hand von Fig.5 erläutert. Das weitgehend frequenzunabhängige Empfangsverhalten ist zu fordern, um einerseits die Empfindlichkeit des Gesamtsystems durch den Rauschbeitrag des der aktiven Antenne nachgeschalteten Empfangssystems nicht nennenswert zu reduzieren und andererseits, um nichtlineare Effekte durch Verstärkungsüberhöhungen als Folge des frequenzabhängigen Empfangsverhalten innerhalb eines Übertragungsfrequenzbereichs zu vermeiden. Das der aktiven Antenne nachgeschaltete Empfangssystem wird Fig.5 durch die Verstärkereinheit 11 mit der Rauschzahl Fv repräsentiert. Sein Rauschbeitrag zum Gesamtrauschen ist in Fig.5 als äquivalenter Rauschwiderstand RäV am Eingang der Verstärkerschaltung 21 dargestellt, wobei gilt: R a ¨ V = F V - 1 4 G f

Figure imgb0002
The inventive criterion for the exemplary design of a necessary and frequency-independent reception power within the transmission frequency range for the terrestrial broadcasting reception of an active vehicle antenna with respect to the reception power in the downstream receiving arrangement on the basis of Figure 5 explained. The largely frequency-independent reception behavior is to be demanded, on the one hand not to significantly reduce the sensitivity of the overall system by the noise contribution of the active antenna downstream receiving system and on the other hand to avoid non-linear effects due to gain peaks as a result of frequency-dependent reception behavior within a transmission frequency range. The active antenna downstream receiving system is Figure 5 represented by the amplifier unit 11 with the noise figure F v . Its noise contribution to the total noise is in Figure 5 shown as the equivalent noise resistance R AV at the input of the amplifier circuit 21, where: R a ¨ V = F V - 1 4 G f
Figure imgb0002

Hierin ist mit G(f) der frequenzabhängige Realteil der Eingangsadmittanz 7 der verlustarmen Filterschaltung 3 bezeichnet. Dieser Rauschbeitrag ist dann unwesentlich gegenüber dem unvermeidlichen empfangenen Rauschen des mit TA rauschenden RA, wenn gilt: G f ( F V - 1 ) T 0 4 T A 1 R A f

Figure imgb0003
Herein, G (f) denotes the frequency-dependent real part of the input admittance 7 of the low-loss filter circuit 3. This noise contribution is then insignificant with respect to the inevitable received sound of the rushing with T A R A, if: G f ( F V - 1 ) T 0 4 T A 1 R A f
Figure imgb0003

Um die Empfindlichkeitsbedingung zu erfüllen, ist in einer vorteilhaften Ausführungsform einer aktiven Antenne nach der Erfindung die Frequenzabhängigkeit des Realteils G(f) der Eingangsadmittanz 7 der verlustarmen Filterschaltung 3 reziprok zum Frequenzgang des Realteils RA(f) der komplexen Antennenimpedanz zu wählen. Für das Beispiel eines UKW-Rundfunkempfängers mit FV ~ 4 wäre demnach angenähert G(f) < 1/(3*RA(f)) zu wählen. Zum Schutz des Empfängers vor zu großen Empfangspegeln ist es andererseits zweckmäßig, die Leistungsverstärkung der aktiven Antenne nicht wesentlich größer als für optimale Empfindlichkeit des Gesamtsystems und somit G(f) etwa so groß zu wählen wie im rechten Teil der Gleichung (3) angegeben.In order to satisfy the sensitivity condition, in an advantageous embodiment of an active antenna according to the invention, the frequency dependence of the real part G (f) of the input admittance 7 of the low-loss filter circuit 3 is reciprocal to the frequency response of the real part R A (f) of the complex antenna impedance. For the example of an FM radio receiver with F V ~ 4, G (f) <1 / (3 * R A (f)) would have to be chosen approximately. On the other hand, in order to protect the receiver from excessive reception levels, it is desirable not to select the power amplification of the active antenna substantially greater than the optimum overall system sensitivity, and thus G (f) approximately as indicated in the right part of equation (3).

Mit der Erfindung ist der große Vorteil verbunden, dass der aus RA(f) vorgegebene Frequenzgang für G(f) deshalb leicht erfüllbar ist, weil weder die eingangsseitig ansteuernde Quellimpedanz der verlustarmen Filterschaltung 3, welche mit 1/gm des Feldeffekttransistors 2 gegeben ist, noch der wirksame Wirkwiderstand 5 am Ausgang der verlustarmen Filterschaltung 3 nicht vermeidbare wesentliche Blindkomponenten besitzen. Hieraus resultiert die vorteilhaft freie Gestaltbarkeit des Frequenzverhaltens der aktiven Antenne nach der vorliegenden Erfindung. Im Gegensatz hierzu ist bei einer aktiven Antenne nach dem Stand der Technik in Fig. 2b die frequenzabhängige Strahlerimpedanz Z S (f) zwangsweise und untrennbar als Quellimpedanz des primärseitigen Transformationsnetzwerks vorhanden. Ihr Frequenzverhalten begrenzt die erreichbare Bandbreite der in die Nähe von Z opt transformierten Impedanz und damit die Bandbreite des Signal-Rauschverhältnisses am Ausgang der aktiven Schaltung.The great advantage associated with the invention is that the frequency response given for G (f) from R A (f) can therefore be easily fulfilled because neither the input impedance of the low-impedance filter circuit 3, which is given by 1 / g m of the field-effect transistor 2 is still the effective effective resistance 5 at the output of the low-loss filter circuit 3 unavoidable essential reactive components have. This results in the advantageously free configurability of the frequency response of the active antenna according to the present invention. In contrast, in an active antenna according to the prior art in Fig. 2b the frequency-dependent radiator impedance Z S (f) exists forcibly and inseparably as source impedance of the primary-side transformation network. Their frequency behavior limits the achievable bandwidth of the impedance transformed into the vicinity of Z opt and thus the bandwidth of the signal-to-noise ratio at the output of the active circuit.

Im Folgenden wird die beispielhafte Gestaltung des Frequenzverlaufs von G(f) einer aktiven Fahrzeugantenne nach der Erfindung beschrieben, wenn die Forderung besteht, dass die Empfangsleistung Pa am Eingang des der aktiven Antenne nachgeschalteten Empfangssystems um einen Faktor V größer ist als mit einer passiven Referenzantenne, z.B. einer passiven Stabantenne am Fahrzeug bei deren Resonanzlänge. Aufgrund der zwangsweise unterschiedlichen Richtdiagramme wird dieser Faktor bezogen auf die azimutalen Mittelwerte unter einem definierten konstanten Elevationswinkel θ des Welleneinfalls. Durch vergleichende azimutale Richtfaktormessungen mit Hilfe einer Antennenmessstrecke mit Fahrzeugdrehstand am passiven Antennenteil 1 und an der Vergleichsantenne ergeben sich bei N Winkelschritten für eine volle Umdrehung und mit dem Richtfaktor Dan, θ) des vorgegebenen passiven Antennenteils 1 und entsprechend dem Richtfaktor Dpn, 0) der passiven Referenzantenne jeweils für den n-ten Winkelschritt die folgenden azimutalen Mittelwerte für die Richtfaktoren: D am f = 1 N n = 1 N D a Φ n Θ f

Figure imgb0004

bzw. für die Referenzantenne bei der Bezugsfrequenz: D pm = 1 N n = 1 N D p Φ n Θ
Figure imgb0005
In the following, the exemplary configuration of the frequency characteristic of G (f) of an active vehicle antenna according to the invention is described, if it is required that the received power P a at the input of the receiving system connected downstream of the active antenna is greater by a factor V than with a passive reference antenna , For example, a passive rod antenna on the vehicle at their resonance length. Due to the forcibly different directional diagrams, this factor is based on the azimuthal average values at a defined constant elevation angle θ of the wave incidence. Comparative azimuthal directivity measurements using an antenna measuring path with vehicle rotation on the passive antenna part 1 and on the comparison antenna result in N angular steps for a full revolution and with the directivity D an , θ) of the given passive antenna part 1 and according to the directivity factor D pn , 0) of the passive reference antenna in each case for the n-th angular step, the following azimuthal mean values for the directivity factors: D at the f = 1 N Σ n = 1 N D a Φ n Θ f
Figure imgb0004

or for the reference antenna at the reference frequency: D pm = 1 N Σ n = 1 N D p Φ n Θ
Figure imgb0005

Das der aktiven Antenne nachgeschaltete Empfangssystem, welches in Fig. 5 durch die Verstärkereinheit 11 repräsentiert wird, ist in der Regel auf den Leitungswellenwiderstand ZL des Hochfrequenz-Leitungssystem bezogen. Die mittlere azimutale Empfangsleistung im Lastwiderstand 9 ergibt sich bei hinreichend großer Steilheit gm der Eingangskennlinie des Feldeffekttransistors 2 zu: P am = 1 2 E 2 l em 2 f G f

Figure imgb0006

wobei lem 2(f) den bei jeder Frequenz auftretenden azimutalen Mittelwert der quadratischen fektiven Länge des passiven Antennenteils 1 unter Berücksichtigung der sich mit Dam(f) gem. Gleichung (2) ergebenden effektiven Fläche des passiven Antennenteils 1 wie folgt darstellt: l em 2 f = 1 N n = 1 N l en 2 f = λ 2 π R A f Z 0 D am f
Figure imgb0007
The active antenna downstream receiving system, which in Fig. 5 is represented by the amplifier unit 11, is usually based on the line impedance Z L of the high-frequency line system. The average azimuthal reception power in the load resistor 9 results in a sufficiently large slope g m of the input characteristic of the field effect transistor 2 to: P at the = 1 2 e 2 l em 2 f G f
Figure imgb0006

where l em 2 (f) is the azimuthal average value of the quadratic fective length of the passive antenna part 1 occurring at each frequency, taking into account with D am (f) according to FIG. Equation (2) resulting in the passive antenna part 1 as follows: l em 2 f = 1 N Σ n = 1 N l s 2 f = λ 2 π R A f Z 0 D at the f
Figure imgb0007

Die mittlere azimutale Empfangsleistung der passiven Referenzantenne beträgt mit Dpm aus Gleichung (5): P pm = λ 2 8 π E 2 Z 0 D pm

Figure imgb0008
The mean azimuthal reception power of the passive reference antenna with D pm is from equation (5): P pm = λ 2 8th π e 2 Z 0 D pm
Figure imgb0008

Unter Berücksichtigung der Verstärkungsforderung Pam/Ppm = V ergibt sich der erfindungsgemäß zu fordernde Frequenzverlauf für G(f) zu: G f = 1 R A f D pm D am f V

Figure imgb0009
Taking into account the amplification requirement P am / P pm = V, the frequency profile for G (f) to be demanded according to the invention results in: G f = 1 R A f D pm D at the f V
Figure imgb0009

Für den Fall eines verlustbehafteten passiven Antennenteils 1 mit dem Wirkungsgrad η ist in Gleichung (8) der Richtfaktor Dam(f) durch Dam(f)* η zu ersetzen. Die übrigen Dimensionierungsregeln sind dadurch nicht geändert.Η is the case of a lossy passive antenna part 1 to the Efficiency in equation (8) of the directivity factor D η to replace at (f) by the D (f) *. The remaining sizing rules are not changed.

Für den Fall etwa gleicher azimutaler Mittelwerte Dpm und Dam(f) ist die Frequenzabhängigkeit von G(f) proportional zu 1/Ra(f) zu gestalten. Ist V so groß gewählt, dass D pm D am f V ( F V - 1 ) T 0 4 T A

Figure imgb0010

gilt, dann ist der Rauschbeitrag des der aktiven Antenne nachgeschalteten Empfangssystems zum Gesamtrauschen vernachlässigbar klein. Ist zusätzlich die in Gleichung (1) angegebene Bedingung erfüllt, dann ist die Empfindlichkeit ausschließlich durch die Richtwirkung des passiven Antennenteils 1 und von der herrschenden Störeinstrahlung abhängig. Die minimal notwendige mittlere azimutale Strahlungsdichte Sam für ein Signal-Störverhältnis = 1 lautet dann: S am f = k T A B D am f 4 π λ 2
Figure imgb0011

und steigt mit 1/η an, wenn Dam(f) durch Dam(f)* η zu ersetzen ist.For the case of approximately the same azimuthal mean values D pm and D am (f), the frequency dependence of G (f) is to be made proportional to 1 / R a (f). Is V chosen so large that D pm D at the f V » ( F V - 1 ) T 0 4 T A
Figure imgb0010

is true, then the noise contribution of the active antenna downstream receiving system to the total noise is negligible. If, in addition, the condition given in equation (1) is satisfied, then the sensitivity depends exclusively on the directivity of the passive antenna part 1 and on the prevailing interference radiation. The minimum necessary average azimuthal radiation density S am for a signal-to-noise ratio = 1 is then: S at the f = k T A B D at the f 4 π λ 2
Figure imgb0011

and increases with 1 / η, if D am (f) is replaced by D am (f) * η.

