[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1482328B1 - Apparatus to read-out information stored in a phosphor layer - Google Patents

Apparatus to read-out information stored in a phosphor layer Download PDF

Info

Publication number
EP1482328B1
EP1482328B1 EP03101525A EP03101525A EP1482328B1 EP 1482328 B1 EP1482328 B1 EP 1482328B1 EP 03101525 A EP03101525 A EP 03101525A EP 03101525 A EP03101525 A EP 03101525A EP 1482328 B1 EP1482328 B1 EP 1482328B1
Authority
EP
European Patent Office
Prior art keywords
stimulation
light source
concave mirror
light
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03101525A
Other languages
German (de)
French (fr)
Other versions
EP1482328A1 (en
Inventor
Georg Dr. Reiser
Andreas Dr. Bode
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert Healthcare GmbH
Original Assignee
Agfa Gevaert Healthcare GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert Healthcare GmbH filed Critical Agfa Gevaert Healthcare GmbH
Priority to AT03101525T priority Critical patent/ATE343145T1/en
Priority to EP03101525A priority patent/EP1482328B1/en
Priority to DE50305417T priority patent/DE50305417D1/en
Priority to JP2004090956A priority patent/JP2004354975A/en
Priority to US10/853,530 priority patent/US7122822B2/en
Publication of EP1482328A1 publication Critical patent/EP1482328A1/en
Application granted granted Critical
Publication of EP1482328B1 publication Critical patent/EP1482328B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2012Measuring radiation intensity with scintillation detectors using stimulable phosphors, e.g. stimulable phosphor sheets
    • G01T1/2014Reading out of stimulable sheets, e.g. latent image

Definitions

  • the invention relates to a device for detecting information contained in a phosphor layer according to the preamble of claim 1.
  • Generic devices are used, in particular for medical purposes, in the field of computer radiography (CR) (see the document US Pat. No. 4,829,180).
  • X-ray images are recorded in a phosphor layer by storing the X-ray radiation passing through an object, for example a patient, as a latent image in the phosphor layer.
  • the phosphor layer is irradiated with stimulation light and thereby excited to emit emission light, which corresponds to the latent image stored in the phosphor layer.
  • the emission light is detected by an optical detector and converted into electrical signals, which further processed as needed, displayed on a monitor or to a corresponding output device, such.
  • a printer is
  • the stimulation line to which the stimulation light emanating from the light source is focused, can not usually be arbitrarily sharply defined. For a high image quality of the image to be read, however, the sharpest possible limitation of the stimulation line is required.
  • an elongated, in particular cylindrical, concave mirror for focusing the stimulation light emitted by the light source onto the phosphor layer, wherein the light source is imaged onto the phosphor layer on a scale of 1: M and M has a value between about 0, 5 and 2 adopts.
  • the use of an oblong concave mirror greatly reduces aberrations that lead to a blurred image of the light source on the phosphor layer compared to cylindrical lenses.
  • aberrations due to spherical aberration are thereby completely eliminated and aberrations due to astigmatism and coma are greatly reduced.
  • This strong reduction of aberrations is inventively achieved in that the magnification, d. H.
  • the invention achieves a high degree of sharpness in the imaging of the light source onto the phosphor layer, so that a high quality of the image read out from the phosphor layer is ensured.
  • the light source is imaged onto the phosphor layer on a scale of 1: 1. At this scale aberrations are particularly low and thus the picture quality is particularly high.
  • the light source extends parallel to the stimulation line.
  • the concave mirror is arranged parallel to the stimulation line.
  • the sharpness of the image can be further increased in a simple manner.
  • the concave mirror is designed as a cylindrical mirror, which has the shape of a circular arc in cross section.
  • the cylindrical mirror has the shape of an elliptical arc or an aspherical profile in cross section.
  • the optical axis in the cross section of the concave mirror which in particular has a circular arc-shaped cross section, intersects the concave mirror in a vertex and the light source is tilted by a tilt angle about the vertex against the optical axis of the concave mirror.
  • the distance d of the light source and / or the stimulation line from the vertex of the concave mirror of the relationship d R cos 2 ⁇ , where R denotes the radius of curvature of the concave mirror and ⁇ denotes the tilt angle, preferably satisfies the cross section of the concave mirror.
  • a further embodiment of the invention provides that the detector has a plurality of detector elements arranged parallel to the stimulation line. This allows a spatially resolved detection of emanating from the stimulation line emission light.
  • the light source comprises a plurality of individual radiation sources arranged along a line, each of which emits stimulation light bundles, which are focused by the concave mirror onto the stimulation line and at least partially overlap on the stimulation line.
  • a high intensity of the stimulation light is achieved with simultaneously low intensity fluctuations along the stimulation line.
  • a further embodiment of the invention provides that the light source is designed as a line light source, which is designed to emit stimulation light along a continuous line. As a result, intensity fluctuations are kept very low.
  • the light source comprises a radiation source and a deflection device, wherein the stimulation light emitted by the radiation source is periodically deflected by the deflection device and focused by the concave mirror on a focus area on the phosphor layer, that the focus area, the phosphor layer along the Periodically sweeps stimulation line.
  • Fig. 1 shows a first embodiment of the invention in side view.
  • a light source 10 emits stimulation light 12 in the form of a divergent in the plane of stimulation light beam 13, which is reflected at an elongated concave mirror 14 which is perpendicular to the plane of the figure, and thereby focused on a likewise perpendicular to the plane of the figure stimulation line 16.
  • the light source 10 in this example comprises individual radiation sources 11, which are arranged along a line. This is illustrated in Fig. 2, which shows the first embodiment shown in Fig. 1 in plan view.
  • the radiation sources 11 of the light source 10 arranged along a straight line emit stimulation light 12, which also has the form of divergent stimulation light bundles 15 in the plane of FIG. 2.
  • the divergent in the plane of Fig. 2 stimulation light beam 15 of the individual radiation sources 11 are reflected on the concave mirror 14 and superimposed on the stimulation line 16.
  • the individual radiation sources 11 and the elongated concave mirror 14 are parallel to the stimulation line 16 arranged.
  • the stimulation line 16 lies on a phosphor layer (not shown) from which a latent image stored therein is to be read out.
  • the elongated concave mirror 14 is formed as a cylindrical mirror whose cross section has the shape of a circular arc.
  • Such cylinder mirrors are inexpensive to produce and result in the described devices to a strong reduction of aberrations.
  • the cross section of the cylinder mirror can also be an aspherical, d. H. have a course deviating from the shape of a circular arc, by which intensity, sharpness and width variations along the stimulation line 16 can be additionally reduced.
  • the cylindrical mirror may have a cross section in the form of an elliptical arc.
  • Such a shaped cylindrical mirror has two focal lines, wherein the light source 10 is arranged in a first focal line and the stimulation line 16 extends along a second focal line. In this case, an aberration-free focusing of the stimulation light 12, and thus a very sharp limitation of the stimulation line 16, is achieved for any imaging scales.
  • the cylindrical mirror may also have the shape of a parabolic arc in cross section. This is advantageous, for example, when the stimulation light 12 emitted by the light source 10 has the form of a parallel light beam or a light beam with only a very small divergence.
  • the elongated concave mirror 14 has straight generatrices which run perpendicular to the plane of FIG.
  • the elongated concave mirror 14 may also have a shape in which the generatrices are curved. In this way, a further degree of freedom in the design of the shape of the concave mirror 14 and thus in the reduction of aberrations, for example, due to additional optical components in the beam path of the stimulation light beam 13 is obtained.
  • the light source 10 and the stimulation line 16 are each tilted by a tilt angle ⁇ against the optical axis 5 of the concave mirror 14.
  • the tilting takes place here about the vertex S, in which the optical axis 5 of the concave mirror 14 intersects this.
  • the tilt angle ⁇ the distance between the light source 10 and the stimulation line 16 to constructive requirements, such.
  • a specific lighting and / or detection geometry can be adjusted.
  • the light source 10 is imaged onto the stimulation line 16 on a scale of 1: 1.
  • the scale here refers to an image or focusing in the plane of FIG. 1.
  • imaging scales deviating from 1: 1 within the range between 1 : Although 2 and 2: 1 show aberrations due to spherical aberration, astigmatism and coma, surprisingly, they are so small that nevertheless a very high image quality can be guaranteed.
  • the distance of the light source 10 and / or the stimulation line 16 is selected by the concave mirror 14 in dependence of the selected tilt angle ⁇ .
  • the distance d of the individual radiation sources 11 and / or the stimulation line 16 from the vertex S of the concave mirror 14 of the equation d R cos 2 ⁇ , which is related to the respective optical axis 5 in cross section of the concave mirror 14, is sufficient where R denotes the radius of curvature of the concave mirror.
  • the radius of curvature R corresponds to the distance of the circular arc to the center P of this circle.
  • the light source 10 comprises a plurality of radiation sources 11 arranged along a straight line.
  • the light source 10 can also be designed as a line light source which emits the stimulation light 12 along a continuous line.
  • a light source 10 composed of a plurality of individual radiation sources 11 there are no longer any width fluctuations along the stimulation line 16.
  • Abnormalities due to spherical aberration and / or astigmatism are greatly reduced by the inventive use of an elongated, in particular cylindrical, concave mirror, so that a significantly increased sharpness of the stimulation line is achieved.
  • the light source 10 has only one radiation source 11, the stimulation light bundle 13 emanating from the radiation source 11 being periodically deflected by a deflection device and focused by the elongated concave mirror 14 onto a point-shaped or linear focus area on the phosphor layer 21. Due to the periodic deflection of the stimulation light bundle 13, the focus area sweeps over the phosphor layer along the stimulation line 16. The respective excited emission light is detected by a detector. Devices of this type are also referred to as flying spot systems. Even with such systems, aberrations that would lead to a blurring and widening of the focus area and thus to a reduction in image quality are significantly reduced by the invention.
  • FIG. 3 shows a second exemplary embodiment of the invention, in which the divergent stimulation light beams 13 emitted by the light source 10 are first reflected on an oblong plane mirror 18 before they strike the oblong concave mirror 14 and from there along the stimulation line 16 onto the phosphor layer 21, which is mechanically stabilized by a carrier layer 23, are focused.
  • the plane mirror 18 are compared to the first embodiment shown in FIG. 1 additional possibilities in the spatial arrangement of the light source 10, the concave mirror 14 and the phosphor layer 21 obtained, allowing an adaptation of the device according to the invention to design requirements, without additional aberrations cause.
  • a suitable optical prism for deflecting the stimulation light bundle 13 can also be used. It is also possible to use an elongated convex mirror or another elongated concave mirror for deflecting the stimulation light bundle 13.
  • the spatial arrangement of the light source 10, the concave mirror 14 and the stimulation line 16 extending on the phosphor layer 21 relative to one another take place in this example analogously to the first exemplary embodiment shown in FIGS. 1 and 2.
  • the light source 10 and the plane mirror 18 are arranged so that the light source 10 is also tilted by a - in this case virtual - tilt angle ⁇ against the optical axis 5 of the concave mirror 14.
  • the distances of the light source 10 and the phosphor layer 21 from the vertex S of the concave mirror 14 are also selected so that a 1: 1 image-related to the plane of Figure 3 - takes place and thus aberrations are reduced to a minimum.
  • the emission light 17 excited along the stimulation line 16 in the phosphor layer 21 is imaged onto the detector 25 by means of imaging optics 24.
  • the detector 25 is designed as a linear detector which has a multiplicity of individual detector elements arranged parallel to the stimulation line 16.
  • the imaging optics 24, which preferably as a linear microlens or Gradientenindexlinsen array, in particular Selfoclinsen array is formed.
  • the device combined to form a reading unit 30 is moved in a transport direction T over the phosphor layer 21, which is successively excited and read out along the stimulation line 16.
  • the phosphor layer 21 located on the carrier layer 23 can also be moved relative to the reading unit 30.
  • Fig. 4 shows a third embodiment of the invention, which has a particularly compact construction.
  • the cross-section of the concave mirror 14 is oriented substantially perpendicular to the phosphor layer 21 in this example, whereby the distance of the light source 10 from the phosphor layer 21 can be reduced.
  • the outgoing from the light source 10 divergent stimulation light beam 13 meet in this example directly on the concave mirror 14 and are focused by this on the stimulation line 16, wherein in the beam path between the concave mirror 14 and the phosphor layer 21, a plane mirror 18 is inserted, which is the of Concave mirror 14 reflects reflected and now convergent light beam on the stimulation line 16.
  • the plane mirror 18 opens a variety of ways to arrange the light source 10, the concave mirror 14 and the phosphor layer 21 relative to each other, whereby in particular a very compact arrangement of the individual components can be achieved.
  • the phosphor layer 21 to be read is located on a carrier layer 23, which is permeable to the stimulation light, so that the phosphor layer 21 can be excited from its underside.
  • the emission light 17 is imaged by an imaging optical system 24 onto a detector 25 from the upper side.
  • the emission light 17 can also be detected by the transparent carrier layer 23 from the underside.
  • the imaging optics 24 and the detector 25 the statements on the one shown in FIG. 3 apply second embodiment accordingly.
  • the inclination angle ⁇ and the magnification of the explanations apply to the embodiments described in Figures 1 to 3 accordingly.

