[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1481416B1 - Mass spectrometry method for analysing mixtures of substances - Google Patents

Mass spectrometry method for analysing mixtures of substances Download PDF

Info

Publication number
EP1481416B1
EP1481416B1 EP03711878.3A EP03711878A EP1481416B1 EP 1481416 B1 EP1481416 B1 EP 1481416B1 EP 03711878 A EP03711878 A EP 03711878A EP 1481416 B1 EP1481416 B1 EP 1481416B1
Authority
EP
European Patent Office
Prior art keywords
process according
mass
ionization
substance
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03711878.3A
Other languages
German (de)
French (fr)
Other versions
EP1481416A1 (en
Inventor
Tilmann B. Walk
Martin Dostler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Metabolome Solutions GmbH
Original Assignee
Metanomics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2002108625 external-priority patent/DE10208625A1/en
Priority claimed from DE2002108626 external-priority patent/DE10208626A1/en
Application filed by Metanomics GmbH filed Critical Metanomics GmbH
Publication of EP1481416A1 publication Critical patent/EP1481416A1/en
Application granted granted Critical
Publication of EP1481416B1 publication Critical patent/EP1481416B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction
    • H01J49/005Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction by collision with gas, e.g. by introducing gas or by accelerating ions with an electric field
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/421Mass filters, i.e. deviating unwanted ions without trapping

Definitions

  • the present invention relates to a mass spectrometric method for the analysis of substance mixtures with a triple quadrupole mass spectrometer.
  • the analyst In the analysis of complex mixtures of substances of biological and / or chemical origin, the analyst, in addition to the task of identifying the structure of individual substances contained in the mixture, repeatedly encounters the problem of detecting and possibly quantifying all substances present in the mixture. This should be done as quickly as possible and with a high degree of accuracy, ie with a small error deviation. This becomes all the more important when information about a biological system is to be obtained, for example, from a microorganism grown under certain fermentation conditions or from a plant grown under different environmental conditions or from a wild-type organism such as a microorganism or a plant compared to its genetically altered mutant , Such comparisons are required to allow assignment of mutations of unknown genes in the genome of these organisms to a particular metabolic phenotype.
  • a major problem of this analysis is the rapid, simple, reproducible and quantifiable identification of the substances contained in the mixtures.
  • TLC thin-layer chromatography
  • HPLC high-performance liquid chromatography
  • GC gas chromatography
  • NMR mass spectrometry
  • the samples can be used for the aforementioned analyzes and individual substances in selected samples can be identified and quantified.
  • HTS high-throughput screening
  • An advantage of very precise methods, such as NMR or IR spectroscopy, is that they provide information both about the structure and optionally about the quantity of a substance.
  • mass spectrometric methods are known from the prior art, for example, from the Analysis of synthetic, petrochemical, environmental and biological samples. However, these methods are only used for the analysis of individual known compounds in these samples. Broad measurement series, for example in the context of an HTS or in the identification and quantification of a variety of compounds in these samples are not described.
  • High molecular weight materials such as coal tar, humic acid, fulvic acid or kerogen can also be analyzed ( Zenobie and Bone Must, Mass Spec. Rev., 1998, 17, 337-366 ). Both the identity and the structure of substances can be determined, although the structural analysis is not always clear, so it must be confirmed by other methods, for example NMR.
  • ELEsmans et al. discloses in particular LC-MS methods for the analysis of nucleobases, nucleosides, nucleotides, oligonucleotides and DNA.
  • the collision chamber constantly contains collision gas.
  • a disadvantage of the structure determination is that a known mass of a precursor ion, a fragment or an ion adduct is required.
  • the starting structure of the substance to be investigated for the HPLC / MS should be known in these experiments. Since the HPLC / MS alone is not suitable for the absolute structure determination. However, if the structure of the parent compound is known, statements can be made about the structure of any metabolites. Since the structure of the substance to be developed as an active ingredient is known, statements about the structure of the unknown metabolites of the drug can be made with some certainty. However, the statement is hampered or prevented by possible overlays other than impurities existing compounds of the same mass. Quantification of the compounds is not possible with this method.
  • US 6,140,638 describes a method of reducing isobaric interference signals by constructing a filter on the collision cell by applying an appropriate field that excludes at least some precursor and intermediate ions that would otherwise result in isobaric interference.
  • substance mixtures according to the invention are in principle all mixtures containing more than one substance to understand, such as complex reaction mixtures of chemical syntheses such as synthesis products from combinatorial chemistry or substance mixtures of biological origin such as fermentation broths of an aerobic or anaerobic fermentation, body fluids such as blood, lymph Urine or stool, reaction products a biotechnological synthesis with one or more free or bound enzymes, extracts of animal material such as extracts from various organs or tissues or plant extracts such as extracts of the entire plant or individual organs such as root, stalk, leaf, flower or seed or their mixtures.
  • substance mixtures of biological origin such as extracts of animal or plant origin, advantageously of plant origin, are analyzed in this process.
  • the mass spectrometers usable in the method generally comprise a sample inlet system, an ionization chamber, an interface, an ion optics, one or more mass filters and a detector.
  • ion sources known to the person skilled in the art can be used to generate ions in the process.
  • these ion sources are coupled via a so-called interface to the following components of the mass spectrometer, for example the ion optics, the mass filter (s) or the detector.
  • the interposition of an interface has the advantage that the analysis can be carried out without delay.
  • nonvolatile and / or volatile, preferably nonvolatile substances can be brought directly into the gas phase by the ion source.
  • the samples to be analyzed or the substances contained therein can thereby also be enriched.
  • a wide range of solvents can be processed with minimal loss of sample.
  • Electrospray ionization is a very gentle method. At ESI, ions are continuously formed. This continuous ion formation has the advantage that it can be easily coupled in conjunction with almost any analyzer type and that it can easily be combined with chromatographic separation such as separation by capillary electrophoresis (CE), liquid chromatography (LC) or high pressure liquid chromatography (HPLC) because it has a good tolerance for high flow rates up to 2 ml / min eluate.
  • CE capillary electrophoresis
  • LC liquid chromatography
  • HPLC high pressure liquid chromatography
  • the spraying of the eluent is pneumatically supported by a so-called nebulizing gas, for example nitrogen.
  • the gas is blown under a pressure of up to 4 bar, advantageously up to 2 bar from a capillary, which encloses the inlet capillary of the eluent.
  • so-called normal phase eg silica gel, alumina, aminodeoxyhexitol, aminodeoxy-d-glucose, triethylenetetramine, polyethylene oxide or aminodicarboxy columns
  • / or reversed-phase columns are preferably reversed-phase columns. Columns such as columns with a C 4 , C 8 or C 18 stationary phase are preferred.
  • the electrospray technique leads to the (quasi-) molecular ion due to the extremely gentle ionization.
  • These are usually adducts with ions already present in the sample solution (eg protons, alkali ions and / or ammonium ions).
  • multiply charged ions can also be detected so that ions with a molecular weight of up to one hundred thousand daltons can be detected; molecular weights in a range from 1 to 10,000 daltons, preferably in a range of 50, can advantageously be used in the process according to the invention detect up to 8,000 daltons, more preferably in a range of 100 to 4000 daltons.
  • Other exemplary methods include ion spray ionization, atmospheric pressure ionization (APCI) or thermospray ionization.
  • the ionization process proceeds under atmospheric pressure and is divided essentially into three phases: First, the solution to be analyzed in a strong electrostatic field by generating a potential difference of 2-10 kV, preferably 2-6 kV between the inlet capillary and a counter electrode is generated, sprayed. An electric field between the inlet capillary tip and the mass spectrometer penetrates the analyte solution and separates the ions in an electric field. Positive ions are attracted to the surface of the liquid in so-called positive mode, negative ions in the opposite direction or vice versa Measurements in the so-called positive mode. The positive ions accumulated on the surface are subsequently drawn further in the direction of the cathode.
  • an aerosol which consists of analyte and solvent.
  • the desolvation of the formed drops takes place, which leads to the successive reduction of the droplet size.
  • the evaporation of the solvent is effected by thermal action, e.g. by supplying hot inert gas, achieved.
  • thermal action e.g. by supplying hot inert gas, achieved.
  • the charge density on the surface of the sprayed substance mixture droplets constantly increases. If, finally, the charge density or its charge repulsive forces exceed the surface tension of the droplets (so-called Raleigh limit), then (Coulomb explosion) these droplets explode into smaller droplets.
  • This process "solvent evaporation / Coulomb explosion” is repeated several times until finally the ions go into the gas phase.
  • the gas flow in the interface, the applied heating temperature, the flow rate of the heating gas, the pressure of the nebulizing gas and the capillary voltage must be precisely monitored and controlled.
  • APCI ionization ionization occurs in a so-called corona discharge.
  • thermospray or electrospray method the electrospray method being particularly preferred.
  • the ionization space is connected via an interface, that is to say via a micro-opening (100 ⁇ m) with the following mass spectrometer.
  • the nitrogen collides with the ions generated, for example, by electrospray, which were generated in the substance mixture.
  • By blowing the curtain gas is advantageously prevented that neutral particles are sucked into the high vacuum of the subsequent mass spectrometer. Furthermore, the curtain gas promotes the desolvation of the ions.
  • the method according to the invention can be carried out with all quadrupole mass spectrometers known to the person skilled in the art, such as the triple quadrupole mass spectrometers.
  • Triple quadrupole instruments are the standard tools for low energy collision activation studies.
  • these devices consist of a first quadrupole, which is suitable for analyzing the mass / charge quotient (m / z) of the ions contained in the substance mixture after ionization in a high vacuum (about 10 -5 Torr), the mass (s) individual ions, several or all ions can be measured.
  • Q0 quadrupoles
  • Another Q1 following quadrupole serves as a collision chamber.
  • the ions are advantageously fragmented by applying a fragmentation voltage.
  • ionization potentials in the range of 5-11 electron volts (eV), preferably 8-11 electron volts (eV) are applied.
  • Q2 is also filled for fragmentation in the process according to the invention with a collision gas such as a noble gas such as argon or helium or other gas such as CO 2 or nitrogen or mixtures of these gases such as argon / helium or argon / nitrogen.
  • argon and / or nitrogen is preferred.
  • the collision gas is present in the process according to the invention at a pressure of 1 ⁇ 10 -5 to 1 ⁇ 10 -1 Torr, preferably 10 -2 .
  • Particularly preferred is nitrogen.
  • this Q3 either the m / z quotients of individual selected fragments, several or all of the m / z quotients present in the substance mixtures after ionization (in this application for simplicity's sake referred to as mass or masses) can be determined. Also between quadrupole Q2 and Q3 there may be more quadrupoles or cones for steering the ions.
  • individual quadrupoles for collecting ions can also be operated as ion traps, from which the ions are then released again for analysis after some time.
  • the quadrupoles used in the triple quadrupole mass spectrometers generate a three-dimensional electric field in which the generated ions can be held. They usually consist of 4, 6 or 8 rods or rods with their help an oscillating electric field is generated, opposite rods are electrically connected.
  • the terms hexa- or octapol are also used. In the present application, these terms should be included when the term quadrupole is used.
  • only low acceleration voltages of a few volts, preferably of a few 10 volts are required in the quadrupoles of the triple quadrupole mass spectrometer for guiding the ions.
  • Substance mixtures such as animal or vegetable extracts, preferably vegetable extracts, are advantageously used in the process according to the invention.
  • FIG. 1 the sequence of the method according to the invention can be seen.
  • process steps (a) to (c) and (d) are advantageously carried out at least once within 0.1 to 10 seconds, preferably within 0.2 to 6 seconds at least once, particularly preferably within 0.2 to 2 Seconds, most preferably at least once within 0.3 to less than 2 seconds.
  • the process steps are run through within two to three times, preferably three times, within 0.2 to 6 seconds.
  • the quadrupole Q2 acting as a collision chamber is constantly filled with collision gas. As the own measurements showed, this has no negative influence on the reproducibility of the measurements.
  • step (a) between 1 and 100 mass / charge quotients of different ions formed and selected in step (a) can be analyzed in the method according to the invention.
  • at least 20 m / z quotients, preferably at least 40 m / z quotients, more preferably at least 60 m / z quotients, most preferably at least 80 m / z quotients of different ions or more are identified and / or quantified.
  • Purification of the substance mixtures is in principle not required in the process according to the invention.
  • the substance mixtures can be measured directly after introduction into an ion source. This also applies to complex mixtures of substances. It is also not necessary to add to the substance mixtures as internal standards any labeled or unlabeled pure substances of possible substances contained in the mixtures, although this is of course possible and simplifies subsequent quantification of the substances contained in the mixtures.
  • coupling of purification methods is advantageously between 1 ⁇ l / min to 2000 ⁇ l / min, preferably between 5 ⁇ l / min to 600 ⁇ l / min, more preferably between 10 ⁇ l / min to 500 .mu.l / min, for example, possible. Even lower or higher flow rates can be used without difficulty in the process according to the invention.
  • Suitable solvents are, for example Solvents carrying little or no charge, such as aprotic apolar solvents, characterized by a low dielectric constant (E t ⁇ 15), low dipole moments ( ⁇ ⁇ 2.5D), and low E T N values (0.0-0.5 ) are characterized. But also dipolar organic solvents or mixtures thereof are suitable as solvents for the inventive method. Examples of suitable solvents are methanol, ethanol, acetonitrile, ethers, heptane.
  • weak acid solvents such as 0.01 - 0.1% formic acid, acetic acid or trifluoroacetic acid are suitable.
  • weakly basic solvents such as 0.01 to 0.1% triethylamine or ammonia are also suitable.
  • Strongly acidic or strongly basic solvents such as 5% HCl or 5% triethylamine are also suitable in principle as solvents.
  • mixtures of the aforementioned solvents are advantageous.
  • the customary in biochemical buffers are suitable as solvents, wherein advantageously buffer ⁇ 200 mM, preferably ⁇ 100 mM, more preferably ⁇ 50 mM, most preferably ⁇ 20 mM are used.
  • buffers> 100 mM are used for the preparation of the substance mixtures that the buffers are completely or partially removed, for example via dialysis.
  • suitable buffers include acetate, formate, phosphate, tris, MOPS, HEPES or mixtures thereof. High buffers and / or salt concentrations have a negative effect on the ionization processes and may need to be avoided.
  • the substance mixtures for the method according to the invention which are otherwise poorly or not at all detectable, can be derivatized before the analysis and thus finally analyzed.
  • Derivatization is particularly advantageous in cases in which hydrophilic groups are introduced into hydrophobic or volatile compounds, for example, such as esters, amides, lactones, aldehydes, ketones, alcohols, etc., which advantageously still carry an ionizable functionality.
  • Examples of such derivatizations are reactions of aldehydes or ketones to oximes, hydrazones or their derivatives or alcohols to give esters, for example with symmetrical or mixed anhydrides.
  • the detection spectrum of the method can advantageously be extended.
  • an internal standard such as e.g. Peptides, amino acids, coenzymes, sugars, alcohols, conjugated alkenes, organic acids or bases added.
  • This internal standard advantageously allows the quantification of the compounds in the mixture. Substance mixture containing substances can thus be more easily analyzed and ultimately quantified.
  • an internal standard advantageously labeled substances are used, but in principle also non-labeled substances are suitable as an internal standard.
  • Such similar chemical compounds are, for example, so-called compounds of a homologous series whose members differ only by, for example, an additional methylene group.
  • at least one isotope selected from the group 2 is preferably H, 13 C, 15 N, 17 O, 18 O, 33 S, 34 S, 36 S, 35 Cl, 37 Cl, 29 Si, 30 Si, 74 Se or mixtures thereof used labeled substances.
  • 2 H or 13 C is preferably used as the isotope.
  • This internal standard does not need to be complete for the analysis, that is, to be fully marked. A partial marking is completely sufficient.
  • a ratio of analyte to internal standard is set in a range from 10: 1 to 6: 1, preferably in a range from 6: 1 to 4: 1, particularly preferably in a range from 2: 1 to 1: 1.
  • the substance mixture samples in the process according to the invention can be prepared manually or advantageously automatically with conventional laboratory robots.
  • the analysis with the mass spectrometer after optional chromatographic separation can be carried out manually or advantageously automatically.
  • mass spectrometry can advantageously be used for the rapid screening of various substance mixtures, for example plant extracts in the so-called high-throughput screening.
  • the method according to the invention is characterized by a high sensitivity, a good quantifiability, an excellent reproducibility, with the lowest sample consumption.
  • the method can thus rapidly mixtures of biological origin, for example, new mutants known or unknown enzymatic activities after a mutagenesis, for example, a classical mutagenesis with chemical agents such as NTG, radiation such as UV radiation or X-rays or after a so-called site-directed mutagenesis, PCR mutagenesis , Transposon mutagenesis or so-called gene shuffling.
  • a mutagenesis for example, a classical mutagenesis with chemical agents such as NTG, radiation such as UV radiation or X-rays or after a so-called site-directed mutagenesis, PCR mutagenesis , Transposon mutagenesis or so-called gene shuffling.
  • MRM Multiple Reaction Monitoring
  • FS Full Scan
  • TIC Total Ion Chromatogram
  • XIT Sum of Multiple Total Ion Chromatograms.
  • a quality control sample was measured. This type of sample contains a defined number of analytes. These analytes were purchased and dissolved in known concentrations in appropriate solvent.
  • the selected representation of the measurement shows the summation of the intensities (y-axis) measured at the detector at the respective times (x-axis) from the two mass-spectrometric experiments of Multiple Reaction Monitoring (MRM) and Full Scan (FS).
  • MRM Multiple Reaction Monitoring
  • FS Full Scan
  • FIG. 3 the total ion chromatogram of the MRM experiment from an MRM + FS measurement is shown.
  • the selected representation of the MRM measurement shows the summation of the intensities (y-axis) measured at the detector at the respective times (x-axis) from all predefined mass transitions of the MRM experiment.
  • selected representation shows the respective measurement results of each mass transition (here 30 pieces) in a coordinate system.
  • the FS experiment measured in change to the MRM experiment is in the TIC in FIG. 5 shown.
  • FIG. 6 the TIC of the FS experiment is shown.
  • FIG. 8 is like in FIG. 3 a total ion chromatogram of an MRM + full scan measurement. A calibration sample was measured.
  • the selected representation of the measurement shows the summation of the intensities (y-axis) measured at the detector at the respective times (x-axis) from the mass-spectrometric experiment of multiple reaction monitoring.
  • FIG. 9 returns an extracted chromatogram identifying coenzyme Q 10.
  • FIG. 10 and FIG. 11 give the identification of each capsanthin and bixin again.
  • FIG. 12 returns a Total Ion Chromatogram of a full scan of a plant extract.
  • FIGS. 13 to 15 show the masses of different analytes in the extracted chromatogram whose assignment to a specific structure has yet to be made.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

