[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1464060A1 - Method and device for production of radio-isotopes from a target - Google Patents

Method and device for production of radio-isotopes from a target

Info

Publication number
EP1464060A1
EP1464060A1 EP02806546A EP02806546A EP1464060A1 EP 1464060 A1 EP1464060 A1 EP 1464060A1 EP 02806546 A EP02806546 A EP 02806546A EP 02806546 A EP02806546 A EP 02806546A EP 1464060 A1 EP1464060 A1 EP 1464060A1
Authority
EP
European Patent Office
Prior art keywords
radioisotope
target
precursor
effusion
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02806546A
Other languages
German (de)
French (fr)
Other versions
EP1464060B1 (en
Inventor
Stéphane Lucas
Ray Bricault
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Applications SA
Original Assignee
Ion Beam Applications SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Applications SA filed Critical Ion Beam Applications SA
Priority to EP02806546A priority Critical patent/EP1464060B1/en
Publication of EP1464060A1 publication Critical patent/EP1464060A1/en
Application granted granted Critical
Publication of EP1464060B1 publication Critical patent/EP1464060B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/10Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by bombardment with electrically charged particles

Definitions

  • the present invention relates to a method and a device for the production of radioisotopes from a target essentially consisting of an isotope precursor which is irradiated by a beam of accelerated particles, the radioisotope once produced being separated from its precursor.
  • a particular application of the present invention relates to the production of palladium 103 from rhodium 103.
  • radioisotopes The usual production of radioisotopes is carried out by bombardment or irradiation of a target essentially consisting of an isotope precursor using a beam of accelerated particles.
  • the rhodium-palladium 103 pair can be cited.
  • the target consists of rhodium, as an isotope precursor, deposited on a copper support. This target is subjected to irradiation with a 14 MeV proton beam for 6 days, which induces a reaction 103 p ⁇ _ 103 p ⁇ e - (- allows to obtain that approximately 1% of rhodium 103 is transformed into palladium 103.
  • the target is discharged and brought to an armored enclosure called a "hot cell" which is intended to allow the separation of the isotope from its precursor.
  • the separation procedure described above is used.
  • the target consisting of the copper support and the rhodium-palladium mixture in solid form is dissolved with a strong acid solution such as an NH3 + H2SO4 mixture. This dissolves the copper and keeps the rhodium and palladium in the form of precipitates. It is then sufficient to carry out a filtration.
  • the separation of the palladium from the palladium-rhodium mixture will be obtained by electro-dissolution of the m mixture into a solution of hydrochloric acid with chlorine flow to improve performance (Applied Radiat. Isot. 38 (2), pp.
  • a final precipitation ends the process to isolate the palladium 103 from the rhodium 103 and condition it in the desired form.
  • the document thus evokes an embodiment in which a target containing 10 B or B as a precursor is, after bombardment, heated and swept by a gas such as helium to extract the radioisotope 1: L C therefrom .
  • a gas such as helium
  • Document US 5,987,087 describes a process for extracting, by selective heat treatment, from a target based on arsenic, previously irradiated with a beam of charged particles, the selenium-72 radioisotope produced following this irradiation.
  • the target material once irradiated is mixed with a metallic reagent, such as stainless steel filings, or aluminum, before undergoing heat treatment.
  • a metallic reagent such as stainless steel filings, or aluminum
  • the mixture is heated to a temperature between 1000 ° C and 1100 ° C.
  • a second heating is carried out at 1300 ° C. of the mixture so as to cause the sublimation of selenium-72 which is harvested for example on a cold support.
  • Selenium-72 is then recovered separately.
  • the heat treatment is not done directly on the target but on the target mixed with a metallic reagent.
  • the method of this document makes use of a 'stream of a purified inert gas.
  • the present invention aims to provide a method and a device for producing radioisotopes which does not have the drawbacks of the state of the art.
  • the present invention aims to provide a solution which reduces the production of radioactive waste.
  • the present invention further aims to provide a method in which the target is not destroyed, and can therefore be reused for a new production of radioisotope.
  • the present invention further aims to provide a radioisotope with a high specific activity.
  • the present invention relates to a process for producing a radioisotope of interest from a target comprising a precursor of said radioisotope, with using an accelerated particle beam, said method comprising the following steps:
  • radioisotope and “radioisotope of interest” will be used interchangeably to designate the radioisotope that one seeks to produce, while the term “ precursor ”will designate, as its name indicates, the element from which it is sought to obtain said radioisotope of interest.
  • the radioisotope of interest is generally obtained by irradiation using a proton beam of a solid target containing the precursor, the radioisotope of interest being produced within said target, also preferably in solid form.
  • the target in the present invention, therefore comprises: before irradiation: the precursor, optionally linked to a metal support; after irradiation: the precursor, possibly linked to a metallic support, and the radioisotope of interest.
  • the separation of the radioisotope of interest and the precursor will therefore consist in subjecting the solid target to a heat treatment to obtain an effusion reaction, that is to say thermal separation of the radioisotope of interest.
  • the heat treatment in order to cause the effusion of the radioisotope of interest is therefore carried out in the present invention, directly on the irradiated target, and not on a mixture which would be constituted by the irradiated target then mixed to a metallic reagent such as stainless steel or aluminum filings, unlike the process described in document US Pat. No. 5,987,087.
  • a metallic reagent such as stainless steel or aluminum filings
  • the concept of effusion refers to a physical phenomenon "wider" than sublimation and must be understood as comprising the phenomenon of sublimation. More specifically, the melting temperature of the radioisotope of interest is less than the melting temperature of the precursor by at least 100 ° C.
  • the precursor therefore remains at the pure state, that is to say that it can be recovered at the end of the process, without it being necessary for this to perform an additional extraction or treatment step.
  • the target can be directly recovered without further processing.
  • this characteristic of the invention allows a certain time saving, while ensuring a better reuse yield.
  • the heat treatment used to obtain the effusion of the radioisotope of interest can be any treatment operating by the Joule effect.
  • the energy intended for heat treatment can come from irradiation by a beam of charged particles such as electrons, by the beam used for the nuclear reaction, by infrared radiation, by laser treatment. , by plasma treatment or any other suitable heat treatment.
  • radioisotope also depends on the crystallographic structure of the target. Thus, if during the heating of the target, a recrystallization takes place, there is a reduction in the number of grain boundaries at the level of the crystal and the diffusion of the element can then take place both through the joints and between the joints, which has the effect of affecting the speed of effusion of said element.
  • the particle beam can influence the effusion rate of the radio- isotope. Indeed, the speed of effusion will be different according to the defects created by this beam within the target, between the surface of the target and the position in the target at the level of which the radioisotope is generated by nuclear reaction. It is thus known that the mechanisms referenced in the literature under the abbreviations “RED” (Radiation Enhanced Diffusion) and “RES” (Radiation Enhanced Ségrégation) and which are linked to the diffusion mechanisms (interstitial, diffusion, etc.), either drastically increase the diffusion coefficient, and therefore the speed of effusion, by creating gap movements on the diffusion path, or on the contrary considerably reduce the diffusion by creating precipitation sites on the diffusion path.
  • the heat treatment will occur within an effusion chamber separate from the irradiation chamber in order to obtain said effusion.
  • the collecting and condensing step can also be carried out within said effusion chamber.
  • this effusion chamber will be provided with means for collecting and condensing said extracted radioisotope.
  • the collection and condensation means can be constituted by a collection substrate such as a ceramic, metallic or polymeric support, cold or cooled.
  • a collection substrate such as a ceramic, metallic or polymeric support, cold or cooled.
  • this substrate will have low adhesion characteristics.
  • an additional step of separation of the radioisotope extracted, collected and condensed on the collection substrate should be produce.
  • this separation step could be carried out within a separation enclosure separate from the effusion enclosure.
  • this separation enclosure comprises a bath of acid solution in which the collection substrate can be soaked in order to obtain a separation of the radioisotope from said collection substrate. Then, it will be necessary to filter and separate said radioisotope in order to condition it in the desired form.
  • the heat treatment can be carried out directly within the irradiation chamber, for example directly by irradiation with the beam of charged particles which made it possible to carry out the transmutation of the radioisotope. .
  • Another object of the invention relates to a device for implementing the process for producing a radioisotope, said device comprising the following means:
  • Means for irradiating a target comprising an isotope precursor in order to induce a transmutation of the precursor into the radioisotope
  • Heating means for causing the effusion of the radioisotope within said target
  • the means for collecting and condensing the extracted radioisotope consist of a cold collection substrate.
  • the collection substrate has an interlayer having low adhesion characteristics with the radioisotope.
  • the device according to the invention further comprises means for separation of the radioisotope from said collection substrate.
  • the separation means are constituted by a separation enclosure comprising a bath of acid solution in which is disposed the collection substrate with the radioisotope.
  • the present invention also relates in particular to the use of said method and said device for the production of palladium 103 from rhodium 103.
  • it relates to the reaction 103Rh (p, n) 103p ⁇ by irradiation of a proton beam.
  • pairs of metals can of course be envisaged for the implementation of the method (for example the couples l ⁇ In / l ⁇ Cd, 197 Hg / 197 Au, 95 Tc / 95 Mo, Zn / Y, Be / Zr, Ou / Ni).
  • FIGS. 1a and 1b schematically describe the various steps of the process for preparing the radioisotope according to a first and a second embodiment of the present invention, respectively.
  • Figures 2a and 2b respectively describe the effusion and separation chambers used for the implementation of the methods according to the present invention.
  • FIG. 3 describes a second embodiment in which the steps of irradiation and effusion can be carried out directly on-line within the irradiation chamber.
  • Figures 4a and 4b schematically describe a particle accelerator which can be used for the implementation of the method.
  • Figure 4a corresponds to a perspective view of this device, while FIG. 4b corresponds to a top view.
  • the figure schematically describes the various stages of a first embodiment of the method for producing a radioisotope according to the present invention.
  • step A-preparation of the target it is first of all to prepare the target 3 comprising the precursor 1 of the radioisotope 4 (step A-preparation of the target).
  • Rh is deposited on a metal plate 2 which is in this case a copper plate. This is usually done by electrolysis, so as to obtain a deposit of a thickness such that the proton beam used during irradiation (for example a proton beam of 14 MeV) loses at least three quarters of its energy within of the target.
  • other deposition techniques such as evaporation, plasma deposition techniques (direct current (DC), radiofrequency or microwave) under vacuum or atmospheric plasma (plasma spraying) can be used.
  • a thickness of 50 ⁇ is sufficient for 14 MeV protons.
  • the target 3 is loaded into a cyclotron and subjected to a proton beam with an energy of 14 MeV for 6 days (step B- irradiation).
  • the transmutation of l ° 3 Rh into l ° 3 Pd takes place at the rate of 0.225 mCi / mAH.
  • a production of 28.8 Ci will be obtained for a current of 1 mA continuous, and taking into account the decrease.
  • the quantity of ⁇ O ⁇ Pd (radioisotope 4) harvested corresponds to less than 1% of the initial quantity of (precursor 1) present on target 3.
  • the temperature of the target 3 it is necessary to maintain the temperature of the target 3 at all times below the effusion temperature of the palladium in the rhodium. If this were not so, the palladium would exit the target, and condense on the surrounding walls.
  • the irradiated target 3 is then discharged and transferred (step C-extraction and transfer) to an effusion chamber 17 as shown in FIG. 2a.
  • This effusion chamber is a shielded enclosure in which effusion is carried out (step D).
  • the shedding of a constituent out of an alloy (apart from this alloy) is based on the following physical phenomena. The most volatile constituent (here palladium) passes into the gas phase from the surface, which causes a difference in concentration of volatile constituent between the surface and the interior of the target.
  • the target 3 is heated, for example by means of electric heating, by Joule effect or by induction, of an electron beam, of infrared, of a laser, or a DC plasma or radio frequency or microwave.
  • step E The next step is then to collect and condense the palladium 4 extracted from the target 3 on a collection support 5 (step E) to then separate and collect it (step F), for example in the form of PdCl 2 .
  • Figure 2a describes an effusion chamber 17 used according to the first embodiment of the method of the invention. It is of course a shielded enclosure into which the irradiated target 3 is transferred (step C of FIG. La) and which makes it possible to carry out the effusion steps (step D) of the radioisotope 4 outside the target. 3 but also of capture and condensation (step E) of said radioisotope 4 extracted.
  • This target 3 is preferably heated under vacuum or under a controlled atmosphere using heat treatment means 18 in order to cause the diffusion of palladium 4 within the target 3 to its surface and its evaporation / sublimation out of it.
  • a temperature between 800 ° C and 1750 ° C is suitable for causing the effusion of palladium 4 out of the rhodium matrix (target 3).
  • the heat treatment means 18 are in the form of a simple electrical resistance. They must act in a minimum of time and must be very simple to regulate. In addition, they must make it possible to preserve target 3 and to save its integrity in order to allow its subsequent use for future irradiations.
  • Palladium 4 present in the effusion chamber 17 in gaseous form is collected and condensed (step E of Figure la) on a support 5 collection.
  • the collection support 5 is cold or cooled, to a temperature below the condensation temperature of palladium 4.
  • Palladium 4 is collected in solid or liquid form.
  • Said substrate ' 5 is placed near the target under a protective bell 20.
  • the collection substrate 5 is a cold ceramic or metal support and it has poor adhesion. It may for example have a non-adherent interlayer (not shown). For example, soluble polymers or greases can be used to make this interlayer.
  • the target 3 still contains practically the initial amount of rhodium, and it has not been affected mechanically or chemically. It can therefore advantageously be reinstalled in the irradiation chamber, for a new palladium production campaign (step G).
  • the collection substrate 5 is transferred using a transfer system to another enclosure called separation enclosure 21 in which the separation step (step F of FIG. La) of the radioisotope 4 and collection substrate 5 is performed.
  • FIG. 2b describes such a separation enclosure 21 to which the collection substrate is brought.
  • this separation enclosure 21 comprises a bath 22 of a solution so as to release the ⁇ - ⁇ Pd (radioisotope 4) in said solution.
  • This separation can be obtained by chemical means, such as dissolving the interlayer and / or palladium, and / or mechanical means such as stirring.
  • this solution is treated so as to isolate the 103pd (radioisotope 4) (step F of FIG. La) which is packaged in small vials using dose dispensers (“doses dispenser”) .
  • doses dispenser doses dispenser
  • the activity of each vial is measured for control, and the product can then be used as a radiochemical.
  • the various elements of the effusion chambers 17 and separation 21 must be such that they are easily decontaminable, can be integrated within a shielded "hot-cell" enclosure, equipped with a system adequate transfer of the target 3, the irradiation chamber 10 to the effusion chamber 17, and the collection substrate 5 from the effusion chamber 17 to the separation chamber 21 and are easy to interview.
  • FIG. 1b schematically describes the various steps of a second embodiment of the method for producing a radioisotope according to the present invention, in which the effusion step is carried out on-line, that is to say directly within the irradiation chamber.
  • step A The constitution of the target (step A) is done in the same way as in the first embodiment.
  • a collection substrate 5 is installed in the irradiation chamber. It is therefore not necessary to extract the target 3 to proceed to effusion-collection.
  • This device makes it possible to carry out irradiation and effusion-collection simultaneously (steps B, D e ' t E simultaneous).
  • the energy required to heat the target is provided in whole or in part by the beam of accelerated particles.
  • the collection substrate 5 is extracted from the irradiation chamber 10.
  • the separation of the deposited palladium (step F) is then carried out in the same manner as in the first embodiment.
  • the target 3 may remain within the irradiation chamber 10.
  • the particle accelerator 7 comprises: a source capable of generating a particle beam, - the accelerator 6 itself, a circuit 9 for routing the beam, a deflection magnet 11 which allows the particle beam to be directed either to a pumping system
  • the device 7 further comprises a series of auxiliary magnets which correspond to quadrupoles 13 and to sextupoles 14 and which have the function of ensuring focusing of the beam.
  • a scanning magnet 16 makes it possible, as the name suggests, to scan the target 3 using of the radiation beam.
  • the accelerator 6 can be constituted by a cyclotron which makes it possible to generate a beam of protons having a certain divergence and which is corrected by the presence of the collimators 15.
  • collimators 15 are essentially intended to prevent part of the beam (20%) from hitting elements of the beam line and damaging them.
  • these collimators 15 can be removable and themselves coated with a layer of rhodium, so as to take advantage of the beam loss to directly produce lO ⁇ p ⁇ (radioisotope 4).
  • the collimators 15 must be able to meet the following requirements: ease of assembly / disassembly and placement in the line, very good cooling of the irradiated surface, ease of transfer to a lead container, ease of disassembly in a “Hot cell”, minimum copper substrate mass, minimum rhodium surface to be covered, reuse for each irradiation of a maximum of components.
  • Target 3 can also be installed directly inside the particle accelerator 6. Both in the first and in the second embodiment of the invention, target 3 and the collection substrate 5 can be used several times successively. This provides an economical rhodium process, producing little waste.
  • the invention should not be considered as limited to the preferred embodiments described above.
  • the target can consist entirely of the isotope precursor, or of an alloy comprising this isotope precursor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The invention relates to a method for production of a radio-isotope (4) form a target (3), containing a precursor (1) of said radio-isotope (4), using a beam of accelerated particles, comprising the following method steps: preparation of a target (3), containing the precursor (1) of the radioisotope (4), irradiation of said target (3) within an irradiation chamber (10) with a beam of accelerated particles in order to induce the transmutation of the precursor (1) into the radio-isotope (4), heating said target (3) in order to bring about the efflux of the radio-isotope (4) from the target (3), collection of said radio-isotope (4), extracted as a gas and condensation of said radio-isotope (4) into a solid or liquid. The invention further relates to a device for carrying out the above method and use of the device and method for the production of palladium 103 from rhodium 103.