Landscapes

  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Image Input (AREA)
  • Luminescent Compositions (AREA)
  • Light Receiving Elements (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Lenses (AREA)

Abstract

Device for capturing information contained within a phosphor layer comprises a light source (10) for transmission of stimulation light (12) which is incident on a stimulation line (16) of the phosphor layer and is suitable for exciting emissive light within the phosphor layer, a detector for detecting the emissive light and a elongated hollow mirror (14) for focussing the light from the light sources on the phosphor layer. In so doing the light from the light source is magnified by a factor of 1 to M, where M is between 0.5 and 2.

Description

Die Erfindung betrifft eine Vorrichtung zum Erfassen von in einer Phosphorschicht enthaltenen Informationen gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a device for detecting information contained in a phosphor layer according to the preamble of claim 1.

Gattungsgemäße Vorrichtungen werden, insbesondere für medizinische Zwecke, im Bereich der Computer-Radiographie (CR) eingesetzt (siehe das Dokument US 4 829 180). Hierbei werden Röntgenaufnahmen in einer Phosphorschicht aufgezeichnet, indem die durch ein Objekt, beispielsweise einen Patienten, hindurchtretende Röntgenstrahlung als latentes Bild in der Phosphorschicht gespeichert wird. Zum Auslesen des latenten Bildes wird die Phosphorschicht mit Stimulationslicht bestrahlt und dabei zur Aussendung von Emissionslicht angeregt, welches dem in der Phosphorschicht gespeicherten latenten Bild entspricht. Das Emissionslicht wird von einem optischen Detektor erfasst und in elektrische Signale umgewandelt, welche nach Bedarf weiterverarbeitet, auf einem Monitor dargestellt oder an einem entsprechenden Ausgabegerät, wie z. B. einem Drucker, ausgegeben werden.Generic devices are used, in particular for medical purposes, in the field of computer radiography (CR) (see the document US Pat. No. 4,829,180). In this case, X-ray images are recorded in a phosphor layer by storing the X-ray radiation passing through an object, for example a patient, as a latent image in the phosphor layer. To read the latent image, the phosphor layer is irradiated with stimulation light and thereby excited to emit emission light, which corresponds to the latent image stored in the phosphor layer. The emission light is detected by an optical detector and converted into electrical signals, which further processed as needed, displayed on a monitor or to a corresponding output device, such. A printer.