Unter Berücksichtigung der vom Fahrzeug selbst ausgehenden Störstrahlung kann die Auswahl einer für eine erfindungsgemäße Antenne geeigneten passiven Antennenteils 1 als am Fahrzeug befindliche Struktur in Verbindung mit der in Gleichung (1) angegebenen und im folgenden näher diskutierten Bedingung für RA(f) deshalb treffsicher dadurch erfolgen, dass das Verhältnis TA/Dam(f) für den Übertragungsfrequenzbereich als hinreichend groß festgestellt wird.Taking into account the interfering radiation emanating from the vehicle itself, the selection of a passive antenna part 1 suitable for an antenna according to the invention as a vehicle-mounted structure in conjunction with the condition for R A (f) given in equation (1) and discussed in more detail below can therefore be made accurately take place that the ratio T A / D am (f) for the transmission frequency range is determined to be sufficiently large.

In Fig. 18a und 18b sind beispielhaft Antennenkonfigurationen möglicher passiver Antennenteile 1 aktiver Antennen nach der Erfindung angegeben. An den Anschlussstellen 18 liegen die in der komplexen Impedanzebene in Fig.18c dargestellten Impedanzverläufe Z A(f) in Abhängigkeit von der Frequenz vor. Der im linken Randbereich des Diagramms durch Schraffur gekennzeichnete Bereich ist einseitig durch den Wert RAmin= const. berandet. Impedanzverläufe, die außerhalb des so gekennzeichneten Bereich verlaufen, erfüllen somit die gemäß Gleichung (1) vorgegebene Bedingung des vernachlässigbaren Rauschens des Feldeffekttransistors 2 bei Vorliegen einer bestimmten Störeinstrahlung gemäß TA. Das Diagramm zeigt überzeugend den Vorteil einer erfindungsgemäßen aktiven Antenne gegenüber einer aktiven Antenne gemäß Fig. 2b nach dem Stand der Technik, der darin liegt, dass ohne eingangsseitige Anpassungsmittel sämtliche Antennenstrukturen diese Bedingung ohne eingangsseitige Transformationsmittel erfüllen. In der Fig. 18c sind die Realteile der in Figuren 18a und b dargestellten passiven Antennenteile 1 über der Frequenz von 76 bis 108 MHz aufgetragen. Der Frequenzverlauf des Realteils der erfindungsgemäß zu gestaltenden Eingangsadmittanz 7 am Eingang der verlustarmen Filterschaltung 3 ist deshalb jeweils invertiert zu den in Fig. 18d dargestellten Kurvenverläufen nach Gesichtspunkten wie sie im Zusammenhang mit den Gleichungen (3) und (8) erörtert wurden, zu gestalten.In Figs. 18a and 18b For example, antenna configurations of possible passive antenna parts 1 of active antennas according to the invention are given. At the connection points 18 are in the complex impedance level in Fig.18c illustrated impedance curves Z A (f) as a function of the frequency before. The area marked by hatching in the left margin of the diagram is one-sided by the value R Amin = const. bounded. Impedance curves that run outside of the area marked in this way thus fulfill the condition of the negligible noise of the field effect transistor 2 specified in equation (1) in the presence of a specific interference radiation according to T A. The diagram convincingly shows the advantage of an active antenna according to the invention over an active antenna according to FIG Fig. 2b in the prior art, which is that without input side matching means all antenna structures meet this condition without input-side transformation means. In the Fig. 18c are the real parts of in FIGS. 18a and b represented passive antenna parts 1 on the frequency of 76 to 108 MHz applied. The frequency response of the real part of the invention to be designed input admittance 7 at the input of the low-loss filter circuit 3 is therefore inverted to those in Fig. 18d shown curves according to aspects as they were discussed in connection with the equations (3) and (8) to make.

Bei der erfindungsgemäßen Verstärkerschaltung 21 besteht naturgemäß aufgrund möglicher nichtlinearer Effekte, wie Intermodulation, auch eine obere Grenze für die Größe der am Eingang wirksamen tolerierbaren Spannung, welche sich im Empfangsfeld über die wirksame Länge le ergibt. Die maximal tolerierbare Spannung kann durch Auswahl eines geeigneten Feldeffekttransistors 2 und durch Wahl eines geeigneten Arbeitspunkts sowie durch andere an sich bekannte Schaltungsmaßnahmen gesteigert werden. Gleichung (6) kann erfindungsgemäß einem maximal tolerierbaren azimutalen Mittelwert lem bei bekanntem azimutalen Richtfaktor Dam(f) ein maximal tolerierbarer Wirkanteil RAmax zugeordnet werden. Der für die Dimensionierung unzulässige Wertebereich mit RA>RAmax ist in den Figuren 18c und 18d ebenfalls schraffiert gekennzeichnet. Die Strahlungswiderstände RA der Impedanzwerte besonders günstiger Strukturen für die Verwendung als passiver Antennenteil 1 befinden sich demnach außerhalb des schraffierten Wertebereichs mit RAmin<RA<RAmax.In the case of the amplifier circuit 21 according to the invention, due to possible nonlinear effects, such as intermodulation, there is naturally also an upper limit to the magnitude of the tolerable voltage which is effective at the input and which results in the reception field over the effective length l e . The maximum tolerable voltage can be increased by selecting a suitable field effect transistor 2 and by selecting a suitable operating point and by other circuit measures known per se. According to the invention, equation (6) can be assigned to a maximum tolerable azimuthal mean value l em with a known azimuthal directivity factor D am (f) a maximum tolerable active component R Amax . The value range with R A > R Amax that is not allowed for sizing is in the Figures 18c and 18d also marked hatched. The radiation resistances R A of the impedance values of particularly favorable structures for use as a passive antenna part 1 are therefore outside the hatched value range with R Amin <R A <R Amax .

In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird eine vorgegebene Antennenstruktur durch Verwendung eines verlustarmen Übertragers mit dem Übersetzungsverhältnis ü, wie in Fig. 17 angegeben, ergänzt, welcher zusammen mit der Antennenstruktur - z.B. einem Heizfeld auf der Fensterscheibe - den passiven Antennenteil 1 bildet. Das breitbandige Übersetzungsverhältnis wird vorteilhaft derart gewählt, dass die am Ausgang des Übertragers messbare Impedanz mit ihrem Realteil im Wertebereich mit RAmin<RA<RAmax platziert ist. Hierbei ist es günstig, die Primärinduktivität hinreichend hochohmig zu gestalten.In a further advantageous embodiment of the invention, a predetermined antenna structure by using a low-loss transformer with the transmission ratio ü, as in Fig. 17 specified, added, which forms the passive antenna part 1 together with the antenna structure - eg a heating field on the window pane. The broadband transmission ratio is advantageously selected such that the impedance measurable at the output of the transformer is placed with its real part in the value range with R Amin <R A <R Amax . It is advantageous here to make the primary inductance sufficiently high-impedance.

Die Linearitätsforderung wird durch eine hinreichend große Gegenkopplung, durch die in der Sourceleitung befindliche Eingangsadmittanz 7 erfüllt. Dies erfordert eine im Übertragungsbereich vergleichsweise niedrige Gegenkopplung, welche gemäß der Verstärkungsforderung z.B. entsprechend Gleichung (8) dimensioniert ist, die jedoch außerhalb des Übertragungsbereichs so groß wie möglich ist. In einer vorteilhaften Ausgestaltung der Erfindung werden zur Realisierung solcher verlustarmer Filterschaltungen 3 bevorzugt T-Halbfilter oder T-Filter bzw. Kettenschaltungen solcher Filter eingesetzt. Solche Filter sind in ihrer Grundstruktur in den Figuren dargestellt. Zur Entsprechung eines komplizierteren Frequenzverlaufs des G(f) können die Einzelelemente durch weitere Blindelemente ergänzt werden. Im Interesse der eingangsseitigen Hochohmigkeit und der Sperrwirkung im Sperrbereich ist es zweckmäßig, Serien- bzw. Parallelzweig jeweils aus einer Kombination von Blindwiderständen derart zu bilden, dass sowohl der Absolutwert eines Blindwiderstands im Serienzweig 28 als auch der Absolutwert eines Blindleitwerts im Parallelzweig 29 jeweils innerhalb eines Übertragungsfrequenzbereichs hinreichend klein und außerhalb eines solchen hinreichend groß ist (Fig. 19b).The linearity requirement is met by a sufficiently large negative feedback through the input admittance 7 located in the source line. This requires a comparatively low negative feedback in the transmission range, which is dimensioned in accordance with the amplification requirement, for example, according to equation (8), but which is as large as possible outside the transmission range. In an advantageous embodiment of the invention, preferably T-half filters or T-filters or chain circuits of such filters are used to implement such low-loss filter circuits 3. Such filters are shown in their basic structure in the figures. To correspond to a more complicated frequency response of the G (f), the individual elements be supplemented by other reactive elements. In the interest of the input-side high impedance and the blocking effect in the stopband, it is expedient to form series or parallel branch each from a combination of reactances such that both the absolute value of a reactance in series branch 28 and the absolute value of a susceptance in parallel branch 29 each within a Transmission frequency range is sufficiently small and outside such a sufficiently large ( Fig. 19b ).

In einer weiteren vorteilhaften Anwendung der Erfindung wird vorgeschlagen, für verschiedene charakteristische Verläufe von G(f) entsprechende Grundstrukturen für verlustarme Filterschaltungen 3 mit zunächst unbekannten Werten für die Blindelemente in einem modernen Digitalrechner abzulegen und sowohl die Impedanz Z A des passiven Antennenteils 1 messtechnisch als auch den azimutalen Mittelwert Dam des Richtfaktors messtechnisch oder rechnerisch zu ermitteln und ebenfalls im Digitalrechner abzulegen. Der somit anhand von Gleichung (8) ermittelte Frequenzverlauf von G(f) ermöglicht die anschließende konkrete Ermittlung der Blindelemente der verlustarmen Filterschaltung 3 für eine geeignet ausgewählte Filtergrundstruktur mit Hilfe bekannter Strategien der Variationsrechnung für die vorgegebene Verstärkung V der aktiven Antenne.In a further advantageous application of the invention, it is proposed to store corresponding basic structures for low-loss filter circuits 3 with initially unknown values for the reactive elements in a modern digital computer for different characteristic courses of G (f) and to measure both the impedance Z A of the passive antenna part 1 and to determine the azimuthal average D on the directivity by measurement or calculation and also be saved in the digital computer. The frequency profile of G (f) thus determined using equation (8) enables the subsequent concrete determination of the reactive elements of the low-loss filter circuit 3 for a suitably selected basic filter structure using known variational calculation strategies for the predetermined amplification V of the active antenna.

Insbesondere bei solchen Antennensystemen, bei denen mehrere Antennen gebildet sind, wie z.B. bei Antennendiversitysystemen, Gruppenantennenanlagen oder Mehrbereichsantennenanlagen, ist es in einer vorteihaften Weiterbildung der Erfindung hilfreich, wie in Fig. 6 angegeben, die Verstärkereinheit 11 als aktive Ausgangsstufe der Verstärkerschaltung 21 zu gestalten. Diese kann mit einem Ausgangswiderstand gleich dem Wellenwiderstand ZL üblicher Koaxialleitungen versehen werden. Der wirksame Wirkwiderstand 5 wird dabei durch die Eingangsimpedanz der Verstärkereinheit 11 gebildet. G(f) ist sinngemäß nach den o.g. Ausführungen mit Hilfe einer mit dieser Impedanz abgeschlossenen verlustarmen Filterschaltung 3 zu gestalten.Particularly in those antenna systems in which a plurality of antennas are formed, such as in antenna diversity systems, group antenna systems or multi-range antenna systems, it is helpful in a vorteihaften development of the invention, as in Fig. 6 indicated to make the amplifier unit 11 as the active output stage of the amplifier circuit 21. This can be provided with an output resistance equal to the characteristic impedance Z L of conventional coaxial cables. The effective effective resistance 5 is formed by the input impedance of the amplifier unit 11. G (f) is to be designed analogously to the above-mentioned embodiments with the aid of a low-loss filter circuit 3 completed with this impedance.