Die vorliegende Erfindung betrifft ein massenspektrometrisches Verfahren zur Analyse von Substanzgemischen mit einem Tripel-Quadrupol-Massenspektrometer.The present invention relates to a mass spectrometric method for the analysis of substance mixtures with a triple quadrupole mass spectrometer.

Bei der Analyse komplexer Substanzgemische biologischen und/oder chemischen Ursprungs stellt sich dem Analytiker neben der Aufgabe der Identifizierung der Struktur einzelner im Gemisch enthaltenden Substanzen immer wieder das Problem alle im Gemisch vorhandenen Substanzen zu erfassen und möglichst zu quantifizieren. Dies sollte möglichst rasch und mit einer hohen Genauigkeit, das heißt mit einer geringen Fehlerabweichung erfolgen. Dies wird um so wichtiger, wenn Informationen über ein biologisches System beispielsweise über ein unter bestimmten Fermentationsbedingungen angezogenen Mikroorganismus oder über eine unter verschiedenen Umweltbedingungen angewachsene Pflanze oder über einen Wildtyp-Organismus wie einem Mikroorganismus oder einer Pflanze im Vergleich zu deren genetisch veränderten Mutante gewonnen werden sollen. Derartige Vergleiche sind erforderlich, um eine Zuordnung von Mutationen unbekannter Gene im Genom dieser Organismen zu einem bestimmten metabolischen Phänotyp zu ermöglichen.In the analysis of complex mixtures of substances of biological and / or chemical origin, the analyst, in addition to the task of identifying the structure of individual substances contained in the mixture, repeatedly encounters the problem of detecting and possibly quantifying all substances present in the mixture. This should be done as quickly as possible and with a high degree of accuracy, ie with a small error deviation. This becomes all the more important when information about a biological system is to be obtained, for example, from a microorganism grown under certain fermentation conditions or from a plant grown under different environmental conditions or from a wild-type organism such as a microorganism or a plant compared to its genetically altered mutant , Such comparisons are required to allow assignment of mutations of unknown genes in the genome of these organisms to a particular metabolic phenotype.

Der Erfolg bei der Analyse dieser Substanzgemische beispielsweise chemischer Syntheseansätze aus der kombinatorischen Chemie oder aus Extrakten von Mikroorganismen, Pflanzen oder Pflanzenteile hängt dabei im großen Ausmaß vom der Schnelligkeit und Reproduzierbarkeit der verwendeten Analytik ab. In einem solchen Screening müssen eine Vielzahl von Proben durchgemustert werden, es sind daher schnelle, einfache, hochempfindliche und hochspezifische Analysenverfahren erforderlich.The success in the analysis of these mixtures of substances, for example chemical synthesis approaches from combinatorial chemistry or from extracts of microorganisms, plants or parts of plants depends to a great extent on the speed and reproducibility of the analytics used. In such a screening, a large number of samples must be screened, therefore, fast, simple, highly sensitive and highly specific analytical methods are required.

Ein Hauptproblem dieser Analytik ist die rasche, einfache, reproduzierbare und quantifizierbare Identifizierung der in den Gemischen enthaltenen Substanzen. In der Regel werden zur Analyse der Produkte Trennverfahren wie die Dünnschichtchromatographie (= DC), die Hochdruckflüssigkeitschromatographie (= HPLC) oder die Gaschromatographie (= GC) verwendet. Mit Hilfe dieser chromatographischen Verfahren kann allerdings nicht rasch und einfach eine breite Palette von Substanzen identifiziert und quantifiziert werden. Auch Verfahren wie NMR oder Massenspektrometrie werden für diese Aufgabe beschrieben. In der Regel ist jedoch eine gewisse Vorbereitung der Proben für diese Analyseverfahren erforderlich, wie Aufarbeitung über zum Beispiel Salzfällung und/oder anschließender Chromatographie, Aufkonzentrierung, Entsalzung der Proben, Pufferaustausch oder Entfernung eventuell in der Probe enthaltener Detergentien. Nach dieser Vorbehandlung sind die Proben für die vorgenannten Analytiken verwendbar und es können einzelne Substanzen in ausgesuchten Proben identifiziert und quantifiziert werden. Diese Verfahren sind jedoch zeitaufwendig und lassen nur einen beschränkten Probendurchsatz zu, so daß derartige Analysenverfahren im sogenannten High-Throughput-Screening (= HTS) oder dem breiten Screening von Substanzgemischen in biologischen oder chemischen Proben keine Anwendung finden. Von Vorteil bei sehr präzisen Methoden wie der NMR- oder IR-Spektroskopie ist, daß sie Informationen sowohl über die Struktur als auch gegebenenfalls über die Quantität einer Substanz liefern.A major problem of this analysis is the rapid, simple, reproducible and quantifiable identification of the substances contained in the mixtures. As a rule, separation methods such as thin-layer chromatography (= TLC), high-performance liquid chromatography (= HPLC) or gas chromatography (= GC) are used to analyze the products. However, with the help of these chromatographic methods, a broad range of substances can not be quickly and easily identified and quantified. Also methods such as NMR or mass spectrometry are described for this task. However, as a rule, some preparation of the samples is required for these analysis methods, such as work-up over, for example Salt precipitation and / or subsequent chromatography, concentration, desalting of the samples, buffer exchange or removal of any detergents contained in the sample. After this pretreatment, the samples can be used for the aforementioned analyzes and individual substances in selected samples can be identified and quantified. However, these methods are time-consuming and allow only a limited sample throughput, so that such analysis methods in so-called high-throughput screening (= HTS) or the broad screening of substance mixtures in biological or chemical samples do not apply. An advantage of very precise methods, such as NMR or IR spectroscopy, is that they provide information both about the structure and optionally about the quantity of a substance.

Um einen höheren Probendurchsatz im HTS zu ermöglichen, werden vielfach indirekte, leicht messbare Verfahren wie Farbreaktionen im sichtbaren Bereich, Trübungsmessungen, Fluoreszenz, Leitfähigkeitsmessungen etc. verwendet. Diese sind zwar im Prinzip sehr empfindlich, aber auch störanfällig. Von Nachteil hierbei ist vor allem, daß bei diesem Vorgehen viele falsch positive Proben analysiert werden und da es sich um indirekte Nachweisverfahren handelt, keine Informationen über die Struktur und/oder die Quantität einer Verbindung vorliegen. Um diese falsch Positiven beim weiteren Vorgehen ausschließen zu können, werden in der Regel weitere Analysenverfahren nach einer ersten raschen Analyse wie beispielsweise NMR, IR, HPLC/MS oder GC/MS verwendet. Dies ist wiederum sehr zeitaufwendig.In order to enable a higher sample throughput in HTS, indirect, easily measurable methods such as color reactions in the visible range, turbidity measurements, fluorescence, conductivity measurements etc. are often used. These are in principle very sensitive, but also prone to failure. The disadvantage here is, above all, that many false-positive samples are analyzed in this procedure and, since they are indirect detection methods, there is no information about the structure and / or the quantity of a compound. In order to be able to exclude these false positives in the further course of action, further analytical methods are generally used after a first rapid analysis such as, for example, NMR, IR, HPLC / MS or GC / MS. This is again very time consuming.

Generell kann gesagt werden, daß die Verbesserung der Empfindlichkeit und der Aussagekraft der Detektionsverfahren zu einer Verlangsamung in der Geschwindigkeit einer Analytik führt.Generally, it can be said that improving the sensitivity and predictive power of the detection methods results in a slowdown in the speed of analysis.

Bei der Arbeit mit komplexen biologischen Gemischen wie beispielsweise Extrakten aus Mikroorganismen, Pflanzen und/oder Tieren ist außerdem zu beachten, dass einzelne Verbindungen in den Gemischen nur in sehr geringen Mengen vorhanden sind bzw. nur geringe Mengen der einzelnen Probe selbst für die Analytik zur Verfügung stehen, so dass die verwendete Methode eine Hohe Sensitivität besitzen muss. Weiterhin stellen für einige Analysenmethoden die häufig in biologischen Proben vorhandenen nicht flüchtigen Puffer und/oder Salze ein Problem dar, da diese die Sensitivität der Methoden oder deren Verwendung überhaupt negativ beeinflussen. Gleiches gilt für die Anwesenheit von Detergentien in diesen Proben.When working with complex biological mixtures such as extracts of microorganisms, plants and / or animals is also to be noted that individual compounds are present in the mixtures only in very small amounts or only small amounts of each sample itself for analysis available stand so that the method used must have a high sensitivity. Furthermore, for some analysis methods, the non-volatile buffers and / or salts often present in biological samples pose a problem, as they adversely affect the sensitivity of the methods or their use. The same applies to the presence of detergents in these samples.

Zur Analyse komplexer Probengemische sind aus dem Stand der Technik massenspektrometrische Verfahren bekannt, die beispielsweise von der Analyse von Proben der synthetischen Chemie, der Petrochemie, von Umweltproben und biologischen Material reichen. Diese Methoden werden jedoch nur für die Analyse einzelner bekannter Verbindungen in diesen Proben eingesetzt. Breite Messreihen beispielsweise im Rahmen eines HTS oder in der Identifizierung und Quantifizierung einer Vielzahl von Verbindungen in diesen Proben werden nicht beschrieben.For the analysis of complex sample mixtures mass spectrometric methods are known from the prior art, for example, from the Analysis of synthetic, petrochemical, environmental and biological samples. However, these methods are only used for the analysis of individual known compounds in these samples. Broad measurement series, for example in the context of an HTS or in the identification and quantification of a variety of compounds in these samples are not described.

Anwendung findet dabei die Kopplung von Gaschromatographie und Massenspektrometrie (= GC/MS) für Substanzen, die aus den Substanzgemischen extrahierbar und leicht flüchtig sind. Für die Analyse von Substanzen bzw. Analyten, die nicht einfach oder nur schwer in die Gasphase überführt werden können und bei denen dabei ein großer Überschuss an vorliegenden Lösungsmittel entfernt werden muss, wird die sogenannte Liquid-Chromatography- oder High-Pressure-Liquid-Chromatography-Mass-Spectrometry (= HPLC/MS) verwendet. Eine Übersicht über die verschiedenen LC/MS-Methoden und ihr Equipment ist der Veröffentlichung von Niessen et al. (Journal of Chromatography A, 703, 1995: 37 - 57 ) zu entnehmen. In den US-Schriften US 4,540,884 und US 5,397,894 werden Massenspektrometer und ihr Aufbau beschrieben und beansprucht.Application is the coupling of gas chromatography and mass spectrometry (= GC / MS) for substances that are extractable from the mixtures and volatile. For the analysis of substances or analytes that can not be converted into the gas phase easily or with difficulty and in which a large excess of solvent present must be removed, the so-called liquid chromatography or high-pressure liquid chromatography -Mass Spectrometry (= HPLC / MS) used. An overview of the different LC / MS methods and their equipment is published by Niessen et al. (Journal of Chromatography A, 703, 1995: 37-57 ) refer to. In the US writings US 4,540,884 and US 5,397,894 Mass spectrometers and their structure are described and claimed.