Aus dem Stand der Technik sind Vorrichtungen bekannt, bei welchen das von einer Lichtquelle ausgehende Stimulationslicht auf einen linienförmigen Bereich der Phosphorschicht mittels Zylinderlinsen fokussiert wird. Bei solchen Vorrichtungen lässt sich die Stimulationslinie, auf welche das von der Lichtquelle ausgehende Stimulationslicht fokussiert wird, meist nicht beliebig scharf begrenzen. Für eine hohe Bildqualität des auszulesenden Bildes ist jedoch eine möglichst scharfe Begrenzung der Stimulationslinie erforderlich.Devices are known from the prior art in which the stimulation light emitted by a light source strikes a linear area the phosphor layer is focused by means of cylindrical lenses. In such devices, the stimulation line, to which the stimulation light emanating from the light source is focused, can not usually be arbitrarily sharply defined. For a high image quality of the image to be read, however, the sharpest possible limitation of the stimulation line is required.

Es ist Aufgabe der Erfindung, eine Vorrichtung zum Erfassen von in einer Phosphorschicht enthaltenen Informationen anzugeben, bei welcher eine möglichst hohe Bildqualität gewährleistet ist.It is an object of the invention to provide a device for detecting information contained in a phosphor layer, in which the highest possible image quality is ensured.

Diese Aufgabe wird gemäß Anspruch 1 durch einen länglichen, insbesondere zylinderförmigen, Hohlspiegel zur Fokussierung des von der Lichtquelle ausgesandten Stimulationslichts auf die Phosphorschicht gelöst, wobei die Lichtquelle in einem Maßstab von 1 : M auf die Phosphorschicht abgebildet wird und M einen Wert zwischen etwa 0,5 und 2 annimmt.This object is achieved according to claim 1 by an elongated, in particular cylindrical, concave mirror for focusing the stimulation light emitted by the light source onto the phosphor layer, wherein the light source is imaged onto the phosphor layer on a scale of 1: M and M has a value between about 0, 5 and 2 adopts.

Durch die Verwendung eines länglichen Hohlspiegels werden Abbildungsfehler, die zu einer unscharfen Abbildung der Lichtquelle auf die Phosphorschicht führen, im Vergleich zu Zylinderlinsen stark reduziert. Insbesondere werden hierdurch Abbildungsfehler auf Grund von sphärischer Aberration vollständig eliminiert und Abbildungsfehler auf Grund von Astigmatismus und Koma stark reduziert. Diese starke Reduktion von Abbildungsfehlern wird erfindungsgemäß dadurch erreicht, dass der Abbildungsmaßstab, d. h. das Verhältnis aus Bildgröße zu Gegenstandsgröße, einen Wert zwischen 2 : 1 (M = 0,5, Vergrößerung) und 1 : 2 (M = 2, Verkleinerung) annimmt. Durch die Erfindung wird ein hohes Maß an Schärfe bei der Abbildung der Lichtquelle auf die Phosphorschicht erreicht, so dass eine hohe Qualität des aus der Phosphorschicht ausgelesenen Bildes gewährleistet ist.The use of an oblong concave mirror greatly reduces aberrations that lead to a blurred image of the light source on the phosphor layer compared to cylindrical lenses. In particular, aberrations due to spherical aberration are thereby completely eliminated and aberrations due to astigmatism and coma are greatly reduced. This strong reduction of aberrations is inventively achieved in that the magnification, d. H. the ratio of image size to object size assumes a value between 2: 1 (M = 0.5, magnification) and 1: 2 (M = 2, reduction). The invention achieves a high degree of sharpness in the imaging of the light source onto the phosphor layer, so that a high quality of the image read out from the phosphor layer is ensured.

Vorzugsweise wird die Lichtquelle in einem Maßstab von 1 : 1 auf die Phosphorschicht abgebildet. Bei diesem Maßstab sind Abbildungsfehler besonders gering und dadurch die Bildqualität besonders hoch.Preferably, the light source is imaged onto the phosphor layer on a scale of 1: 1. At this scale aberrations are particularly low and thus the picture quality is particularly high.

In einer weiteren Ausführung ist vorgesehen, dass sich die Lichtquelle parallel zur Stimulationslinie erstreckt. Hierdurch wird auf einfache Weise eine noch größere Schärfe der Stimulationslinie erreicht.In a further embodiment, it is provided that the light source extends parallel to the stimulation line. As a result, an even greater sharpness of the stimulation line is achieved in a simple manner.

Vorteilhafterweise ist der Hohlspiegel parallel zur Stimulationslinie angeordnet. Hierdurch kann die Schärfe der Abbildung auf einfache Weise noch weiter erhöht werden.Advantageously, the concave mirror is arranged parallel to the stimulation line. As a result, the sharpness of the image can be further increased in a simple manner.

In einer weiteren bevorzugten Ausgestaltung der Erfindung ist vorgesehen, dass der Hohlspiegel als Zylinderspiegel ausgebildet ist, welcher im Querschnitt die Form eines Kreisbogens aufweist. In alternativen Varianten dieser Ausgestaltung weist der Zylinderspiegel im Querschnitt die Form eines Ellipsenbogens oder einen asphärischen Verlauf auf. Bei allen genannten Querschnittsformen des Zylinderspiegels wird eine im Vergleich zu entsprechend geformten Zylinderlinsen schärfere Abbildung der Lichtquelle auf die Phosphorschicht und damit höhere Bildqualität erreicht.In a further preferred embodiment of the invention it is provided that the concave mirror is designed as a cylindrical mirror, which has the shape of a circular arc in cross section. In alternative variants of this embodiment, the cylindrical mirror has the shape of an elliptical arc or an aspherical profile in cross section. In all the above-mentioned cross-sectional shapes of the cylinder mirror, a sharper image of the light source onto the phosphor layer and thus higher image quality is achieved compared to correspondingly shaped cylindrical lenses.

In einer weiteren Ausführungsform ist vorgesehen, dass die optische Achse im Querschnitt des Hohlspiegels, welcher insbesondere einen kreisbogenförmigen Querschnitt aufweist, den Hohlspiegel in einem Scheitelpunkt schneidet und die Lichtquelle um einen Kippwinkel um den Scheitelpunkt gegen die optische Achse des Hohlspiegels gekippt ist. Durch Kippen der Strahlungsquellen gegen die optische Achse des Hohlspiegels wird auch die Stimulationslinie, auf welche das von der Lichtquelle ausgehende Stimulationslicht fokussiert wird, in entgegengesetzte Richtung gegen die optische Achse des Hohlspiegels gekippt. Durch eine entsprechende Wahl des Kippwinkels kann somit die Entfernung der Lichtquelle von der Stimulationslinie an konstruktive Erfordernisse angepasst werden.In a further embodiment it is provided that the optical axis in the cross section of the concave mirror, which in particular has a circular arc-shaped cross section, intersects the concave mirror in a vertex and the light source is tilted by a tilt angle about the vertex against the optical axis of the concave mirror. By tilting the radiation sources against the optical axis of the concave mirror, the stimulation line, on which the stimulation light emanating from the light source is focused, is also tilted in the opposite direction against the optical axis of the concave mirror. By an appropriate choice of the tilt angle thus the distance of the light source from the stimulation line can be adapted to constructive requirements.

Vorzugsweise genügt der auf die optische Achse im Querschnitt des Hohlspiegels bezogene Abstand d der Lichtquelle und/oder der Stimulationslinie vom Scheitelpunkt des Hohlspiegels der Beziehung d = R cos2ω, wobei R den Krümmungsradius des Hohlspiegels und ω den Kippwinkel bezeichnet. Durch Astigmatismus und Koma bedingte Abbildungsfehler, welche mit ansteigendem Kippwinkel ω zunehmen, können auf diese Weise sehr klein gehalten werden, so dass eine hohe Abbildungsschärfe und damit Bildqualität gewährleistet ist.The distance d of the light source and / or the stimulation line from the vertex of the concave mirror of the relationship d = R cos 2 ω, where R denotes the radius of curvature of the concave mirror and ω denotes the tilt angle, preferably satisfies the cross section of the concave mirror. By astigmatism and coma conditional aberrations, which with increasing tilt angle ω increase, can be kept very small in this way, so that a high image sharpness and thus image quality is guaranteed.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass der Detektor mehrere parallel zur Stimulationslinie angeordnete Detektorelemente aufweist. Hierdurch wird eine ortsaufgelöste Erfassung des von der Stimulationslinie ausgehenden Emissionslichts ermöglicht.A further embodiment of the invention provides that the detector has a plurality of detector elements arranged parallel to the stimulation line. This allows a spatially resolved detection of emanating from the stimulation line emission light.