Aufgrund der Wirkungslosigkeit des einstellbaren Übertragungsglieds 34 im Falle kleiner Empfangspegel wird diese Empfindlichkeitsbetrachtung nicht beeinträchtigt. Die Spannungsabsenkung nach dem ersten verstärkenden Element der aktiven Antenne ist insbesondere deshalb vorteilhaft, weil sie eine optimale Wirkung im Hinblick auf die Frequenzabhängigkeit der zu erwartenden Intermodulationsstörung zulässt. Der Einfluss auf die Empfindlichkeit der gesamten Empfangsanlage wird somit nur durch den Einfluss der um die Spannungsabsenkung vergrösserten Rauschzahl der nachfolgenden Schaltung bestimmt.Due to the inefficiency of the adjustable transmission element 34 in the case of low reception levels, this sensitivity analysis is not impaired. The voltage reduction after the first amplifying element of the active antenna is advantageous in particular because it allows an optimum effect with regard to the frequency dependence of the expected intermodulation interference. The influence on the sensitivity of the entire receiving system is thus determined only by the influence of the increased voltage to the voltage reduction noise figure of the subsequent circuit.

Im Folgenden werden unterschiedliche Formen der Absenkung der inneren Verstärkung der aktiven Antenne gegenübergestellt. In den Figuren 1, 2a und 3 erfolgt die Spannungsabsenkung über ein Längselement 30, welches frequenzunabhängig gestaltet ist. In der Folge werden somit Empfangssignale bei Frequenzen, bei denen niederohmige Realteile der Antennenimpedanzen vorliegen und demzufolge erfindungsgemäss grosse Werte der Eingangsadmittanz G(f) gestaltet sind, stärker abgeschwächt als Empfangssignale bei Frequenzen mit hochohmigem Realteil der Antennenimpedanzen. Bei Verwendung eines frequenzunabhängigen Längselements 30 muss für die Absenkung bei großen Empfangspegeln deshalb ein mittlerer Widerstandswert gewählt werden, welcher für intermodulierende Empfangssignale bei Frequenzen mit großem Realteil der Antennenimpedanzen zu klein und bei Frequenzen mit kleinem Realteil der Antennenimpedanzen zu groß ist. Dies beinhaltet die Gefahr, dass intermodulierende Empfangssignale bei Frequenzen mit grossem Realteil der Antennenimpedanzen aufgrund der dort kleineren Gegenkopplungswirkung zu starke Intermodulationsstörungen hervorrufen und andererseits die verbleibende Verstärkung bei Frequenzen mit kleinem Realteil der Antennenimpedanzen zu klein ist und die Anordnung bei diesen Frequenzen zu unempfindlich ist.In the following, different forms of lowering the internal amplification of the active antenna are compared. In the FIGS. 1 . 2a and 3 the voltage reduction takes place via a longitudinal element 30, which is frequency independent. As a result, receive signals at frequencies in which low-impedance real parts of the antenna impedances are present and accordingly large values of the input admittance G (f) are designed according to the invention are attenuated more strongly than receive signals at frequencies with a high-impedance real part of the antenna impedances. When using a frequency-independent longitudinal element 30, a mean resistance value must therefore be selected for the reduction at high reception levels, which is too small for intermodulation received signals at frequencies with a large real part of the antenna impedances and too large at frequencies with a small real part of the antenna impedances. This involves the risk that intermodulation received signals at frequencies with a large real part of the antenna impedances due to the smaller negative feedback effect cause too much intermodulation and on the other hand, the remaining gain at frequencies with a small real part of the antenna impedance is too small and the arrangement is too insensitive at these frequencies.

In vorteilhafter Ausgestaltung der Erfindung werden deshalb solche Formen von einstellbaren Übertragungsgliedern 34 vorgeschlagen, welche die bei kleinen Empfangspegeln eingestellten Admittanzen 7 frequenzunabhängig um einen geeigneten Faktor herabsetzen. Bei den heute verfügbaren Verstärkerbauelementen ist z.B. für den UKW-Bereich und einer Anwendung im Kraftfahrzeug eine Pegelabsenkung zwischen 20*log(t) = 10 dB und 20*log(t) = 20dB praktikabel. Dadurch wird die innere Verstärkung der aktiven Antenne frequenzunabhängig um einen gewünschten Faktor reduziert und der oben genannte frequenzabhängige Intermodulationseffekt tritt nicht auf. Erfindungsgemäss wird dies zum Beispiel durch eine Übertrageranordnung wie in Fig. 4 und in Fig. 6 erreicht. Hierzu wird das frequenzunabhängige Übersetzungsverhältnis des Übertragers mit Hilfe unterteilter Wicklungen und den dargestellten Schaltdioden 36 als einstellbare elektronische Elemente 32 in Stufen einstellbar gestaltet. Bei richtiger Wahl der Übersetzungsverhältnisse können die geeigneten Werte für den Wirkleitwert G(f) in der Admittanz 7 bzw. 7' für den Bereich kleiner bzw. grosser Empfangspegel gewählt werden. Zur Erhöhung der Linearität und des Stromaussteuerbereichs des dreipoligen verstärkenden Elements 2 ist in Fig. 6 vorgesehen, den Ruhestrom in diesem Element zusammen mit der Absenkung der inneren Verstärkung der aktiven Antenne anzuheben.In an advantageous embodiment of the invention, therefore, such forms of adjustable transmission elements 34 are proposed, which reduce the admittances set at small reception levels 7 independent of frequency by a suitable factor. In the amplifier components available today, for example, for the VHF range and an application in motor vehicles, a level reduction between 20 * log (t) = 10 dB and 20 * log (t) = 20dB is practicable. As a result, the internal gain of the active antenna is frequency-independently reduced by a desired factor and the above-mentioned frequency-dependent intermodulation effect does not occur. According to the invention, this is achieved for example by a transformer arrangement as in Fig. 4 and in Fig. 6 reached. For this purpose, the frequency-independent transmission ratio of the transformer with the help of divided windings and the illustrated switching diodes 36 designed as adjustable electronic elements 32 in stages adjustable. If the gear ratios are selected correctly, the appropriate values for the conductance G (f) in the admittance 7 or 7 'can be selected for the range of low or high reception levels. For increasing the linearity and the current driving range of the three-pole amplifying element 2, see FIG Fig. 6 provided to raise the quiescent current in this element together with the lowering of the internal gain of the active antenna.

Eine weitere Methode zur Erreichung einer frequenzunabhängigen Gegenkopplung ist durch die Anordnung in Fig. 5 gegeben. Hierbei wird zur frequenzunabhängigen Absenkung der hochfrequenten Empfangssignale 8 das einstellbare Längselement 30 als ein frequenzabhängiger Zweipol 47 gestaltet. Dieser wird mit einer zur Eingangsadmittanz 7 der verlustarmen Filterschaltung 3 ähnlichen, jedoch im Wesentlichen mit einer um einen frequenzunabhängigen Faktor t-1 kleineren Zweipoladmittanz 46 als die Eingangsadmittanz 7 des Übertragungsnetzwerk 31 bei kleinen Empfangspegeln. Durch Parallelschaltung einer Schaltdiode 36 zum frequenzabhängigen Zweipol 47, durch deren Einstellung im Sperrzustand die Zweipoladmittanz 46 wirksam ist und bei deren Einstellung im Durchlasszustand die Zweipoladmittanz 46 überbrückt ist, erfolgt bei gesperrter Schaltdiode 36 eine Absenkung der hochfrequenten Empfangssignale 8 um einen im Wesentlichen frequenzunabhängigen Faktor t = UE/UA.Another method for achieving a frequency-independent negative feedback is by the arrangement in Fig. 5 given. Here, the frequency-independent lowering of the high-frequency received signals 8, the adjustable longitudinal element 30 is designed as a frequency-dependent dipole 47. This is similar to a Eingangsadmittanz 7 of the low-loss filter circuit 3, but essentially with a frequency-independent factor t-1 smaller Zweipoladmittanz 46 than the Eingangsadmittanz 7 of the transmission network 31 at low receive levels. By parallel connection of a switching diode 36 to the frequency-dependent two-terminal 47, the two-pole admittance 46 is effective by the setting in the off state and the two-pole admittance 46 is bridged in their setting in Durchlaßzustand takes place at locked switching diode 36 is a lowering of the high-frequency received signals 8 to a substantially frequency-independent factor t = U E / U A.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das Übertragungsnetzwerk 31 mit Filtercharakter in Fig. 8 als verlustarme Filterschaltung 3 mit fest eingestellten Blindelementen 20 ausgestaltet. Hierbei werden zuschaltbare Blindelemente 20a verwendet, welche mit Hilfe einstellbarer elektronischer Elemente 32 zu- und abgeschaltet werden derart, dass bei Unterschreiten eines vorgegebenen Empfangspegels die gewünschte Frequenzabhängigkeit des größeren Wirkleitwerts G(f) der am Quellenanschluss 24 wirksamen Eingangsadmittanz 7 für höhere innere Verstärkung der aktiven Antenne einerseits gegeben ist. Andererseits wird bei Überschreitung eines vorgegebenen Empfangspegels die gewünschte Frequenzabhängigkeit des entsprechend dem verkleinerten Wirkleitwert G'(f) mit gleicher Frequenzabhängigkeit der am Quellenanschluss 24 wirksamen Eingangsadmittanz 7' für abgesenkte innere Verstärkung der aktiven Antenne eingestellt.In a further advantageous embodiment of the invention, the transmission network 31 with filter character in Fig. 8 designed as a low-loss filter circuit 3 with fixed blind elements 20. In this case, switchable dummy elements 20a are used which are switched on and off with the aid of adjustable electronic elements 32 such that falls below a predetermined receive level, the desired frequency dependence of the greater conductance G (f) of effective at the source terminal 24 Eingangsadmittanz 7 for higher internal gain of the active Antenna is given on the one hand. On the other hand, when exceeding a predetermined reception level, the desired frequency dependence of the correspondingly reduced frequency conductance G '(f) is set with the same frequency dependence of the input admittance 7' for the lowered internal amplification of the active antenna.

Im Übertragungsnetzwerk 31 in der vorteilhaften Anordnung in Fig. 7 sind mehrere verlustarme Filterschaltungen 3, 3a vorhanden, welche über Schaltdioden 36 alternativ zwischen dem Eingang und dem Ausgang des Übertragungsnetzwerks 31 geschaltet sind. Ihre Eingangsadmittanzen 7, 7b für kleine Empfangspegel bzw. 7', 7b' für grosse Empfangspegel sind mit fest eingestellten Blindelementen 20 jeweils derart gebildet, dass mit Hilfe der Schaltdioden 36 bei Unterschreiten eines vorgegebenen Empfangspegels die gewünschte Frequenzabhängigkeit des Wirkleitwerts G(f) der am Quellenanschluss 24 wirksamen Eingangsadmittanz 7 für höhere innere Verstärkung der aktiven Antenne und bei Überschreiten eines vorgegebenen Empfangspegels die gewünschte Frequenzabhängigkeit des Wirkleitwerts G'(f) der am Quellenanschluss 24 wirksamen Eingangsadmittanz 7' für abgesenkte innere Verstärkung der aktiven Antenne gegeben ist.In the transmission network 31 in the advantageous arrangement in Fig. 7 There are a plurality of low-loss filter circuits 3, 3a present, which are connected via switching diodes 36 alternatively between the input and the output of the transmission network 31. Their Eingangsadmittanzen 7, 7b for small reception levels or 7 ', 7b' for large reception levels are each formed with fixed blind elements 20 such that with the help of the switching diodes 36 falls below a predetermined reception level, the desired frequency dependence of the conductance G (f) of the effective higher internal gain input admittance 7 effective at the source terminal 24, and the desired frequency dependence of the conductance G '(f) of the active antenna lower input gain 7' active at the source terminal 24 are applied to a given receive level is.

Bei der in Fig. 10 dargestellten Ausführungsform einer aktiven Antenne nach der Erfindung ist der passive Antennenteil 1 mit einer Anschlussstelle 18 ausgestaltet, deren beide Anschlüsse gegenüber der Masse 0 hochliegen. Jeder der beiden Anschlüsse ist mit je einem Steueranschluss 15a bzw. 15b eines dreipoligen verstärkenden Elements 2 verbunden. Die Quellenanschlüsse 24a und 24b sind mit der Primärseite eines als Trenntransformator ausgeführten Übertragers 38 verbunden, dessen Sekundärseite unterschiedliche Ausgänge zur Gestaltung unterschiedlicher Übersetzungsverhältnisse t besitzt. Das einstellbare Übertragungsglied 34 wird somit aus dem Übertrager und den Schaltdioden 36 gebildet. Die Senkenanschlüsse 53a und 53b der dreipoligen verstärkenden Elemente 2a bzw. 2b sind mit der Masse 0 verbunden.At the in Fig. 10 illustrated embodiment of an active antenna according to the invention, the passive antenna part 1 is designed with a connection point 18, whose two terminals are up against the mass 0. Each of the two terminals is connected to a respective control terminal 15a or 15b of a three-pole amplifying element 2. The source terminals 24a and 24b are connected to the primary side of a transformer 38 designed as an isolating transformer, the secondary side of which has different outputs for forming different transformation ratios t. The adjustable transmission member 34 is thus formed from the transformer and the switching diodes 36. The drain terminals 53a and 53b of the three-pole amplifying elements 2a and 2b are connected to the ground O, respectively.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das dreipolige verstärkende Element 2, wie in Fig. 9a, als erweitertes dreipoliges verstärkendes Element gestaltet. Zur Erhöhung der wirksamen Steilheit der Übertragungskerinlinie ist das erweiterte Element aus einem Eingangs-Feldeffekttransistor 13, von dessen Source der Bipolartransistor 14 in Emitterfolgerschaltung angesteuert ist und durch dessen Emitteranschluss 12 die Sourceelektrode des erweiterten dreipoligen verstärkenden Elements 2 gebildet ist, kombiniert.In a further advantageous embodiment of the invention, the three-pole reinforcing element 2, as in Fig. 9a , designed as an extended three-pole reinforcing element. To increase the effective transconductance of the transmission line, the extended element of an input field effect transistor 13, whose source of the bipolar transistor 14 is driven in the emitter follower circuit and the emitter terminal 12, the source electrode of the extended three-pole amplifying element 2 is formed combined.