Mit Hilfe der vorgenannten Methoden lassen sich Substanzen in einem Molekulargewichtsbereich von bis zu 100 KD (= KiloDalton) bestimmen, das heißt es läßt sich eine breite Palette von Substanzen beispielsweise in einem unteren Massenbereich von bis etwa 5000 D (= Dalton) wie Fettsäuren, Aminosäuren, Carbonsäuren, Oligo- oder Polysaccharide, Steroide etc. und/oder in einem höheren Massenbereich über 5000 D wie Peptide, Proteine, Oligonukleotide und Oligosaccharide oder sonstigen Polymere bestimmen. Auch hochmolekulare Materialien wie Kohleteer, Huminsäure, Fulvinsäure oder Kerogene lassen sich analysieren ( Zenobie and Knochenmuss, Mass Spec. Rev., 1998, 17, 337 - 366 ). Es lassen sich sowohl die Identität als auch die Struktur von Substanzen bestimmen, wobei die Strukturanalyse jedoch nicht immer eindeutig ist, so dass sie mit anderen Methoden beispielsweise NMR bestätigt werden muss.With the aid of the abovementioned methods, it is possible to determine substances in a molecular weight range of up to 100 KD (= kilodalton), that is to say a broad range of substances, for example in a lower mass range of up to about 5000 D (= daltons), such as fatty acids, amino acids , Carboxylic acids, oligosaccharides or polysaccharides, steroids etc. and / or in a higher mass range above 5000 D, such as peptides, proteins, oligonucleotides and oligosaccharides or other polymers. High molecular weight materials such as coal tar, humic acid, fulvic acid or kerogen can also be analyzed ( Zenobie and Bone Must, Mass Spec. Rev., 1998, 17, 337-366 ). Both the identity and the structure of substances can be determined, although the structural analysis is not always clear, so it must be confirmed by other methods, for example NMR.

E.L.Esmans et al. (J. Chromatogr. A 794, 109-127 (1998 ) offenbart insbesondere LC-MS-Methoden zur Analyse von Nukleobasen, Nukleosiden, Nukleotiden, Oligonukleotiden und DNA. ELEsmans et al. (J. Chromatogr. A 794, 109-127 (1998 ) discloses in particular LC-MS methods for the analysis of nucleobases, nucleosides, nucleotides, oligonucleotides and DNA.

Von G. Hopfgartner und F. Vilbois (Analusis, 2001, 28, No. 10, 906 - 914 ) wird ein Verfahren zum Screenen mit Hilfe der LC/MS von in vitro oder in vivo entstandenen Metaboliten von strukturell bekannten Verbindungen beschrieben, die als Wirkstoffe in verschiedenen Phasen der Wirkstoffentwicklung sind. Dieses Verfahren läuft in zwei Schritten ab. Im ersten Suchschritt werden in einem raschen "Full Scan-Modus" interessante Ionen erfasst, die als Kandidaten für die weiteren Untersuchungen in Frage kommen. Dabei kann es sich um Ionen handeln, die Ionen besonders hoher Intensität entsprechen oder als Kandidaten möglicher Abbauprodukte bzw. Metabolite der Wirkstoffe in Frage kommen. Diese Ionen werden in einem zweiten Scan zur Identifizierung der chemischen Struktur dieser Ionen bzw. Verbindungen nach einer Fragmentierung in einer Kollisionskammer des Massenspektrometers verwendet. Um eine rasche Aufklärung der Ionen- bzw. Metabolitstruktur zu ermöglichen, enthält die Kollisionskammer ständig Kollisionsgas. Von Nachteil bei der Strukturermittlung ist, dass eine bekannte Masse eines Vorläuferions, eines Fragments oder eines Ionenaddukts erforderlich ist. Vorteilhaft sollte die Ausgangsstruktur der zu untersuchenden Substanz für die HPLC/MS in diesen Experimenten bekannt sein. Da die HPLC/MS allein nicht für die absolute Strukturbestimmung geeignet ist. Ist jedoch die Struktur der Ausgangsverbindung bekannt, lassen sich Aussagen über die Struktur eventueller Metabolite machen. Da die Struktur des Substanz, die als Wirkstoff entwickelt werden soll, bekannt ist, lassen sich Aussagen über die Struktur der unbekannten Metabolite des Wirkstoffs mit einiger Sicherheit machen. Allerdings wird die Aussage durch mögliche Überlagerungen anderen als Verunreinigungen vorhandener Verbindungen gleicher Masse erschwert bzw. verhindert. Eine Quantifizierung der Verbindungen ist mit dieser Methode nicht möglich. By G. Hopfgartner and F. Vilbois (Analusis, 2001, 28, No. 10, 906-914 ) describes a method for screening by means of LC / MS of in vitro or in vivo derived metabolites of structurally known compounds which are active agents in different phases of drug development. This procedure is done in two steps. In the first search step are in a rapid "full scan mode" captures interesting ions that are candidates for further investigation. These may be ions which correspond to ions of particularly high intensity or are candidates for possible degradation products or metabolites of the active substances. These ions are used in a second scan to identify the chemical structure of these ions or compounds after fragmentation in a collision chamber of the mass spectrometer. In order to enable a rapid elucidation of the ion or metabolite structure, the collision chamber constantly contains collision gas. A disadvantage of the structure determination is that a known mass of a precursor ion, a fragment or an ion adduct is required. Advantageously, the starting structure of the substance to be investigated for the HPLC / MS should be known in these experiments. Since the HPLC / MS alone is not suitable for the absolute structure determination. However, if the structure of the parent compound is known, statements can be made about the structure of any metabolites. Since the structure of the substance to be developed as an active ingredient is known, statements about the structure of the unknown metabolites of the drug can be made with some certainty. However, the statement is hampered or prevented by possible overlays other than impurities existing compounds of the same mass. Quantification of the compounds is not possible with this method.

In US 2001/052569 und GB 2 363249 werden verbesserte Methoden zum Parent-Ion Scanning offenbart.In US 2001/052569 and GB 2 363249 For example, improved methods for parent ion scanning are disclosed.

Weiterhin wird in US 6,140,638 eine Methode zur Verringerung von isobaren Interferenzsignalen beschrieben, indem durch Anlegen eines geeigneten Feldes an der Kollisionszelle ein Filter aufgebaut wird, der zumindest einige Vorläufer- und intermediäre Ionen aussschließt, die ansonsten zu isobaren Interferenzen führen würden.Furthermore, in US 6,140,638 describes a method of reducing isobaric interference signals by constructing a filter on the collision cell by applying an appropriate field that excludes at least some precursor and intermediate ions that would otherwise result in isobaric interference.

Eine Identifizierung und Quantifizierung einer Vielzahl oder aller Einzelkomponenten in einem Substanzgemisch ohne zur Verfügung stehende Reinsubstanzen stellt auch heute noch ein ungelöstes Problem in der Massenspektrometrie dar.Identification and quantification of a large number or all of the individual components in a substance mixture without available pure substances is still an unsolved problem in mass spectrometry today.

Es bestand daher die Aufgabe ein Verfahren zur Analyse einer Vielzahl von Verbindungen und bevorzugt deren Quantifizierung zu entwickeln.It was therefore the object of a method for analyzing a variety of compounds and preferably to develop their quantification.

Diese Aufgabe wurde gelöst durch ein massenspektrometrisches Verfahren zur Analyse von Substanzgemischen mit einem Tripel-Quadrupol-Massenspektrometer, wobei die Substanzgemische vor der Analyse ionisiert werden, dadurch gekennzeichnet, dass das Verfahren folgende Schritte umfaßt:

  1. a) Auswählen mindestens eines Masse/Ladungs-Quotienten (m/z) eines durch Ionisation entstandenen Ionen in einem ersten analytischen Quadrupol (I) des Massenspektrometers,
  2. b) Fragmentieren des(r) unter (a) ausgewählten Ions(en) unter Anlegung einer Beschleunigungsspannung in einem weiteren folgenden Quadrupol (II), das mit einem Kollisionsgas gefüllt ist und als Kollisionskammer fungiert,
  3. c) Auswählen eines Masse/Ladungs-Quotient eines durch die Fragmentierung (b) entstandenen Fragment-Ions in einem weiteren nachfolgenden Quadrupol (III) und dessen Analyse, wobei die Verfahrensschritte (a) bis (c) mindestens einmal durchlaufen werden und
  4. d) Analysieren der Masse/Ladungs-Quotienten aller im Substanzgemisch durch die Ionisation vorhandenen Ionen, wobei das Quadrupol (II) mit Kollisionsgas gefüllt ist, jedoch während der Analyse keine Beschleunigungsspannung angelegt ist;
wobei die Schritt (a) bis (c) und der Schritt (d) auch in umgekehrter Reihenfolge durchgeführt werden können.This object was achieved by a mass spectrometric method for the analysis of substance mixtures with a triple quadrupole mass spectrometer, wherein the substance mixtures before Ionized analysis, characterized in that the method comprises the following steps:
  1. a) selecting at least one mass / charge quotient (m / z) of an ion produced by ionization in a first analytical quadrupole (I) of the mass spectrometer,
  2. b) fragmenting the ion (s) selected under (a) under application of an acceleration voltage in another following quadrupole (II) which is filled with a collision gas and acts as a collision chamber,
  3. c) selecting a mass / charge quotient of a fragment ion formed by the fragmentation (b) in a further subsequent quadrupole (III) and analyzing it, the method steps (a) to (c) being run through at least once, and
  4. d) analyzing the mass / charge quotients of all ions present in the mixture of substances by the ionization, the quadrupole (II) being filled with collision gas, but no acceleration voltage being applied during the analysis;
wherein steps (a) to (c) and step (d) may also be performed in reverse order.

Unter Substanzgemische im Sinne der Erfindung sind prinzipiell alle Gemische, die mehr als eine Substanz enthalten zu verstehen, wie beispielsweise komplexe Reaktionsmischungen chemischer Synthesen wie Syntheseprodukte aus der kombinatorischen Chemie oder Substanzgemische biologischen Ursprungs wie Fermentationsbrühen einer aeroben oder anaeroben Fermentation, Körperflüssigkeiten wie Blut, Lymphe, Urin oder Stuhl, Reaktionsprodukte eine biotechnologischen Synthese mit einem oder mehreren freien oder gebundenen Enzymen, Extrakte tierischen Materials wie Extrakte aus verschiedenen Organen oder Geweben oder pflanzliche Extrakte wie Extrakte der gesamten Pflanze oder einzelner Organe wie Wurzel, Stiel, Blatt, Blüte oder Samen oder deren Mischungen. Vorteilhaft werden in diesem Verfahren Substanzgemische biologischen Ursprungs wie Extrakte tierischen oder pflanzlichen Ursprungs, vorteilhaft pflanzlichen Ursprungs analysiert.Under substance mixtures according to the invention are in principle all mixtures containing more than one substance to understand, such as complex reaction mixtures of chemical syntheses such as synthesis products from combinatorial chemistry or substance mixtures of biological origin such as fermentation broths of an aerobic or anaerobic fermentation, body fluids such as blood, lymph Urine or stool, reaction products a biotechnological synthesis with one or more free or bound enzymes, extracts of animal material such as extracts from various organs or tissues or plant extracts such as extracts of the entire plant or individual organs such as root, stalk, leaf, flower or seed or their mixtures. Advantageously, substance mixtures of biological origin, such as extracts of animal or plant origin, advantageously of plant origin, are analyzed in this process.

Die im Verfahren verwendbaren Massenspektrometer setzen sich in der Regel aus einem Probeneinlass-System, einem Ionisationsraum, einem Interface, einer Ionenoptik, einem oder mehreren Massefilter und einem Detektor zusammen.The mass spectrometers usable in the method generally comprise a sample inlet system, an ionization chamber, an interface, an ion optics, one or more mass filters and a detector.

Zur Erzeugung von Ionen im Verfahren können prinzipiell alle dem Fachmann bekannten Ionenquellen verwendet werden. Diese Ionenquellen werden je nach verwendeter Ionenquellen über ein sogenanntes Interface an die folgenden Komponenten des Massenspektrometers beispielsweise der Ionenoptik, dem oder den Massefiltern oder dem Detektor gekoppelt. Die Zwischenschaltung eines Interfaces hat den Vorteil, dass die Analyse ohne Verzögerung durchgeführt werden kann. Weiterhin können durch die Ionenquelle nichtflüchtige und/oder flüchtige bevorzugt nichtflüchtige Substanzen direkt in die Gasphase gebracht werden. Es können dadurch auch Vorreinigungen von Substanzgemischen über eine vorteilhafte chromatographische Auftrennung durchgeführt werden, die unterschiedlich breite Stoffflüsse in der Analytik aufweisen, da über das Interface diese Stoffflüsse verarbeitet werden können. Die zu analysierenden Proben bzw. die darin enthaltenen Substanzen können dadurch außerdem angereichert werden. Weiterhin kann eine breite Palette von Lösungsmitteln bei geringstem Verlust an Probe verarbeitet werden.In principle, all ion sources known to the person skilled in the art can be used to generate ions in the process. Depending on the ion sources used, these ion sources are coupled via a so-called interface to the following components of the mass spectrometer, for example the ion optics, the mass filter (s) or the detector. The interposition of an interface has the advantage that the analysis can be carried out without delay. Furthermore, nonvolatile and / or volatile, preferably nonvolatile substances can be brought directly into the gas phase by the ion source. As a result, it is also possible to carry out prepurifications of substance mixtures via an advantageous chromatographic separation, which have substance flows of different widths in the analysis, since these substance flows can be processed via the interface. The samples to be analyzed or the substances contained therein can thereby also be enriched. Furthermore, a wide range of solvents can be processed with minimal loss of sample.

Bei der Ionisation werden im wesentlichen drei Prozesse zur Erzeugung der geladenen Teilchen (Ionen) verwendet:

  1. a) Verdampfung der Substanzgemische und Ionisation der Moleküle bzw. des Substanzgemisches in der Gasphase, beispielsweise wie bei der Elektronenstoss-Ionisation (EI), bei der die Moleküle mit einem Elektronenstrahl in einer Ionisationskammer bei niedrigem Druck (<10-2 Pa) verdampft werden oder wie bei der chemischen Ionisation (CI) mit einem Reaktandgas bei die Ionen bei einem erhöhtem Druck ca. 100 Pa erzeugt werden. Typische Reaktandgase sind beispielsweise Methan, Isobutan, Ammonium, Argon oder Wasserstoff. Wird die chemische Ionisation bei Atmosphärendruck durchgeführt, so spricht man von der sogenannten "Atmospheric-Pressure Chemical Ionization (APCI).
  2. b) Desorption der Substanzgemische von einer Oberfläche beispielsweise wie bei der Plasma Desorption (PD), der Liquid Secondary Ion Mass Spectrometry (LSIMS), dem Fast Atom Bombardment (FAB), der Laser Desorption (LD) oder dem Matrix-Assisted Laser Desorption Ionisation (MALDI). Bei all diesen Methoden werden die Substanzgemische durch einfallende energiereiche Partikel (radioaktiver Zerfall, UV-, IR-Photonen, Ar+- oder Cs+-Ionen, Laserstrahlen) in einer Kollisionskaskade vibratorisch angeregt und dadurch ionisiert.
  3. c) Zerstäubung der Substanzgemische im elektrischen Feld, wie bei der Electrospray-Ionisation (ESI). Bei der Zerstäubung der Substanzgemische im elektrischen Feld werden die Proben bei Atmosphärendruck zerstäubt.
Ionization uses essentially three processes to produce the charged particles (ions):
  1. a) evaporation of the substance mixtures and ionization of the molecules or the substance mixture in the gas phase, for example as in the electron impact ionization (EI), in which the molecules are vaporized with an electron beam in an ionization chamber at low pressure (<10 -2 Pa) or as in the case of chemical ionization (CI) with a reactant gas in which the ions are produced at an elevated pressure of about 100 Pa. Typical reactant gases are, for example, methane, isobutane, ammonium, argon or hydrogen. If the chemical ionization is carried out at atmospheric pressure, so-called "atmospheric pressure chemical ionization (APCI).
  2. b) desorption of mixtures of substances from a surface such as in plasma desorption (PD), liquid secondary ion mass spectrometry (LSIMS), fast atom bombardment (FAB), laser desorption (LD) or matrix-assisted laser desorption ionization (MALDI). In all these methods, the substance mixtures are excited vibrationally by incident high-energy particles (radioactive decay, UV, IR photons, Ar + or Cs + ions, laser beams) in a collision cascade and thereby ionized.
  3. c) Atomization of the substance mixtures in the electric field, as in electrospray ionization (ESI). In the atomization of the substance mixtures in the electric field, the samples are atomized at atmospheric pressure.