Description

PROCEDE ET DISPOSITIF POUR LA PRODUCTION DE RADIO-ISOTOPES PROCESS AND DEVICE FOR THE PRODUCTION OF RADIO-ISOTOPES
À PARTIR D'UNE CIBLEFROM A TARGET
Objet de l'inventionSubject of the invention
[0001] La présente invention se rapporte à un procédé et à un dispositif pour la production de radio- isotopes à partir d'une cible essentiellement constituée d'un précurseur d'isotope que l'on irradie par un faisceau de particules accélérées, le radio-isotope une fois produit étant séparé de son précurseur.The present invention relates to a method and a device for the production of radioisotopes from a target essentially consisting of an isotope precursor which is irradiated by a beam of accelerated particles, the radioisotope once produced being separated from its precursor.
[0002] Une application particulière de la présente invention concerne la production de palladium 103 à partir de rhodium 103.A particular application of the present invention relates to the production of palladium 103 from rhodium 103.
Etat de la techniqueState of the art
[0003] La production habituelle de radio-isotopes s'effectue par bombardement ou irradiation d'une cible essentiellement constituée d'un précurseur d'isotope à l'aide d'un faisceau de particules accélérées.The usual production of radioisotopes is carried out by bombardment or irradiation of a target essentially consisting of an isotope precursor using a beam of accelerated particles.
[0004] Il s'y produit une réaction nucléaire qui fait qu'une fraction du précurseur d'isotope présent est transformée en un radio-isotope. Il convient de noter que dans la plupart des cas, le radio-isotope créé est intimement mêlé au matériau précurseur d'isotope constituant la cible et reste de ce fait dans ladite cible. [0005] Il convient également de noter qu'habituellement seuls quelques pour cents du précurseur sont transformés en radio-isotopes exploitables. [0006] Plusieurs types de procédés ont été proposés pour séparer le radio-isotope de son précurseur. L'un d'entre eux consiste essentiellement en une séparation chimique selon laquelle on dissout totalement la cible par exemple dans un acide fort. On effectue ensuite une filtration et éventuellement une électro-dissolution du radio-isotope et enfin une précipitation de ce dernier. [0007] On peut citer à titre d'exemple de cette méthode de séparation chimique, le couple rhodium - palladium 103. La cible est constituée par le rhodium, en tant que précurseur d'isotope, déposé sur un support de cuivre. Cette cible est soumise à une irradiation par un faisceau de protons de 14 MeV pendant 6 jours, ce qui induit une réaction 103 p^ _ 103 p^ e-(- permet d'obtenir qu'environ 1% du rhodium 103 soit transformé en palladium 103. Une fois l'irradiation terminée, la cible est déchargée et amenée vers une enceinte blindée appelée "hot cell" qui est destinée à permettre la réalisation de la séparation de l'isotope de son précurseur. [0008] Afin de séparer le rhodium du palladium, on utilise la procédure de séparation décrite ci-dessus. En particulier, on dissout la cible constituée du support cuivre et de mélange rhodium - palladium sous forme solide avec une solution d'acide fort tel qu'un mélange NH3 + H2SO4. Ceci permet de dissoudre le cuivre et de maintenir le rhodium et le palladium sous forme de précipités. Il suffit alors d'effectuer à ce moment une filtration. La séparation du palladium du mélange palladium - rhodium sera obtenue par électro-dissolution du mélange dans une solution d'acide chlorhydrique avec flux de chlore pour améliorer le rendement (Applied Radiât. Isot. 38(2), pp.151-157 (1987)), suivie par une étape de séparation effectuée par exemple par complexation du palladium à l'aide d' alpha-furil dioxine (AFD) afin d'extraire sélectivement le palladium par la méthode d'extraction liquide-liquide (Radiochim. Radioanal. Lett . 48(1), pp.15- 19 (1981) ) . Une dernière précipitation termine le processus pour isoler le palladium 103 du rhodium 103 et le conditionner sous la forme désirée.There is a nuclear reaction which causes a fraction of the isotope precursor present to be transformed into a radioisotope. It should be noted that in most cases, the radioisotope created is intimately mixed with the isotope precursor material constituting the target and therefore remains in said target. It should also be noted that usually only a few percent of the precursor are transformed into exploitable radioisotopes. Several types of methods have been proposed for separating the radioisotope from its precursor. One of them essentially consists of a chemical separation according to which the target is completely dissolved, for example in a strong acid. Filtration is then carried out and optionally electro-dissolution of the radioisotope and finally precipitation of the latter. As an example of this chemical separation method, the rhodium-palladium 103 pair can be cited. The target consists of rhodium, as an isotope precursor, deposited on a copper support. This target is subjected to irradiation with a 14 MeV proton beam for 6 days, which induces a reaction 103 p ^ _ 103 p ^ e - (- allows to obtain that approximately 1% of rhodium 103 is transformed into palladium 103. Once the irradiation is complete, the target is discharged and brought to an armored enclosure called a "hot cell" which is intended to allow the separation of the isotope from its precursor. [0008] In order to separate the palladium rhodium, the separation procedure described above is used. In particular, the target consisting of the copper support and the rhodium-palladium mixture in solid form is dissolved with a strong acid solution such as an NH3 + H2SO4 mixture. This dissolves the copper and keeps the rhodium and palladium in the form of precipitates. It is then sufficient to carry out a filtration. The separation of the palladium from the palladium-rhodium mixture will be obtained by electro-dissolution of the m mixture into a solution of hydrochloric acid with chlorine flow to improve performance (Applied Radiat. Isot. 38 (2), pp. 151-157 (1987)), followed by a separation step carried out for example by complexation of the palladium with using alpha-furil dioxin (AFD) in order to selectively extract palladium by the liquid-liquid extraction method (Radiochim. Radioanal. Lett. 48 (1), pp.15-19 (1981)). A final precipitation ends the process to isolate the palladium 103 from the rhodium 103 and condition it in the desired form.
[0009] Il est également possible de provoquer une dissolution chimique du rhodium 103 en vue de récupérer seulement le palladium 103 au moyen d'une solution de NaAuCl4 (Appl. Radiât. Isot. 48(3), pp.327-331 (1997)) et de séparer le rhodium du palladium en utilisant une solution d' α-benzoinoxime (ABO) .It is also possible to cause chemical dissolution of rhodium 103 in order to recover only the palladium 103 by means of a NaAuCl4 solution (Appl. Radiât. Isot. 48 (3), pp.327-331 (1997) )) and to separate the rhodium from the palladium using a solution of α-benzoinoxime (ABO).
[0010] Cependant, on observe tout d'abord, que quelles que soient les méthodes de séparation utilisées, le rendement maximum jamais atteint décrit dans la littérature se situe aux alentours des 90%.However, we first observe that whatever the separation methods used, the maximum yield ever achieved described in the literature is around 90%.
[0011] En outre, la mise en œuvre de telles techniques est complexe et il y a génération d'effluents qui peuvent se révéler dangereux et polluants . [0012] Il convient également de noter que malheureusement, ce procédé de séparation détruit totalement la cible, et de ce fait le rhodium, qui est un matériau particulièrement onéreux. Par conséquent, la cible ne pourra être réutilisée pour une prochaine irradiation. [0013] En outre, les solutions acides utilisées pour la séparation seront polluées par des déchets radioactifs et nécessiteront une décontamination, ce qui augmente de manière importante le coût du procédé.In addition, the implementation of such techniques is complex and there is generation of effluents which can prove to be dangerous and polluting. It should also be noted that unfortunately, this separation process completely destroys the target, and therefore rhodium, which is a particularly expensive material. Consequently, the target cannot be reused for a future irradiation. In addition, the acid solutions used for the separation will be polluted by radioactive waste and will require decontamination, which significantly increases the cost of the process.
[0014] Enfin, pour effectuer la dernière précipitation, un entraîneur est nécessaire, par exemple le palladium 102, dont l'utilisation réduit l'activité spécifique du palladium 103. [0015] Le document US 5 468 355 décrit en détail un procédé de production d'oxydes de 13N comprenant une étape de bombardement d'une cible à base de carbone avec un faisceau de particules chargées à haute énergie, de manière à générer une couche de 13N à la surface de la cible, puis une étape de combustion de la cible en présence d'oxygène gazeux de manière à extraire de ladite cible les oxydes de 13N. Ce document mentionne également une autre forme d'exécution pour extraire un radio-isotope d'une cible bombardée, par chauffage, sans combustion de ladite cible. Le document évoque ainsi une forme d'exécution dans laquelle une cible contenant du 10B ou B comme précurseur est, après bombardement, chauffée et balayée par un gaz tel que de l'hélium pour en extraire le radio-isotope 1:LC . Pour autant, le document ne détaille pas la mise en œuvre de cette autre forme d'exécution.Finally, to perform the last precipitation, a trainer is necessary, for example palladium 102, the use of which reduces the specific activity of palladium 103. Document US 5,468,355 describes in detail a process for the production of 13 N oxides comprising a step of bombarding a carbon-based target with a beam of high energy charged particles, so as to generate a layer of 13 N on the surface of the target, then a step of combustion of the target in the presence of gaseous oxygen so as to extract from said target the oxides of 13 N. This document also mentions another embodiment for extracting a radioisotope of a bombed target, by heating, without combustion of said target. The document thus evokes an embodiment in which a target containing 10 B or B as a precursor is, after bombardment, heated and swept by a gas such as helium to extract the radioisotope 1: L C therefrom . However, the document does not detail the implementation of this other form of execution.
[0016] Le document US 5 987 087 décrit un procédé pour extraire par traitement thermique sélectivement d'une cible à base d'arsenic, préalablement irradiée par un faisceau de particules chargées, le radio-isotope sélénium- 72 produit à la suite de cette irradiation. Dans ce procédé, le matériau cible une fois irradié est mélangé à un réactif métallique, tel que de la limaille d'acier inoxydable, ou d'aluminium, avant de subir un traitement thermique. L'obtention de ce mélange permet d'obtenir une sublimation différenciée de l'arsenic (précurseur) et du sélénium-72 (radio-isotope d'intérêt). Le traitement thermique consiste à chauffer en deux étapes la cible une fois irradiée puis mélangée au réactif métallique. Dans la première étape, on chauffe le mélange à une température comprise entre 1000°C et 1100°C. Dans une seconde étape, on effectue un second chauffage à 1300 °C du mélange de manière à provoquer la sublimation du sélénium-72 qui est récolté par exemple sur un support froid. Le sélénium-72 est ensuite récupéré séparément. En d'autres termes, dans ce document, il existe une étape intermédiaire de traitement entre l'irradiation de la cible et l'étape de traitement thermique en vue de séparer le radio-isotope d' intérêt qu'est le sélénium-72. Le traitement thermique ne se fait pas directement sur la cible mais sur la cible mélangée à un réactif métallique. De plus, le procédé de ce document fait usage d'un' flux d'un gaz inerte purifié. Par ailleurs, le problème que cherche à résoudre le document US 5 987 087 qui est celui d'extraire du sélénium-72 produit à partir d'une cible à base d'arsenic, et la solution qu'il propose, ne se rapportent qu'à un cas de précurseur/radio-isotope bien particulier.Document US 5,987,087 describes a process for extracting, by selective heat treatment, from a target based on arsenic, previously irradiated with a beam of charged particles, the selenium-72 radioisotope produced following this irradiation. In this process, the target material once irradiated is mixed with a metallic reagent, such as stainless steel filings, or aluminum, before undergoing heat treatment. Obtaining this mixture makes it possible to obtain a differentiated sublimation of arsenic (precursor) and selenium-72 (radioisotope of interest). The heat treatment consists in heating in two stages the target once irradiated and then mixed with the metallic reagent. In the first step, the mixture is heated to a temperature between 1000 ° C and 1100 ° C. In a second step, a second heating is carried out at 1300 ° C. of the mixture so as to cause the sublimation of selenium-72 which is harvested for example on a cold support. Selenium-72 is then recovered separately. In other words, in this document, there is an intermediate stage of treatment between the irradiation of the target and the stage of thermal treatment in order to separate the radioisotope of interest which is selenium-72. The heat treatment is not done directly on the target but on the target mixed with a metallic reagent. In addition, the method of this document makes use of a 'stream of a purified inert gas. Furthermore, the problem that US 5,987,087 seeks to solve, which is that of extracting selenium-72 produced from an arsenic-based target, and the solution which it proposes, relate only to 'to a very special case of precursor / radioisotope.