In einer weiteren vorteilhaften Ausführungsform ist das dreipolige verstärkende Element 2 in Fig. 9b als erweitertes dreipoliges verstärkendes Element aus einem Eingangs-Bipolartransistor 49 und einem weiteren Bipolartransistor 50 in Emitterfolgerschaltung kombiniert. Der Emitteranschluss 12 des Bipolartransistors 50 bildet den Quellenanschluss 24 des dreipoligen verstärkenden Elements 2. Bei hinreichend klein eingestelltem Ruhestrom im Eingangs-Bipolartransistor 49 wird die geforderte Hochohmigkeit bei kleiner Eingangskapazität und hinreichend kleinem Parallelrauschstrom erreicht. Ein wesentlich grösser eingestellter Ruhestrom im weiteren Bipolartransistor 50 bewirkt eine hinreichend grosse Steilheit der Übertragungskennlinie für das gesamte Element.In a further advantageous embodiment, the three-pole reinforcing element 2 is in Fig. 9b combined as an extended three-pole amplifying element of an input bipolar transistor 49 and another bipolar transistor 50 in emitter follower circuit. The emitter terminal 12 of the bipolar transistor 50 forms the source terminal 24 of the three-pole amplifying element 2. When set sufficiently low quiescent current in the input bipolar transistor 49, the required high impedance at low input capacitance and a sufficiently low parallel noise current is achieved. A much larger adjusted quiescent current in the further bipolar transistor 50 causes a sufficiently large slope of the transfer characteristic for the entire element.

In Fig. 9c ist das dreipolige verstärkende Element 2 als erweitertes dreipoliges verstärkendes Element aus einem Eingangs-Bipolartransistor 49 bzw. Eingangs-Feldeffekttransistor 13, gestaltet, dessen Kollektoranschluss bzw. Drainanschluss mit dem Source-bzw. Emitteranschluss eines zusätzlichen Transistors 51 verbunden ist und dessen Basis- bzw. Gate-Anschluss mit dem Emitter- bzw. Source-Anschluss des Eingangs-Bipolartransistors 49 bzw. Eingangs-Feldeffekttransistors 13 verbunden ist. Durch diesen Anschluss ist der Quellenanschluss 24 des dreipoligen verstärkenden Elements 2 gebildet. Ein erweitertes dreipoliges verstärkendes Element dieser Form verhindert durch Spannungsnachführung am Drain- bzw. Kollektoranschluss des Eingangstransistors den störenden Einfluss einer spannungsabhängigen Kapazität zwischen Steuerelektrode und der Drain- bzw. Kollektorelektrode.In Fig. 9c is the three-pole amplifying element 2 designed as an extended three-pole amplifying element of an input bipolar transistor 49 and input field effect transistor 13, whose collector terminal or drain terminal to the source or. Emitter terminal of an additional transistor 51 is connected and whose base or gate terminal is connected to the emitter or source terminal of the input bipolar transistor 49 and input field effect transistor 13, respectively. Through this connection, the source terminal 24 of the three-pole amplifying element 2 is formed. An extended three-pole amplifying element of this form prevents by voltage tracking at the drain or collector terminal of the input transistor, the disturbing influence of a voltage-dependent capacitance between the control electrode and the drain and collector electrode.

In Fig. 9d ist das dreipolige verstärkende Element 2 als erweitertes dreipoliges verstärkendes Element gestaltet, in welchem eine elektronisch steuerbare Ruhestromquelle IS0 oder/und eine elektronisch steuerbare Ruhespannungsquelle UD0 vorhanden ist. Hierdurch wird bei Auftreten grosser Empfangspegel im Zusammenhang mit der erfindungsgemäßen Absenkung der inneren Verstärkung der aktiven Antenne aufgrund zu hoher Empfangspegel der Ruhestrom IS0 oder/und die Ruhespannung UD0 im Eingangs-Bipolartransistor 49 bzw. Eingangs-Feldeffekttransistor 13 erhöht eingestellt.In Fig. 9d the three-pole amplifying element 2 is designed as an extended three-pole amplifying element, in which an electronically controllable quiescent current source I S0 or / and an electronically controllable rest voltage source U D0 is present. As a result, the quiescent current I S0 or / and the quiescent voltage U D0 in the input bipolar transistor 49 or input field-effect transistor 13 are set increased when large reception levels occur in connection with the inventive lowering of the internal amplification of the active antenna.

Zur Gestaltung von mehreren Übertragungsfrequenzbändern sind in Fig. 11 mehrere Bipolartransistoren 14,14' zur Erweiterung des dreipoligen verstärkenden Elements 2 und zur kombinierten Bildung mehrerer dreipoliger verstärkender Elemente 2,2' vorhanden. Die Basiselektroden sind an die Source-Elektrode eines gemeinsamen Eingangs-Transistors 13 bzw. an den Quellenanschluss eines erweiterten dreipoligen verstärkenden Elements gemäß den Figuren 9a bis 9d angeschlossen. Die Bipolartransistoren 14,14' sind jeweils in Emitterfolger-Schaltung mit dem Eingang einer verlustarmen Filterschaltung 3,3' zur Bildung getrennter Übertragungswege für die betreffenden Frequenzbänder verbunden. In jedem der Übertragungswege befinden sich jeweils ein einstellbares Übertragungsglied 34,34' und ein Regelverstärker 33,33', welchem jeweils über Filtermaßnahmen nur das dem betreffenden Übertragungsweg zugeordnete Frequenzband aus dem hochfrequenten Empfangssignal 8 zugeführt ist. Das Regelsignal 42, 42' ist jeweils dem zugeordneten einstellbaren Übertragungsglied 34,34' zugeführt. Im Unterschied hierzu sind in Fig. 12 die Regelsignale 42, 42' durch Selektionsmittel und Regelverstärker 33, 33' im Empfänger 44 aus dem Ausgangssignal der aktiven Antenne abgeleitet und der aktiven Antenne über Steuerleitungen 41 zugeführt.For the design of several transmission frequency bands are in Fig. 11 a plurality of bipolar transistors 14, 14 'for expanding the three-pole amplifying element 2 and for the combined formation of a plurality of three-pole amplifying elements 2, 2'. The base electrodes are connected to the source of a common input transistor 13 and to the source of an extended three-pole amplifying element, respectively FIGS. 9a to 9d connected. The bipolar transistors 14,14 'are each connected in emitter follower circuit to the input of a low-loss filter circuit 3,3' to form separate transmission paths for the respective frequency bands. In each of the transmission paths are each an adjustable transmission element 34,34 'and a control amplifier 33,33', which is supplied via filter measures only the respective transmission path associated frequency band from the high-frequency received signal 8 respectively. The control signal 42, 42 'is in each case the associated adjustable transmission element 34,34' supplied. In contrast to this are in Fig. 12 the control signals 42, 42 'by means of selection and control amplifier 33, 33' in Receiver 44 derived from the output signal of the active antenna and the active antenna via control lines 41 supplied.

In einer besonders vorteilhaften Ausgestaltung der Erfindung ist die vorliegende aktive Antenne in einer Antennenanlage mehrfach verwendet, deren passive Antennenteile 1 mit frequenzabhängigen und in Bezug auf einfallende Wellen nach Betrag und oder nur in Phase unterschiedlichen Richtdiagrammen der effektiven Längen le besitzen, welche jedoch in elektromagnetischer Strahlungskopplung zueinander stehen und zusammen eine passive Antennenanordnung 27 mit mehreren Anschlussstellen 18a,b,c bilden. Erfindungsgemäß ist dabei jede jeweils mit einer erfindungsgemäßen Verstärkerschaltung 21 beschaltet und zu einer aktiven Antenne nach der Erfindung ergänzt. Aufgrund der Hochohmigkeit der Verstärkereingänge ist durch die Auskopplung der hochfrequenten Empfangssignale 8 an den passiven Antennenteilen 1 keine merkliche gegenseitige Beeinflussung der Empfangsspannungen gegeben. Eine solche Antennenanordnung ist ganz allgemein in Fig. 13 dargestellt. Die am Ausgang der Verstärkerschaltung 21 vorliegenden Empfangssignale 8 werden zur Gestaltung einer Gruppenantennenanordnung mit vorgegebenen Empfangseigenschaften hinsichtlich Richtwirkung und Antennengewinn ohne Rückwirkung auf die an den passiven Antennenteilen 1 anliegenden hochfrequenten Empfangssignale in einem hierfür vorhandenen Antennencombiner 22 nach Betrag und Phase gewichtet überlagert. Dort kann vorteilhaft ein gemeinsamer Regelverstärker 33, dessen Regelsignale 42a, b, c den Übertragungsnetzwerken 31 a, b, c in den aktiven Antennen zur Absenkung des summierten hochfrequenten Empfangssignals 8 zugeführt ist, die Pegelüberwachung durchführen. In einer weiteren vorteilhaften Ausgestaltung einer derartigen Gruppenantennenanordnung erfolgt in jeder aktiven Antenne die Pegelüberwachung und Abschwächung gesondert mit Hilfe eines jeweils dort untergebrachten Regelverstärkers 33.In a particularly advantageous embodiment of the invention, the present active antenna is used repeatedly in an antenna system whose passive antenna parts 1 with frequency-dependent and with respect to incident waves by amount and or only in phase different directional diagrams of the effective lengths l e possess, however, in electromagnetic Radiation coupling to each other and together form a passive antenna array 27 with multiple connection points 18a, b, c. According to the invention, each is connected in each case to an amplifier circuit 21 according to the invention and supplemented to form an active antenna according to the invention. Due to the high impedance of the amplifier inputs is given by the coupling of the high-frequency received signals 8 to the passive antenna parts 1 no significant mutual influence of the receiving voltages. Such an antenna arrangement is generally in Fig. 13 shown. The present at the output of the amplifier circuit 21 receive signals 8 are superimposed weighted for the design of a group antenna arrangement with predetermined receiving properties with respect to directivity and antenna gain without retroactivity to the voltage applied to the passive antenna parts 1 high-frequency reception signals in a Antennencombiner 22 present for this purpose. There may advantageously a common control amplifier 33, the control signals 42a, b, c the transmission networks 31 a, b, c is fed into the active antennas for lowering the summed high-frequency received signal 8, perform the level monitoring. In a further advantageous embodiment of such a group antenna arrangement, the level monitoring and attenuation take place separately in each active antenna with the aid of a control amplifier 33 respectively accommodated there.