Bei einer Ausführungsform der Vorrichtung umfasst die Lichtquelle mehrere entlang einer Linie angeordnete einzelne Strahlungsquellen, die jeweils Stimulationslichtbündel aussenden, welche durch den Hohlspiegel auf die Stimulationslinie fokussiert werden und sich auf der Stimulationslinie zumindest teilweise überlagern. Durch die Überlagerung der einzelnen Stimulationslichtbündel in Richtung der Stimulationslinie wird eine hohe Intensität des Stimulationslichts bei gleichzeitig niedrigen Intensitätsschwankungen entlang der Stimulationslinie erreicht.In one embodiment of the device, the light source comprises a plurality of individual radiation sources arranged along a line, each of which emits stimulation light bundles, which are focused by the concave mirror onto the stimulation line and at least partially overlap on the stimulation line. By superimposing the individual stimulation light bundles in the direction of the stimulation line, a high intensity of the stimulation light is achieved with simultaneously low intensity fluctuations along the stimulation line.

Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Lichtquelle als Linienlichtquelle ausgebildet ist, welche zum Aussenden von Stimulationslicht entlang einer kontinuierlichen Linie ausgebildet ist. Hierdurch werden Intensitätsschwankungen besonders niedrig gehalten.A further embodiment of the invention provides that the light source is designed as a line light source, which is designed to emit stimulation light along a continuous line. As a result, intensity fluctuations are kept very low.

In einer alternativen Ausführung ist vorgesehen, dass die Lichtquelle eine Strahlungsquelle und eine Ablenkeinrichtung umfasst, wobei das von der Strahlungsquelle ausgesandte Stimulationslicht derart durch die Ablenkeinrichtung periodisch abgelenkt und von dem Hohlspiegel auf einen Fokusbereich auf die Phosphorschicht fokussiert wird, dass der Fokusbereich die Phosphorschicht entlang der Stimulationslinie periodisch überstreicht. Auch bei solchen Systemen werden Abbildungsfehler, die zu einer Verunschärfung und Verbreiterung des Fokusbereichs und damit zu einer Verminderung der Bildqualität führen würden, durch die Erfindung deutlich reduziert.In an alternative embodiment, it is provided that the light source comprises a radiation source and a deflection device, wherein the stimulation light emitted by the radiation source is periodically deflected by the deflection device and focused by the concave mirror on a focus area on the phosphor layer, that the focus area, the phosphor layer along the Periodically sweeps stimulation line. Even with such systems, aberrations that would lead to a blurring and widening of the focus area and thus to a reduction in image quality are significantly reduced by the invention.

Die Erfindung wird nachfolgend anhand von Figuren näher erläutert. Es zeigen:

Fig. 1
ein erstes Ausführungsbeispiel der Erfindung in Seitenansicht;
Fig. 2
das in Fig. 1 dargestellte erste Ausführungsbeispiel in Draufsicht;
Fig. 3
ein zweites Ausführungsbeispiel der Erfindung; und
Fig. 4
ein drittes Ausführungsbeispiel der Erfindung.
The invention will be explained in more detail with reference to figures. Show it:
Fig. 1
a first embodiment of the invention in side view;
Fig. 2
the first embodiment shown in Figure 1 in plan view.
Fig. 3
a second embodiment of the invention; and
Fig. 4
a third embodiment of the invention.

Fig. 1 zeigt ein erstes Ausführungsbeispiel der Erfindung in Seitenansicht. Eine Lichtquelle 10 sendet Stimulationslicht 12 in Form eines in Figurenebene divergenten Stimulationslichtbündels 13 aus, welches an einem länglichen Hohlspiegel 14, der senkrecht zur Figurenebene verläuft, reflektiert und dabei auf eine ebenfalls senkrecht zur Figurenebene verlaufende Stimulationslinie 16 fokussiert wird.Fig. 1 shows a first embodiment of the invention in side view. A light source 10 emits stimulation light 12 in the form of a divergent in the plane of stimulation light beam 13, which is reflected at an elongated concave mirror 14 which is perpendicular to the plane of the figure, and thereby focused on a likewise perpendicular to the plane of the figure stimulation line 16.

Die Lichtquelle 10 umfasst in diesem Beispiel einzelne Strahlungsquellen 11, welche entlang einer Linie angeordnet sind. Dies ist in Fig. 2 veranschaulicht, welche das in Fig. 1 dargestellte erste Ausführungsbeispiel in Draufsicht zeigt. Die entlang einer geraden Linie angeordneten Strahlungsquellen 11 der Lichtquelle 10 senden Stimulationslicht 12 aus, welches auch in der Ebene der Fig. 2 die Form divergenter Stimulationslichtbündel 15 aufweist. Die in der Ebene der Fig. 2 divergenten Stimulationslichtbündel 15 der einzelnen Strahlungsquellen 11 werden am Hohlspiegel 14 reflektiert und überlagern sich auf der Stimulationslinie 16. Wie in Fig. 2 zu erkennen ist, sind die einzelnen Strahlungsquellen 11 sowie der längliche Hohlspiegel 14 parallel zur Stimulationslinie 16 angeordnet. Die Stimulationslinie 16 liegt hierbei auf einer Phosphorschicht (nicht dargestellt) aus welcher ein darin abgespeichertes latentes Bild ausgelesen werden soll.The light source 10 in this example comprises individual radiation sources 11, which are arranged along a line. This is illustrated in Fig. 2, which shows the first embodiment shown in Fig. 1 in plan view. The radiation sources 11 of the light source 10 arranged along a straight line emit stimulation light 12, which also has the form of divergent stimulation light bundles 15 in the plane of FIG. 2. The divergent in the plane of Fig. 2 stimulation light beam 15 of the individual radiation sources 11 are reflected on the concave mirror 14 and superimposed on the stimulation line 16. As can be seen in Fig. 2, the individual radiation sources 11 and the elongated concave mirror 14 are parallel to the stimulation line 16 arranged. The stimulation line 16 lies on a phosphor layer (not shown) from which a latent image stored therein is to be read out.

In diesem Ausführungsbeispiel ist der längliche Hohlspiegel 14 als Zylinderspiegel ausgebildet, dessen Querschnitt die Form eines Kreisbogens aufweist. Solche Zylinderspiegel sind kostengünstig herzustellen und führen bei den beschriebenen Vorrichtungen zu einer starken Verminderung von Abbildungsfehlern.In this embodiment, the elongated concave mirror 14 is formed as a cylindrical mirror whose cross section has the shape of a circular arc. Such cylinder mirrors are inexpensive to produce and result in the described devices to a strong reduction of aberrations.