Buts de 1 ' inventionAims of the invention
[0017] La présente invention vise à fournir un procédé et un dispositif de production de radio-isotopes qui ne présente pas les inconvénients de l'état de la technique. [0018] La présente invention vise à fournir une solution qui permet de réduire la production de déchets radioactifs.The present invention aims to provide a method and a device for producing radioisotopes which does not have the drawbacks of the state of the art. The present invention aims to provide a solution which reduces the production of radioactive waste.
[0019] La présente invention vise en outre à fournir un procédé dans lequel la cible n'est pas détruite, et peut donc être réutilisée pour une nouvelle production de radio- isotope.The present invention further aims to provide a method in which the target is not destroyed, and can therefore be reused for a new production of radioisotope.
[0020] La présente invention vise en outre à permettre d'obtenir un radio-isotope avec une activité spécifique élevée.The present invention further aims to provide a radioisotope with a high specific activity.
Principaux éléments caractéristiques de l'invention [0021] La présente invention se rapporte à un procédé de production d'un radio-isotope d'intérêt à partir d'une cible comportant un précurseur dudit radio-isotope, à l'aide d'un faisceau de particules accélérées, ledit procédé comprenant les étapes suivantes :Main characteristic elements of the invention The present invention relates to a process for producing a radioisotope of interest from a target comprising a precursor of said radioisotope, with using an accelerated particle beam, said method comprising the following steps:
- préparation d'une cible comprenant le précurseur du radio-isotope, - irradiation, au sein d'une chambre d'irradiation, de ladite cible par un faisceau de particules accélérées, en vue d' induire la transmutation du précurseur en le radio-isotope,- preparation of a target comprising the precursor of the radioisotope, - irradiation, within an irradiation chamber, of said target by a beam of accelerated particles, with a view to inducing the transmutation of the precursor into radio- isotope,
- chauffage de ladite cible en vue de provoquer l'effusion du radio-isotope hors de la cible,heating of said target with a view to causing the radioisotope to effuse out of the target,
- collecte dudit radio-isotope extrait sous forme gazeuse et condensation dudit radio-isotope sous forme solide ou liquide.- Collecting said extracted radioisotope in gaseous form and condensing said radioisotope in solid or liquid form.
[0022] On notera que dans la description qui suit, les expressions « radio-isotope » et « radio-isotope d' intérêt » seront indifféremment utilisées pour désigner le radio-isotope que l'on cherche à produire, tandis que le terme « précurseur » désignera, comme son nom l'indique, l'élément à partir duquel on cherche à obtenir ledit radio- isotope d'intérêt.Note that in the following description, the expressions "radioisotope" and "radioisotope of interest" will be used interchangeably to designate the radioisotope that one seeks to produce, while the term " precursor ”will designate, as its name indicates, the element from which it is sought to obtain said radioisotope of interest.
[0023] Dans le procédé selon l'invention, le radio- isotope d'intérêt est généralement obtenu par irradiation à l'aide d'un faisceau de protons d'une cible solide contenant le précurseur, le radio-isotope d'intérêt étant produit au sein de ladite cible, également de préférence sous forme solide.In the method according to the invention, the radioisotope of interest is generally obtained by irradiation using a proton beam of a solid target containing the precursor, the radioisotope of interest being produced within said target, also preferably in solid form.
[0024] La cible, dans la présente invention, comprend donc : avant irradiation : le précurseur, éventuellement lié à un support métallique ; après irradiation : le précurseur, éventuellement lié à un support métallique, et le radio-isotope d'intérêt. [0025] La séparation du radio-isotope d'intérêt et du précurseur consistera donc à soumettre la cible solide à un traitement thermique pour obtenir une réaction d'effusion, c'est-à-dire de séparation thermique du radio-isotope d'intérêt.The target, in the present invention, therefore comprises: before irradiation: the precursor, optionally linked to a metal support; after irradiation: the precursor, possibly linked to a metallic support, and the radioisotope of interest. The separation of the radioisotope of interest and the precursor will therefore consist in subjecting the solid target to a heat treatment to obtain an effusion reaction, that is to say thermal separation of the radioisotope of interest.
[0026] Le traitement thermique en vue de provoquer l'effusion du radio-isotope d'intérêt, est donc réalisé dans la présente invention, directement sur la cible irradiée, et non pas sur un mélange qui serait constitué par la cible irradiée puis mélangée à un réactif métallique tel que de la limaille d'acier inoxydable ou d'aluminium, contrairement au procédé décrit dans le -document US 5 987 087. En d'autres termes, dans le procédé selon l'invention, il n'est pas nécessaire de soumettre la cible après irradiation à un traitement avant de la chauffer en vue d'extraire le radio-isotope d'intérêt.The heat treatment in order to cause the effusion of the radioisotope of interest, is therefore carried out in the present invention, directly on the irradiated target, and not on a mixture which would be constituted by the irradiated target then mixed to a metallic reagent such as stainless steel or aluminum filings, unlike the process described in document US Pat. No. 5,987,087. In other words, in the process according to the invention, it is not necessary to subject the target after irradiation to a treatment before heating it in order to extract the radioisotope of interest.
[0027] Dans ce but, il doit s'agir de couples précurseur/radio-isotope d' intérêt qui présentent des températures de fusion et d'ébullition relativement différentes l'une de l'autre, de telle sorte que le traitement d'effusion permette d'obtenir une diffusion du radio-isotope au sein même de la cible, son extraction ou échappement par évaporation et sublimation, tandis que le précurseur de la cible reste présent au sein de ladite cible de préférence sous forme solide. On doit donc comprendre que dans la présente invention, la notion d' effusion se réfère à un phénomène physique plus « large » que la sublimation et doit s'entendre comme comprenant le phénomène de sublimation. [0028] Plus précisément, la température de fusion du radio-isotope d' intérêt est inférieure à la température de fusion du précurseur d'au moins 100 °C.For this purpose, it must be precursor / radioisotope couples of interest which have relatively different melting and boiling temperatures from each other, so that the treatment of effusion makes it possible to obtain a diffusion of the radioisotope within the target itself, its extraction or escape by evaporation and sublimation, while the target precursor remains present within said target preferably in solid form. It should therefore be understood that in the present invention, the concept of effusion refers to a physical phenomenon "wider" than sublimation and must be understood as comprising the phenomenon of sublimation. More specifically, the melting temperature of the radioisotope of interest is less than the melting temperature of the precursor by at least 100 ° C.
[0029] Il importe par ailleurs de souligner que, dans la présente invention, le précurseur reste donc à l'état pur c'est-à-dire qu'on peut le récupérer en fin de procédé, sans qu'il soit nécessaire pour cela d'effectuer une étape supplémentaire d'extraction ou de traitement. En d'autres termes, une fois que le radio-isotope a été extrait de la cible, on peut récupérer directement ladite cible sans traitement supplémentaire. Dans le cas où on souhaite par la suite réutiliser ledit précurseur, cette caractéristique de l'invention permet un gain de temps certain, tout en assurant un meilleur rendement de réutilisation.It is also important to emphasize that, in the present invention, the precursor therefore remains at the pure state, that is to say that it can be recovered at the end of the process, without it being necessary for this to perform an additional extraction or treatment step. In other words, once the radioisotope has been extracted from the target, said target can be directly recovered without further processing. In the case where it is subsequently desired to reuse said precursor, this characteristic of the invention allows a certain time saving, while ensuring a better reuse yield.
[0030] Le traitement thermique mis en œuvre pour obtenir l'effusion du radio-isotope d'intérêt peut être tout traitement fonctionnant par effet Joule. [0031] A titre d'exemple, l'énergie destinée au traitement thermique peut provenir de l'irradiation par un faisceau de particules chargées telles des électrons , par le faisceau utilisé pour la réaction nucléaire, par rayonnement infrarouge, par un traitement au laser, par traitement plasma ou tout autre traitement thermique adéquat.The heat treatment used to obtain the effusion of the radioisotope of interest can be any treatment operating by the Joule effect. For example, the energy intended for heat treatment can come from irradiation by a beam of charged particles such as electrons, by the beam used for the nuclear reaction, by infrared radiation, by laser treatment. , by plasma treatment or any other suitable heat treatment.
[0032] A titre d'exemple, un chauffage sous vide ou sous atmosphère inerte contrôlée permettra d'obtenir rapidement l'effet d'effusion désiré. [0033] On doit donc comprendre que dans la présente invention, on ne fait pas circuler de gaz tel que l'oxygène pendant le traitement thermique que l'on fait subir à ' la cible irradiée.For example, heating under vacuum or under a controlled inert atmosphere will quickly obtain the desired effusion effect. It should therefore be understood that in the present invention, one does not circulate gas such as oxygen during the heat treatment which is subjected to ' the irradiated target.