Bei der Verwendung einer Antenne nach der Erfindung als eine aktive Fensterscheibenantenne ist es auf vorteilhafte Weise möglich, die Verstärkerschaltung 21 im sehr schmalen Randbereich des Fahrzeugfensters unsichtbar unterzubringen. Deshalb ist es wünschenswert, den an der Anschlussstelle 18 anzubringenden Teil miniaturisiert auszuführen und nur die dort funktionell notwendigen Teile der Verstärkerschaltung 21 anzubringen. Die weiteren Teile der verlustarmen Filterschaltung 3 sind abgesetzt platziert und über die Hochfrequenzleitung 10 angeschaltet.When using an antenna according to the invention as an active window pane antenna, it is advantageously possible to accommodate the amplifier circuit 21 invisible in the very narrow edge area of the vehicle window. Therefore, it is desirable to miniaturize the part to be attached to the connection point 18 and to attach only the parts of the amplifier circuit 21 which are functionally necessary there. The other parts of the low-loss filter circuit 3 are placed remotely and turned on via the high-frequency line 10.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird die aktive Antenne als Mehrbereichsantenne für mehrere Frequenzbereiche ausgeführt. Hierfür sind in Fig. 19a für die Frequenzbereiche UKW-Hörrundfunk sowie VHF- und UHF-Fernsehrundfunk die prinzipiellen Frequenzverläufe von Blindwiderständen X1, X3 bzw. des Blindleitwerts B2 einer T-Filteranordnung der in Fig. 19b angegebenen verlustarmen Filterschaltung 3 beispielhaft angegeben. Die T-Filterkonfiguration stellt hierbei die eingangsseitige Hochohmigkeit der verlustarmen Filterschaltung 3 zur Erreichung einer hinreichend großen Gegenkopplung des Feldeffekttransistors 2 in den Sperrbereichen sicher. Die verlustarme Filterschaltung 3 ist als T-Halbfilter oder T-Filter bzw. als Kettenschaltung solcher Filter gestaltet, dessen bzw. deren Serien- bzw. Parallelzweig jeweils aus einer Kombination von Blindwiderständen derart gebildet ist, dass sowohl der Absolutwert eines Blindwiderstands im Serienzweig 28 als auch der Absolutwert eines Blindleitwerts im Parallelzweig 29 jeweils innerhalb eines Übertragungsfrequenzbereichs hinreichend klein und außerhalb eines solchen hinreichend groß ist und das hochfrequente Empfangssignal 8 am Ausgang dem Regelverstärker 33 zugeführt ist und von dessen Regelsignal 42 das einstellbare Übertragungsglied 34 gesteuert ist.In a further advantageous embodiment of the invention, the active antenna is designed as a multi-region antenna for several frequency ranges. For this purpose are in Fig. 19a for the frequency ranges FM radio broadcasting and VHF and UHF television broadcasting the fundamental frequency characteristics of reactances X 1 , X 3 and the susceptibility B 2 of a T-filter arrangement of the in Fig. 19b specified low-loss filter circuit 3 exemplified. The T-filter configuration in this case ensures the input-side high-impedance of the low-loss filter circuit 3 to achieve a sufficiently large negative feedback of the field effect transistor 2 in the stopband areas. The low-loss filter circuit 3 is designed as a T-half filter or T-filter or as a chain circuit such filter whose or series branch or parallel branch is formed in each case from a combination of reactances such that both the absolute value of a reactance in the series branch 28 than Also, the absolute value of a susceptance in the parallel branch 29 each within a transmission frequency range sufficiently small and outside such is sufficiently large and the high-frequency received signal 8 is supplied to the control amplifier 33 at the output and from the control signal 42, the adjustable transmission element 34 is controlled.

Zur Kompensation von Effekten der Nichtlinearität geradzahliger Ordnung und der daraus resultierenden Interband-Frequenzkonversionen in der Verstärkerschaltung 21 wird in einer weiteren vorteilhaften Ausgestaltung der Erfindung neben dem Feldeffekttransistor 2 ein weiterer Feldeffekttransistor 2 mit gleichen elektrischen Eigenschaften eingesetzt. Hierbei werden die Eingangsanschlüsse der Verstärkerschaltung 21 durch die beiden Steueranschlüsse der Feldeffekttransistoren 15a und 15b gebildet und der Eingang der verlustarmen Filterschaltung 3 mit den Source-Anschlüssen 19a und 19b verbunden. Ein Umsymmetrierglied in der verlustarmen Filterschaltung 3 dient zur Umsymmetrierung der hochfrequenten Empfangssignale 8. Eine solche. Schaltung kann vorteilhaft ebenso an eine Anschlussstelle 18 mit zwei gegen Masse Spannung führenden Anschlüssen angeschlossen werden.In order to compensate for effects of even-numbered non-linearity and the resulting interband frequency conversions in the amplifier circuit 21, another field effect transistor 2 having the same electrical properties is used in a further advantageous embodiment of the invention in addition to the field effect transistor 2. Here, the input terminals of the amplifier circuit 21 are formed by the two control terminals of the field effect transistors 15a and 15b, and the input of the low-loss filter circuit 3 is connected to the source terminals 19a and 19b. A Umsymmetrierglied in the low-loss filter circuit 3 is used for the Umsymmetrierung the high-frequency received signals 8. Such. Circuit can advantageously also be connected to a connection point 18 with two connections leading to ground voltage.

Die Effizienz von Antennendiversitysystemen wird von der Anzahl der verfügbaren, voneinander diversitätsmäßig unabhängiger Antennensignale geprägt. Diese Unabhängigkeit drückt sich im Korrelationsfaktor zwischen den in einem Rayleigh-Wellenfeld während der Fahrt auftretenden Empfangsspannungen auf. In einer besonders vorteilhaften Weiterbildung der Erfindung sind mehrere aktive Empfangsantennen nach der Erfindung in einer Antennendiversityanlage für Fahrzeuge verwendet, wobei die passiven Antennenteile 1 derart gewählt sind, dass ihre in einem Rayleigh-Empfangsfeld im Leerlauf an den Anschlussstellen 18 vorliegenden Empfangssignale E*le diversitätsmäßig möglichst unabhängig voneinander sind. Solche Systeme, bei denen die Anschlussstellen 18 unter diesem Gesichtspunkt und unter Berücksichtigung von fahrzeugtechnischen Aspekten gewählt sind, sind beispielhaft in den Figuren 15 und 16 dargestellt. Aufgrund der zwischen den Anschlussstellen 18 bestehenden elektromagnetischen Strahlungskopplungen trifft diese Unabhängikeit dann nur für die im Leerlauf betriebenen Anschlussstellen 18 zu. Durch Beschaltung der Anschlussstellen 18 mit den erfindungsgemäßen Verstärkerschaltungen 21 werden aufgrund von deren vernachlässigbar kleinen kapazitivem Eingangsleitwert die hochfrequenten Empfangssignale 8 rückwirkungsfrei an den Antennenausgängen abgegriffen. Die diversitätsmäßige Unabhängigkeit der Empfangssignale an den Anschlussstellen 18 wird somit durch diese Maßnahme in vorteilhafter Weise nicht beeinflusst und diese Unabhängigkeit besteht folglich in gleicher Weise für die Empfangssignale 8 an den Antennenausgängen. Somit stehen an den Antennenausgängen voneinander unabhängige Empfangssignale 8 zur Auswahl in einem Scanningdiversity-System bzw. zur Weiterverarbeitung in einem der weiteren bekannten Diversityverfahren zur Verfügung.The efficiency of antenna diversity systems is determined by the number of available, mutually independent antenna signals. This independence is reflected in the correlation factor between the received voltages occurring in a Rayleigh wave field during travel. In a particularly advantageous embodiment of the invention, a plurality of active receiving antennas according to the invention in an antenna diversity system for Vehicles used, wherein the passive antenna parts 1 are selected such that their present in a Rayleigh reception field idle at the connection points 18 received signals E * l e are as independent of each other in terms of diversity. Such systems, in which the connection points 18 are selected from this point of view and taking into account technical aspects of the vehicle, are exemplary in the FIGS. 15 and 16 shown. Due to the electromagnetic radiation couplings existing between the connection points 18, this independence then applies only to the connection points 18 operated at idling. By wiring the connection points 18 with the amplifier circuits 21 according to the invention, the high-frequency received signals 8 are tapped at the antenna outputs due to their negligible capacitive input conductance. The diversity of the independence of the received signals at the connection points 18 is thus not affected by this measure in an advantageous manner and this independence is therefore in the same way for the received signals 8 at the antenna outputs. Thus, mutually independent receive signals 8 are available at the antenna outputs for selection in a scanning diversity system or for further processing in one of the other known diversity methods.

Im Gegensatz hierzu würde die Beschaltung der Anschlussstelle 18 mit einer Transformationsschaltung nach dem Stand der Technik gemaß Fig. 2b über die an der Anschlussstelle 18 fließenden Ströme eine Abhängigkeit der Antennensignale am Antennenausgang verursachen. Dieser Zusammenhang wird im Folgenden für einen passiven Antennenteil 1 mit zwei Anschlussstellen 18 näher erläutert:In contrast, the wiring of pad 18 would be implemented with a prior art transform circuit Fig. 2b cause a dependence of the antenna signals on the antenna output via the currents flowing at the connection point 18. This relationship is explained in more detail below for a passive antenna part 1 with two connection points 18:

Sind U01 und U02 die Leerlaufspannungsamplituden an den Anschlussstellen 18 einer passiven Antennenanordnung 27 in Fig. 14 im Empfangsfeld und Z11, Z22 die dort gemessenen Antennenimpedanzen und ist ferner Z12 die Wechselwirkungsimpedanz aufgrund der Verkopplung der Anschlussstelle 18 und sind Y1 und Y2 die Eingangsadmittanzen der Verstärker, mit denen die Anschlussstelle 18 belastet sind, so ergibt sich für die unter dieser Belastung auftretenden Spannungsamplituden an den Anschlussstellen 18 folgende Beziehung: U 1 U 2 ) = 1 N 1 - Z 22 Y 2 Z 12 Y 2 Z 12 Y 1 1 - Z 11 Y 1 ( U 10 U 20 mit N = 1 - Z 11 Y 1 - Z 22 Y 2 + Z 11 Z 22 Y 1 Y 2 - Z 12 2 Y 1 Y 2

Figure imgb0012
Are U01 and U02 the no-load voltage amplitudes at the connection points 18 of a passive antenna arrangement 27 in FIG Fig. 14 In the reception field and Z11, Z22, the antenna impedances measured there are also Z12 and the interaction impedance due to coupling of the connection point 18 and Y1 and Y2 are the input admittances of the amplifiers, with which the connection point 18 are loaded, results for the voltage amplitudes occurring under this load at the connection points 18 the following relationship: U 1 U 2 ) = 1 N 1 - Z 22 Y 2 Z 12 Y 2 Z 12 Y 1 1 - Z 11 Y 1 ( U 10 U 20 With N = 1 - Z 11 Y 1 - Z 22 Y 2 + Z 11 Z 22 Y 1 Y 2 - Z 12 2 Y 1 Y 2
Figure imgb0012

Der Korrelationsfaktor zwischen den Spannungsamplituden U1 und U2 und somit auch zwischen den Antennenausgangsspannungen ergibt sich mit Hilfe der zeitlichen Mittelwerte der Spannungen U1 und U2 zu: ρ = U 1 U 2 U 1 2 U 2 2

Figure imgb0013
The correlation factor between the voltage amplitudes U1 and U2, and thus also between the antenna output voltages, results with the aid of the time average values of the voltages U1 and U2: ρ = U 1 U 2 ~ U 1 2 U 2 2 ~
Figure imgb0013

Für den hier vorausgesetzten Fall ergeben sich bei einer Fahrt im Rayleigh-Empfangsfeld voneinander unabhängige Leerlauf-Empfangsspannungsamplituden U10 und U20. Dies drückt sich durch einen verschwindenden Korrelationsfaktor aus, d.h.: ρ = U 10 U 20 U 10 2 U 20 2 = 0

Figure imgb0014
For the case assumed here, independent idling-receiving voltage amplitudes U10 and U20 result when traveling in the Rayleigh receiving field. This is expressed by a vanishing correlation factor, ie: ρ = U 10 U 20 ~ U 10 2 U 20 2 ~ = 0
Figure imgb0014

Sind die Eingangsadmittanzen der Verstärker, mit denen die Anschlussstellen 18 belastet sind erfindungsgemäß vernachlässigbar klein, d.h. Y1=0 und Y2=0, dann ergeben sich die Spannungen U1 und U2 aus Gleichung (11) wie folgt: U 1 U 2 = 1 N 1 0 0 1 U 10 U 20

Figure imgb0015
If the input admittances of the amplifiers with which the connection points 18 are loaded are negligibly small according to the invention, ie Y1 = 0 and Y2 = 0, the voltages U1 and U2 from equation (11) result as follows: U 1 U 2 = 1 N 1 0 0 1 U 10 U 20
Figure imgb0015

Die mit der Zahl 0 besetzten Wechselwirkungen in der Einheitsmatrix in Gleichung (13) zeigen, dass die in Gleichung (13) beschriebene verschwindende Dekorrelation in den Spannungen U1 und U2 bei einer Verstärkerschaltung 21 nach der Erfindung erhalten bleibt. Die Auswertung von Gleichung (11) dagegen ergibt eine Verknüpfung der beiden Leerlaufspannungen über die Wechselwirkungsparameter Z12*Y2 bzw. Z12*Y1 mit den jeweiligen Spannungen bei Belastung, denn es gilt dann: U 1 = 1 - Z 22 Y 2 U 10 + Z 12 Y 2 U 20 bzw . U 2 = 1 - Z 11 Y 1 U 20 + Z 12 Y 1 U 10

Figure imgb0016
The interactions in the unit matrix occupied by the number 0 in equation (13) show that the vanishing decorrelation in the voltages U1 and U2 described in equation (13) is retained in an amplifier circuit 21 according to the invention. The evaluation of equation (11), on the other hand, results in a combination of the two no-load voltages via the interaction parameters Z12 * Y2 or Z12 * Y1 with the respective voltages under load, since then: U 1 = 1 - Z 22 Y 2 U 10 + Z 12 Y 2 U 20 respectively , U 2 = 1 - Z 11 Y 1 U 20 + Z 12 Y 1 U 10
Figure imgb0016

Es ist offensichtlich, dass bei nicht verschwindender Verkopplung der Anschlussstellen 18, d.h. nicht verschwindendem Z12, der Korrelationsfaktor nur dann verschwindet, wenn Y1 = Y2 = 0 beträgt.It will be appreciated that if coupling 18 is not permanently coupled, i. not vanishing Z12, the correlation factor disappears only if Y1 = Y2 = 0.