Die Electrospray-Ionisation ist eine sehr schonende Methode. Bei der ESI werden kontinuierlich Ionen gebildet. Diese kontinuierliche Ionenbildung hat den Vorteil, dass sie mühelos in Verbindung mit fast jedem Analysatortyp gekoppelt werden kann und dass sie sich problemlos mit einer chromatographischen Auftrennung wie einer Auftrennung über Kapillar-Elektrophorese (CE), Liquid Chromatography (LC) oder High Pressure Liquid Chromatography (HPLC) verbinden läßt, da sie eine gute Toleranz für hohe Flussraten bis zu 2 ml/min Eluat hat. Dabei wird das Versprühen des Eluenten pneumatisch durch ein sogenanntes Vernebelungsgas beispielsweise Stickstoff unterstützt. Hierzu wird das Gas unter einem Druck von bis zu 4 bar, vorteilhaft bis zu 2 bar aus einer Kapillare ausgeblasen, die die Einlasskapillare des Eluenten umschließt. Auch höhere Drücke sind prinzipiell möglich. Bei der vorgeschalteten chromatographischen Auftrennung sind sogenannte Normalphasen-(z.B. Kieselgel-, Aluminiumoxid-, Aminodesoxyhexit-, Aminodesoxy-d-glucose-, Triethylentetramin-, Polyethylenoxid- oder Aminodicarboxy-Säulen) und/oder Reversed-Phase-Säulen bevorzugt Reversed-Phase-Säulen wie Säulen mit einer C4, C8 oder C18 stationären Phase bevorzugt. Unter Standardbedingungen führt die Elekctrospray-Technik aufgrund der äußerst schonenden Ionisierung zum (Quasi-)Molekülion. Meist sind dies Addukte mit bereits in der Probenlösung vorhandenen Ionen (z.B. Protonen, Alkali- und/oder Ammoniumionen). Weiterhin von Vorteil ist, dass sich auch mehrfach geladene Ionen detektieren lassen, so dass Ionen mit einem Molekulargewicht von bis zu hunderttausend Dalton detektieren lassen, vorteilhaft lassen sich im erfindungsgemäßen Verfahren Molekulargewichte in einem Bereich von 1 bis 10000 Dalton, bevorzugt in einem Bereich von 50 bis 8000 Dalton, besonders bevorzugt in einem Bereich von 100 bis 4000 Dalton detektieren. Als weitere beispielhafte Methoden sei die Ionenspray-Ionisation, die Atmospheric Pressure Ionisation (APCI) oder die Thermospray-Ionisation genannt.Electrospray ionization is a very gentle method. At ESI, ions are continuously formed. This continuous ion formation has the advantage that it can be easily coupled in conjunction with almost any analyzer type and that it can easily be combined with chromatographic separation such as separation by capillary electrophoresis (CE), liquid chromatography (LC) or high pressure liquid chromatography ( HPLC) because it has a good tolerance for high flow rates up to 2 ml / min eluate. The spraying of the eluent is pneumatically supported by a so-called nebulizing gas, for example nitrogen. For this purpose, the gas is blown under a pressure of up to 4 bar, advantageously up to 2 bar from a capillary, which encloses the inlet capillary of the eluent. Even higher pressures are possible in principle. In the upstream chromatographic separation, so-called normal phase (eg silica gel, alumina, aminodeoxyhexitol, aminodeoxy-d-glucose, triethylenetetramine, polyethylene oxide or aminodicarboxy columns) and / or reversed-phase columns are preferably reversed-phase columns. Columns such as columns with a C 4 , C 8 or C 18 stationary phase are preferred. Under standard conditions, the electrospray technique leads to the (quasi-) molecular ion due to the extremely gentle ionization. These are usually adducts with ions already present in the sample solution (eg protons, alkali ions and / or ammonium ions). It is furthermore advantageous that multiply charged ions can also be detected so that ions with a molecular weight of up to one hundred thousand daltons can be detected; molecular weights in a range from 1 to 10,000 daltons, preferably in a range of 50, can advantageously be used in the process according to the invention detect up to 8,000 daltons, more preferably in a range of 100 to 4000 daltons. Other exemplary methods include ion spray ionization, atmospheric pressure ionization (APCI) or thermospray ionization.

Bei den vorgenannten Ionisierungsmethoden läuft der Ionisierungsprozeß unter Atmosphärendruck ab und gliedert sich im wesentlichen in drei Phasen: Zunächst wird die zu analysierende Lösung in einem starken elektrostatischen Feld, das durch Erzeugen einer Potentialdifferenz von 2-10 kV, vorteilhaft von 2-6 kV, zwischen der Einlasskapillare und einer Gegenelektrode erzeugt wird, versprüht. Ein elektrisches Feld zwischen der Einlasskapillarspitze und dem Massenspektrometer durchdringt dabei die Analytlösung und trennt dabei die Ionen in einem elektrischen Feld auf. Positive Ionen werden dabei im sogenannten positive Mode an die Oberfläche der Flüssigkeit gezogen, negative Ionen in die Gegenrichtung oder umgekehrt bei Messungen im sogenannten positiv Mode. Die an der Oberfläche akkumulierten positiven Ionen werden im folgenden weiter in Richtung der Kathode gezogen. Bei der Verwendung von Sprühkappilaren (NanoSpray), in denen die zu untersuchende Lösung nicht durch das Anlegen von Druck aus der Kapillare gepresst wird, bildet sich ein Flüssigkeitskonus, der sog. Taylor-Konus aus, da die Oberflächenspannung der Flüssigkeit dem elektrischen Feld entgegen wirkt. Ist das elektrische Feld stark genug, ist der Konus stabil und emittiert an seiner Spritze kontinuierlich einen Flüssigkeitsstrom. Beim druckunterstützten Versprühen der zu untersuchenden Lösung (z.B. mit HPLC) ist der Taylor-Konus nicht so ausgeprägt.In the above-mentioned ionization, the ionization process proceeds under atmospheric pressure and is divided essentially into three phases: First, the solution to be analyzed in a strong electrostatic field by generating a potential difference of 2-10 kV, preferably 2-6 kV between the inlet capillary and a counter electrode is generated, sprayed. An electric field between the inlet capillary tip and the mass spectrometer penetrates the analyte solution and separates the ions in an electric field. Positive ions are attracted to the surface of the liquid in so-called positive mode, negative ions in the opposite direction or vice versa Measurements in the so-called positive mode. The positive ions accumulated on the surface are subsequently drawn further in the direction of the cathode. When using spray capillary (NanoSpray) in which the solution to be examined is not pressed by the application of pressure from the capillary, forms a liquid cone, the so-called Taylor cone, since the surface tension of the liquid counteracts the electric field , If the electric field is strong enough, the cone is stable and continuously emits a liquid stream on its syringe. In pressure-assisted spraying of the solution to be investigated (eg with HPLC), the Taylor cone is not so pronounced.

Dabei bildet sich jeweils ein Aerosol aus, das aus Analyt und Lösungsmittel besteht. Im folgenden Stadium findet die Desolvatisierung der gebildeten Tropfen statt, was zur sukzessiven Verringerung der Tropfengröße führt. Die Verdampfung des Lösungsmittels wird durch thermische Einwirkung, z.B. durch Zuführung heißen Inertgases, erreicht. Durch die Verdampfung in Zusammenwirken mit den elektrostatischen Kräften steigt die Ladungsdichte an der Oberfläche der eingesprühten Substanzgemischtröpfchen ständig. Überschreitet dabei schließlich die Ladungsdichte bzw. deren Ladungsrepulsionskräfte die Oberflächenspannung der Tröpfchen (sogenannte Raleigh-Grenze), so explodieren (Coulomb-Explosion) diese Tröpfchen in kleinere Teiltröpfchen. Dieser Prozess "Lösungsmittel-Verdampfung/Coulomb-Explosion" wird mehrfach durchlaufen bis schließlich die Ionen in die Gasphase übertreten. Um gute Messergebnisse zu erhalten, müssen der Gasfluss im Interface, die angelegte Heiztemperatur, die Flussrate des Heizgases, der Druck des Vernebelungsgases und die Kapillarspannung genau überwacht und gesteuert werden.In each case, an aerosol is formed, which consists of analyte and solvent. In the following stage, the desolvation of the formed drops takes place, which leads to the successive reduction of the droplet size. The evaporation of the solvent is effected by thermal action, e.g. by supplying hot inert gas, achieved. By evaporation in cooperation with the electrostatic forces, the charge density on the surface of the sprayed substance mixture droplets constantly increases. If, finally, the charge density or its charge repulsive forces exceed the surface tension of the droplets (so-called Raleigh limit), then (Coulomb explosion) these droplets explode into smaller droplets. This process "solvent evaporation / Coulomb explosion" is repeated several times until finally the ions go into the gas phase. In order to obtain good measurement results, the gas flow in the interface, the applied heating temperature, the flow rate of the heating gas, the pressure of the nebulizing gas and the capillary voltage must be precisely monitored and controlled.

Mit den verschiedenen Ionisiationsverfahren können einfach oder mehrfach geladene Ionen erzeugt werden. Für das erfindungsgemäße Verfahren werden als Ionisationsverfahren Verfahren zur Zerstäubung des Substanzgemisches im elektrischen Feld wie das Thermospray-, das Electrospray- (= ES) oder das Atmospheric Pressure Chemical Ionisation (= APCI)-Verfahren vorteilhaft verwendet. Bei der APCI-Ionisation erfolgt die Ionisierung in einer sogenannten Coronna-Entladung. Bevorzugt wird das Thermospray- oder Electrospray-Verfahren, besonders bevorzugt ist das Electrospray-Verfahren. Der Ionisationsraum steht über ein Interface, das heißt über einer Mikroöffnung (100 µm) mit dem folgenden Massenspektrometer in Verbindung. Auf der Seite der Ionisierungskammer ist noch eine Interface-Platte mit einer größeren Öffnung angebracht. Zwischen dieser Platte und dem sogenannten "orifice" wird ein aufgeheiztes Trägergas (= Curtain-Gas) beispielsweise Stickstoff eingeblasen. Der Stickstoff kollidiert dabei mit den beispielsweise durch Electrospray erzeugten Ionen, die im Substanzgemisch erzeugt wurden. Durch Einblasen des Curtain-Gas wird vorteilhaft verhindert, dass Neutralteilchen in das Hochvakuum des nachfolgenden Massenspektrometer gesaugt werden. Weiterhin wird durch das curtain-Gas die Desolvatisierung der Ionen unterstützt.With the different ionization methods, single or multiple charged ions can be generated. For the method according to the invention, the ionization method used is advantageously methods for atomizing the substance mixture in the electric field, such as the thermospray, the electrospray (= ES) or the atmospheric pressure chemical ionization (= APCI) method. In APCI ionization, ionization occurs in a so-called corona discharge. Preference is given to the thermospray or electrospray method, the electrospray method being particularly preferred. The ionization space is connected via an interface, that is to say via a micro-opening (100 μm) with the following mass spectrometer. On the side of the ionization chamber, an interface plate with a larger opening is still attached. Between this plate and the so-called "orifice" is a heated Carrier gas (= Curtain gas), for example, injected nitrogen. The nitrogen collides with the ions generated, for example, by electrospray, which were generated in the substance mixture. By blowing the curtain gas is advantageously prevented that neutral particles are sucked into the high vacuum of the subsequent mass spectrometer. Furthermore, the curtain gas promotes the desolvation of the ions.

Das erfindungsgemäße Verfahren kann mit allen dem Fachmann bekannten Quadrupolmassenspektrometern wie den Tripel-Quadrupol-Massenspektrometern durchgeführt werden. In US 2,939,952 beschreibt und beansprucht Paul et al. ein erstes derartiges Gerät. Diese Geräte haben einen vorteilhaften Massenbereich bis etwa m/z = 4000 und erzielen Auflösungswerte zwischen 500 und etwa 5000. Sie verfügen über eine hohe Ionentransmission von der Quelle bis zum Detektor, sind leicht zu fokussieren und zu kalibrieren und verfügen vorteilhaft über eine große Stabilität der Kalibrierung im Dauerbetrieb. Tripel-Quadrupol-Instrumente bilden die Standard-Instrumente für Niedrigenergie-Kollisionsaktivierungsstudien. Üblicherweise bestehen diese Geräte aus einem ersten Quadrupol, das zur Analyse des Masse/Ladungs-Quotienten (m/z) der in dem Substanzgemisch nach Ionisation enthaltenen Ionen im Hochvakuum (ca. 10-5 Torr) geeignet ist, wobei die Masse(n) einzelner Ionen, mehrerer oder aller Ionen gemessen werden können. Diesem ersten analytischen Quadrupol (= I oder Q1) können ein oder mehrere Quadrupole (= Q0) vorgeschaltet sein, die in der Regel zur Fokussierung der Ionen verwendet werden. Anstelle dieses oder dieser vorgeschalteten Quadrupole können auch sogenannte "Cones" Linsen oder Linsensysteme zur Fokussierung und Einbringung der Ionen in das erste analytische Quadrupol verwendet werden. Auch Kombinationen aus Quadrupolen und Cones sind realisiert und verwendbar.The method according to the invention can be carried out with all quadrupole mass spectrometers known to the person skilled in the art, such as the triple quadrupole mass spectrometers. In US 2,939,952 describes and claims Paul et al. a first such device. These devices have a favorable mass range up to about m / z = 4000 and achieve resolution values between 500 and about 5000. They have high ion transmission from the source to the detector, are easy to focus and calibrate, and advantageously have great stability Calibration in continuous operation. Triple quadrupole instruments are the standard tools for low energy collision activation studies. Usually, these devices consist of a first quadrupole, which is suitable for analyzing the mass / charge quotient (m / z) of the ions contained in the substance mixture after ionization in a high vacuum (about 10 -5 Torr), the mass (s) individual ions, several or all ions can be measured. This first analytical quadrupole (= I or Q1) can be preceded by one or more quadrupoles (= Q0), which are usually used to focus the ions. Instead of this or these upstream quadrupoles, it is also possible to use so-called "cones" lenses or lens systems for focusing and introducing the ions into the first analytical quadrupole. Also combinations of quadrupoles and cones are realized and usable.