[0034] D'une manière générale, il existe une relation entre la vitesse d'effusion d'un élément contenu dans une cible chauffée et son coefficient de diffusion, dans la mesure un certain nombre de paramètres qui déterminent la vitesse d'effusion influencent également le coefficient de diffusion. Parmi les paramètres déterminant la vitesse d'effusion, on trouve : la température de fusion dudit élément par rapport à la cible; la tension de vapeur de l'élément de l'élément diffusant ; - l'énergie d' activation de la diffusion ; la nature de la cible (métal ou céramique, par exemple) ; et la taille de l'élément diffusant, plus précisément son rayon ionique. [0035] Ainsi, on peut séparer par effusion du Zn d'une cible d'Y en chauffant la cible à une température supérieure à 900 °C, du Be d'une cible de Zr en chauffant la cible à une température supérieure à 1100 °K, du Pd d'une cible Rh en chauffant la cible de Rh à une température supérieure à 1000°C.In general, there is a relationship between the speed of effusion of an element contained in a heated target and its diffusion coefficient, to the extent that a certain number of parameters which determine the speed of effusion influence also the diffusion coefficient. Among the parameters determining the effusion speed, we find: the melting temperature of said element relative to the target; the vapor pressure of the element of the diffusing element; - the energy of activation of the diffusion; the nature of the target (metal or ceramic, for example); and the size of the diffusing element, more precisely its ionic radius. Thus, it is possible to separate Zn from a target of Y by effusion by heating the target to a temperature above 900 ° C., from Be to a target of Zr by heating the target to a temperature above 1100 ° K, Pd of a Rh target by heating the Rh target to a temperature above 1000 ° C.
[0036] Pour résumer, on constate que la vitesse d'effusion d'un élément (radio-isotope) est d'autant plus importante que son rayon ionique est petit : l'effusion à partir d'une cible de tantale est ainsi deux fois plus rapide pour du berillium que pour du barium. On notera également que la vitesse d'effusion d'un élément croît avec la température selon une loi exponentielle.To summarize, we see that the speed of effusion of an element (radioisotope) is all the more important as its ionic radius is small: the effusion from a tantalum target is thus two times faster for berillium than for barium. It will also be noted that the speed of effusion of an element increases with temperature according to an exponential law.
[0037] La vitesse d'effusion d'un élémentThe effusion speed of an element
(radioisotope) dépend également de la structure cristallographique de la cible. Ainsi, si lors du chauffage de la cible, une recristallisation a lieu, il y a une diminution du nombre de joints de grains au niveau du cristal et la diffusion de l'élément peut alors se faire aussi bien à travers les joints qu'entre les joints, ce qui a pour conséquence d'affecter la vitesse d'effusion dudit élément .(radioisotope) also depends on the crystallographic structure of the target. Thus, if during the heating of the target, a recrystallization takes place, there is a reduction in the number of grain boundaries at the level of the crystal and the diffusion of the element can then take place both through the joints and between the joints, which has the effect of affecting the speed of effusion of said element.
[0038] On peut enfin noter que le faisceau de particules peut influencer la vitesse d'effusion du radio- isotope. En effet, la vitesse d'effusion sera différente selon les défauts créés par ce faisceau au sein de la cible, entre la surface de la cible et la position dans la cible au niveau de laquelle le radioisotope est généré par réaction nucléaire. Il est ainsi connu que des mécanismes référencés dans la littérature sous les abréviations « RED » (Radiation Enhanced Diffusion) et « RES » (Radiation Enhanced Ségrégation) et qui sont liés aux mécanismes de diffusion (intersticielle, diffusion, ...) , soit augmentent de façon drastique le coefficient de diffusion, et donc la vitesse d'effusion, par création de mouvements de lacunes sur le chemin de diffusion, ou au contraire réduisent considérablement la diffusion par création de sites de précipitation sur le chemin de diffusion.We can finally note that the particle beam can influence the effusion rate of the radio- isotope. Indeed, the speed of effusion will be different according to the defects created by this beam within the target, between the surface of the target and the position in the target at the level of which the radioisotope is generated by nuclear reaction. It is thus known that the mechanisms referenced in the literature under the abbreviations “RED” (Radiation Enhanced Diffusion) and “RES” (Radiation Enhanced Ségrégation) and which are linked to the diffusion mechanisms (interstitial, diffusion, etc.), either drastically increase the diffusion coefficient, and therefore the speed of effusion, by creating gap movements on the diffusion path, or on the contrary considerably reduce the diffusion by creating precipitation sites on the diffusion path.
[0039] Selon une première forme d'exécution de la présente invention, le traitement thermique se produira au sein d'une enceinte d'effusion distincte de la chambre d'irradiation en vue d'obtenir ladite effusion. [0040] Selon une forme d'exécution encore préférée, l'étape de collecte et de condensation pourra s'effectuer également au sein de ladite enceinte d'effusion. [0041] Dans ce but, et de manière particulièrement avantageuse, cette enceinte d'effusion sera pourvue de moyens de collecte et de condensation dudit radio-isotope extrait.According to a first embodiment of the present invention, the heat treatment will occur within an effusion chamber separate from the irradiation chamber in order to obtain said effusion. According to a more preferred embodiment, the collecting and condensing step can also be carried out within said effusion chamber. For this purpose, and in a particularly advantageous manner, this effusion chamber will be provided with means for collecting and condensing said extracted radioisotope.
[0042] Les moyens de collecte et de condensation peuvent être constitués par un substrat de collection tel un support céramique, métallique ou polymérique, froid ou refroidi. De préférence, ce substrat présentera de faibles caractéristiques d'adhérence.The collection and condensation means can be constituted by a collection substrate such as a ceramic, metallic or polymeric support, cold or cooled. Preferably, this substrate will have low adhesion characteristics.
[0043] Selon cette forme d'exécution, une étape supplémentaire de séparation du radio-isotope extrait, collecté et condensé sur le substrat de collection devra se produire. Éventuellement, cette étape de séparation pourra être effectuée au sein d'une enceinte de séparation distincte de l'enceinte d'effusion. Avantageusement, cette enceinte de séparation comprend un bain de solution acide dans laquelle on peut tremper le substrat de collection en vue d'obtenir une désolidarisation du radio-isotope dudit substrat de collection. Ensuite, il sera nécessaire de filtrer et séparer ledit radio-isotope en vue de le conditionner sous la forme désirée. [0044] Selon une autre forme d'exécution, le traitement thermique peut s'effectuer directement au sein de la chambre d'irradiation, par exemple directement par irradiation par le faisceau de particules chargées qui a permis de réaliser la transmutation du radio-isotope. [0045] Un autre objet de l'invention concerne un dispositif pour la mise en œuvre du procédé de production d'un radio-isotope, ledit dispositif comprenant les moyens suivants :According to this embodiment, an additional step of separation of the radioisotope extracted, collected and condensed on the collection substrate should be produce. Optionally, this separation step could be carried out within a separation enclosure separate from the effusion enclosure. Advantageously, this separation enclosure comprises a bath of acid solution in which the collection substrate can be soaked in order to obtain a separation of the radioisotope from said collection substrate. Then, it will be necessary to filter and separate said radioisotope in order to condition it in the desired form. According to another embodiment, the heat treatment can be carried out directly within the irradiation chamber, for example directly by irradiation with the beam of charged particles which made it possible to carry out the transmutation of the radioisotope. . Another object of the invention relates to a device for implementing the process for producing a radioisotope, said device comprising the following means:
— des moyens d'irradiation d'une cible comportant un précurseur d'isotope en vue d'induire une transmutation du précurseur en le radio-isotope,Means for irradiating a target comprising an isotope precursor in order to induce a transmutation of the precursor into the radioisotope,
— des moyens de chauffage en vue de provoquer l'effusion du radio-isotope au sein de ladite cible,Heating means for causing the effusion of the radioisotope within said target,
— des moyens de collecte et de condensation du radio- isotope extrait.- means for collecting and condensing the extracted radioisotope.
[0046] De préférence, les moyens de collecte et de condensation du radio-isotope extrait sont constitués par un substrat de collection froid.Preferably, the means for collecting and condensing the extracted radioisotope consist of a cold collection substrate.
[0047] De préférence, le substrat de collection présente une inter-couche présentant de faibles caractéristiques d'adhérence avec le radio-isotope. [0048] De préférence, le dispositif selon l'invention comprend en outre des moyens de désolidarisation du radio-isotope dudit substrat de collection.Preferably, the collection substrate has an interlayer having low adhesion characteristics with the radioisotope. Preferably, the device according to the invention further comprises means for separation of the radioisotope from said collection substrate.
[0049] De manière avantageuse, les moyens de désolidarisation sont constitués par une enceinte de séparation comprenant un bain de solution acide dans laquelle est disposé le substrat de collection avec le radio-isotope.Advantageously, the separation means are constituted by a separation enclosure comprising a bath of acid solution in which is disposed the collection substrate with the radioisotope.
[0050] La présente invention se rapporte également en particulier à l'utilisation dudit procédé et dudit dispositif pour la production de palladium 103 à partir de rhodium 103. En d'autres termes, elle concerne la réaction 103Rh (p, n) 103p^ par irradiation d'un faisceau de protons. [0051] D'autres exemples de couples de métaux peuvent être bien entendu envisagés pour la mise en œuvre du procédé (par exemple les couples l^In/l^Cd, 197Hg/197Au, 95Tc/95Mo, Zn/Y, Be/Zr, Ou/Ni) .The present invention also relates in particular to the use of said method and said device for the production of palladium 103 from rhodium 103. In other words, it relates to the reaction 103Rh (p, n) 103p ^ by irradiation of a proton beam. Other examples of pairs of metals can of course be envisaged for the implementation of the method (for example the couples l ^ In / l ^ Cd, 197 Hg / 197 Au, 95 Tc / 95 Mo, Zn / Y, Be / Zr, Ou / Ni).
Brève description des figures [0052] Les figure la et lb décrivent de manière schématique les diverses étapes du procédé de préparation du radio-isotope selon une première et une seconde forme d'exécution de la présente invention, respectivement. [0053] Les figures 2a et 2b décrivent respectivement les enceintes d'effusion et de séparation utilisées pour la mise en œuvre des procédés selon la présente invention.BRIEF DESCRIPTION OF THE FIGURES FIGS. 1a and 1b schematically describe the various steps of the process for preparing the radioisotope according to a first and a second embodiment of the present invention, respectively. Figures 2a and 2b respectively describe the effusion and separation chambers used for the implementation of the methods according to the present invention.
