EP1458977B2 - Peristaltic micropump - Google Patents
Peristaltic micropump Download PDFInfo
- Publication number
- EP1458977B2 EP1458977B2 EP03792417A EP03792417A EP1458977B2 EP 1458977 B2 EP1458977 B2 EP 1458977B2 EP 03792417 A EP03792417 A EP 03792417A EP 03792417 A EP03792417 A EP 03792417A EP 1458977 B2 EP1458977 B2 EP 1458977B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- membrane
- valve
- membrane region
- pump body
- pumping chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000002572 peristaltic effect Effects 0.000 title claims description 64
- 239000012528 membrane Substances 0.000 claims description 183
- 239000012530 fluid Substances 0.000 claims description 118
- 238000005086 pumping Methods 0.000 claims description 108
- 239000007788 liquid Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 7
- 230000003247 decreasing effect Effects 0.000 claims 1
- 230000006835 compression Effects 0.000 description 35
- 238000007906 compression Methods 0.000 description 35
- 238000005452 bending Methods 0.000 description 21
- 239000007789 gas Substances 0.000 description 18
- 239000000853 adhesive Substances 0.000 description 15
- 230000001070 adhesive effect Effects 0.000 description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 239000010410 layer Substances 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- 238000009736 wetting Methods 0.000 description 7
- 241000283216 Phocidae Species 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 238000001746 injection moulding Methods 0.000 description 5
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000005499 meniscus Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000028161 membrane depolarization Effects 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 241001295925 Gegenes Species 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000004457 water analysis Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/04—Pumps having electric drive
- F04B43/043—Micropumps
- F04B43/046—Micropumps with piezoelectric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/12—Machines, pumps, or pumping installations having flexible working members having peristaltic action
- F04B43/14—Machines, pumps, or pumping installations having flexible working members having peristaltic action having plate-like flexible members
Definitions
- the present invention relates to a micropump, and more particularly to a micropump operating on a peristaltic pumping principle.
- Micropumps operating on a peristaltic pumping principle are known in the art. So is the article " Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology ", by Li Cao et al., Sensors and Actuators, A94 (2001), pages 117 to 125 , comprising a peristaltic micropump having an inlet, three pumping chambers, three silicon diaphragms, three normally-closed active valves, three PZT piezo stack actuators, microchannels between the pumping chambers, and an outlet. The three pumping chambers are of equal size and are etched into a silicon wafer.
- a peristaltic micropump which has three membrane regions in a continuous substrate surface.
- a pump channel is formed which communicates with a fluid reservoir.
- a transverse rib is formed in the region of an inlet valve and an outlet valve, on which an associated membrane portion rests in the unactuated state to close the inlet valve and the outlet valve in the unactuated state.
- the actuator element consists of a threefold composite of metal membrane, continuous ceramic layer and segmented electrode arrangement.
- the ceramic layer must be segmented polarized, which is technically difficult.
- Such a segmented piezo-bending element is thus expensive and only allows low stroke volumes, so that such a pump can not work bladeless tolerant and self-priming.
- micro-diaphragm pump in which a pumping chamber adjacent to a pumping membrane is actuated by a piezoelectric actuator. A fluid inlet and a fluid outlet of the pumping chamber are each provided with passive check valves.
- the compression ratio of the micropump ie the ratio of stroke volume of the pumping membrane to total pumping chamber volume depending on the maximum valve geometry and valve wetting dependent pressure required to open the valves, is set to provide a bubble tolerant self-priming operation to allow local micromembrane pump.
- the object of the present invention is to provide a peristaltic micromembrane pump which can be easily assembled and which enables a bubble-tolerant, self-priming operation.
- this object is achieved by a peristaltic micropump according to claim 1.
- the present invention thus provides a peristaltic micropump in which the first and second valves are open in the unactuated state and in which the first and second valves are moved by moving the membrane can be closed to the pump body, while the volume of the pumping chamber can also be reduced by moving the second membrane area towards the pump body.
- the peristaltic micropump according to the invention makes it possible to realize bubble-tolerant, self-priming pumps, even if piezoelements arranged on a membrane are used as piezo actuators.
- piezo actuators also so-called piezo-stacks (piezo stacks) can be used, which are disadvantageous to piezo membrane transducers in that they are large and expensive, problems with the connection technique between stack and membrane and problems in adjusting the stack supply and thus are associated with a higher total effort.
- the inventive peristaltic micropump can work bubble-tolerant and self-priming, it is preferably dimensioned such that the ratio of stroke volume and dead volume is greater than a ratio of delivery pressure and atmospheric pressure, the displacement being the volume displaceable by the pump membrane, the dead volume the volume remaining between the inlet port and the outlet port of the micropump, when the pumping diaphragm is actuated and one of the valves is closed and one is open, the atmospheric pressure is at most about 1050 hPa (worst case consideration), and the delivery pressure is that in the fluid chamber region Micropump, d. H. in the pressure chamber, necessary pressure is to maintain a liquid / gas interface at a location which is a flow restriction in the microperistaltic pump, i. between the pumping chamber and the passage opening of the first or second valve, including this passage opening, to move past.
- the peristaltic micropump works bubble-tolerant and self-priming. This applies both when using the peristaltic micropump for conveying liquids, when a gas bubble, usually an air bubble, enters the fluid region of the pump, as well as when using the micropump according to the invention as a gas pump when accidentally condensed moisture from the gas to be pumped and Thus, a gas / liquid interface may occur in the fluid region of the pump.