Der Querschnitt des Zylinderspiegels kann aber auch einen asphärischen, d. h. einen von der Form eines Kreisbogens abweichenden, Verlauf aufweisen, durch welchen Intensitäts-, Schärfen- und Breitenschwankungen entlang der Stimulationslinie 16 zusätzlich vermindert werden können. Insbesondere kann der Zylinderspiegel einen Querschnitt in Form eines Ellipsenbogens aufweisen. Ein derart geformter Zylinderspiegel weist zwei Brennlinien auf, wobei die Lichtquelle 10 in einer ersten Brennlinie angeordnet ist und die Stimulationslinie 16 entlang einer zweiten Brennlinie verläuft. In diesem Fall wird eine für beliebige Abbildungsmaßstäbe aberrationsfreie Fokussierung des Stimulationslichts 12 und damit eine sehr scharfe Begrenzung der Stimulationslinie 16 erreicht. Der Zylinderspiegel kann im Querschnitt aber auch die Form eines Parabelbogens aufweisen. Dies ist beispielsweise dann von Vorteil, wenn das von der Lichtquelle 10 ausgesandte Stimulationslicht 12 die Form eines parallelen Lichtbündels oder eines Lichtbündels mit einer nur sehr kleinen Divergenz aufweist.The cross section of the cylinder mirror can also be an aspherical, d. H. have a course deviating from the shape of a circular arc, by which intensity, sharpness and width variations along the stimulation line 16 can be additionally reduced. In particular, the cylindrical mirror may have a cross section in the form of an elliptical arc. Such a shaped cylindrical mirror has two focal lines, wherein the light source 10 is arranged in a first focal line and the stimulation line 16 extends along a second focal line. In this case, an aberration-free focusing of the stimulation light 12, and thus a very sharp limitation of the stimulation line 16, is achieved for any imaging scales. The cylindrical mirror may also have the shape of a parabolic arc in cross section. This is advantageous, for example, when the stimulation light 12 emitted by the light source 10 has the form of a parallel light beam or a light beam with only a very small divergence.

Im dargestellten Beispiel weist der längliche Hohlspiegel 14 gerade Mantellinien auf, welche senkrecht zur Ebene der Figur 1 verlaufen. Im Sinne der Erfindung kann der längliche Hohlspiegel 14 aber auch eine Form aufweisen, bei welcher die Mantellinien gekrümmt sind. Hierdurch wird ein weiterer Freiheitsgrad bei der Ausgestaltung der Form des Hohlspiegels 14 und damit bei der Verminderung von Abbildungsfehlern, beispielsweise aufgrund zusätzlicher optischer Komponenten im Strahlengang des Stimulationslichtbündels 13, erhalten.In the example shown, the elongated concave mirror 14 has straight generatrices which run perpendicular to the plane of FIG. For the purposes of the invention, however, the elongated concave mirror 14 may also have a shape in which the generatrices are curved. In this way, a further degree of freedom in the design of the shape of the concave mirror 14 and thus in the reduction of aberrations, for example, due to additional optical components in the beam path of the stimulation light beam 13 is obtained.

Wie Fig. 1 zeigt, sind die Lichtquelle 10 und die Stimulationslinie 16 jeweils um einen Kippwinkel ω gegen die optische Achse 5 des Hohlspiegels 14 gekippt. Die Kippung erfolgt hierbei um den Scheitelpunkt S, in welchem die optische Achse 5 des Hohlspiegels 14 diesen schneidet. Durch die Wahl des Kippwinkels ω kann der Abstand zwischen der Lichtquelle 10 und der Stimulationslinie 16 an konstruktive Erfordernisse, wie z. B. eine bestimmte Beleuchtungs- und/oder Detektionsgeometrie, angepasst werden.As shown in FIG. 1, the light source 10 and the stimulation line 16 are each tilted by a tilt angle ω against the optical axis 5 of the concave mirror 14. The tilting takes place here about the vertex S, in which the optical axis 5 of the concave mirror 14 intersects this. By choosing the tilt angle ω, the distance between the light source 10 and the stimulation line 16 to constructive requirements, such. As a specific lighting and / or detection geometry can be adjusted.

Durch die Verwendung eines länglichen Hohlspiegels 14 zur Fokussierung der von den einzelnen Strahlungsquellen 11 ausgehenden divergenten Stimulationslichtbündel 13 wird eine wesentlich schärfer begrenzte und in ihrer Breite homogenere Stimulationslinie 16 erhalten als dies bei der aus dem Stand der Technik bekannten Fokussierung des Stimulationslichts 12 mittels Zylinderlinsen erreicht wird. Dies kann damit erklärt werden, dass bei der Fokussierung der einzelnen Stimulationslichtbündel 13 der Strahlungsquellen 11 mittels Zylinderlinsen Abbildungsfehler auf Grund einer Wölbung der einzelnen Fokuslinien, auch Focusbow genannt, entlang der Stimulationslinie 16 auftreten, welche zu einer Schärfenvariation und in Folge dessen einer Breitenvariation der Linie führen. Durch Verwendung eines länglichen Hohlspiegels werden diese Abbildungsfehler eliminiert oder zumindest stark reduziert, so dass eine Breitenvariation der Stimulationslinie 16 in Linienrichtung vermieden bzw. vermindert wird. Damit wird auch bei einer aus mehreren einzelnen Strahlungsquellen 11 zusammengesetzten Lichtquelle 10 eine gleichmäßig breite und dabei scharf begrenzte Stimulationslinie 16 auf der Phosphorschicht erhalten.By using an elongated concave mirror 14 for focusing the divergent stimulation light bundles emanating from the individual radiation sources 11 13 is obtained a much sharper limited and more homogeneous in its width stimulation line 16 than is achieved in the known from the prior art focusing of the stimulation light 12 by means of cylindrical lenses. This can be explained by the fact that, when focusing the individual stimulation light bundles 13 of the radiation sources 11 by means of cylindrical lenses, aberrations occur due to a curvature of the individual focus lines, also called Focusbow, along the stimulation line 16, which results in a sharpness variation and consequently a width variation of the line to lead. By using an oblong concave mirror, these aberrations are eliminated or at least greatly reduced, so that a width variation of the stimulation line 16 in the line direction is avoided or reduced. Thus, even with a composite of a plurality of individual radiation sources 11 light source 10 is a uniformly wide and thereby sharply limited stimulation line 16 obtained on the phosphor layer.

Bei dem in den Figuren 1 und 2 dargestellten ersten Ausführungsbeispiel wird die Lichtquelle 10 im Maßstab 1 : 1 auf die Stimulationslinie 16 abgebildet. Der Maßstab bezieht sich hierbei auf eine Abbildung bzw. Fokussierung in der Ebene der Figur 1. Durch diese 1 : 1-Abildung werden Abbildungsfehler, welche insbesondere eine Verunschärfung der Abbildung der Lichtquelle 10 auf die Stimulationslinie 16 zur Folge haben, stark vermindert. Insbesondere werden hierdurch Abbildungsfehler aufgrund von sphärischer Aberration vermieden. Die für eine hohe Bildqualität erforderliche scharfe Begrenzung der Stimulationslinie 16 wird jedoch nicht nur bei einem Abbildungsmaßstab von 1 : 1 erzielt, sondern auch bei Maßstäben zwischen 1 : 2 und 2 : 1. Bei von 1 : 1 abweichenden Abbildungsmaßstäben treten innerhalb des Bereichs zwischen 1 : 2 und 2 : 1 zwar Abbildungsfehler aufgrund von sphärischer Aberration, Astigmatismus und Koma auf, überraschenderweise sind diese jedoch so gering, dass dennoch eine sehr hohe Bildqualität gewährleistet werden kann.In the first exemplary embodiment illustrated in FIGS. 1 and 2, the light source 10 is imaged onto the stimulation line 16 on a scale of 1: 1. The scale here refers to an image or focusing in the plane of FIG. 1. By this one-to-one imaging, aberrations that result in particular in a blurring of the image of the light source 10 on the stimulation line 16 are greatly reduced. In particular, this avoids aberrations due to spherical aberration. However, the sharp limitation of the stimulation line 16 required for a high image quality is achieved not only at a reproduction scale of 1: 1, but also at scales between 1: 2 and 2: 1. With imaging scales deviating from 1: 1, within the range between 1 : Although 2 and 2: 1 show aberrations due to spherical aberration, astigmatism and coma, surprisingly, they are so small that nevertheless a very high image quality can be guaranteed.