[0054] La figure 3 décrit une seconde forme d'exécution dans laquelle les étapes d'irradiation et d'effusion peuvent être effectuées directement on-line au sein de la chambre d'irradiation. [0055] Les figures 4a et 4b décrivent de manière schématique un accélérateur de particules qui peut être utilisé pour la mise en œuvre du procédé. La figure 4a correspond à une vue en perspective de ce dispositif, tandis que la figure 4b correspond à une vue de dessus.FIG. 3 describes a second embodiment in which the steps of irradiation and effusion can be carried out directly on-line within the irradiation chamber. Figures 4a and 4b schematically describe a particle accelerator which can be used for the implementation of the method. Figure 4a corresponds to a perspective view of this device, while FIG. 4b corresponds to a top view.
Description de plusieurs formes d'exécution préférées de 1 ' inventionDescription of several preferred embodiments of the invention
[0056] La figure la décrit de manière schématique les diverses étapes d'une première forme d'exécution du procédé de production d'un radio-isotope selon la présente invention. On se réfère à la préparation du radio-isotope lO-^pc^ référencé 4, à partir d'une cible 3 comportant du rhodium lO^pj-^ précurseur d'isotope, référencé 1, par irradiation par un faisceau de protons.The figure schematically describes the various stages of a first embodiment of the method for producing a radioisotope according to the present invention. Reference is made to the preparation of the radioisotope lO- ^ pc ^ referenced 4, from a target 3 comprising rhodium lO ^ pj- ^ isotope precursor, referenced 1, by irradiation with a beam of protons.
[0057] Au départ, il s'agit tout d'abord de préparer la cible 3 comportant le précurseur 1 du radio-isotope 4 (étape A-préparation de la cible) . Pour ce faire, on effectue un dépôt de Rh sur une plaque métallique 2 qui est dans le présent cas une plaque en cuivre. Ceci se fait habituellement par électrolyse, de manière à obtenir un dépôt d'une épaisseur telle que le faisceau de protons utilisé pendant l'irradiation (par exemple un faisceau de protons de 14 MeV) perde au moins les trois quarts de son énergie au sein de la cible. Cependant, d'autres techniques de dépôts comme l' évaporation, les techniques de dépôts par plasma (courant continu (DC) , radiofréquence ou micro- ondes) sous vide ou plasma atmosphérique (plasma spraying) peuvent être utilisées .Initially, it is first of all to prepare the target 3 comprising the precursor 1 of the radioisotope 4 (step A-preparation of the target). To do this, Rh is deposited on a metal plate 2 which is in this case a copper plate. This is usually done by electrolysis, so as to obtain a deposit of a thickness such that the proton beam used during irradiation (for example a proton beam of 14 MeV) loses at least three quarters of its energy within of the target. However, other deposition techniques such as evaporation, plasma deposition techniques (direct current (DC), radiofrequency or microwave) under vacuum or atmospheric plasma (plasma spraying) can be used.
[0058] Dans le cas d'une cible 3 inclinée à 10° par rapport à la direction du faisceau, une épaisseur de 50 μ suffit pour des protons de 14 MeV. [0059] Une fois la cible 3 réalisée, celle-ci est chargée dans un cyclotron et soumise à un faisceau de protons d'une énergie de 14 MeV pendant 6 jours (étape B- irradiation) . La transmutation du l°3Rh en l°3Pd s'effectue au taux de 0,225 mCi/mAH. Au terme de 144 heures, on obtiendra, pour un courant de 1 mA continu, et en tenant compte de la décroissance, une production de 28,8 Ci.In the case of a target 3 inclined at 10 ° relative to the direction of the beam, a thickness of 50 μ is sufficient for 14 MeV protons. Once the target 3 has been made, it is loaded into a cyclotron and subjected to a proton beam with an energy of 14 MeV for 6 days (step B- irradiation). The transmutation of l ° 3 Rh into l ° 3 Pd takes place at the rate of 0.225 mCi / mAH. At the end of 144 hours, a production of 28.8 Ci will be obtained for a current of 1 mA continuous, and taking into account the decrease.
[0060] Il convient de noter que la quantité de ^O^Pd (radio-isotope 4) récoltée correspond à moins de 1 % de la quantité initiale de (précurseur 1) présente sur la cible 3.It should be noted that the quantity of ^ O ^ Pd (radioisotope 4) harvested corresponds to less than 1% of the initial quantity of (precursor 1) present on target 3.
[0061] Dans cette première forme d'exécution de l'invention, il convient de maintenir la température de la cible 3 à tout moment inférieure à la température d'effusion du palladium au sein du rhodium. S'il n'en était pas ainsi, le palladium sortirait de la cible, et se condenserait sur les parois environnantes. [0062] La cible 3 irradiée est alors déchargée et transférée (étape C-extraction et transfert) vers une enceinte d'effusion 17 telle que représentée à la fig. 2a. Cette enceinte d' effusion est une enceinte blindée dans laquelle est effectuée l'effusion (étape D) . [0063] L'effusion d'un constituant hors d'un alliage (en dehors de cet alliage) est basée sur les phénomènes physiques suivants. Le constituant le plus volatil (ici le palladium) passe en phase gazeuse, à partir de la surface, ce qui entraîne une différence de concentration en constituant volatil entre la surface et l'intérieur de la cible. Un flux de diffusion du constituant volatil, de l'intérieur de la cible, vers la surface, prend alors naissance. L' évaporation du constituant volatil se poursuit, et réduit la concentration en constituant volatil au sein de la cible. Finalement, la vapeur du constituant volatil est condensée et recueillie sur une surface froide. [0064] On notera qu'il est nécessaire que le constituant volatil ait une température de fusion inférieure à celle des autres constituants de l'alliage, ou une pression partielle de vaporisation supérieure pour une température donnée. Le palladium et le rhodium ont respectivement des températures de fusion de 1554.9°C et 1964°C. [0065] Au sein de l'enceinte d'effusion 17, on chauffe la cible 3 par exemple au moyen d'un chauffage électrique, par effet Joule ou par induction, d'un faisceau d'électrons, d'infrarouges, d'un laser, ou d'un plasma DC ou radio-fréquence ou micro-onde. [0066] L'étape suivante consiste ensuite à collecter et condenser le palladium 4 extrait de la cible 3 sur un support de collection 5 (étape E) pour ensuite le séparer et le recueillir (étape F) , par exemple sous forme de PdCl2. [0067] La figure 2a décrit une enceinte d'effusion 17 utilisée selon la première forme d'exécution du procédé de l'invention. Il s'agit bien sûr d'une enceinte blindée dans laquelle la cible 3 irradiée est transférée (étape C de la figure la) et qui permet de réaliser les étapes d'effusion (étape D) du radio-isotope 4 hors de la cible 3 mais également de captation et condensation (étape E) dudit radio-isotope 4 extrait.In this first embodiment of the invention, it is necessary to maintain the temperature of the target 3 at all times below the effusion temperature of the palladium in the rhodium. If this were not so, the palladium would exit the target, and condense on the surrounding walls. The irradiated target 3 is then discharged and transferred (step C-extraction and transfer) to an effusion chamber 17 as shown in FIG. 2a. This effusion chamber is a shielded enclosure in which effusion is carried out (step D). The shedding of a constituent out of an alloy (apart from this alloy) is based on the following physical phenomena. The most volatile constituent (here palladium) passes into the gas phase from the surface, which causes a difference in concentration of volatile constituent between the surface and the interior of the target. A flow of diffusion of the volatile constituent, from inside the target, towards the surface, then arises. Evaporation of the volatile component continues, and reduces the concentration of volatile component within the target. Finally, the vapor of the volatile component is condensed and collected on a cold surface. Note that it is necessary for the volatile component to have a lower melting temperature than that of the other components of the alloy, or a higher partial vaporization pressure for a given temperature. Palladium and rhodium have melting temperatures of 1554.9 ° C and 1964 ° C respectively. Within the effusion chamber 17, the target 3 is heated, for example by means of electric heating, by Joule effect or by induction, of an electron beam, of infrared, of a laser, or a DC plasma or radio frequency or microwave. The next step is then to collect and condense the palladium 4 extracted from the target 3 on a collection support 5 (step E) to then separate and collect it (step F), for example in the form of PdCl 2 . Figure 2a describes an effusion chamber 17 used according to the first embodiment of the method of the invention. It is of course a shielded enclosure into which the irradiated target 3 is transferred (step C of FIG. La) and which makes it possible to carry out the effusion steps (step D) of the radioisotope 4 outside the target. 3 but also of capture and condensation (step E) of said radioisotope 4 extracted.
[0068] Cette cible 3 est chauffée de préférence sous vide ou sous atmosphère contrôlée à l'aide de moyens de traitement thermique 18 en vue de provoquer la diffusion du palladium 4 au sein de la cible 3 jusqu'à sa surface et son évaporation / sublimation hors de celle-ci. Une température comprise entre 800 °C et 1750 °C convient pour provoquer l'effusion du palladium 4 hors de la matrice de rhodium (cible 3) .This target 3 is preferably heated under vacuum or under a controlled atmosphere using heat treatment means 18 in order to cause the diffusion of palladium 4 within the target 3 to its surface and its evaporation / sublimation out of it. A temperature between 800 ° C and 1750 ° C is suitable for causing the effusion of palladium 4 out of the rhodium matrix (target 3).
[0069] Avantageusement, les moyens de traitement thermique 18 se présentent sous la forme d'une simple résistance électrique. Ils doivent agir en un minimum de temps et doivent être très simples à réguler. En outre, ils doivent permettre de préserver la cible 3 et d'en sauver l'intégrité afin de permettre son utilisation ultérieure pour de prochaines irradiations .Advantageously, the heat treatment means 18 are in the form of a simple electrical resistance. They must act in a minimum of time and must be very simple to regulate. In addition, they must make it possible to preserve target 3 and to save its integrity in order to allow its subsequent use for future irradiations.
[0070] La mise sous vide et le maintien sous vide de l'enceinte d'effusion 17 sont assurés par une pompe à vide 19.The evacuation and maintenance of the effusion chamber 17 under vacuum are ensured by a vacuum pump 19.
[0071] Le palladium 4 présent au sein de la l'enceinte d'effusion 17 sous forme gazeuse est capté et condensé (étape E de la figure la) sur un support 5 de collection. Le support de collection 5 est froid ou refroidi, à une température inférieure à la température de condensation du palladium 4. Le palladium 4 est recueilli sous forme solide ou liquide. [0072] Ledit substrat' 5 est disposé à proximité de la cible sous une cloche de protection 20.Palladium 4 present in the effusion chamber 17 in gaseous form is collected and condensed (step E of Figure la) on a support 5 collection. The collection support 5 is cold or cooled, to a temperature below the condensation temperature of palladium 4. Palladium 4 is collected in solid or liquid form. Said substrate ' 5 is placed near the target under a protective bell 20.
[0073] De manière particulièrement avantageuse, le substrat de collection 5 est un support froid en céramique ou en métal et il présente une mauvaise adhérence. Il peut par exemple présenter une intercouche non adhérente (non représentée). A titre d'exemple, des polymères solubles ou des graisses peuvent être utilisés pour réaliser cette intercouche .Particularly advantageously, the collection substrate 5 is a cold ceramic or metal support and it has poor adhesion. It may for example have a non-adherent interlayer (not shown). For example, soluble polymers or greases can be used to make this interlayer.