Andererseits zeigen die vorangegangenen Betrachtungen, dass bei bestehender gegenseitiger Abhängigkeit der Leerlaufspannungen U10 und U20, dass spezielle Werte für Y1 und Y2 gefunden werden können, welche über die in Gleichung 15 beschriebene Transformation die gegenseitige Abhängigkeit in den Verstärkereingangsspannungen U1 und U2 reduzieren oder verschwinden lassen. In einer vorteilhaften Weiterbildung der Erfindung ist es deshalb, wie in Fig. 16 angedeutet, vorgesehen, die passive Antennenanordnung 27 an ihren Anschlussstellen 18 durch hierfür geeignete Leitwerte - vorzugsweise Blindleitwerte 23 aus Gründen der Rauschempfindlichkeit - derart zu beschalten, dass die Korrelation zwischen den Spannungen an den Anschlussstellen 18 im Interesse einer größeren Diversityeffizienz kleiner wird. Aktive Antennen nach der Erfindung besitzen dabei den entscheidenden Vorteil, dass die Festlegung solcher geeigneter Blindelemente weitgehend unabhängig von Empfindlichkeitsbetrachtungen getroffen werden kann. Denn für die sich dabei an den verschiedenen Anschlussstellen 18 ergebenden Strahlungswiderstände RA(f) ist jeweils kein genauer Abgleich erforderlich, sondern es ist lediglich zu fordern, dass sie dem in Fig. 18 beschriebenen zulässigen Wertebereich angehören. Zur Absenkung zu großer Empfangspegel kann wie in Fig. 15 der Pegel des ausgewählten Signals einem gemeinsamen Regelverstärker 33 im elektronischen Umschalter 25 zugeführt werden, in welchem ein Regelsignal 42 gebildet und den Übertragungsnetzwerken 31 in den Verstärkerschaltungen 21 der aktiven Empfangsantennen zur Absenkung des ausgewählten hochfrequenten Empfangssignals 8 zugeführt ist. In einer weiteren Ausführungsform kann wie in Fig. 16 den Verstärkerschaltungen 21 der aktiven Antennen jeweils ein gesonderter Regelverstärker 33 zur Überwachung des hochfrequenten Empfangssignals 8 am betreffenden Antennenausgang zugeordnet werden.On the other hand, the foregoing considerations indicate that with the mutual interdependence of the open circuit voltages U10 and U20, specific values for Y1 and Y2 can be found which reduce or eliminate the interdependence in the amplifier input voltages U1 and U2 through the transformation described in Equation 15. In an advantageous embodiment of the invention, it is therefore, as in Fig. 16 indicated, the passive antenna array 27 at their terminals 18 by suitable Leitwerte - preferably susceptors 23 for reasons of noise sensitivity - to connect such that the correlation between the voltages at the connection points 18 in the interest of greater diversity efficiency is smaller. Active antennas according to the invention have the decisive advantage that the definition of such suitable reactive elements can be made largely independent of sensitivity considerations. Because for each of the different connection points 18 resulting radiation resistances R A (f) in each case no exact balance is required, but it is only to require that they are the in Fig. 18 belong to the permitted range of values described. To lower too high reception level can be as in Fig. 15 the level of the selected signal is supplied to a common control amplifier 33 in the electronic switch 25, in which a control signal 42 is formed and fed to the transmission networks 31 in the amplifier circuits 21 of the active receiving antennas for lowering the selected high-frequency received signal 8. In a further embodiment, as in Fig. 16 In each case, a separate control amplifier 33 for monitoring the high-frequency received signal 8 at the relevant antenna output is assigned to the amplifier circuits 21 of the active antennas.

Liste der BezeichnungenList of terms Aktive Breitbandempfangsantenne mit EmpfangspegelregelungActive broadband receiving antenna with receive level control

  • Masse 0Mass 0
  • Passiver Antennenteil 1Passive antenna part 1
  • dreipoliges verstärkendes Element 2three-pole reinforcing element 2
  • Verlustarme Filterschaltung 3Low-loss filter circuit 3
  • Ausgang 4Exit 4
  • Wirksame Impedanz 5 der weiterführenden SchaltungEffective impedance 5 of the secondary circuit
  • Eingang 6Entrance 6
  • Eingangsadmittanz 7Input admittance 7
  • Hochfrequentes Empfangssignal 8High-frequency received signal 8
  • Lastwiderstand 9Load resistor 9
  • Hochfrequenzleitung 10High frequency line 10
  • Verstärkereinheit 11Amplifier unit 11
  • Emitteranschluß 12Emitter connection 12
  • Eingangs-Feldeffekttransistor 13Input field effect transistor 13
  • Bipolartransistor 14Bipolar transistor 14
  • Steueranschluß 15Control connection 15
  • Anschlussstelle 18Junction 18
  • fest eingestelltes Blindelement 20Fixed blind element 20
  • zuschaltbares Blindelement 20aswitchable blind element 20a
  • Verstärkerschaltung 21Amplifier circuit 21
  • Antennencombiner 22Antenna combiner 22
  • Blindleitwert 23Susceptance 23
  • Quellenanschluß 24Source connection 24
  • Elektronischer Umschalter 25Electronic changeover switch 25
  • passive Antennenanordnung 27passive antenna arrangement 27
  • Serienzweig 28Serial branch 28
  • Parallelzweig 29Parallel branch 29
  • einstellbares Längselement 30adjustable longitudinal element 30
  • Übertragungsnetzwerk 31Transmission network 31
  • einstellbares elektronisches Element 32adjustable electronic element 32
  • Regelverstärker 33Control amplifier 33
  • Einstellbares Übertragungsglied 34Adjustable transmission member 34
  • Widerstand 35Resistance 35
  • Schaltdiode 36Switching diode 36
  • Einstellbarer Widerstand 37Adjustable resistance 37
  • Übertrager 38Transmitter 38
  • Steuerbare Gleichstromquelle 40Controllable DC source 40
  • Steuerleitung 41Control line 41
  • Regelsignal 42Control signal 42
  • Empfänger 44Receiver 44
  • Steuerbare Gleichspannungsquelle 45Controllable DC voltage source 45
  • Zweipoladmittanz 46Two pole admittance 46
  • frequenzabhängiger Zweipol 47frequency-dependent dipole 47
  • Zweipolfilterschaltung 48Two-pole filter 48
  • Eingangs-Bipolartransistor 49Input bipolar transistor 49
  • weiterer Bipolartransistor (50another bipolar transistor (50
  • zusätzlichen Transistors 51additional transistor 51
  • Senkenanschluß 53Drain connection 53
  • Eingangsimpedanz ZInput impedance Z
  • Rauschzahl Fv Noise figure F v
  • Wirkleitwert GConductivity G
  • effektive Länge leeffective length le
  • Wellenlänge λWavelength λ
  • Boltzmannkonstante kBoltzmann constant k
  • Wellenwiderstand des freien Raums Z0 Characteristic impedance of free space Z 0
  • Messbandbreite BMeasuring bandwidth B
  • Übersetzungsverhältnis tGear ratio t
  • Eingangsspannung UE Input voltage U E
  • Ausgangsspannung UA Output voltage U A
  • Gate-Source-Kapazität C2Gate-source capacitance C2
  • Gate-Drain-Kapazität C1Gate-drain capacitance C1
  • Rauschtemperatur TN0Noise temperature TN0
  • Umgebungstemperatur T0Ambient temperature T0

Claims (39)