Um Abbildungsfehler auf Grund von Astigmatismus und Koma besonders niedrig zu halten, wird der Abstand der Lichtquelle 10 und/oder der Stimulationslinie 16 vom Hohlspiegel 14 in Abhängigkeit des gewählten Kippwinkels ω gewählt. Insbesondere genügt der auf die jeweilige optische Achse 5 im Querschnitt des Hohlspiegels 14 bezogene Abstand d der einzelnen Strahlungsquellen 11 und/oder der Stimulationslinie 16 vom Scheitelpunkt S des Hohlspiegels 14 der Gleichung d = R cos2ω, wobei R den Krümmungsradius des Hohlspiegels bezeichnet. Im Falle des Hohlspiegels 14, der im Beispiel der Fig. 1 als Zylinderspiegel einen kreisbogenförmigen Querschnitt aufweist, entspricht der Krümmungsradius R dem Abstand des Kreisbogens zum Mittelpunkt P dieses Kreises.To keep aberrations due to astigmatism and coma particularly low, the distance of the light source 10 and / or the stimulation line 16 is selected by the concave mirror 14 in dependence of the selected tilt angle ω. Especially the distance d of the individual radiation sources 11 and / or the stimulation line 16 from the vertex S of the concave mirror 14 of the equation d = R cos 2 ω, which is related to the respective optical axis 5 in cross section of the concave mirror 14, is sufficient where R denotes the radius of curvature of the concave mirror. In the case of the concave mirror 14, which has a circular arc-shaped cross-section in the example of FIG. 1 as a cylindrical mirror, the radius of curvature R corresponds to the distance of the circular arc to the center P of this circle.

Im ersten Ausführungsbeispiel der Figuren 1 und 2 umfasst die Lichtquelle 10 mehrere entlang einer geraden Linie angeordnete Strahlungsquellen 11. Alternativ kann die Lichtquelle 10 auch als Linienlichtquelle ausgebildet sein, welche das Stimulationslicht 12 entlang einer kontinuierlichen Linie aussendet. Hierbei treten im Gegensatz zu einer aus mehreren einzelnen Strahlungsquellen 11 zusammengesetzten Lichtquelle 10 keine Breitenschwankungen entlang der Stimulationslinie 16 mehr auf. Abbildungsfehler aufgrund von sphärischer Aberration und/oder Astigmatismus werden durch die erfindungsgemäße Verwendung eines länglichen, insbesondere zylinderförmigen, Hohlspiegels stark vermindert, so dass eine deutlich erhöhte Schärfe der Stimulationslinie erreicht wird.In the first exemplary embodiment of FIGS. 1 and 2, the light source 10 comprises a plurality of radiation sources 11 arranged along a straight line. Alternatively, the light source 10 can also be designed as a line light source which emits the stimulation light 12 along a continuous line. In contrast to a light source 10 composed of a plurality of individual radiation sources 11, there are no longer any width fluctuations along the stimulation line 16. Abnormalities due to spherical aberration and / or astigmatism are greatly reduced by the inventive use of an elongated, in particular cylindrical, concave mirror, so that a significantly increased sharpness of the stimulation line is achieved.

Bei einer weiteren alternativen Ausgestaltung weist die Lichtquelle 10 nur eine Strahlungsquelle 11 auf, wobei das von der Strahlungsquelle 11 ausgehende Stimulationslichtbündel 13 von einer Ablenkeinrichtung periodisch abgelenkt wird und von dem länglichen Hohlspiegel 14 auf einen punktförmigen oder linienförmigen Fokusbereich auf die Phosphorschicht 21 fokussiert wird. Aufgrund der periodischen Ablenkung des Stimulationslichtbündels 13 überstreicht der Fokusbereich die Phosphorschicht entlang der Stimulationslinie 16. Das jeweils angeregte Emissionslicht wird dabei von einem Detektor erfasst. Vorrichtungen diesen Typs werden auch als Flying Spot-Systeme bezeichnet. Auch bei solchen Systemen werden Abbildungsfehler, die zu einer Verunschärfung und Verbreiterung des Fokusbereichs und damit zu einer Verminderung der Bildqualität führen würden, durch die Erfindung deutlich reduziert.In a further alternative embodiment, the light source 10 has only one radiation source 11, the stimulation light bundle 13 emanating from the radiation source 11 being periodically deflected by a deflection device and focused by the elongated concave mirror 14 onto a point-shaped or linear focus area on the phosphor layer 21. Due to the periodic deflection of the stimulation light bundle 13, the focus area sweeps over the phosphor layer along the stimulation line 16. The respective excited emission light is detected by a detector. Devices of this type are also referred to as flying spot systems. Even with such systems, aberrations that would lead to a blurring and widening of the focus area and thus to a reduction in image quality are significantly reduced by the invention.

Fig. 3 zeigt ein zweites Ausführungsbeispiel der Erfindung, bei welchem die von der Lichtquelle 10 ausgesandten divergenten Stimulationslichtbündel 13 zunächst an einem länglichen Planspiegel 18 reflektiert werden, bevor sie auf den länglichen Hohlspiegel 14 treffen und von diesem entlang der Stimulationslinie 16 auf die Phosphorschicht 21, welche durch eine Trägerschicht 23 mechanisch stabilisiert wird, fokussiert werden. Durch die Verwendung des Planspiegels 18 werden gegenüber dem in Fig. 1 dargestellten ersten Ausführungsbeispiel zusätzliche Möglichkeiten bei der räumlichen Anordnung der Lichtquelle 10, des Hohlspiegels 14 sowie der Phosphorschicht 21 erhalten, die eine Anpassung der erfindungsgemäßen Vorrichtung an konstruktive Erfordernisse ermöglichen, ohne zusätzliche Abbildungsfehler zu verursachen.3 shows a second exemplary embodiment of the invention, in which the divergent stimulation light beams 13 emitted by the light source 10 are first reflected on an oblong plane mirror 18 before they strike the oblong concave mirror 14 and from there along the stimulation line 16 onto the phosphor layer 21, which is mechanically stabilized by a carrier layer 23, are focused. By using the plane mirror 18 are compared to the first embodiment shown in FIG. 1 additional possibilities in the spatial arrangement of the light source 10, the concave mirror 14 and the phosphor layer 21 obtained, allowing an adaptation of the device according to the invention to design requirements, without additional aberrations cause.

Anstelle des Planspiegels 18 kann auch ein geeignetes optisches Prisma zur Ablenkung des Stimulationslichtbündels 13 verwendet werden. Es ist außerdem möglich, zur Ablenkung des Stimulationslichtbündels 13 einen länglichen konvexen Spiegel oder einen weiteren länglichen Hohlspiegel zu verwenden.Instead of the plane mirror 18, a suitable optical prism for deflecting the stimulation light bundle 13 can also be used. It is also possible to use an elongated convex mirror or another elongated concave mirror for deflecting the stimulation light bundle 13.

Die räumliche Anordnung der Lichtquelle 10, des Hohlspiegels 14 sowie der auf der Phosphorschicht 21 verlaufenden Stimulationslinie 16 relativ zueinander erfolgt in diesem Beispiel analog zu dem in den Figuren 1 und 2 dargestellten ersten Ausführungsbeispiel. Insbesondere sind die Lichtquelle 10 und der Planspiegel 18 so angeordnet, dass die Lichtquelle 10 ebenfalls um einen - in diesem Falle virtuellen - Kippwinkel ω gegen die optische Achse 5 des Hohlspiegels 14 gekippt ist. Die Abstände der Lichtquelle 10 sowie der Phosphorschicht 21 vom Scheitelpunkt S des Hohlspiegels 14 sind ebenfalls so gewählt, dass eine 1 : 1-Abbildung -bezogen auf die Ebene der Figur 3 - erfolgt und damit Abbildungsfehler auf ein Minimum reduziert werden.The spatial arrangement of the light source 10, the concave mirror 14 and the stimulation line 16 extending on the phosphor layer 21 relative to one another take place in this example analogously to the first exemplary embodiment shown in FIGS. 1 and 2. In particular, the light source 10 and the plane mirror 18 are arranged so that the light source 10 is also tilted by a - in this case virtual - tilt angle ω against the optical axis 5 of the concave mirror 14. The distances of the light source 10 and the phosphor layer 21 from the vertex S of the concave mirror 14 are also selected so that a 1: 1 image-related to the plane of Figure 3 - takes place and thus aberrations are reduced to a minimum.