Ein weiteres Q1 folgendes Quadrupol (= II oder Q2) dient als Kollisionskammer. In ihm werden die Ionen vorteilhaft unter Anlegung einer Fragmentierungsspannung fragmentiert. Zur Fragmentierung werden Ionisierungspotenziale im Bereich von 5-11 Elektronenvolt (eV), bevorzugt von 8-11 Elektronenvolt (eV) angelegt. Q2 ist außerdem für die Fragmentierung im erfindungsgemäßen Verfahren mit einem Kollisionsgas wie einem Edelgas wie Argon oder Helium oder einem anderen Gas wie CO2 oder Stickstoff oder Mischungen dieser Gase wie Argon/Helium oder Argon/Stickstoff gefüllt. Aus kostengründen ist Argon und/oder Stickstoff bevorzugt. In der Kollisionskammer liegt das Kollisionsgas im erfindungsgemäßen Verfahren mit einem Druck von 1 x 10-5 bis 1 x 10-1 Torr, bevorzugt 10-2 vor. Besonders bevorzugt ist Stickstoff. Auch ohne die Anlegung einer Fragmentierungsspannung kann es zu einer vereinzelten Fragmentierung der Ionen in der Kollisionskammer bei Anwesenheit eines Kollisionsgases kommen. Zwischen dem Quadrupol Q1 und Q2 können weitere Quadrupole oder Cones zur Lenkung der Ionen vorhanden sein.Another Q1 following quadrupole (= II or Q2) serves as a collision chamber. In it, the ions are advantageously fragmented by applying a fragmentation voltage. For fragmentation, ionization potentials in the range of 5-11 electron volts (eV), preferably 8-11 electron volts (eV) are applied. Q2 is also filled for fragmentation in the process according to the invention with a collision gas such as a noble gas such as argon or helium or other gas such as CO 2 or nitrogen or mixtures of these gases such as argon / helium or argon / nitrogen. For cost reasons, argon and / or nitrogen is preferred. In the collision chamber, the collision gas is present in the process according to the invention at a pressure of 1 × 10 -5 to 1 × 10 -1 Torr, preferably 10 -2 . Particularly preferred is nitrogen. Even without the application of a fragmentation voltage, there may be a scattered fragmentation of the ions in the collision chamber in the presence of a Collision gases come. Between quadrupole Q1 and Q2 there may be additional quadrupoles or cones for guiding the ions.

An das Quadrupol Q2, das als Kollisionskammer dient, schließt sich schließlich ein weiteres Quadrupol (= III oder Q3) an. In diesem Q3 können entweder die m/z-Quotienten einzelner ausgewählter Fragemente, mehrerer oder aber aller in den Substanzgemischen nach Ionisation vorhandenen m/z-Quotienten (in dieser Anmeldung der einfachheithalber als Masse oder Massen bezeichnet) bestimmt werden. Auch zwischen dem Quadrupol Q2 und Q3 können weitere Quadrupole oder Cones zur Lenkung der Ionen vorhanden sein.The quadrupole Q2, which serves as a collision chamber, is followed by another quadrupole (= III or Q3). In this Q3, either the m / z quotients of individual selected fragments, several or all of the m / z quotients present in the substance mixtures after ionization (in this application for simplicity's sake referred to as mass or masses) can be determined. Also between quadrupole Q2 and Q3 there may be more quadrupoles or cones for steering the ions.

Im erfindungsgemäßen Verfahren können einzelne Quadrupole zur Sammlung von Ionen auch als Ionenfallen betrieben werden, aus denen dann die Ionen nach einiger Zeit wieder zur Analyse freigegeben werden.In the method according to the invention, individual quadrupoles for collecting ions can also be operated as ion traps, from which the ions are then released again for analysis after some time.

Die in den Tripel-Quadrupol-Massenspektrometern verwendeten Quadrupole erzeugen ein dreidimensionales elektrisches Feld in dem die erzeugten Ionen gehalten bzw. gelenkt werden können. Sie bestehen in der Regel aus 4, 6 oder 8 Stäben oder Stangen mit deren Hilfe wird ein oszillierendes elektrisches Feld erzeugt wird, wobei gegenüberliegende Stäbe elektrisch verbunden sind. Neben der Bezeichnung Quadrupol werden auch die Bezeichnungen Hexa- oder Octapol verwendet. In der vorliegenden Anmeldung sollen diese Bezeichnungen mit umfasst sein, wenn der Begriff Quadrupol verwendet wird. Vorteilhaft sind in den Quadrupolen des Tripel-Quadrupol-Massenspektrometer zur Lenkung der Ionen nur geringe Beschleunigungsspannungen von wenigen Volt bevorzugt von einigen 10 V erforderlich.The quadrupoles used in the triple quadrupole mass spectrometers generate a three-dimensional electric field in which the generated ions can be held. They usually consist of 4, 6 or 8 rods or rods with their help an oscillating electric field is generated, opposite rods are electrically connected. In addition to the name quadrupole, the terms hexa- or octapol are also used. In the present application, these terms should be included when the term quadrupole is used. Advantageously, only low acceleration voltages of a few volts, preferably of a few 10 volts, are required in the quadrupoles of the triple quadrupole mass spectrometer for guiding the ions.

Im erfindungsgemäßen Verfahren werden vorteilhaft Substanzgemische wie tierische oder pflanzliche Extrakte, bevorzugt pflanzliche Extrakte verwendet.Substance mixtures such as animal or vegetable extracts, preferably vegetable extracts, are advantageously used in the process according to the invention.

Im erfindungsgemäßen verfahren werden nach der Ionisierung der Substanzgemische die weiteren Verfahrensschritte durchlaufen

  1. I) In den Verfahrensschritten (a) bis (c) wird die Masse mindestens eines im Substanzgemisch nach Ionisation in Q1 vorhandenen Ions analysiert und ausgewählt. Dieses ausgewählte Ion wird anschließend in Q2 in Gegenwart von Kollisionsgas und einer Fragmentierungsspannung fragmentiert und danach wird eines der entstandenen Fragment-Ionen in einem weiteren analytischen Quadrupol Q3 identifiziert und vorteilhaft auch quantifiziert. Dabei erfolgt die Auswahl des zu analysierenden Fragment-Ions in der Weise, dass diese Ion vorteilhaft eine hohe Intensität, eine leicht identifizierbare charakteristische Masse hat und in einer vorteilhaften Ausführungsform des Verfahrens eine leichte Quantifizierung ermöglicht.
  2. II) Anschließend werden im Verfahrensschritt (d) die Massen aller im Substanzgemisch nach Ionisation vorhandenen Ionen analysiert, wobei das als Kollisionskammer benutzte Quadrupol Q2 immer mit Kollisionsgas gefüllt ist, jedoch in Verfahrensschritt (d) keine Fragmentierungsspannung an Q2 anliegt. Diese Analyse kann prinzipiell sowohl mit Q1 und als auch mit Q3 erfolgen, vorteilhafter ist es jedoch die Analyse mit Q3 durchzuführen, da zwischen Q1 und dem an das Massenspektrometer anschließenden Detektor als Kollisionskammer verwendete Quadrupol Q2 liegt. Sollte in Q2 eine Fragmentierung trotz dem fehlen anliegender Fragmentierungsspannung auftreten, so hat dies keinen Einfluss auf eine mögliche Erfassung der Ionenmassen am Detektor. Im Falle einer Massenanalyse mit Q1 würde eine solche Fragmentation in Q2 jedoch zu Fehlschlüssen bei der Detektion führen. Deshalb ist eine Massendetektion mit Q3 bevorzugt, da mögliche Fehlerquellen eliminiert werden bzw. vernachlässigbar sind.
In the process according to the invention, the further process steps are carried out after the ionization of the substance mixtures
  1. I) In method steps (a) to (c), the mass of at least one ion present in the substance mixture after ionization in Q1 is analyzed and selected. This selected ion is then fragmented in Q2 in the presence of collision gas and a fragmentation voltage and then one of the resulting fragment ions in another analytical quadrupole Q3 is identified and advantageously also quantified. In this case, the selection of the fragment ion to be analyzed in such a way that this ion is advantageously a high intensity, a has easily identifiable characteristic mass and in an advantageous embodiment of the method enables easy quantification.
  2. II) Subsequently, in method step (d), the masses of all ions present in the substance mixture after ionization are analyzed, wherein the quadrupole Q2 used as a collision chamber is always filled with collision gas, but in method step (d) no fragmentation voltage is applied to Q2. This analysis can in principle be carried out with both Q1 and Q3, but it is more advantageous to carry out the analysis with Q3, since quadrupole Q2 is used as the collision chamber between Q1 and the detector following the mass spectrometer. Should fragmentation occur in Q2 despite the lack of fragmentation voltage, this does not affect the possible detection of ion masses at the detector. However, in the case of mass analysis with Q1, such fragmentation in Q2 would lead to erroneous detection. Therefore, mass detection with Q3 is preferred since possible sources of error are eliminated or negligible.

Die oben aufgeführten Prozessschritte (I) bzw. (II) können auch in umgekehrter Reihenfolge durchgeführt werden. Figur 1 ist der Ablauf des erfindungsgemäßen Verfahren zu entnehmen. Im erfindungsgemäßen Verfahren werden die Verfahrensschritte (a) bis (c) und (d) vorteilhaft innerhalb von 0,1 bis 10 Sekunden mindestens einmal durchlaufen bevorzugt innerhalb von 0,2 bis 6 Sekunden mindestens einmal, besonders bevorzugt innerhalb von 0,2 bis 2 Sekunden, ganz besonders bevorzugt mindestens einmal innerhalb von 0,3 bis unter 2 Sekunden. Um eine vorteilhafte statistische Auswertung der Messungen zu ermöglichen werden die Verfahrensschritte innerhalb von 0,2 bis 6 Sekunden zwei- bis dreimal bevorzugt dreimal durchlaufen. Um derartige rasche schnell hintereinander folgende Messungen zu ermöglichen, ist das als Kollisionskammer fungierende Quadrupol Q2 ständig mit Kollisionsgas gefüllt. Wie die eigenen Messungen zeigten, hat dies keinen negativen Einfluss auf die Reproduzierbarkeit der Messungen.The process steps (I) and (II) listed above can also be carried out in the reverse order. FIG. 1 the sequence of the method according to the invention can be seen. In the process according to the invention, process steps (a) to (c) and (d) are advantageously carried out at least once within 0.1 to 10 seconds, preferably within 0.2 to 6 seconds at least once, particularly preferably within 0.2 to 2 Seconds, most preferably at least once within 0.3 to less than 2 seconds. In order to enable an advantageous statistical evaluation of the measurements, the process steps are run through within two to three times, preferably three times, within 0.2 to 6 seconds. In order to enable such rapid measurements following one after the other, the quadrupole Q2 acting as a collision chamber is constantly filled with collision gas. As the own measurements showed, this has no negative influence on the reproducibility of the measurements.

Während einer Analyse können im erfindungsgemäßen Verfahren zwischen 1 und 100 Masse/Ladungs-Quotienten verschiedener in Schritt (a) entstandener und ausgewählter Ionen analysiert werden. Vorteilhaft werden mindestens 20 m/z-Quotienten, bevorzugt mindestens 40 m/z-Quotienten, besonders bevorzugt mindestens 60 m/z-Quotienten, ganz besonders bevorzugt mindestens 80 m/z-Quotienten unterschiedlicher Ionen oder mehr identifiziert und/oder quantifiziert.During an analysis, between 1 and 100 mass / charge quotients of different ions formed and selected in step (a) can be analyzed in the method according to the invention. Advantageously, at least 20 m / z quotients, preferably at least 40 m / z quotients, more preferably at least 60 m / z quotients, most preferably at least 80 m / z quotients of different ions or more are identified and / or quantified.

Mit Hilfe des erfindungsgemäßen Verfahrens können vorteilhaft neben der Analyse aller in einem Substanzgemisch vorhandenen Massen auch einzelne Substanzen bzw. deren Massen analysiert und vorteilhaft quantifiziert werden.With the aid of the method according to the invention, in addition to the analysis of all masses present in a substance mixture, it is also possible advantageously to analyze and advantageously quantify individual substances or their masses.

Eine Reinigung der Substanzgemische ist im erfindungsgemäßen verfahren prinzipiell nicht erforderlich. Die Substanzgemische können direkt nach Einbringung in eine Ionenquelle gemessen werden. Dies gilt auch für komplexe Substanzgemische. Auch müssen den Substanzgemischen als interne Standards keine markierten oder unmarkierten Reinsubstanzen möglicher in den Gemischen enthaltenden Substanzen zugesetzt werden obwohl dies natürlich möglich ist und eine anschließende Quantifizierung der in den Gemischen enthaltenden Substanzen vereinfacht.Purification of the substance mixtures is in principle not required in the process according to the invention. The substance mixtures can be measured directly after introduction into an ion source. This also applies to complex mixtures of substances. It is also not necessary to add to the substance mixtures as internal standards any labeled or unlabeled pure substances of possible substances contained in the mixtures, although this is of course possible and simplifies subsequent quantification of the substances contained in the mixtures.

Eine Aufreinigung über dem Fachmann bekannte Verfahren wie chromatographische Verfahren ist jedoch von Vorteil. Aufgrund der im erfindungsgemäßen Verfahren bevorzugten Ionisationsmethode über eine Zerstäubung der Substanzgemische im elektrischen Feld läßt sich eine Auf- und/oder Vorreinigung der Substanzgemische beispielsweise über eine Chromatographie sehr einfach an die massenspektrometrische Analyse ankoppeln. Als chromatographische Verfahren können dabei alle dem Fachmann bekannte Trennmethoden wie LC-, HPLC- oder Kapillarelektrophorese- verwendet werden. Trennverfahren, die auf der Adsorptions-, Gelpermeations-, Ionenpaar-, Ionenaustausch-, Ausschluss-, Affinitäts-, Normalphasen- oder Reversed Phase-Chromatographie basieren, um nur einige mögliche zu nennen, können verwendet werden. Vorteilhaft werden Normalphasen- und/oder Reversed-Phase basierende Chromatographien , bevorzugt Reversed-Phase-Säulen mit unterschiedlichen hydrophobe modifizierten Materialien wie C4-, C8-, oder C18- Phasen verwendet.However, purification by methods known to a person skilled in the art, such as chromatographic methods, is advantageous. Because of the preferred in the process according to the invention ionization method on a sputtering of the substance mixtures in the electric field, an up and / or pre-purification of the substance mixtures can be coupled very easily, for example via chromatography to the mass spectrometric analysis. In this case, all separation methods known to the person skilled in the art, such as LC, HPLC or capillary electrophoresis, can be used as chromatographic methods. Separation methods based on adsorption, gel permeation, ion pair, ion exchange, exclusion, affinity, normal phase or reversed phase chromatography, to name a few possible ones, can be used. Advantageously, normal-phase and / or reversed-phase-based chromatographies, preferably reversed-phase columns with different hydrophobic modified materials such as C 4 -, C 8 -, or C 18 - phases are used.