[0074] A l'issue de l'opération d'effusion et de collecte (étapes D et E) , la cible 3 contient encore pratiquement la quantité initiale de rhodium, et elle n' a pas été affectée mécaniquement ou chimiquement. Elle peut donc avantageusement être réinstallée dans la chambre d' irradiation, pour une nouvelle campagne de production de palladium (étape G) . [0075] Ensuite, le substrat 5 de collection est transféré à l'aide d'un système de transfert vers une autre enceinte appelée enceinte de séparation 21 dans laquelle l'étape de séparation (étape F de la figure la) du radio-isotope 4 et du substrat de collection 5 est effectuée. La figure 2b décrit une telle enceinte de séparation 21 vers laquelle le substrat de collection est amené .At the end of the effusion and collection operation (steps D and E), the target 3 still contains practically the initial amount of rhodium, and it has not been affected mechanically or chemically. It can therefore advantageously be reinstalled in the irradiation chamber, for a new palladium production campaign (step G). Then, the collection substrate 5 is transferred using a transfer system to another enclosure called separation enclosure 21 in which the separation step (step F of FIG. La) of the radioisotope 4 and collection substrate 5 is performed. FIG. 2b describes such a separation enclosure 21 to which the collection substrate is brought.
[0076] De manière avantageuse, cette enceinte de séparation 21 comprend un bain 22 d'une solution de manière à libérer le ^-^^Pd (radio-isotope 4) dans ladite solution. Cette séparation peut être obtenue par des moyens chimiques, tels qu'une dissolution de l' intercouche et/ou du palladium, et/ou des moyens mécaniques tels qu'une agitation.Advantageously, this separation enclosure 21 comprises a bath 22 of a solution so as to release the ^ - ^^ Pd (radioisotope 4) in said solution. This separation can be obtained by chemical means, such as dissolving the interlayer and / or palladium, and / or mechanical means such as stirring.
[0077] Ensuite, cette solution est traitée de manière à isoler le 103pd (radio-isotope 4) (étape F de la figure la) qui est conditionné dans de petites fioles à l'aide de distributeurs de doses (« doses dispenser ») . L'activité de chaque fiole est mesurée pour contrôle, et le produit peut ensuite être utilisé en tant que produit radio-chimique .Then, this solution is treated so as to isolate the 103pd (radioisotope 4) (step F of FIG. La) which is packaged in small vials using dose dispensers (“doses dispenser”) . The activity of each vial is measured for control, and the product can then be used as a radiochemical.
[0078] Il convient de noter que les différents éléments des enceintes d'effusion 17 et de séparation 21 doivent être tels qu'ils soient facilement décontaminables, intégrables au sein d'une enceinte blindée "hot-cell", équipés d'un système de transfert adéquat de la cible 3, de la chambre d'irradiation 10 vers l'enceinte d'effusion 17, et du substrat de collection 5 de l'enceinte d'effusion 17 vers l'enceinte de séparation 21 et soient faciles d' entretien.It should be noted that the various elements of the effusion chambers 17 and separation 21 must be such that they are easily decontaminable, can be integrated within a shielded "hot-cell" enclosure, equipped with a system adequate transfer of the target 3, the irradiation chamber 10 to the effusion chamber 17, and the collection substrate 5 from the effusion chamber 17 to the separation chamber 21 and are easy to interview.
[0079] Le système de transfert de la cible 3 et du substrat de collection 5 doit être lui-même facilement démontable, par exemple en vue d'une vérification, et facilement décontaminable. Il doit en outre être sécurisé. [0080] L'enceinte d'effusion 17 et de séparation 21 peuvent être combinées en une seule et unique enceinte. [0081] La figure lb décrit de manière schématique les diverses étapes d'une seconde forme d'exécution du procédé de production d'un radio-isotope selon la présente invention, dans laquelle l'étape d'effusion est réalisée on-line, c'est-à-dire directement au sein de la chambre d' irradiation.The target 3 transfer system and the collection substrate 5 must itself be easily removable, for example for verification, and easily decontaminable. It must also be secure. The effusion chamber 17 and separation chamber 21 can be combined into a single enclosure. FIG. 1b schematically describes the various steps of a second embodiment of the method for producing a radioisotope according to the present invention, in which the effusion step is carried out on-line, that is to say directly within the irradiation chamber.
[0082] La constitution de la cible (étape A) se fait de la même manière que dans la première forme de réalisation. Comme montré à la figure 3, un substrat de collection 5 est installé dans la chambre d'irradiation. Il n'est donc pas nécessaire d'extraire la cible 3 pour procéder à l'effusion-collecte. Ce dispositif permet de réaliser simultanément l'irradiation et l'effusion- collecte (étapes B, D e't E simultanées). L'énergie nécessaire pour chauffer la cible est apportée en tout ou en partie par le faisceau de particules accélérées. A l'issue de l'irradiation, le substrat de collection 5 est extrait de la chambre d'irradiation 10. La séparation du palladium déposé (étape F) est ensuite réalisée de la même manière que dans la première forme de réalisation. La cible 3 peut rester au sein de la chambre d'irradiation 10. [0083] La figure 3 décrit donc un dispositif approprié à la mise en œuvre de la seconde forme d'exécution du procédé de l'invention. Dans la chambre d'irradiation 10 sont installés la cible 3 ainsi que le substrat de collection 5. Un ensemble de pompes à vides permet d' atteindre de proche en proche le niveau de vide important requis au sein de l'accélérateur. [0084] Les figures 4a et 4b décrivent de manière schématique un accélérateur de particules qui peut être utilisé pour la mise en œuvre du procédé. Plus précisément, la figure 24a est une vue en perspective de cet accélérateur, tandis que la figure 4b est une vue de dessus de ce même dispositif. [0085] Comme illustré sur ces figures, l'accélérateur de particules 7 comprend : une source capable de générer un faisceau de particules, - l'accélérateur 6 lui-même, un circuit 9 d'acheminement du faisceau, un aimant de déviation 11 qui permet de diriger le faisceau de particules soit vers un système de pompageThe constitution of the target (step A) is done in the same way as in the first embodiment. As shown in Figure 3, a collection substrate 5 is installed in the irradiation chamber. It is therefore not necessary to extract the target 3 to proceed to effusion-collection. This device makes it possible to carry out irradiation and effusion-collection simultaneously (steps B, D e ' t E simultaneous). The energy required to heat the target is provided in whole or in part by the beam of accelerated particles. At the end of the irradiation, the collection substrate 5 is extracted from the irradiation chamber 10. The separation of the deposited palladium (step F) is then carried out in the same manner as in the first embodiment. The target 3 may remain within the irradiation chamber 10. [0083] FIG. 3 therefore describes a device suitable for the implementation of the second embodiment of the method of the invention. In the irradiation chamber 10 are installed the target 3 as well as the collection substrate 5. A set of vacuum pumps makes it possible to reach, step by step, the high vacuum level required within the accelerator. Figures 4a and 4b schematically describe a particle accelerator which can be used for the implementation of the method. More specifically, Figure 24a is a perspective view of this accelerator, while Figure 4b is a top view of the same device. As illustrated in these figures, the particle accelerator 7 comprises: a source capable of generating a particle beam, - the accelerator 6 itself, a circuit 9 for routing the beam, a deflection magnet 11 which allows the particle beam to be directed either to a pumping system
12 destiné à contrôler la qualité des paramètres du faisceau, soit vers une enceinte blindée 10 constituant la chambre d'irradiation placée en bout de ligne. [0086] Entre l'accélérateur 6 et l'aimant de déviation 11, le dispositif 7 comprend en outre une série d' aimants auxiliaires qui correspondent à des quadrupôles 13 et à des sextupôles 14 et qui ont pour fonction d'assurer une focalisation du faisceau.12 intended to control the quality of the beam parameters, either to a shielded enclosure 10 constituting the irradiation chamber placed at the end of the line. Between the accelerator 6 and the deflection magnet 11, the device 7 further comprises a series of auxiliary magnets which correspond to quadrupoles 13 and to sextupoles 14 and which have the function of ensuring focusing of the beam.
[0087] On notera également que juste à la sortie de l'accélérateur 6 se trouvent des collimateurs 15. [0088] Par ailleurs un aimant de balayage 16 permet, comme son nom l'indique, de balayer la cible 3 à l'aide du faisceau d'irradiation.It will also be noted that just at the outlet of the accelerator 6 there are collimators 15. [0088] Furthermore, a scanning magnet 16 makes it possible, as the name suggests, to scan the target 3 using of the radiation beam.
[0089] De manière classique, on dispose la cible 3 obtenue dans la chambre 10 en bout de ligne de faisceau de l'accélérateur 6 de particules chargées. De manière avantageuse, l'accélérateur 6 peut être constitué par un cyclotron qui permet de générer un faisceau de protons présentant une certaine divergence et qui est corrigé par la présence des collimateurs 15.Conventionally, there is the target 3 obtained in the chamber 10 at the end of the beam line of the accelerator 6 of charged particles. Advantageously, the accelerator 6 can be constituted by a cyclotron which makes it possible to generate a beam of protons having a certain divergence and which is corrected by the presence of the collimators 15.
[0090] Ces collimateurs 15 ont essentiellement pour but d'empêcher qu'une partie du faisceau (20%) ne frappe des éléments de la ligne du faisceau et ne les endommage.These collimators 15 are essentially intended to prevent part of the beam (20%) from hitting elements of the beam line and damaging them.
Avantageusement, ces collimateurs 15 peuvent être amovibles et eux-mêmes revêtus d'une couche de rhodium, de manière à profiter de la perte de faisceau pour produire directement du lO^pα (radio-isotope 4) .Advantageously, these collimators 15 can be removable and themselves coated with a layer of rhodium, so as to take advantage of the beam loss to directly produce lO ^ pα (radioisotope 4).
[0091] Dans ce but, les collimateurs 15 doivent pouvoir répondre aux exigences suivantes: facilité de montage / démontage et placement dans la ligne, très bon refroidissement de la surface irradiée, facilité de transfert vers un container en plomb, facilité de démontage dans une « hot cell », masse de substrat en cuivre minimale, surface à recouvrir en rhodium minimale, réutilisation pour chaque irradiation d'un maximum de composants .For this purpose, the collimators 15 must be able to meet the following requirements: ease of assembly / disassembly and placement in the line, very good cooling of the irradiated surface, ease of transfer to a lead container, ease of disassembly in a “Hot cell”, minimum copper substrate mass, minimum rhodium surface to be covered, reuse for each irradiation of a maximum of components.
[0092] La cible 3 peut également être installée directement à l'intérieur de l'accélérateur de particules 6. [0093] Tant dans la première que dans la seconde forme de réalisation de l'invention, la cible 3 et le substrat de collection 5 peuvent être utilisés plusieurs fois successivement. On dispose ainsi d'un procédé économique en rhodium, et produisant peu de déchets. [0094] L'invention ne doit pas être considérée comme limitée aux exemples de réalisation préférés décrits ci- dessus. En particulier, la cible peut être constituée entièrement en le précurseur d'isotope, ou en un alliage comprenant ce précurseur d'isotope. Target 3 can also be installed directly inside the particle accelerator 6. Both in the first and in the second embodiment of the invention, target 3 and the collection substrate 5 can be used several times successively. This provides an economical rhodium process, producing little waste. The invention should not be considered as limited to the preferred embodiments described above. In particular, the target can consist entirely of the isotope precursor, or of an alloy comprising this isotope precursor.