Das entlang der Stimulationslinie 16 in der Phosphorschicht 21 angeregte Emissionslicht 17 wird mittels einer Abbildungsoptik 24 auf den Detektor 25 abgebildet. Der Detektor 25 ist als linearer Detektor ausgebildet, der eine Vielzahl von parallel zur Stimulationslinie 16 angeordneten einzelnen Detektorelementen aufweist. Parallel zum linearen Detektor 25 verläuft auch die Abbildungsoptik 24, welche vorzugsweise als lineares Mikrolinsen- oder Gradientenindexlinsen-Array, insbesondere Selfoclinsen-Array, ausgebildet ist.The emission light 17 excited along the stimulation line 16 in the phosphor layer 21 is imaged onto the detector 25 by means of imaging optics 24. The detector 25 is designed as a linear detector which has a multiplicity of individual detector elements arranged parallel to the stimulation line 16. Parallel to the linear detector 25, the imaging optics 24, which preferably as a linear microlens or Gradientenindexlinsen array, in particular Selfoclinsen array is formed.

Beim Auslesen des in der Phosphorschicht 21 gespeicherten latenten Bildes wird die zu einer Leseeinheit 30 zusammengefasste Vorrichtung in einer Transportrichtung T über die Phosphorschicht 21 bewegt, welche entlang der Stimulationslinie 16 sukzessive angeregt und ausgelesen wird. Alternativ oder zusätzlich zur Bewegung der Leseeinheit 30 kann auch die auf der Trägerschicht 23 befindliche Phosphorschicht 21 relativ zur Leseeinheit 30 bewegt werden.When the latent image stored in the phosphor layer 21 is read out, the device combined to form a reading unit 30 is moved in a transport direction T over the phosphor layer 21, which is successively excited and read out along the stimulation line 16. As an alternative or in addition to the movement of the reading unit 30, the phosphor layer 21 located on the carrier layer 23 can also be moved relative to the reading unit 30.

Fig. 4 zeigt ein drittes Ausführungsbeispiel der Erfindung, welches einen besonders kompakten Aufbau aufweist. Der Querschnitt des Hohlspiegels 14 ist in diesem Beispiel im Wesentlichen senkrecht zur Phosphorschicht 21 orientiert, wodurch der Abstand der Lichtquelle 10 von der Phosphorschicht 21 vermindert werden kann. Die von der Lichtquelle 10 ausgehenden divergenten Stimulationslichtbündel 13 treffen in diesem Beispiel direkt auf den Hohlspiegel 14 und werden von diesem auf die Stimulationslinie 16 fokussiert, wobei in den Strahlengang zwischen dem Hohlspiegel 14 und der Phosphorschicht 21 ein Planspiegel 18 eingebracht ist, welcher das von dem Hohlspiegel 14 reflektierte und nunmehr konvergente Lichtbündel auf die Stimulationslinie 16 lenkt. Wie auch in diesem Ausführungsbeispiel eröffnet der Planspiegel 18 eine Vielzahl von Möglichkeiten zur Anordnung der Lichtquelle 10, des Hohlspiegels 14 und der Phosphorschicht 21 relativ zueinander, wodurch insbesondere eine sehr kompakte Anordnung der einzelnen Komponenten erreicht werden kann.Fig. 4 shows a third embodiment of the invention, which has a particularly compact construction. The cross-section of the concave mirror 14 is oriented substantially perpendicular to the phosphor layer 21 in this example, whereby the distance of the light source 10 from the phosphor layer 21 can be reduced. The outgoing from the light source 10 divergent stimulation light beam 13 meet in this example directly on the concave mirror 14 and are focused by this on the stimulation line 16, wherein in the beam path between the concave mirror 14 and the phosphor layer 21, a plane mirror 18 is inserted, which is the of Concave mirror 14 reflects reflected and now convergent light beam on the stimulation line 16. As in this embodiment, the plane mirror 18 opens a variety of ways to arrange the light source 10, the concave mirror 14 and the phosphor layer 21 relative to each other, whereby in particular a very compact arrangement of the individual components can be achieved.

Bei dem hier dargestellten Ausführungsbeispiel der Fig. 4 befindet sich die auszulesende Phosphorschicht 21 auf einer Trägerschicht 23, welche für das Stimulationslicht durchlässig ist, so dass die Phosphorschicht 21 von ihrer Unterseite her angeregt werden kann. Im dargestellten Fall wird das Emissionslicht 17 von der Oberseite her durch eine Abbildungsoptik 24 auf einen Detektor 25 abgebildet. Alternativ kann das Emissionslicht 17 aber auch durch die transparente Trägerschicht 23 von der Unterseite her erfasst werden. Hinsichtlich der Abbildungsoptik 24 sowie des Detektors 25 gelten die Ausführungen zu dem in Fig. 3 gezeigten zweiten Ausführungsbeispiel entsprechend. Auch zur erfindungsgemäßen Wahl des länglichen Hohlspiegels 14, des Neigungswinkels ω sowie des Abbildungsmaßstabs gelten die Ausführungen zu dem in den Figuren 1 bis 3 beschriebenen Ausführungsbeispielen entsprechend.4, the phosphor layer 21 to be read is located on a carrier layer 23, which is permeable to the stimulation light, so that the phosphor layer 21 can be excited from its underside. In the illustrated case, the emission light 17 is imaged by an imaging optical system 24 onto a detector 25 from the upper side. Alternatively, however, the emission light 17 can also be detected by the transparent carrier layer 23 from the underside. With regard to the imaging optics 24 and the detector 25, the statements on the one shown in FIG. 3 apply second embodiment accordingly. Also for the inventive choice of the elongated concave mirror 14, the inclination angle ω and the magnification of the explanations apply to the embodiments described in Figures 1 to 3 accordingly.

Claims (14)