Im erfindungsgemäßen Verfahren ist eine Kopplung von Aufreinigungsmethoden vorteilhaft von Chromatographiemethoden mit einer Fließgeschwindigkeit des Eluenten (Analyten + Lösungsmittel) vorteilhaft zwischen 1 µl/min bis 2000 µl/min, bevorzugt zwischen 5 µl/min bis 600 µl/min, besonders bevorzugt zwischen 10 µl/min bis 500 µl/min beispielsweise möglich. Auch geringere oder höhere Fließgeschwindigkeiten können ohne Schwierigkeiten im erfindungsgemäßen Verfahren verwendet werden.In the process according to the invention, coupling of purification methods, advantageously by chromatography methods with a flow rate of the eluent (analyte + solvent), is advantageously between 1 μl / min to 2000 μl / min, preferably between 5 μl / min to 600 μl / min, more preferably between 10 μl / min to 500 .mu.l / min, for example, possible. Even lower or higher flow rates can be used without difficulty in the process according to the invention.

Als Lösungsmittel für das Aufreinigungsverfahren können prinzipiell alle protischen oder aprotischen polaren oder unpolaren Lösungsmittel verwendet werden, die mit der anschließenden Analytik kompatibel sind. Ob ein Lösungsmittel mit der Massenspektrometrie kompatibel ist, kann der Fachmann durch einfache Stichversuche leicht ermitteln. Geeignete Lösungsmittel sind beispielsweise Lösungsmittel, die keine oder wenig Ladungen tragen, wie aprotische apolare Lösungsmittel, die durch eine niedrige Dielektrizitätskonstanten (Et<15), niedrige Dipolmomente (µ<2,5D) und niedrige ET N-Werte (0,0 - 0,5) charakterisiert sind. Aber auch dipolare organische Lösungsmittel oder deren Mischungen sind als Lösungsmittel für das erfindungsgemäße Verfahren geeignet. Als geeignete Lösungsmittel sind seien hier beispielhaft Methanol, Ethanol, Acetonitril, Ether, Heptan genannt. Auch schwache saure Lösungsmittel wie 0,01 - 0,1 % Ameisensäure, Essigsäure oder Trifluoressigsäure sind geeignet. Weiterhin sind auch schwach basische Lösungsmittel wie 0,01 - 0,1 % Triethylamin oder Ammoniak geeignet. Auch stark saure oder stark basische Lösungsmittel wie 5%ige HCL oder 5%iges Triethylamin sind prinzipiell als Lösungsmittel geeignet. Auch Mischungen der vorgenannten Lösungsmittel sind vorteilhaft. Auch die in der Biochemie üblichen Puffer sind als Lösungsmittel geeignet, wobei vorteilhaft Puffer < 200 mM, bevorzugt < 100 mM, besonders bevorzugt < 50 mM, ganz besonders bevorzugt < 20 mM verwendet werden. Ebenfalls vorteilhaft ist es, wenn Puffer > 100 mM für die Herstellung der Substanzgemische verwendet werden, dass die Puffer beispielsweise über eine Dialyse ganz oder teilweise entfernt werden. Als Puffer seien beispielsweise Acetat-, Formiat-, Phosphat-, Tris-, MOPS-, HEPES- oder deren Mischungen genannt. Hohe Puffer und/oder Salzkonzentrationen beeinflussen die Ionisationsprozesse negativ und sind gegebenenfalls zu vermeiden.In principle, all protic or aprotic polar or non-polar solvents which are compatible with the subsequent analysis can be used as solvents for the purification process. Whether a solvent is compatible with mass spectrometry, the skilled person can easily determine by simple random tests. Suitable solvents are, for example Solvents carrying little or no charge, such as aprotic apolar solvents, characterized by a low dielectric constant (E t <15), low dipole moments (μ <2.5D), and low E T N values (0.0-0.5 ) are characterized. But also dipolar organic solvents or mixtures thereof are suitable as solvents for the inventive method. Examples of suitable solvents are methanol, ethanol, acetonitrile, ethers, heptane. Also weak acid solvents such as 0.01 - 0.1% formic acid, acetic acid or trifluoroacetic acid are suitable. Furthermore, weakly basic solvents such as 0.01 to 0.1% triethylamine or ammonia are also suitable. Strongly acidic or strongly basic solvents such as 5% HCl or 5% triethylamine are also suitable in principle as solvents. Also, mixtures of the aforementioned solvents are advantageous. The customary in biochemical buffers are suitable as solvents, wherein advantageously buffer <200 mM, preferably <100 mM, more preferably <50 mM, most preferably <20 mM are used. It is also advantageous if buffers> 100 mM are used for the preparation of the substance mixtures that the buffers are completely or partially removed, for example via dialysis. Examples of suitable buffers include acetate, formate, phosphate, tris, MOPS, HEPES or mixtures thereof. High buffers and / or salt concentrations have a negative effect on the ionization processes and may need to be avoided.

Im erfindungsgemäßen Verfahren lassen sich Moleküle, die in den Substanzgemischen enthalten sind, von 100 Dalton (= D) bis 100 Kilodalton (= kD), bevorzugt von 100 D bis 20 kD, besonders bevorzugt von 100 D - 10 kD, ganz besonders bevorzugt von 100 D bis 2000 D nachweisen, das heißt identifizieren und gegebenenfalls auch quantifizieren.In the process according to the invention, molecules contained in the substance mixtures can be from 100 daltons (= D) to 100 kilodaltons (= kD), preferably from 100 D to 20 kD, more preferably from 100 D-10 kD, most preferably from 100 D to prove 2000 D, ie identify and possibly also quantify.

Vorteilhaft können die Substanzgemische für das erfindungsgemäße Verfahren, die sonst nur schlecht oder gar nicht nachweisbar sind vor der Analyse derivatisiert werden und so schließlich analysiert werden. Eine Derivatisierung ist besonders vorteilhaft in Fällen, in denen in hydrophobe bzw. flüchtige Verbindungen beispielsweise wie Ester, Amide, Lactone, Aldehyde, Ketone, Alkohole etc. hydrophile Gruppen eingeführt werden, die vorteilhaft noch eine ionisierbare Funktionalität tragen. Beispiele für derartige Derivatisierungen sind Umsetzungen von Aldehyden oder Ketonen zu Oximen, Hydrazonen oder deren Derivate oder Alkoholen zu Estern beispielsweise mit symmetrischen oder gemischten Anydriden. Dadurch kann das Nachweisspektrum des Verfahrens vorteilhaft erweitert werden.Advantageously, the substance mixtures for the method according to the invention, which are otherwise poorly or not at all detectable, can be derivatized before the analysis and thus finally analyzed. Derivatization is particularly advantageous in cases in which hydrophilic groups are introduced into hydrophobic or volatile compounds, for example, such as esters, amides, lactones, aldehydes, ketones, alcohols, etc., which advantageously still carry an ionizable functionality. Examples of such derivatizations are reactions of aldehydes or ketones to oximes, hydrazones or their derivatives or alcohols to give esters, for example with symmetrical or mixed anhydrides. As a result, the detection spectrum of the method can advantageously be extended.

Vorteilhaft wird im erfindungsgemäßen Verfahren zur Analyse der Substanzgemische ein interner Standard wie z.B. Peptide, Aminosäuren, Coenzyme, Zucker, Alkohole, konjugierte Alkene, organische Säuren oder Basen zugesetzt. Dieser interne Standard ermöglicht vorteilhaft die Quantifizierung der Verbindungen im Gemisch. Im Substanzgemisch enthaltende Substanzen können so leichter analysiert und letztlich quantifiziert werden.Advantageously, in the method according to the invention for analyzing the substance mixtures, an internal standard, such as e.g. Peptides, amino acids, coenzymes, sugars, alcohols, conjugated alkenes, organic acids or bases added. This internal standard advantageously allows the quantification of the compounds in the mixture. Substance mixture containing substances can thus be more easily analyzed and ultimately quantified.

Als internen Standard werden vorteilhaft markierte Substanzen verwendet, prinzipiell sind aber auch nicht markierte Substanzen als interner Standard geeignet. Derartige ähnliche chemische Verbindungen sind beispielsweise sogenannten Verbindungen einer homologen Reihe, deren Mitglieder sich nur durch beispielsweise eine zusätzliche Methylengruppe unterscheiden. Als interner Standard werden bevorzugt durch mindestens ein Isotop ausgewählt aus der Gruppe 2H, 13C, 15N, 17O, 18O, 33S, 34S, 36S, 35Cl, 37Cl, 29Si, 30Si, 74Se oder deren Mischungen markierte Substanzen verwendet. Bevorzugt wird aus Kostengründen und aus Gründen der Zugänglichkeit 2H oder 13C als Isotop verwendet. Diese internen Standard brauchen für die Analyse nicht komplett, das heißt vollmarkiert zu sein. Eine Teilmarkierung ist völlig ausreichend. Vorteilhaft wird auch im Falle eines markierten internen Standards eine Substanz gewählt, die eine möglichst hohe Homologe zu den im Gemisch zu analysierenden Substanzen, das heißt strukturelle Ähnlichkeit, zu der zu messenden chemischen Verbindung hat. Je höher die strukturelle Ähnlichkeit ist, desto besser sind die Messergebnisse und desto genauer kann eine Quantifizierung der Verbindung erfolgen.As an internal standard, advantageously labeled substances are used, but in principle also non-labeled substances are suitable as an internal standard. Such similar chemical compounds are, for example, so-called compounds of a homologous series whose members differ only by, for example, an additional methylene group. As an internal standard, at least one isotope selected from the group 2 is preferably H, 13 C, 15 N, 17 O, 18 O, 33 S, 34 S, 36 S, 35 Cl, 37 Cl, 29 Si, 30 Si, 74 Se or mixtures thereof used labeled substances. For cost reasons and for reasons of accessibility, 2 H or 13 C is preferably used as the isotope. This internal standard does not need to be complete for the analysis, that is, to be fully marked. A partial marking is completely sufficient. In the case of a labeled internal standard, it is also advantageous to choose a substance which has the highest possible homologs to the substances to be analyzed in the mixture, that is to say structural similarity, to the chemical compound to be measured. The higher the structural similarity, the better the measurement results and the more accurate the quantification of the compound.

Für das erfindungsgemäße Verfahren und besonders für die Quantifizierung der im Gemisch vorhandenen Substanzen ist es vorteilhaft den internen Standard in einem günstigen Verhältnis zu der zu messenden Substanz einzusetzen. Verhältnisse von Analyt (= zu bestimmende Verbindung) zu internem Standard größer 1:15 führen zu keiner Verbesserung der Messergebnisse, sind jedoch prinzipiell möglich. Vorteilhaft wird ein Verhältnis von Analyt zu internem Standard in einem Bereich von 10:1 bis 6:1 eingestellt, bevorzugt in einem Bereich von 6:1 bis 4:1, besonders bevorzugt in einem Bereich von 2:1 bis 1:1.For the process according to the invention and especially for the quantification of the substances present in the mixture, it is advantageous to use the internal standard in a favorable ratio to the substance to be measured. Ratios of analyte (= compound to be determined) to internal standard greater than 1:15 lead to no improvement in the measurement results, but are possible in principle. Advantageously, a ratio of analyte to internal standard is set in a range from 10: 1 to 6: 1, preferably in a range from 6: 1 to 4: 1, particularly preferably in a range from 2: 1 to 1: 1.

Die Substanzgemischproben im erfindungsgemäßen Verfahren können manuell oder vorteilhaft automatisch mit üblichen Laborrobotern vorbereitet werden. Auch die Analyse mit dem Massenspektrometer nach gegebenenfalls chromatographischer Auftrennung kann manuell oder vorteilhaft automatisch durchgeführt werden. Durch die Automatisierung des erfindungsgemäßen Verfahrens kann die Massenspektrometrie vorteilhaft zum schnellen Screening von verschiedenen Substanzgemischen beispielsweise Pflanzenextrakten im sogenannten High-Throughput-Screening verwendet werden. Dabei zeichnet sich das erfindungsgemäße Verfahren durch eine hohe Empfindlichkeit, eine gute Quantifizierbarkeit, einer hervorragenden Reproduzierbarkeit, bei geringstem Probenverbrauch aus. Mit der Methode können also rasch Gemische biologischen Usprungs beispielsweise neue Mutanten bekannter oder unbekannter enzymatischer Aktivitäten nach einer Mutagenese beispielsweise nach einer klassischen Mutagenese mit chemischen Agentien wie NTG, Strahlung wie UV-Strahlung oder Röntgenstrahlung oder nach einer sogenannten site-direkted mutagenesis, PCR-Mutagenese, Transposon-Mutagenese oder dem sogenannten gene shuffling gefunden werden.The substance mixture samples in the process according to the invention can be prepared manually or advantageously automatically with conventional laboratory robots. The analysis with the mass spectrometer after optional chromatographic separation can be carried out manually or advantageously automatically. By automating the process according to the invention, mass spectrometry can advantageously be used for the rapid screening of various substance mixtures, for example plant extracts in the so-called high-throughput screening. In this case, the method according to the invention is characterized by a high sensitivity, a good quantifiability, an excellent reproducibility, with the lowest sample consumption. The method can thus rapidly mixtures of biological origin, for example, new mutants known or unknown enzymatic activities after a mutagenesis, for example, a classical mutagenesis with chemical agents such as NTG, radiation such as UV radiation or X-rays or after a so-called site-directed mutagenesis, PCR mutagenesis , Transposon mutagenesis or so-called gene shuffling.

Das erfindungsgemäße Verfahren ermöglicht die Analyse einer breiten Palette von Substanzen in einem weiten Messbereich, bei guter bis sehr guter Auflösung, bei einer hohen lonentransmission von der Quelle zum Detektor, einer hohen Scan-Geschwindigkeit sowohl im Full Scan-Modus aller Substanzen in den Substanzgemischen [= FS, Verfahrensschritt (d)) als auch im multiple reaction monitoring-Modus [= MRM, Verfahrensschritte (a) bis (c)]. Weiterhin hat das Verfahren eine sehr hohe Aufnahmeempflindlichkeit und eine hervorragende Kallibrierungsstabilität. Weiterhin ist es für den Dauerbetrieb und damit für die Anwendung in einem HTS-Screening ausgezeichnet geeignet.The method according to the invention makes it possible to analyze a broad range of substances in a wide measuring range, with good to very good resolution, with a high ion transmission from the source to the detector, a high scanning speed both in the full scan mode of all substances in the substance mixtures [ = FS, process step (d)) as well as in the multiple reaction monitoring mode [= MRM, process steps (a) to (c)]. Furthermore, the method has a very high recording sensitivity and excellent calibration stability. Furthermore, it is excellently suitable for continuous operation and thus for use in HTS screening.