  1. Active wide-band receiver antennae consisting of a passive antenna component (1), its output connectors, consisting of a primary connector (18) and a secondary connector (1') are connected with the input connectors of a amplifier circuit (21), whereby the input circuit of the amplifier circuit (21) contains a three-pole amplifier element (2), whose high-impedance control connector (15) is connected to the primary connector (18) of the passive antenna (1), whereby, further, in the connection between the source connector (24) of the three-pole amplifier element (2) and the second connector (1') of the passive antenna element (1) the initial admittance (7) transmission networks (31) with filter character have a degenerating and linearizing effect and the transmission network (31) is loaded with the subsequent circuit at one output (4)
    with the following further features:
    - in the transmission network (31) there is at least one adjustable electronic element (32) for the variable reduction of the reception level,
    - in the case of low-frequency reception signals (8), the transmission network (31) features a low level of loss
    - the linearizing initial admittance (7') of the transmission network (31) is lower if the adjustable electronic element (32) is set for a reduction of the high-frequency receiving signal (8), causing the reduction in the amplification of the active antenna at the output of the three-pole amplifying element 2 in connection with a simultaneously achieved increase in linearizing degeneration and
    - to reduce excessive receiving levels there is a regulating amplifier (33) to which the highfrequency reception signal (8) is fed and whose regulating signal (42) controls an adjustable transfer element (34) (Fig. 1).
  2. Active wide-band receiver antenna according to claim 1 characterized by the fact that the transmission network (31), which has the character of a filter when the electronic element (32) or electronic elements (32) is/are set for small high-frequency reception levels, is formed as a low-loss filter circuit that is loaded with the effective impedance (5) of the subsequent circuit at its output (4) and the dummy element of the low-loss transmission network (31) is selected so that the frequency dependency of the conductance G(f) of the effective initial admittance (7) at the input of the transmission network (31) is set in such a way that when amplification is specified for the active antenna, the frequency response resulting from the frequency-dependent effective length le of the passive antenna part (1) in the high-frequency receiving signal (8) within a broad frequency band is organized according to freely chosen aspects.
  3. Active wide-band receiver antenna according to one of claims 1 to 2, characterized by the fact that the transmission network (31), which has the character of a filter from the chain circuit, consists of an adjustable transmission element (34) and a low-loss filter circuit (3) with a fixed dummy element that is loaded with the effective impedance (5) of the subsequent circuit at its output (4) and the adjustable transmission element (34) when a specified receiving level for non-frequency-dependent and low-loss signal transmission is formed and the dummy elements of the low-loss transmission network (31) are selected so that the frequency dependency of the conductance G(f) of the effective initial admittance (7) at the input of the source connection (24) is set in such a way that when amplification is specified for the active antenna, the frequency response resulting from the frequency-dependent effective length Ie of the passive antenna part (1) in the high-frequency receiving signal (8) within a broad frequency band is organized according to freely chosen aspects. (Fig. 1)
  4. Active wide-band receiver antenna according to one of claims 1 to 3 characterized by the fact that the transmission network (31), which has the character of a filter takes the form of a fixed dummy element (20) and that there is at least one connectible dummy element (20a) that can be switched on and off using an adjustable electronic element (32), so that if a specified receiving level is not reached, the required frequency dependency of the conductance G(f) of the effective initial admittance (7) at the input of the source connection (24) is set for higher amplification for the active antenna, and, if a given receiving level is reached, the required frequency dependency of the conductance G(f) of the effective initial admittance (7) at the input of the source connection (24) applies to the reduced amplification of the active antenna. (Fig. 8).
  5. Active wide-band receiver antenna according to one of claims 1 to 4 characterized by the fact that the transmission network (31), which has the character of a filter, has a sufficiently small dummy portion b(f) in the initial conductance (7) when a given reception level is not reached and when particular transmission patterns are required to avoid non-linear effects. (Fig. 1).
  6. Active wide-band receiver antenna according to one of claims 1 to 5 characterized by the fact that with all settings of the at least one adjustable electronic element (32) the level of the effective degenerating input admittance (7, 7') outside the utilizable frequency band in the stop frequency range of the transmission network (31) connected to the source connector (24) with filter character to avoid non-linear effects with all settings of the settable electronic element (32) or settable electronic elements (32) is sufficiently small.
  7. Active wide-band receiver antenna according to one of claims 1 to 6 characterized by the fact that the transmission network (31) is formed from the chain circuit of an adjustable transmission element (34) formed as a transmission block and a low-loss filter circuit (3) and the ration (t:1) of the input voltage (UE) to the output voltage (UA) of the adjustable transmission element (34) is set to a sufficient level with the help of a longitudinal element (30) contained there is a specified reception level is exceeded. (Figs. 1, 2a, 3, 4, 5, 6, 10, 11, 12).
  8. Active wide-band receiver antenna according to claim 7 characterized by the fact that the adjustable longitudinal element (30) is implemented by an adjustable resistor (37), for example a diode with the character of a PIN diode (Fig. 1).
  9. Active wide-band receiver antenna according to claim 5 characterized by the fact that the adjustable longitudinal element (30) is formed by a resistor (35) or several resistors switched in sequence (35) with an adjustable electronic element (32) switched in parallel with the resistor (35) and executed as a switching diode (36), whose setting in the block state renders the associated resistor fully effective and whose setting in the open state bridges the switching diode (36) of the resistor, so that when the switching diode (36) or switch diodes (36) are under control, the reception level drops in increments (Fig. 2a, 3).
  10. Active wide-band receiver antenna according to claim 7 characterized by the fact that for the purpose of the non-frequency-dependent reduction of reception signals (8), the adjustable longitudinal element (30) takes the form of a frequency-dependent two-pole network (47) with a two-pole admittance (46) similar to the input admittance of the low-loss filter circuit (3), but mainly smaller than the input admittance of the low-loss filter circuit (3) by a non-frequency-dependent factor (t-1) with a switching diode (36) switched in parallel with the frequency-dependent two pole network (47), whose blocked state setting renders the two pole admittance (46) effective and whose the open state setting bridges the two-pole admittance (46), so that when the switching diode (36) is blocked, the high-frequency reception signals (8) are reduced by a factor (t) that is largely independent of the frequency.
  11. Active wide-band receiver antenna according to claim 10 characterized by the fact that the frequency-dependent two-pole network (47) is formed by the input admittance of a two-terminal filter circuit (48) that is arranged according to the structure of the low-loss frequency circuit (3), at least in terms of the major dummy elements, and whose dummy elements are chosen to have a higher impedance than the corresponding dummy elements of the low-loss filter circuit (3) by a non-frequency-dependent factor (t-1) and the two-pole filter circuit (48) is terminated with an impedance of the same factor as the effective impedance (5) of the subsequent circuit (Fig. 8).
  12. Active wide-band receiver antenna according to one of claims 1 to 6 characterized by the fact that the adjustable transmission element (34) contains a repeater (38) with incremental transmission ratio (t) and switching diodes (36) exist as adjustable electronic elements (32) which are controlled in such a way that at high receiving levels the transmission ratio (t), and therefore the ratio of the input voltage UE to the output voltage UA of the adjustable transmission element (34) is set to a suitably high level (Fig. 4, 6)
  13. Active wide-band receiver antenna according to one of claims 1, 2, 4 to 6 characterized by the fact that there are several low-loss filter circuits (3) in the transmission network (31) with filter character, which are switched by means of switching diodes (36) or, alternatively, between the input and output of the transmission network (31) and whose input admittance (7, 7') are formed with fixed setting dummy elements (20) in such a way that, when a prescribed reception level is not reached, the required frequency-dependency of the conductance G(f) of the effective input admittance (7) at the source connector (24) for higher amplification of the active antenna, and, when a prescribed reception level is exceeded, the required frequency-dependency of the conductance G(f) of the effective input admittance (7') for reduced amplification of the active antenna at the source connection (24) are achieved with the help of the switching diodes (36) (Fig. 7).
  14. Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the 3-pole amplifying element (2) takes the form of a field effect transistor whose high impedance control port (15) is formed by the gate whose source port (24) is formed by the source and whose sink port (53) is formed by the drain port.
  15. Active wide-band receiver antenna for use above 30 MHz according to claim 14 characterized by the fact that the field-effect transistor (2) exhibits a negligible source of parallel noise current ir, a very small gate drain capacity C1 and a very small gate source capacity C2 and a negligible 1/f noise and whose minimum noise temperature TN0 during noise adjustment is substantially smaller than the ambient temperature T0 (Fig. 2).
  16. Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the 3-pole amplifying element (2) takes the form of an extended three-pole amplifying element, consisting of an input field effect transistor (13) whose source controls the bipolar transistor (14) in emitter successor circuit and whose emitter port (12) forms the source electrode of the extended field effect transistor (2) (Fig. 9a).
  17. Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the three-pole amplifier element (2) takes the form of an extended three-pole amplifier element, consisting of an input bipolar transistor (49) whose emitter controls another bipolar transistor (50) in emitter successor circuit and whose emitter port (12) forms the source port (24) of the three-pole amplifier element (2) and whose idle current is set at a lower level in the input bipolar transistor (49) than in the remaining bipolar transistor (50) (Fig. 9b).
  18. Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the three-pole amplifier element (2) takes the form of an extended three-pole amplifier element, consisting of an input bipolar transistor (49) or bipolar input effect transistor (13) whose collector port or drain port is connected to the source or emitter port of an additional transistor (51) and whose base or gate port is connected to the emitter or source port of the input bipolar transistor (49) or input field effect transistor (14), so that this connection forms the source connection (24) of the three-pole amplifier element (2) (Fig. 9c).
  19. Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the three-pole amplifier element (2) takes the form of an extended three-pole amplifier element containing an electronically controllable idle current source (IS0) and/or an electronically controllable idle voltage source (UD0) by means of which, in the context of the reduction in the amplification of the active antenna because of the excessively high reception level (in line with the invention), the idle current (JS0) and/or the idle voltage (UD0) in the input bipolar transistor (49) or input field effect transistor (13) is set at a higher level (Fig. 9d, 6).
  20. Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that the passive part of the antenna (1) has a connection point (18) whose two ports are high in comparison with ground (0), each of which is connected to a control port (15, 16) of a three-pole amplifier element (2) whose source ports (24 a, b) are connected to the primary side of a repeater (38) in the form of an isolating transformer, whose secondary side has different outputs for arranging different transmission ratios (t) and from which - together with switching diodes (36) - form the adjustable transmission element (34) and connect the sink ports (53) to ground (0) (Fig. 10)
  21. Active wide-band receiver antenna according to one of claims 1 to 13 characterized by the fact that there are several bipolar transistors (14, 14') for expanding the three-pole amplifier elements (2) and for the combined formation of several three-pole amplifier elements (2, 3') used in producing several transmission frequency bands whose basic electrodes are connected to the source electrode of a common input transistor (13, 49) or to the source port of an expanded three-pole amplifier element according to claims 16, 17, 18 and 19 and which are connected in a subsequent emitter circuit with the input of a low-loss filter circuit (3, 3') for form isolated transmission routes for the relevant frequency bands and each of the transmission routes contains an adjustable transmission element (34, 34') and a control amplifier (33. 33') to which only the frequency band from the high-frequency reception signal (8) assigned to the relevant transmission route by means of filter measures is supplied and the control signal (42, 42') is supplied to the assigned adjustable transmission element (34, 34') (Fig. 11).
  22. Active wide-band receiver antenna according to claims 21 characterized by the fact that the control signals (42, 42') are derived from the output signal of the active antenna through a selection medium and control amplifier (33, 33') and are supplied to the active antenna by means of control lines (41) (Fig. 12).
  23. Active wide-band receiver antenna according to one of claims 1 to 22 characterized by the fact that there are several passive antenna parts (1) with frequency-dependent and, in respect of incident waves according to extent and phase different radiation patterns for the effective lengths Ie which coupled by electromagnetic radiation and together form a passive antenna setup (27) with several connector points (18 a, b, c), each of which is switched with an amplifier circuit (21 a, b, c) and is supplemented to form an active antenna in line with the invention, so that the connection of the amplifier circuits (21 a, b, c) at the passive antenna parts (1) does not cause noticeable mutual influence on the reception voltages and the high-frequency reception signals (8 a, b, c) are brought together in an antenna combiner (22) and the active receiver antennae each contain a control amplifier (33) for monitoring the high frequency reception signal (8) at the antenna output.
  24. Active wide-band receiver antenna according to one of claims 1 to 22 characterized by the fact that there are several passive antenna parts (1) with frequency-dependent and, in respect of incident waves according to extent and phase different radiation patterns for the effective lengths 1e which coupled by electromagnetic radiation and together form a passive antenna setup (27) with several connector points (18 a, b, c), each of which is switched with an amplifier circuit (21 a, b, c) and is supplemented to form an active antenna in line with the invention, so that the connection of the amplifier circuits (21 a, b, c) at the passive antenna parts (1) does not cause noticeable mutual influence on the reception voltages and the high-frequency reception signals (8 a, b, c) are brought together in an antenna combiner (22) and there is a common control amplifier (33) whose control signal (42 a, b, c) is supplied to the transmission networks (31 a, b, c) in the active antennae to reduce the accumulated high-frequency reception signal (8) (Fig. 13).
  25. Active wide-band receiver antenna according to claim 24 characterized by the fact that the active receiving antennae are used in an antenna diversity system for cars and the passive antenna parts (1) have been selected so that their reception signals in a Rayleigh reception field are as independent from one another as possible and the high-frequency reception signals (8) are made available for selection in a scanning diversity system or for further processing in one of the other known diversity processes in a non-reactive way, i.e. without influencing the diversity-based independence of the reception signals (Fig. 14).
  26. Active wide-band receiver antenna according to claim 25 characterized by the fact that the active receiving antennae are used in an antenna diversity system for cars and the passive antenna parts (1) have been selected so that their reception signals in a Rayleigh reception field are as independent from one another as possible and the high-frequency reception signals (8) are made available for selection in a scanning diversity system or for further processing in one of the other known diversity processes in a non-reactive way, i.e. without influencing the diversity-based independence of the reception signals and the level of the selected signal is fed to a common control amplifier (33) in which a control signal ((42) is formed and fed to the transmission networks (31) in the active reception antennae to reduce the selected high-frequency reception signal (8) (Fig. 14, 15).
  27. Active wide-band receiver antenna according to claim 25 characterized by the fact that the active reception antennae (21) each contain a control amplifier (33) for monitoring the high-frequency reception signal (8) at the antenna output (Fig. 16).
  28. Active wide-band receiver antenna according to claims 25 and 26 characterized by the fact that in order to improve the diversity-based independence of the reception signal of the passive antenna parts (1) their connection points (18) have specially determined dummy conductance values (23) in parallel with the input of the amplifier circuit (21) (Fig. 16).
  29. Active wide-band receiver antenna according to claims 1 to 28 characterized by the fact that when the transmission network (31) is set for small high frequency signals (8), the effective conductance at the output (4) of the low-loss filter circuit (3) is determined by the input resistor of a high-frequency line (10) with the load resistance (9) applied at the end at the load resistance (9) is formed by the input impedance of a further amplifier unit (11) with noise coefficient Fu and the teal part G of the effective admittance (7) is chosen to be sufficiently great so that the noise value of the amplifier unit (11) is less than the noise value of the field effect transistor (2) Fig. 5).
  30. Active wide-band receiver antenna according to claims 1 to 29 characterized by the fact that for the wide-band creation of favourable transmission conditions in the filter circuit (3) there us a repeater (24) with suitable transmission ratio U.
  31. Active wide-band receiver antenna according to claims 1 to 19 characterized by the fact that frequency-selective transmission routes are formed in the low-loss filter circuit (3) on the basis of signal branching for the purpose of frequency-selective exclusion of high-frequency reception signals (8) for different transmission frequency bands at several outputs.
  32. Active wide-band receiver antenna according to claims 1 to 31 characterized by the fact that the passive antenna layout (27) takes the form of conductor structures on a plastic carriers set into a groove in a conducting car body or mounted on a car window, e.g. in the form of one or more heated areas and/or conductor structures separate from the heating and these conductor structures have several connector points (18) for forming passive antenna parts (1) for connecting amplifier circuits (21) (Fig. 15, 16).
  33. Active wide-band receiver antenna according to claims 1 to 31 characterized by the fact that the passive antenna layout (27) takes the form of a largely cohesive conducting surface for suppressing the transmission of radiation in the infrared range with a sufficiently low surface resistance on the window of a car and in order to exclude reception signals at suitably positioned connecting points (18) with amplifier circuits (21) on the edge of the conducting surface not connected to the conducting bodywork whose high frequency reception signals (8) are supplied by means of high frequency lines (10) to produce a beam antenna for an antenna combiner (22) or to form a scanning diversity system for an electronic switch (25) or to form a diversity setup that operates according to some other process.
  34. Active wide-band receiver antenna according to claims 1 to 31 characterized by the fact that the passive antenna part is derived from a part of the car that was not originally intended for use an antenna and whose design cannot be changed very much and on which there is a connection point (18) for forming a passive antenna part (1) and for the applicable polarization and elevation of an incident wave in the usable frequency range a particular azimuth mean value Dm of the directivity is determined and the real part RA of impedance ZA of the passive antenna part (I) in the transmission frequency range is in the range between RAmin and a maximum value RAmax (Fig. 18 a, b, c).
  35. Active wide-band receiver antenna according to claims 1 to 34 characterized by the fact that there is a modem digital computer and both the impedance ZA of the passive antenna part (I) is recorded by measurement or calculation, as well as the azimuth mean value Dm of the directivity determined by measurement or calculation are stored in the digital computer and in which for various characteristic possible frequency patterns of antenna impedances suitable basic structures for low-loss filter circuits (3) are stored in the digital computer (3) and with the help of known strategies for calculating variations the dummy elements of the low-loss filter circuit (3) are determined for a specified mean gain in the active antenna.
  36. Active wide-band receiver antenna according to claims 1 to 35 characterized by the fact that the low-loss filter circuit (3) takes the form of a T semi-filter or T filter and/or of a chain of such filters, whose series and/or parallel branch are formed from a combination of dummy resistors in such a way that both the absolute value of a resistance in the series branch (28) and the absolute value of a susceptance in the parallel branch (29) in each case is sufficiently small within a transmission frequency range and sufficiently large outside of such a range and that high frequency reception signal (8) at the output is fed to the control amplifier (33) and whose regulating signal (42) controls the adjustable transmission element (34) (Fig. 19 a, b).
  37. Active wide-band receiver antenna according to claims 1 to 36 characterized by the fact that for the purposes of the separation of a miniaturized front-end of the active antenna in the low-loss filter circuit (3) a high-frequency line (10) as a element that transforms the effective admittance (7) on a frequency-dependent basis (Fig. 5).
  38. Active wide-band receiver antenna for ultra-short wave reception in cars according to one of claims 1 to 32 characterized by the fact that the passive antenna part (I) takes the form of a conductor structure printed on a dielectric carrier, such as a window or plastic backing and the low-loss filter circuit (3) as a band-pass with admission in the ultra-short wave range and high input impedance outside the ultra-short wave frequency range (fig. 1),
  39. Active wide-band receiver antenna according to claims 1 to 38 characterized by the fact that there is a repeater (24) with sufficiently high-impedance primary inductivity and a suitably chosen transmission ratio for the wide-band increase of the effective length Ie of the passive antenna part (1) between its connecting point (18) and the input of the amplifier circuit (21) (Fig. 17).
EP03019899A 2002-10-01 2003-09-02 Active wide-band reception antenna with regulation of the receiving level Expired - Lifetime EP1406349B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10245813A DE10245813A1 (en) 2002-10-01 2002-10-01 Active broadband reception antenna with reception level control
DE10245813 2002-10-01