  1. Device for detecting information which is contained in a phosphorus layer, comprising a light source (10) for emitting stimulation light (12), incident upon the phosphorus layer (21) along a stimulation line (16) and suitable for stimulating emission light (7) in the phosphorus layer (21), a detector (25) for detecting the emission light (17) which is stimulated in the phosphorus layer (21), and an elongated concave mirror (14) for focusing the stimulation light (12) emitted by the light source (10) onto the phosphorus layer (21), characterised in that the light source (10) is projected onto the phosphorus layer (21) at a scale of 1:M and M takes a value between 0.5 and 2.
  2. Device according to claim 1, characterised in that the light source (10) is projected onto the phosphorus layer (21) at the scale of 1:1.
  3. Device according to any one of the preceding claims, characterised in that the light source extends (10) parallel to the stimulation line (16).
  4. Device according to any one of the preceding claims, characterised in that the concave mirror (14) is arranged parallel to the stimulation line (16).
  5. Device according to any one of the preceding claims, characterised in that the concave mirror (14) is in the form of a cylinder mirror, which in cross-section has the form of a circular arc.
  6. Device according any one of claims 1 to 4, characterised in that the concave mirror (14) is in the form of a cylinder mirror, the cross-section of which is aspherical.
  7. Device according to claim 6, characterised in that the concave mirror (14) is in the form of a cylinder mirror, which in cross-section has the form of an arc of an ellipse or parabola.
  8. Device according to any one of claims 5 to 7, characterised in that the optical axis (5) in the cross-section of the concave mirror (14) intersects the concave mirror in a vertex (S), and the light source (10) is tilted by a tilt angle (ω) around the vertex (S) relative to the optical axis (5) of the concave minor (14).
  9. Device according to claim 8, characterised in that the distance (d), along the optical axis (5) in the cross-section of the concave mirror (14), of the light source (10) and/or the stimulation line (16) from the vertex (S), satisfies the relationship d = R cos2ω, where R designates the radius of curvature of the concave mirror (14).
  10. Device according to any one of the preceding claims, characterised in that the detector (25) has a plurality of detector elements which are arranged parallel to the stimulation line (16).
  11. Device according to any one of the preceding claims, characterised in that the light source (10) comprises a plurality of individual radiation sources (11) which are arranged along a line.
  12. Device according to claim 11, characterised in that the individual radiation sources (11) each emit stimulation light bundles (13), which are focused by the concave mirror (14) onto the stimulation line (16) and are at least partially superimposed on the stimulation line (16).
  13. Device according to any one of claims 1 to 10, characterised in that the light source (10) is in the form of a linear light source, which is in a form for emitting stimulation light (12) along a continuous line.
  14. Device according to any one of claims 1 to 10, characterised in that the light source (10) includes a radiation source and a deflection device, wherein the stimulation light (12) which the radiation source emits is periodically deflected by the deflection device and focused by the concave mirror (14) onto a focal region on the phosphorus layer (21), in such a way that the focal region spreads periodically over the phosphorus layer (21) along the stimulation line (16).
EP03101525A 2003-05-26 2003-05-26 Apparatus to read-out information stored in a phosphor layer Expired - Lifetime EP1482328B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT03101525T ATE343145T1 (en) 2003-05-26 2003-05-26 DEVICE FOR DETECTING INFORMATION CONTAINED IN A PHOSPHORUS LAYER
EP03101525A EP1482328B1 (en) 2003-05-26 2003-05-26 Apparatus to read-out information stored in a phosphor layer
DE50305417T DE50305417D1 (en) 2003-05-26 2003-05-26 Device for detecting information contained in a phosphor layer
JP2004090956A JP2004354975A (en) 2003-05-26 2004-03-26 Device for detecting information contained in phosphor layer
US10/853,530 US7122822B2 (en) 2003-05-26 2004-05-25 Device for detecting information contained in a phosphor layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP03101525A EP1482328B1 (en) 2003-05-26 2003-05-26 Apparatus to read-out information stored in a phosphor layer

Publications (2)

Publication Number Publication Date
EP1482328A1 EP1482328A1 (en) 2004-12-01
EP1482328B1 true EP1482328B1 (en) 2006-10-18

Family

ID=33104175

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03101525A Expired - Lifetime EP1482328B1 (en) 2003-05-26 2003-05-26 Apparatus to read-out information stored in a phosphor layer

Country Status (5)

Country Link
US (1) US7122822B2 (en)
EP (1) EP1482328B1 (en)
JP (1) JP2004354975A (en)
AT (1) ATE343145T1 (en)
DE (1) DE50305417D1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE442595T1 (en) * 2004-07-29 2009-09-15 Agfa Gevaert Healthcare Gmbh METHOD FOR READING INFORMATION STORED IN A PHOSPHOR LAYER
US7576349B2 (en) * 2005-12-23 2009-08-18 Carestream Health, Inc. Radiation image readout apparatus
EP1895326B1 (en) * 2006-08-31 2010-07-14 Agfa HealthCare NV Apparatus for erasure of a luminescent material storage plate
EP1895325B1 (en) * 2006-08-31 2010-03-31 Agfa HealthCare NV Erasing of a phosphor imaging plate
EP1895327B1 (en) * 2006-08-31 2009-11-11 Agfa HealthCare NV Erasing of a phosphor imaging plate
EP2461184B1 (en) 2010-12-03 2015-07-08 Agfa HealthCare N.V. Device and method for reading x-ray information stored in a luminescent material layer
US10458931B1 (en) 2016-06-17 2019-10-29 Leidos, Inc. Contact imaging sensor head for computed radiography

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512429A (en) * 1978-07-12 1980-01-29 Fuji Photo Film Co Ltd Radioactive image reader
JPS60198532A (en) * 1984-03-23 1985-10-08 Fuji Photo Film Co Ltd Reader of radiation picture information
DE3346551A1 (en) * 1983-12-22 1985-07-04 Siemens AG, 1000 Berlin und 8000 München Device for optical scanning of an electrical charge image
JPS6152067A (en) * 1984-08-22 1986-03-14 Toshiba Corp Radiant ray picture reading device
US4767927A (en) * 1984-08-16 1988-08-30 Kabushiki Kaisha Toshiba Apparatus for reading radiation image information stored in imaging plate
US5064259A (en) * 1989-12-05 1991-11-12 Eastman Kodak Company Apparatus for scanning a photo-stimulable phosphor sheet
US5541421A (en) * 1994-11-21 1996-07-30 Eastman Kodak Company Light collector having optically coated acrylic substrate
DE19962775C1 (en) * 1999-12-23 2001-03-15 Agfa Gevaert Ag Stored information read-out device e.g. for X-ray cassette, uses stimulation of information line by X-ray source and detection of secondary radiation via light-sensor array
JP4219578B2 (en) * 2001-07-13 2009-02-04 富士フイルム株式会社 Radiation image information reading device
ATE300056T1 (en) * 2001-09-27 2005-08-15 Agfa Gevaert Ag IMAGING DEVICE FOR IMAGING AN ELONGATED OBJECT

Also Published As

Publication number Publication date
US7122822B2 (en) 2006-10-17
EP1482328A1 (en) 2004-12-01
US20040238766A1 (en) 2004-12-02
ATE343145T1 (en) 2006-11-15
JP2004354975A (en) 2004-12-16
DE50305417D1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
EP1482721A1 (en) Device for detecting information contained in a phosphor layer
DE3042688C2 (en)
DE3028597C2 (en)
EP1222488A1 (en) Device for symmetrizing the radiation emitted by linear optical transmitters
DE10063276C2 (en) scanning microscope
DE69805913T2 (en) Printhead with individually addressable laser diode array
DE10156275B4 (en) Detector arrangement and detection method
DE102004002221B3 (en) Optical symmetry device for high power laser diode array used in materials processing, medical, telecommunications, illumination, display, analysis, printing or photographic device, or for laser pumping
DE102004028943B4 (en) Device for stable generation of EUV radiation by means of a laser-induced plasma
EP1482328B1 (en) Apparatus to read-out information stored in a phosphor layer
DE102018115012A1 (en) particle beam
DE19752416A1 (en) Method and device for combining the radiation power of a linear arrangement of radiation sources
CH634664A5 (en) SCANNER DEVICE FOR CARTESIAN SCANING AND DISTRIBUTION OF IMAGE FIELDS.
DE3837553A1 (en) OPTICAL SCANING SYSTEM FOR USE IN A LASER JET PRINTER
DE102007019017A1 (en) Method and apparatus for projecting an image onto a screen
EP1211066B1 (en) Imaging apparatus
DE3514302A1 (en) OPTICAL SCANNER
DE102009008747B4 (en) Optical imaging system
DE102012019464A1 (en) Confocal direct-light scanning microscope for multi-leak scanning
DE102017212926A1 (en) LIDAR device and method with an improved deflection device
DE2742264A1 (en) PROCESS FOR IMAGING AN OBJECT WITH LOW ENLARGEMENT BY USING A BODY BLAST DEVICE, IN PARTICULAR AN ELECTRON MICROSCOPE
DE102013018672B4 (en) MULTISPOT SCANNING MICROSCOPE
DE102017105719A1 (en) Multi-Pinhole Scanning Microscope and Microscopy Method
WO2016116424A2 (en) Optical arrangement for a laser scanner system
LU93225B1 (en) A method for generating preview images with a skew plane microscope and a skew plane microscope and imaging device for a Schiefeebenemikroskop

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050601

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGFA-GEVAERT HEALTHCARE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061018

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061018

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50305417

Country of ref document: DE

Date of ref document: 20061130

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070319

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070501

Year of fee payment: 5

BERE Be: lapsed

Owner name: AGFA-GEVAERT HEALTHCARE G.M.B.H.

Effective date: 20070531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070420

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070526

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070419

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50305417

Country of ref document: DE

Effective date: 20131026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140408

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305417

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201