Die Erfindung wird durch die folgenden Beispiele näher erläutert:The invention is further illustrated by the following examples:

BeispieleExamples 1. Beispiele: MRM + FS-Messungen1. Examples: MRM + FS measurements a) TIC der MRM + FS-Messunga) TIC of the MRM + FS measurement

In Figur 2 ist das Total Ion Chromatogram einer MRM + Full Scan-Messung [MRM - Multiple Reaction Monitoring, FS - Full Scan, TIC - Total Ion Chromatogram, XIT = Summe mehrerer Total Ion Chromatogramme] dargestellt. Gemessen wurde ein Qualitätskontrollprobe. Diese Art von Probe enthält eine definierte Anzahl an Analyten. Diese Analyten wurden käuflich erworben und in bekannten Konzentrationen in geeignetem Lösungsmittel gelöst.In FIG. 2 is the Total Ion Chromatogram of an MRM + Full Scan Measurement [MRM - Multiple Reaction Monitoring, FS - Full Scan, TIC - Total Ion Chromatogram, XIT = Sum of Multiple Total Ion Chromatograms]. A quality control sample was measured. This type of sample contains a defined number of analytes. These analytes were purchased and dissolved in known concentrations in appropriate solvent.

Die in Figur 2 gewählte Darstellung der Messung zeigt die Aufsummierung der am Detektor zu den jeweiligen Zeitpunkten (x-Achse) gemessenen Intensitäten (y-Achse) aus den beiden massenspektrometrischen Experimenten des Multiple Reaction Monitoring (MRM) und des Full Scan (FS). Das Chromatogramm in Figur 2 stellt also die Summe der TIC-Chromatogramme der beiden o.g. genannten massenspektrometrischen Experimenten dar.In the FIG. 2 The selected representation of the measurement shows the summation of the intensities (y-axis) measured at the detector at the respective times (x-axis) from the two mass-spectrometric experiments of Multiple Reaction Monitoring (MRM) and Full Scan (FS). The chromatogram in FIG. 2 thus represents the sum of the TIC chromatograms of the above-mentioned mass spectrometric experiments.

b) TIC des MRM-Experimentb) TIC of the MRM experiment

In Figur 3 ist das Total Ion Chromatogramm des MRM-Experiments aus einer MRM + FS-Messung dargestellt.In FIG. 3 the total ion chromatogram of the MRM experiment from an MRM + FS measurement is shown.

Die in Figur 3 gewählte Darstellung der MRM-Messung zeigt die Aufsummierung der am Detektor zu den jeweiligen Zeitpunkten (x-Achse) gemessenen Intensitäten (y-Achse) aus allen vordefinierten Massenübergängen des MRM-Experiments. Die in Figur 4 gewählte Darstellung zeigt die jeweiligen Messergebnisse jedes einzelnen Massenübergangs (hier 30 Stück) in einem Koordinatenkreuz.In the FIG. 3 The selected representation of the MRM measurement shows the summation of the intensities (y-axis) measured at the detector at the respective times (x-axis) from all predefined mass transitions of the MRM experiment. In the FIG. 4 selected representation shows the respective measurement results of each mass transition (here 30 pieces) in a coordinate system.

c) TIC des FS-Experimentc) TIC of the FS experiment

Das im Wechsel zum MRM-Experiment gemessene FS-Experiment ist im TIC in Figur 5 dargestellt.The FS experiment measured in change to the MRM experiment is in the TIC in FIG. 5 shown.

In Figur 6 ist der TIC des FS-Experiments dargestellt. Die Aufsummierung aller FS-Massenspektren, die in dem schraffiert dargestellten Zeitfenster aufgenommen wurden sind in Figur 7 dargestellt.In FIG. 6 the TIC of the FS experiment is shown. The summation of all FS mass spectra recorded in the time window shown hatched are in FIG. 7 shown.

d) TIC eines MRM-Experimentsd) TIC of an MRM experiment

In Figur 8 ist wie in Figur 3 ein Total Ion Chromatogram einer MRM + Full Scan-Messung dargestellt. Gemessen wurde eine Kalibrierungsprobe.In FIG. 8 is like in FIG. 3 a total ion chromatogram of an MRM + full scan measurement. A calibration sample was measured.

Die in Figur 8 gewählte Darstellung der Messung zeigt die Aufsummierung der am Detektor zu den jeweiligen Zeitpunkten (x-Achse) gemessenen Intensitäten (y-Achse) aus dem massenspektrometrischen Experiment des Multiple Reaction Monitoring.In the FIG. 8 The selected representation of the measurement shows the summation of the intensities (y-axis) measured at the detector at the respective times (x-axis) from the mass-spectrometric experiment of multiple reaction monitoring.

Figur 9 gibt ein extrahiertes Chromatogram wieder, in dem Coenzym Q 10 identifiziert wurde. FIG. 9 returns an extracted chromatogram identifying coenzyme Q 10.

Figur 10 und Figur 11 geben die Identifizierung von jeweils Capsanthin und Bixin wieder. FIG. 10 and FIG. 11 give the identification of each capsanthin and bixin again.

Figur 12 gibt ein Total Ion Chromatogram eines Full Scan eines Pflanzenextraktes wieder. FIG. 12 returns a Total Ion Chromatogram of a full scan of a plant extract.

Die Figuren 13 bis 15 zeigen die Massen verschiedener Analyten im extrahierten Chromatogramm, deren Zuordnung zu einer spezifische Struktur noch erfolgen muss.The FIGS. 13 to 15 show the masses of different analytes in the extracted chromatogram whose assignment to a specific structure has yet to be made.

In dem beschriebenen Verfahren ließen sich bisher 200 weitere Analyten selektiv nachweisen.So far, 200 additional analytes have been selectively detected in the described method.

Figuren:

Figur 1:
Schematische Darstellung des Analysenverfahrens Nachdem in Prozessschritt I die Verfahrensschritte (a) bis (c) durchlaufen werden wird in Prozessschritt II der Verfahrensschritt (d) durchlaufen, und umgekehrt
Figur 2:
Darstellung der Summe der Total Ion Chromatogramme (TIC) einer Multiple Reaction Monitoring (MRM)-Messung (Verfahrensschritte (a) bis (c) des Verfahrens) und Full Scan(FS)-Messung (Verfahrensschritt (d) des Verfahrens) von Probe 2
Figur 3:
Darstellung des Total Ion Chromatogramms (TIC) bzgl. des Multiple-Reaction-Monitoring(MRM)-Parts (Verfahrensschritte (a) bis (c) des Verfahrens) mit 30 vordefinierten Massenübergängen (sogenannte Pairs), wobei die Messung selbst sowohl auf einer MRM-Messung (Verfahrensschritte (a) bis(c)) als auch FS-Messung (Verfahrensschritt (d)) von Probe 2 beruht
Figur 4:
Darstellung des Total Ion Chromatogramms (TIC) bzgl. des Multiple-Reaction-Monitoring(MRM)-Parts (Verfahrensschritte (a) bis (c) des Verfahrens) mit 30 vordefinierten Massenübergängen (sogenannte Pairs), wobei die Messung selbst sowohl auf einer MRM-Messung (Verfahrensschritte (a) bis(c)) als auch FS-Messung (Verfahrensschritt (d)) von Probe 2 beruht, und wobei jedes Pair einzeln dargestellt ist
Figur 5:
Darstellung des Total Ion Chromatogramms (TIC) bzgl. des FS-Parts (Verfahrensschritt (d) des Verfahrens), wobei die Messung selbst sowohl auf einer MRM-Messung (Verfahrensschritte (a) bis(c)) als auch FS-Messung (Verfahrensschritt (d)) von Probe 2 beruht
Figur 6:
Darstellung des Total Ion Chromatogramms (TIC) bzgl. des FS-Parts (Verfahrensschritt (d) des Verfahrens), wobei die Messung selbst sowohl auf einer MRM-Messung (Verfahrensschritte (a) bis(c)) als auch FS-Messung (Verfahrensschritt (d)) von Probe 2 beruht, wie in Figur 5, wobei ein Zeitfenster schraffiert hervorgehoben ist
Figur 7:
Darstellung des Total Ion Chromatogramms (TIC) bzgl. des FS-Parts (Verfahrensschritt (d) des Verfahrens), welches in dem in Figur 6 schraffiert dargestellten Zeitfenster (1,491 bis 2,004 min) aufgenommen wurde, wobei die Messung selbst sowohl auf einer MRM-Messung (Verfahrensschritte (a) bis(c)) als auch FS-Messung (Verfahrensschritt (d)) von Probe 2 beruht
Figur 8:
Darstellung des Total Ion Chromatogramms (TIC) bzgl. des Multiple-Reaction-Monitoring(MRM)-Parts (Verfahrensschritte (a) bis (c) des Verfahrens) mit 36 vordefinierten Massenübergängen (sogenannte Pairs), wobei die Messung selbst sowohl auf einer MRM-Messung (Verfahrensschritte (a) bis(c)) als auch FS-Messung (Verfahrensschritt (d)) einer Kalibrierungsprobe beruht
Figur 9:
Darstellung des für den Massenübergang m/z 863.7 nach 197 (Coenzym Q10) extrahierten Total Ion Chromatogramms einer Kalibrierungsprobe wobei der MRM-Part 36 Pairs umfaßte
Figur 10:
Darstellung des für den Massenübergang m/z 585.4 nach 109.1 (Capsanthin) extrahierten Total Ion Chromatogramms einer Kalibrierungsprobe, wobei der MRM-Part 36 Pairs umfaßte
Figur 11:
Darstellung des für den Massenübergang m/z 395.1 nach 91.1 (Bixin) extrahierten Total Ion Chromatogramms einer Kalibrierungsprobe, wobei der MRM-Part 36 Pairs umfaßte
Figur 12:
Darstellung des Total Ion Chromatogramm (TIC) eines Pflanzenextrakts bzgl. des FS -Parts (Verfahrensschritt (d) des Verfahrens)
Figur 13:
Darstellung des für m/z = 518.4 extrahierten Total Ion Chromatogramms von Probe 4
Figur 14:
Darstellung des für m/z = 609.2 extrahierten Total Ion Chromatogramms von Probe 4
Figur 15:
Darstellung des für m/z = 210.0 extrahierten Total Ion Chromatogramms von Probe 4
Characters:
FIG. 1:
Schematic representation of the analytical process After process steps (a) to (c) have been carried out in process step I, process step (d) is run through in process step II, and vice versa
FIG. 2:
Representation of the sum of Total Ion Chromatograms (TIC) of a Multiple Reaction Monitoring (MRM) measurement (process steps (a) to (c) of the process) and Full Scan (FS) measurement (process step (d) of the process) of Sample 2
FIG. 3:
Representation of the total ion chromatogram (TIC) with respect to the multiple reaction monitoring (MRM) part (method steps (a) to (c) of the method) with 30 predefined mass transitions (so-called pairs), the measurement itself being carried out on an MRM Measurement (method steps (a) to (c)) as well as FS measurement (method step (d)) of sample 2
FIG. 4:
Representation of the total ion chromatogram (TIC) with respect to the multiple reaction monitoring (MRM) part (method steps (a) to (c) of the method) with 30 predefined mass transitions (so-called pairs), the measurement itself being carried out on an MRM Measurement (method steps (a) to (c)) and FS measurement (method step (d)) of sample 2, and wherein each pair is shown individually
FIG. 5:
Representation of the total ion chromatogram (TIC) with respect to the FS part (method step (d) of the method), the measurement itself being measured both on an MRM measurement (method steps (a) to (c)) and FS measurement (method step (d)) of sample 2
FIG. 6:
Representation of the total ion chromatogram (TIC) with respect to the FS part (method step (d) of the method), the measurement itself being measured both on an MRM measurement (method steps (a) to (c)) and FS measurement (method step (d)) is based on sample 2, as in FIG. 5 , where a time window is highlighted hatched
FIG. 7:
Representation of the total ion chromatogram (TIC) with respect to the FS part (method step (d) of the method), which is described in the in FIG. 6 The measurement itself is based on both an MRM measurement (method steps (a) to (c)) and FS measurement (method step (d)) of sample 2
FIG. 8:
Representation of the Total Ion Chromatogram (TIC) with respect to the Multiple Reaction Monitoring (MRM) Part (method steps (a) to (c) of the method) with 36 predefined mass transitions (so-called pairs), the measurement itself being carried out on an MRM Measurement (method steps (a) to (c)) as well as FS measurement (method step (d)) of a calibration sample
FIG. 9:
Representation of the Total Ion Chromatogram of a Calibration Sample Extracted for Mass Transfer m / z 863.7 to 197 (Coenzyme Q10) where the MRM Part comprised 36 pairs
FIG. 10:
Representation of the total ion chromatogram of a calibration sample extracted for mass transfer m / z 585.4 to 109.1 (capsanthin), the MRM part comprising 36 pairs
FIG. 11:
Representation of the total ion chromatogram of a calibration sample extracted for mass transfer m / z 395.1 to 91.1 (bixin), with the MRM part comprising 36 pairs
FIG. 12:
Representation of the total ion chromatogram (TIC) of a plant extract with regard to the FS part (method step (d) of the method)
FIG. 13:
Representation of the total ion chromatogram of sample 4 extracted for m / z = 518.4
FIG. 14:
Representation of the total ion chromatogram extracted from sample 4 for m / z = 609.2
FIG. 15:
Representation of the total ion chromatogram of sample 4 extracted for m / z = 210.0

Claims (13)

  1. A mass spectrometry process for analyzing substance mixtures using a triple quuadrupole massspectrometer, said substance mixtures being ionized before the analysis, which comprises the following steps:
    a) selecting at least one mass/charge quotient (m/z) of ions formed by ionization in a first analytical quadrupole (I) of the mass spectrometer,
    b) fragmenting the ion(s) selected under (a) by applying an acceleration voltage in a further following quadrupole (II) which is filled with a collision gas and functions as a collision chamber,
    c) selecting and analyzing a mass/charge quotient of a fragment ion formed by the fragmentation (b) in a further downstream quadrupole (III), the process steps (a) to (c) being run through at least once, and
    d) analyzing the mass/charge quotients of all ions present in the substance mixture as a result of the ionization, the quadrupole (II) being filled with collision gas but no acceleration voltage being applied during the analysis;
    and the steps (a) to (c) and step (d) may also be carried out in reverse sequence.
  2. The process according to claim 1, wherein the ionization of the substance mixture is downstream of a chromatographic separation.
  3. The process according to claim 1 or 2, wherein the chromatographic separation is a high pressure chromatography (HPLC) separation.
  4. The process according to claims 1 to 3, wherein steps (a) to (d) are run through at least once within from 0.1 to 10 seconds.
  5. The process according to claims 1 to 4, wherein steps (a) to (d) are run through at least once within from 0.2 to 2 seconds.
  6. The process according to claims 1 to 5, wherein the ionization is effected by evaporating the substance mixture and ionizing in the gas phase, by desorbing the substance mixture on a surface or by atomizing the substance mixture in an electrical field.
  7. The process according to claims 1 to 6, wherein the ionization is effected by atomizing the substance mixture in an electrical field.
  8. The process according to claims 1 to 7, wherein in step (a) between 1 and 100 mass/charge quotients of different ions formed by ionization and selected, are analysed.
  9. The process according to claims 1 to 8, wherein the substance mixture is of biological or chemical origin.
  10. The process according to claims 1 to 9, wherein the substance mixtures are derivatized before the analysis or before the chromatographic separation according to claim 2 or 3.
  11. The process according to claims 1 to 10, which is carried out manually or automatically.
  12. The process according to claims 1 to 11, which is used in a high-throughput screening.
  13. The process according to claims 1 to 12, wherein
    (i) the fragment ion analyzed in step (c) and the (m/z) quotients, analyzed in step (d), of all ions present in the substance mixture, or
    (ii) the fragment ion analyzed in step (c), or
    (iii) the (m/z) quotients, analyzed in step (d), of all ions present in the substance mixture
    are quantified.
EP03711878.3A 2002-02-28 2003-02-10 Mass spectrometry method for analysing mixtures of substances Expired - Lifetime EP1481416B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10208625 2002-02-28
DE2002108625 DE10208625A1 (en) 2002-02-28 2002-02-28 Triple quadrupole mass spectrometer, for the analysis of a mixture of substances, especially biological, comprises using structured mass/charge quotients after ionizing
DE2002108626 DE10208626A1 (en) 2002-02-28 2002-02-28 Triple quadrupole mass spectrometer, for the analysis of a mixture of substances, especially biological, comprises using structured mass/charge quotients after ionizing
DE10208626 2002-02-28
PCT/EP2003/001274 WO2003073464A1 (en) 2002-02-28 2003-02-10 Mass spectrometry method for analysing mixtures of substances