Claims

REVENDICATIONS
1. Procédé de production, à l'aide d'un faisceau de particules accélérées, d'un radio-isotope (4) à partir d'une cible (3) comprenant un précurseur (1) dudit radio-isotope (4), ledit procédé comprenant les étapes suivantes :1. Method for producing, using an accelerated particle beam, a radioisotope (4) from a target (3) comprising a precursor (1) of said radioisotope (4), said method comprising the following steps:
- préparation d'une cible (3) comprenant le précurseur (1) du radio-isotope (4), ,- preparation of a target (3) comprising the precursor (1) of the radioisotope (4),,
- irradiation, au sein d'une chambre d'irradiation (10), de ladite cible (3) par un faisceau de particules accélérées, en vue d'induire la transmutation du précurseur (1) en le radio-isotope (4), — chauffage de ladite cible (3) en vue de provoquer l'effusion du radio-isotope (4) hors de la cible (3),- irradiation, within an irradiation chamber (10), of said target (3) by a beam of accelerated particles, with a view to inducing the transmutation of the precursor (1) into the radioisotope (4), Heating of said target (3) in order to cause the radioisotope (4) to effuse out of the target (3),
- collecte dudit radio-isotope (4) extrait sous forme gazeuse et condensation dudit radio-isotope (4) sous forme solide ou liquide. - Collecting said radioisotope (4) extracted in gaseous form and condensing said radioisotope (4) in solid or liquid form.
2. Procédé selon la revendication 1, caractérisé en ce que la condensation du radio-isotope (4) sous forme liquide ou solide est réalisée par contact du radio-isotope (4) sous forme gazeuse avec des moyens solides adéquats, le radio-isotope (4) étant dans une étape ultérieure séparé dudit milieu.2. Method according to claim 1, characterized in that the condensation of the radioisotope (4) in liquid or solid form is carried out by contact of the radioisotope (4) in gaseous form with suitable solid means, the radioisotope (4) being in a subsequent step separated from said medium.
3. Procédé selon la revendication 2, caractérisé en ce qu' il comprend en outre une étape de conditionnement dudit radio-isotope (4) produit sous une forme appropriée liquide ou solide. 3. Method according to claim 2, characterized in that it further comprises a step of conditioning said radioisotope (4) produced in a suitable liquid or solid form.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le chauffage est obtenu par effet Joule, un traitement par un faisceau de particules chargées telles que des électrons, par rayonnement infrarouge, par un traitement au laser, par un traitement plasma.4. Method according to one of claims 1 to 3, characterized in that the heating is obtained by the Joule effect, a treatment with a beam of charged particles such as electrons, by radiation infrared, by laser treatment, by plasma treatment.
5. Procédé selon la revendication 4, caractérisé en ce que le chauffage est effectué sous vide ou sous atmosphère inerte contrôlée.5. Method according to claim 4, characterized in that the heating is carried out under vacuum or under a controlled inert atmosphere.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le chauffage est effectué au sein d'une enceinte d'effusion blindée (17) située en dehors de la chambre d'irradiation (10) .6. Method according to any one of the preceding claims, characterized in that the heating is carried out within an armored effusion enclosure (17) situated outside the irradiation chamber (10).
7. Procédé selon la revendication 6, caractérisé en ce que l'étape de collecte et de condensation s'effectue au sein de ladite enceinte d' effusion (17 ) . 7. Method according to claim 6, characterized in that the collecting and condensing step is carried out within said effusion enclosure (17).
8. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les étapes d'irradiation, de chauffage et de collecte et de condensation du radio-isotope extrait sont effectuées online au sein de la chambre d'irradiation (10) . 8. Method according to any one of claims 1 to 5, characterized in that the steps of irradiation, heating and collection and condensation of the extracted radioisotope are carried out online within the irradiation chamber (10 ).
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'à l'issue de l'étape de chauffage, on réutilise la cible (3) pour une nouvelle étape d'irradiation.9. Method according to any one of the preceding claims, characterized in that at the end of the heating step, the target (3) is reused for a new irradiation step.
10. Dispositif pour la mise en œuvre du procédé de production d'un radio-isotope (4) selon l'une quelconque des revendications précédentes, ledit dispositif comprenant les moyens suivants :10. Device for implementing the process for producing a radioisotope (4) according to any one of the preceding claims, said device comprising the following means:
- des moyens d'irradiation (6,7,8,9,10) d'une cible (3) comportant un précurseur (1) d'isotope en vue d'induire une transmutation du précurseur (1) en le radio-isotope (4),- means for irradiating (6,7,8,9,10) a target (3) comprising an isotope precursor (1) in order to induce a transmutation of the precursor (1) into the radioisotope (4)
- des moyens de chauffage en vue de provoquer l'effusion du radio-isotope (4) au sein de ladite cible, - des moyens de collecte et de condensation du radio- isotope extrait.heating means in order to cause the effusion of the radioisotope (4) within said target, - means for collecting and condensing the extracted radioisotope.
11. Dispositif selon la revendication 10, caractérisé en ce que les moyens de collecte et de condensation du radio-isotope extrait sont constitués par un substrat de collection (5) froid.11. Device according to claim 10, characterized in that the means for collecting and condensing the extracted radioisotope consist of a cold collection substrate (5).
12. Dispositif selon la revendication 11, caractérisé en ce que le substrat de collection (5) présente une inter-couche présentant de faibles caractéristiques d'adhérence avec le radio-isotope (4).12. Device according to claim 11, characterized in that the collection substrate (5) has an interlayer having low adhesion characteristics with the radioisotope (4).
13. Dispositif selon la revendication 12, caractérisé en ce qu'il comprend en outre des moyens de désolidarisation du radio-isotope dudit substrat de collection. 13. Device according to claim 12, characterized in that it further comprises means for separating the radioisotope from said collection substrate.
14. Dispositif selon la revendication 15, caractérisé en ce que les moyens de désolidarisation sont constitués par une enceinte de séparation (21) comprenant un bain (22) de solution acide dans laquelle est disposé le substrat de collection (5) avec le radio-isotope (4). 14. Device according to claim 15, characterized in that the separation means consist of a separation enclosure (21) comprising a bath (22) of acid solution in which is disposed the collection substrate (5) with the radio- isotope (4).
15. Utilisation du procédé selon l'une des revendications 1 à 9 ou du dispositif selon l'une des revendications 10 à 14 pour la production de palladium 103 à partir de rhodium 103. 15. Use of the method according to one of claims 1 to 9 or of the device according to one of claims 10 to 14 for the production of palladium 103 from rhodium 103.
EP02806546A 2001-12-21 2002-12-23 Method and device for production of radio-isotopes from a target Expired - Lifetime EP1464060B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02806546A EP1464060B1 (en) 2001-12-21 2002-12-23 Method and device for production of radio-isotopes from a target