Publications (3)

Publication Number Publication Date
EP1406349A2 EP1406349A2 (en) 2004-04-07
EP1406349A3 EP1406349A3 (en) 2006-03-29
EP1406349B1 true EP1406349B1 (en) 2008-05-28

Family

ID=31984324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03019899A Expired - Lifetime EP1406349B1 (en) 2002-10-01 2003-09-02 Active wide-band reception antenna with regulation of the receiving level

Country Status (6)

Country Link
US (1) US6888508B2 (en)
EP (1) EP1406349B1 (en)
KR (1) KR100596126B1 (en)
CN (1) CN100440619C (en)
AT (1) ATE397304T1 (en)
DE (2) DE10245813A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864000A (en) * 2023-03-02 2023-03-28 武汉大学 Kilo-frequency-range monopole low-frequency small-power low-noise high-sensitivity active antenna

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245813A1 (en) * 2002-10-01 2004-04-15 Lindenmeier, Heinz, Prof. Dr.-Ing. Active broadband reception antenna with reception level control
DE102004038551A1 (en) * 2004-08-06 2006-02-23 Atmel Germany Gmbh Signal amplifier for motor vehicle antenna, has a negative channel metal oxide semiconductor field effect transistor connected as a source follower along with drain and gate connections
US20100034748A1 (en) * 2008-08-07 2010-02-11 Guizhi Li Molecular imaging probes based on loaded reactive nano-scale latex
DE102005033088A1 (en) * 2005-07-15 2007-01-25 Robert Bosch Gmbh antenna array
DE102006039357B4 (en) * 2005-09-12 2018-06-28 Heinz Lindenmeier Antenna diversity system for radio reception for vehicles
US20080076354A1 (en) * 2006-09-26 2008-03-27 Broadcom Corporation, A California Corporation Cable modem with programmable antenna and methods for use therewith
DE102007002167A1 (en) * 2007-01-15 2008-07-17 Volkswagen Ag Information sending method for e.g. car, involves sending information using window defogger of motor vehicle, where defogger is utilized as antenna, and information is sent in form of electromagnetic field having frequency
DE102007017478A1 (en) * 2007-04-13 2008-10-16 Lindenmeier, Heinz, Prof. Dr. Ing. Receiving system with a circuit arrangement for the suppression of switching interference in antenna diversity
EP2037593A3 (en) * 2007-07-10 2016-10-12 Delphi Delco Electronics Europe GmbH Antenna diversity array for relatively broadband radio reception in automobiles
DE102007039914A1 (en) * 2007-08-01 2009-02-05 Lindenmeier, Heinz, Prof. Dr. Ing. Antenna diversity system with two antennas for radio reception in vehicles
DE102008003532A1 (en) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenna for satellite reception
PT2209221T (en) * 2009-01-19 2018-12-27 Fuba Automotive Electronics Gmbh Receiver for summating phased antenna signals
DE102009011542A1 (en) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenna for receiving circularly in a direction of rotation of the polarization of broadcast satellite radio signals
DE102009023514A1 (en) * 2009-05-30 2010-12-02 Heinz Prof. Dr.-Ing. Lindenmeier Antenna for circular polarization with a conductive base
DE102009030344A1 (en) * 2009-06-25 2010-12-30 Bayerische Motoren Werke Aktiengesellschaft Vehicle window with at least one heating conductor and at least one antenna
DE102012003460A1 (en) 2011-03-15 2012-09-20 Heinz Lindenmeier Multiband receiving antenna for the combined reception of satellite signals and terrestrial broadcasting signals
JP5640912B2 (en) * 2011-07-01 2014-12-17 山一電機株式会社 Contact unit and printed circuit board connector including the same
CN103213543B (en) * 2012-01-18 2015-11-25 比亚迪股份有限公司 A kind of battery-driven car running control system
KR102434773B1 (en) 2018-03-06 2022-08-22 삼성전자 주식회사 Antenna structure and electronic device including the same
CN110231614B (en) * 2019-07-05 2024-01-26 电子科技大学 Microwave ranging system based on passive frequency conversion
US11431334B2 (en) 2020-04-06 2022-08-30 Analog Devices International Unlimited Company Closed loop switch control system and method
CN113676265B (en) * 2021-08-11 2023-06-23 中国电波传播研究所(中国电子科技集团公司第二十二研究所) Method for determining power gain of active monopole antenna
CN114325134B (en) * 2021-12-30 2024-05-31 北京交大思诺科技股份有限公司 Automatic test system for frequency response characteristics of locomotive signal receiving antenna

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1591300B2 (en) 1967-12-12 1973-04-05 Meinke, Hans H., Prof. Dr.; Lindenmeier, Heinz, Dr.-Ing.; 8000 München ANTENNA WITH A REINFORCING TRIPOLE CONNECTED DIRECTLY BETWEEN THE INPUT TERMINALS
DE1919749C3 (en) 1969-04-18 1982-05-13 Hans Kolbe & Co, 3202 Bad Salzdetfurth Active receiving antenna with dipole character
US3942119A (en) 1973-03-02 1976-03-02 Hans Kolbe & Co. Multiple-transmission-channel active antenna arrangement
DE3618452C2 (en) 1986-06-02 1997-04-10 Lindenmeier Heinz Diversity antenna arrangement for receiving frequency-modulated signals in the rear window of a motor vehicle with a heating field located therein
DE3820229C1 (en) 1988-06-14 1989-11-30 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
US4875019A (en) * 1988-07-21 1989-10-17 Bahr Technologies, Inc. Receiver preamplifier with tuned circuit adapted for Loran reception
US5801663A (en) 1989-05-01 1998-09-01 Fuba Automotive Gmbh Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires
DE3914424A1 (en) 1989-05-01 1990-12-13 Lindenmeier Heinz ANTENNA WITH VERTICAL STRUCTURE FOR TRAINING AN EXTENDED AREA CAPACITY
US5266960A (en) 1989-05-01 1993-11-30 Fuba Hans Kolbe Co. Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires
US5408242A (en) * 1991-02-05 1995-04-18 Harada Kogyo Kabushiki Kaisha Glass antenna for automobiles
DE4323014A1 (en) * 1993-07-09 1995-01-12 Lindenmeier Heinz Active receiving antenna having an active signal path and a passive signal path
DE19612958A1 (en) * 1996-04-01 1997-10-02 Fuba Automotive Gmbh Antenna amplifier on a window pane
TW423180B (en) * 1997-01-31 2001-02-21 Terajima Fumitaka Glass antenna device for an automobile
DE19806834A1 (en) 1997-03-22 1998-09-24 Lindenmeier Heinz Audio and television antenna for automobile
KR20000022838A (en) * 1998-09-03 2000-04-25 세야 히로미치 Glass antenna device for an automobile
DE10033336A1 (en) * 1999-08-11 2001-04-12 Heinz Lindenmeier Diversity antenna for diversity system in vehicle has edge conductor on side of conducting surface with minimum length of about tenth of wavelength, forming low impedance coupling line
DE10114769B4 (en) * 2001-03-26 2015-07-09 Heinz Lindenmeier Active broadband antenna
DE10245813A1 (en) * 2002-10-01 2004-04-15 Lindenmeier, Heinz, Prof. Dr.-Ing. Active broadband reception antenna with reception level control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864000A (en) * 2023-03-02 2023-03-28 武汉大学 Kilo-frequency-range monopole low-frequency small-power low-noise high-sensitivity active antenna

Also Published As

Publication number Publication date
US6888508B2 (en) 2005-05-03
CN1505206A (en) 2004-06-16
CN100440619C (en) 2008-12-03
EP1406349A3 (en) 2006-03-29
KR20040030365A (en) 2004-04-09
DE10245813A1 (en) 2004-04-15
DE50309908D1 (en) 2008-07-10
ATE397304T1 (en) 2008-06-15
US20040113854A1 (en) 2004-06-17
EP1406349A2 (en) 2004-04-07
KR100596126B1 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
EP1406349B1 (en) Active wide-band reception antenna with regulation of the receiving level
EP1246294B1 (en) Active broadband vehicle receiving antenna
DE69326271T2 (en) Diversity window antenna for motor vehicles
DE3618452C2 (en) Diversity antenna arrangement for receiving frequency-modulated signals in the rear window of a motor vehicle with a heating field located therein
DE69531655T2 (en) Broadband monopole antenna in uniplanar printed circuit technology and transmitting and / or receiving device with such an antenna
DE19912465C2 (en) Multi-area antenna system
DE102010040290A1 (en) directional coupler
DE69913962T2 (en) MORE BAND VEHICLE ANTENNA
DE19533105A1 (en) High sensitivity non-directional loop antenna arrangement e.g for high frequency
DE69506435T2 (en) ANTENNA
DE19955849A1 (en) Active aerial for radar system includes inductive components providing compensation for temperature variation
DE2136759C2 (en) Car radio windscreen aerial - comprises rectangular metal frame with an electrical width of approximately half signal wavelength and a unipole
DE102010019904A1 (en) Arrangement for wireless connection of wireless device i.e. mobile phone, to high-frequency line, has electrically conductive layer deposited on surface for receiving radio waves from coupling antenna, and strip line applied on surface
DE4007824C2 (en) Vehicle antenna for radio services with a rod-shaped antenna element
DE10015315B4 (en) Antenna amplifier and adjustable actuator
EP0166387B1 (en) Vehicle windshield antenna
DE4406240B4 (en) Antenna arrangement on the rear window of a motor vehicle
DE102013211541A1 (en) Duplex antenna arrangement used for transmitting and receiving in different frequency bands, has helical monopole antennas that are capacitively coupled with electrical antenna conductor by alternating arrangement of windings
DE69716146T2 (en) RF power measurement device
EP1487052B1 (en) Antenna system in the aperture of an electrical conducting car body
WO2007115422A1 (en) High-sensitivity rfid read/write station
EP1813032B1 (en) Antenna architecture and lc coupler
DE2446631C2 (en) Active receiving antenna made of a conductive base and a conductive rod connected to it
AT519526B1 (en) circuit
WO2018029273A1 (en) Active antenna arrangement for radio reception in the cut-out of an electrically conductive vehicle body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20060420

17Q First examination report despatched

Effective date: 20060828

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DELPHI DELCO ELECTRONICS EUROPE GMBH

REF Corresponds to:

Ref document number: 50309908

Country of ref document: DE

Date of ref document: 20080710

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: DELPHI DELCO ELECTRONICS EUROPE GMBH

Effective date: 20080709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DELPHI DELCO ELECTRONICS EUROPE GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080828

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081028

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

BERE Be: lapsed

Owner name: FUBA AUTOMOTIVE G.M.B.H. & CO. KG

Effective date: 20080930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20090303

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080829

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170928

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50309908

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180925

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191129

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50309908

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401