Publications (2)

Publication Number Publication Date
EP1481416A1 EP1481416A1 (en) 2004-12-01
EP1481416B1 true EP1481416B1 (en) 2016-06-15

Family

ID=27766685

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03711878.3A Expired - Lifetime EP1481416B1 (en) 2002-02-28 2003-02-10 Mass spectrometry method for analysing mixtures of substances

Country Status (9)

Country Link
US (1) US7196323B2 (en)
EP (1) EP1481416B1 (en)
JP (3) JP2005526962A (en)
AU (1) AU2003218649B2 (en)
CA (1) CA2476597C (en)
ES (1) ES2590759T3 (en)
IL (1) IL163290A (en)
NO (1) NO20043943L (en)
WO (1) WO2003073464A1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034011A2 (en) * 2002-10-10 2004-04-22 Universita' Degli Studi Di Milano Ionization source for mass spectrometry analysis
CA2614508C (en) 2005-07-08 2015-12-15 Metanomics Gmbh Means and methods for characterizing a chemical sample
JP5091861B2 (en) * 2005-07-25 2012-12-05 メタノミクス ゲーエムベーハー Means and methods for analyzing samples using chromatography / mass spectrometry
EP2008108B1 (en) 2006-03-24 2010-12-29 Metanomics GmbH MEANS AND METHOD FOR PREDICTING DIABETES type II
US20090194679A1 (en) * 2008-01-31 2009-08-06 Agilent Technologies, Inc. Methods and apparatus for reducing noise in mass spectrometry
WO2010007106A1 (en) 2008-07-15 2010-01-21 Metanomics Health Gmbh Means and methods diagnosing gastric bypass and conditions related thereto
EP2350287A2 (en) 2008-10-23 2011-08-03 BASF Plant Science GmbH A method for producing a transgenic cell with increased gamma-aminobutyric acid (gaba) content
US9274248B2 (en) * 2009-01-21 2016-03-01 Schlumberger Technology Corporation Downhole mass spectrometry
DE112010002253T5 (en) 2009-06-04 2013-01-03 Charité - Universitätsmedizin Berlin Means and method for diagnosing prostate cancer
US20120238028A1 (en) 2009-12-01 2012-09-20 Metanomics Health Gmbh Means and Methods for Diagnosing Multiple Sclerosis
JP5813665B2 (en) 2010-01-29 2015-11-17 メタノミクス ゲーエムベーハー Means and methods for diagnosing heart failure in a subject
CN103038644B (en) 2010-06-01 2016-03-09 梅坦诺米克斯保健有限公司 For the tool and method of diagnosis of pancreatic cancer in experimenter
EP2863227B1 (en) 2010-06-10 2017-09-27 Metanomics Health GmbH Means and methods for metabolic differentiation of non-alcoholic steatohepatitis from liver disease
US10436803B2 (en) * 2010-12-28 2019-10-08 Quest Diagnostics Investments Incorporated Quantitation of insulin by tandem mass spectrometry of insulin B chain
CA2834455A1 (en) 2011-05-31 2012-12-06 Metanomics Health Gmbh Methods for diagnosing multiple sclerosis
EP3527990A1 (en) 2011-07-28 2019-08-21 metanomics GmbH Use of sm_sphingomyelin (d18:1, c23:1) as a marker for heart failure
JP6219300B2 (en) 2011-11-30 2017-10-25 メタノミクス ヘルス ゲーエムベーハー Apparatus and method for diagnosing pancreatic cancer
JP2015517090A (en) * 2012-03-09 2015-06-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Means and methods for assessing disorders associated with iron absorption disorders or energy metabolism disorders
CA2864471A1 (en) * 2012-03-09 2013-09-12 Basf Se Means and methods for assessing liver disorders
JP6421118B2 (en) 2012-10-02 2018-11-07 メタノミクス ヘルス ゲーエムベーハー Means and method for diagnosis of recurrence of prostate cancer after prostatectomy
EP2909626B1 (en) 2012-10-18 2018-07-04 metanomics GmbH Means and methods for determining a clearance normalized amount of a metabolite disease biomarker in a sample
KR101590573B1 (en) * 2013-07-31 2016-02-01 주식회사 엘지화학 Method for evaluating characteristics of a mixture using the combination of pure substances and system using the same
US10168333B2 (en) 2013-12-20 2019-01-01 Metanomics Health Gmbh Means and methods for diagnosing pancreatic cancer in a subject based on a metabolite panel
GB2531336B (en) 2014-10-17 2019-04-10 Thermo Fisher Scient Bremen Gmbh Method and apparatus for the analysis of molecules using mass spectrometry and optical spectroscopy
US10324082B2 (en) 2015-03-03 2019-06-18 Quest Diagnostics Investments Llc Methods for quantitation of insulin levels by mass spectrometry
RU2613897C1 (en) * 2015-12-21 2017-03-21 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Volt-ammetric method for determination of coenzyme q10 in cosmetic creams
CN108780062B (en) * 2016-02-29 2021-03-19 株式会社岛津制作所 Mass spectrometer
WO2018007394A1 (en) 2016-07-08 2018-01-11 Basf Plant Science Company Gmbh Method for the calibration of a biological sample
JP6739080B2 (en) * 2016-11-17 2020-08-12 学校法人東京理科大学 Vitamin D quantification method, mass spectrometer and vitamin D quantification reagent kit
JP6422525B2 (en) * 2017-03-29 2018-11-14 一般財団法人石油エネルギー技術センター Method and program (CSA1) for approximately specifying the molecular structure of a multicomponent mixture
CN118883748A (en) 2017-03-31 2024-11-01 奎斯特诊断投资有限公司 Method for quantifying insulin and C-peptide
JP7090863B2 (en) * 2017-06-30 2022-06-27 株式会社サンセイアールアンドディ Pachinko machine
EP3502699A1 (en) 2017-12-20 2019-06-26 Metanomics Health GmbH Methods for diagnosing pancreatic cancer
EP3502703A1 (en) 2017-12-22 2019-06-26 Metanomics Health GmbH Method for the assessment of nafld
EP3696822A1 (en) 2019-02-18 2020-08-19 Metanomics Health GmbH Means and methods for determining a personalized cutoff value for a biomarker
US20240230676A1 (en) 2021-04-30 2024-07-11 Roche Diagnostics Operations, Inc. Esm1 marker panels for early detection of sepsis
US20240219404A1 (en) 2021-04-30 2024-07-04 Roche Diagnostics Operations, Inc. Igfbp7 marker panels for early detection of sepsis
JP2024515086A (en) 2021-04-30 2024-04-04 エフ. ホフマン-ラ ロシュ アーゲー GDF15 Marker Panel for Early Detection of Sepsis
CN117280218A (en) 2021-04-30 2023-12-22 豪夫迈·罗氏有限公司 STREM1 marker panel for early detection of sepsis
CN117295950A (en) 2021-04-30 2023-12-26 豪夫迈·罗氏有限公司 NGAL marker panel for early detection of sepsis
EP4330688A2 (en) 2021-04-30 2024-03-06 Roche Diagnostics GmbH Pct marker panels for early detection of sepsis
CN117321419A (en) 2021-04-30 2023-12-29 豪夫迈·罗氏有限公司 Presepsin marker panel for early detection of sepsis
WO2022229438A2 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Il6 marker panels for early detection of sepsis
JP2024516681A (en) 2021-04-30 2024-04-16 エフ. ホフマン-ラ ロシュ アーゲー sFlt1 Marker Panel for Early Detection of Sepsis - Patent application
WO2023052446A1 (en) 2021-09-29 2023-04-06 F. Hoffmann-La Roche Ag Mr-proadm marker panels for early detection of sepsis
CN118742814A (en) 2022-02-21 2024-10-01 豪夫迈·罗氏有限公司 DLL1 marker panel for early detection of sepsis
WO2023175176A1 (en) 2022-03-18 2023-09-21 Roche Diagnostics Gmbh Cmybpc marker combinations for early discrimination of type 2 versus type 1 acute myocardial infarction
CN118871785A (en) 2022-03-18 2024-10-29 豪夫迈·罗氏有限公司 Troponin marker combinations for early discrimination of type 2 and type 1 acute myocardial infarction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2363249A (en) * 2000-06-09 2001-12-12 Micromass Ltd Method and apparatus for mass spectrometry
US20010052569A1 (en) * 2000-06-09 2001-12-20 Bateman Robert Harold Methods and apparatus for mass spectrometry

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540884A (en) 1982-12-29 1985-09-10 Finnigan Corporation Method of mass analyzing a sample by use of a quadrupole ion trap
US5397894A (en) 1993-05-28 1995-03-14 Varian Associates, Inc. Method of high mass resolution scanning of an ion trap mass spectrometer
US6093929A (en) * 1997-05-16 2000-07-25 Mds Inc. High pressure MS/MS system
US6140638A (en) * 1997-06-04 2000-10-31 Mds Inc. Bandpass reactive collision cell
US6331702B1 (en) * 1999-01-25 2001-12-18 University Of Manitoba Spectrometer provided with pulsed ion source and transmission device to damp ion motion and method of use
US6428956B1 (en) * 1998-03-02 2002-08-06 Isis Pharmaceuticals, Inc. Mass spectrometric methods for biomolecular screening
AU3489900A (en) * 1999-02-11 2000-08-29 Maxygen, Inc. High throughput mass spectrometry
US6504148B1 (en) * 1999-05-27 2003-01-07 Mds Inc. Quadrupole mass spectrometer with ION traps to enhance sensitivity
US6483109B1 (en) * 1999-08-26 2002-11-19 University Of New Hampshire Multiple stage mass spectrometer
US20020102737A1 (en) * 2000-06-07 2002-08-01 Millington David S. Diagnostic methods for pompe disease and other glycogen storage diseases
US20060141632A1 (en) * 2000-07-25 2006-06-29 The Procter & Gamble Co. New methods and kits for sequencing polypeptides
US7034292B1 (en) * 2002-05-31 2006-04-25 Analytica Of Branford, Inc. Mass spectrometry with segmented RF multiple ion guides in various pressure regions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2363249A (en) * 2000-06-09 2001-12-12 Micromass Ltd Method and apparatus for mass spectrometry
US20010052569A1 (en) * 2000-06-09 2001-12-20 Bateman Robert Harold Methods and apparatus for mass spectrometry

Also Published As

Publication number Publication date
AU2003218649A1 (en) 2003-09-09
EP1481416A1 (en) 2004-12-01
IL163290A (en) 2014-01-30
WO2003073464A1 (en) 2003-09-04
CA2476597C (en) 2011-05-17
JP2014041142A (en) 2014-03-06
JP2005526962A (en) 2005-09-08
AU2003218649B2 (en) 2007-09-06
ES2590759T3 (en) 2016-11-23
US7196323B2 (en) 2007-03-27
NO20043943L (en) 2004-09-21
JP2010019848A (en) 2010-01-28
CA2476597A1 (en) 2003-09-04
US20050103991A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EP1481416B1 (en) Mass spectrometry method for analysing mixtures of substances
DE10392706B4 (en) Fast combination multi-mode ionization source for mass spectrometers
DE69936168T2 (en) Mehrfachprobeninlassmassenspektrometer
DE60306355T2 (en) MICROMATRIX SAMPLE READER BY MEANS OF ELECTROSPRAYMASS SPECTROMETRY
DE60126055T2 (en) Mass spectrometer and mass spectrometric method
DE20122885U1 (en) mass spectrometry
DE102007043456B4 (en) Matrix-assisted laser desorption with high ionization efficiency
DE112014006538T5 (en) Method of targeted mass spectrometric analysis
DE112014002710B4 (en) Procedure for calibrating ion signals
DE19608963A1 (en) Ionisation of non-vaporisable analyte molecules at atmospheric pressure by chemical ionisation
DE112014001961T5 (en) Method for screening samples
DE112019003143T5 (en) Structure analysis of ionized molecules
DE4401604A1 (en) Combined liquid chromatography-mass spectrometer for electrospray and particle beam processes
DE102017011423B4 (en) Method and apparatus for isotope ratio mass spectrometry
DE112015000644B4 (en) Methods of mass spectrometry and mass spectrometer
DE112015000977B4 (en) Ambient ionization with an impactor spray source
DE10292304B4 (en) Separation of components of an analytical sample in an ion mobility spectrometer by supplying selectively interacting gaseous particles
DE112013006178B4 (en) Process for ion production
DE3887922T2 (en) Discharge ionization source for analyzing the atmosphere.
WO2001094924A2 (en) Method for analysing enzyme-catalysed reactions using maldi-tof mass spectrometry
DE102004033993B4 (en) Ion source for a mass spectrometer
EP0738000B1 (en) Intermediary storage of ions for spectrometric investigations
DE10208625A1 (en) Triple quadrupole mass spectrometer, for the analysis of a mixture of substances, especially biological, comprises using structured mass/charge quotients after ionizing
DE112015001516B4 (en) Synchronized variation of source conditions of a chemical ionization mass spectrometer at atmospheric pressure coupled to a chromatograph to improve stability during analysis
DE10208626A1 (en) Triple quadrupole mass spectrometer, for the analysis of a mixture of substances, especially biological, comprises using structured mass/charge quotients after ionizing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040928

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DOSTLER, MARTIN

Inventor name: WALK, TILMANN, B.

17Q First examination report despatched

Effective date: 20100709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50315487

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01J0049420000

Ipc: H01J0049000000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01J 49/00 20060101AFI20151207BHEP

Ipc: H01J 49/42 20060101ALI20151207BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 806864

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315487

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2590759

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160916

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315487

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 806864

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190225

Year of fee payment: 17

Ref country code: GB

Payment date: 20190227

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190227

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20030210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190426

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315487

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200210

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200901