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP01870288 2001-12-21
EP01870288A EP1321948A1 (en) 2001-12-21 2001-12-21 Method and device for generating radioisotopes from a target
EP02806546A EP1464060B1 (en) 2001-12-21 2002-12-23 Method and device for production of radio-isotopes from a target
PCT/BE2002/000198 WO2003063181A1 (en) 2001-12-21 2002-12-23 Method and device for production of radio-isotopes from a target

Publications (2)

Publication Number Publication Date
EP1464060A1 true EP1464060A1 (en) 2004-10-06
EP1464060B1 EP1464060B1 (en) 2007-05-23

Family

ID=8185076

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01870288A Withdrawn EP1321948A1 (en) 2001-12-21 2001-12-21 Method and device for generating radioisotopes from a target
EP02806546A Expired - Lifetime EP1464060B1 (en) 2001-12-21 2002-12-23 Method and device for production of radio-isotopes from a target

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP01870288A Withdrawn EP1321948A1 (en) 2001-12-21 2001-12-21 Method and device for generating radioisotopes from a target

Country Status (5)

Country Link
US (1) US20050069076A1 (en)
EP (2) EP1321948A1 (en)
AT (1) ATE363126T1 (en)
DE (1) DE60220316T2 (en)
WO (1) WO2003063181A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109717A2 (en) * 2003-06-02 2004-12-16 Fox Chase Cancer Center High energy polyenergetic ion beam systems
US20070160176A1 (en) * 2006-01-06 2007-07-12 Ryoichi Wada Isotope generator
US20070242790A1 (en) * 2006-03-30 2007-10-18 The Regents Of The University Of California 10B(d,n)11C REACTION BASED NEUTRON GENERATOR
RU2494484C2 (en) 2008-05-02 2013-09-27 Шайн Медикал Текнолоджис, Инк. Production device and method of medical isotopes
US7781744B2 (en) * 2008-08-21 2010-08-24 Comecer S.P.A. Procedure for the preparation of radioisotopes
DE102009005893B3 (en) * 2009-01-23 2010-12-02 Forschungszentrum Jülich GmbH Method of generating 11C and target body
WO2011011049A2 (en) * 2009-07-20 2011-01-27 The Board Of Trustees Of The Leland Stanford Junior University Method and apparatus for inductive amplification of ion beam energy
US20110080986A1 (en) * 2009-10-05 2011-04-07 Schenter Robert E Method of transmuting very long lived isotopes
WO2012003009A2 (en) 2010-01-28 2012-01-05 Shine Medical Technologies, Inc. Segmented reaction chamber for radioisotope production
US9177679B2 (en) * 2010-02-11 2015-11-03 Uchicago Argonne, Llc Accelerator-based method of producing isotopes
US9336916B2 (en) 2010-05-14 2016-05-10 Tcnet, Llc Tc-99m produced by proton irradiation of a fluid target system
US10734126B2 (en) 2011-04-28 2020-08-04 SHINE Medical Technologies, LLC Methods of separating medical isotopes from uranium solutions
US9269467B2 (en) 2011-06-02 2016-02-23 Nigel Raymond Stevenson General radioisotope production method employing PET-style target systems
IN2014DN09137A (en) 2012-04-05 2015-05-22 Shine Medical Technologies Inc
EP3646345B1 (en) * 2017-06-29 2020-12-30 The South African Nuclear Energy Corporation Soc Limited Production of radioisotopes
EP3706141A4 (en) * 2017-10-31 2021-08-11 National Institutes for Quantum and Radiological Science and Technology Radioisotope production method and radioisotope production device
JP7542018B2 (en) * 2019-07-01 2024-08-29 フェニックス エルエルシー Systems and methods for using exchangeable ion beam targets - Patents.com
US20240087758A1 (en) * 2021-01-29 2024-03-14 Morou Boukari Method and Device for Energy Production and Synthesis of Rare Metals by Transmutation and Nuclear Fusion
WO2022219431A2 (en) * 2021-04-15 2022-10-20 Su-N Energy Holdings Ltd Process, apparatus and system for the production, separation and purification of radioisotopes
CN117059296B (en) * 2023-09-27 2024-02-06 原子高科股份有限公司 Preparation method and application of palladium-103

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3277106D1 (en) * 1981-12-18 1987-10-01 Toray Industries Improved electric resistance heating element and electric resistance heating furnace using the same as heat source
JPH05119196A (en) * 1991-10-25 1993-05-18 Rikagaku Kenkyusho Manufacture method of multitracer by reduced-pressure-heating fusion method
US5468355A (en) * 1993-06-04 1995-11-21 Science Research Laboratory Method for producing radioisotopes
CA2256189A1 (en) * 1997-12-19 1999-06-19 Robert Robertson Method and system for making radioactive sources for interstitial brachytherapy and sources made thereby
US5987087A (en) * 1998-06-26 1999-11-16 Tci Incorporated Process for the production of radioisotopes of selenium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03063181A1 *

Also Published As

Publication number Publication date
DE60220316T2 (en) 2008-01-17
DE60220316D1 (en) 2007-07-05
US20050069076A1 (en) 2005-03-31
ATE363126T1 (en) 2007-06-15
EP1321948A1 (en) 2003-06-25
WO2003063181A1 (en) 2003-07-31
EP1464060B1 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
EP1464060B1 (en) Method and device for production of radio-isotopes from a target
JP5600254B2 (en) Laser refining apparatus and laser refining method
EP1774406B1 (en) Optical system having a cleaning arrangement
EP0964741B1 (en) Method for improving vacuum in a very high vacuum system
Yin Vallgren Low secondary electron yield carbon coatings for electron cloud mitigation in modern particle accelerators
Shidling et al. Fabrication of 184W target on carbon backing
EP0317402B1 (en) X-ray tube having a molybdenum target
WO2013084351A1 (en) Reduction device
EP0404685B1 (en) Process and apparatus for separating the constituents of an alloy
JPH04236759A (en) Vapor-deposition device
EP2824071B1 (en) Silicon refining device
Pulino et al. Thin films obtained from materials of high evaporation temperatures at low pressures
JPH0628699B2 (en) How to make it easier to remove deposits from steam
JP2000234165A (en) Device for forming amorphous diamond film and formation therefor
Biswas et al. Fabrication and characterization of thin 142,150 Nd targets for the study of dynamics of heavy-ion induced reactions
JP2004315911A (en) Evaporator, evaporation method and product thereby
JPH0812272B2 (en) Laser direct reprocessing method
JP6652268B2 (en) Refining equipment
JP2672152B2 (en) Method and apparatus for producing metal vapor
JPS61210615A (en) Thin film formation equipment
JPH086171B2 (en) Method for forming carbon-based film
Moreau Fast neutron irradiation effects on diffusion processes in the aluminum-magnesium system
CH630493A5 (en) Method of manufacturing electrodes for fuel cells, device for implementing the method and electrode obtained
Meriadec Contribution to the study of recoil species produced by potassium ferrocyanide neutron irradiation
Barbier Study of the hydrogen behavior in amorphous hydrogenated materials of type a-C: H and a-SiC: H facing fusion reactor plasma

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17Q First examination report despatched

Effective date: 20050620

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 60220316

Country of ref document: DE

Date of ref document: 20070705

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070903

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070822

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071023

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070823

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070824

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20091125

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100115

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20091126

Year of fee payment: 8

Ref country code: DE

Payment date: 20091204

Year of fee payment: 8

BERE Be: lapsed

Owner name: ION BEAM APPLICATIONS S.A.

Effective date: 20101231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60220316

Country of ref document: DE

Effective date: 20110701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101223

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110701