- Compression ratios satisfying the above condition can be realized in the present invention, for example, by making the volume of the pump chamber larger than that of the valve chambers formed between the respective valve diaphragm portions and opposite pump body portions. In preferred embodiments, this can be realized by the distance between the membrane and surface and pump body surface in the pump chamber is greater than in the region of the valve chambers.
- a further increase in the compression ratio of a peristaltic micropump according to the invention can be achieved by moving the contour of a pumping chamber structured in the pump body to the bending line of the pumping membrane, i. H. the curved contour of the same in the actuated state, adapted so that the pumping membrane in the actuated state can displace substantially the entire volume of the pumping chamber.
- the contours of valve chambers formed in the pump body can be adapted accordingly to the bending line of the respective opposite membrane sections, so that in the optimal case in the closed state, the actuated membrane region displaces substantially the entire valve chamber volume.
- the micro-diaphragm pump comprises a membrane element 10 which has three membrane sections 12, 14 and 16.
- Each of the membrane sections 12, 14 and 16 is provided with a piezo element 22, 24 and 26, respectively, and forms together with the same a piezo membrane transducer.
- the piezo elements 22, 24, 26 may be glued to the respective membrane sections or may be formed by screen printing or other thick film techniques on the membrane.
- the membrane element is circumferentially joined to a pump body 30 at outer portions thereof, so that there is a fluid-tight connection therebetween.
- a pump body 30 In the pump body 30, two fluid passages 32 and 34 are formed, one of which, depending on the pumping direction, a fluid inlet and the other represents a fluid outlet.
- the fluid passages 32, 34 are each surrounded by a sealing lip 36.
- the underside of the membrane element 10 and the top of the pump body 30 are structured to define a fluid chamber 40 therebetween.
- both the membrane element 10 and the pump body 30 are implemented in a respective silicon wafer, so that they can be joined together, for example, by silicon fusion bonding.
- the membrane element 10 in the upper side of the same three recesses and in the bottom thereof has a recess to define the three membrane regions 12, 14 and 16.
- the piezoelectric elements or piezoceramics 22, 24 and 26 By the piezoelectric elements or piezoceramics 22, 24 and 26, the diaphragm sections 12, 14 and 16 respectively in the direction of the pump body 30 to be actuated, so that the diaphragm portion 12 together with the fluid passage 32 is an inlet valve 62, which by actuation of the membrane portion 12th can be closed.
- the diaphragm section 16 and the fluid passage 34 together constitute an outlet valve 64 which can be closed by actuating the diaphragm section 16 by means of the piezoelectric element 26.
- the volume of the pumping chamber region 42 arranged between the valves can be reduced.
- the peristaltic micropump shown will first be briefly the fluid system environment in which the micropump according to Fig. 1 is installed described.
- the pump is glued to the pump body 30 on a support block 50, optionally, as in Fig. 1 shown grooves 52 may be provided in the support block 50 to receive excess adhesive.
- the grooves 52 may be provided, for example, surrounding the fluid channels 54 and 56 formed in the support block 50 to receive excess adhesive and prevent it from entering the fluid channels 54, 56 and the fluid passages 32, 34, respectively.
- the pump body 30 is bonded to the support block such that the fluid passage 32 is in fluid communication with the fluid passage 54 and that the fluid passage is in fluid communication with the fluid passage 56.
- a further channel 58 may be provided as a cross leak protection in the support block 50.
- connecting pieces 60 are provided, for example, for attaching hoses to the in Fig. 1 can serve shown fluid system.
- a housing 61 which is joined, for example using an adhesive bond to the support block 50 to provide protection for the micropump and terminate the piezoelectric elements moisture-proof.
- the in Fig. 1 shown pump is initially assumed from an initial state in which the inlet valve 62 is closed, the pump diaphragm corresponding to the second diaphragm portion 14 is in the unactuated state and the exhaust valve 64 is open.
- the pumping membrane 14 is moved downward by actuation of the piezoelectric element 24, which corresponds to the pressure stroke, whereby the stroke volume through the open outlet valve in the outlet, that is, the fluid channel 56 is promoted.
- the compression of the pumping chamber 42 during the pressure stroke by the stroke volume leads to an overpressure in the pumping chamber, which degrades by the fluid movement through the outlet valve.
- Piezoelectric converters or piezoelectric bending converters are preferably used according to the invention as piezo actuators.
- Such a bending transducer performs an optimum stroke when the lateral dimensions of the piezoceramic correspond to approximately 80% of the underlying membrane.
- deflections of several 10 ⁇ m stroke and thus volume strokes in the range from 0.1 ⁇ l to 10 ⁇ l can thus be achieved.
- Preferred embodiments of the present invention have volume strokes at least in such a range, since in such a volume stroke advantageous bubble tolerant peristaltic pumps can be realized.
- Fig. 2a shows a piezoceramic 100, which is provided on both surfaces thereof with metallizations 102.
- the piezoceramic preferably has a large d31 coefficient and is in the direction of arrow 104 in FIG Fig. 2a polarized. According to Fig. 2a no voltage is applied to the piezoceramic.
- a piezo-membrane transducer is now in Fig. 2a shown piezoceramic 100 fixedly mounted on a membrane 106, for example glued, as in Fig. 2b is shown.
- the membrane shown is a silicon membrane, but the membrane may be formed by any other materials as long as it can be electrically contacted, for example, as a metallized silicon membrane, as a metal foil, or as a plastic membrane rendered conductive by a two-component injection molding.
- a positive voltage ie a voltage in the polarization direction, U> 0, is applied to the piezoceramic, then the piezoceramic contracts, see Fig. 2c , Due to the firm connection of the piezoceramic 100 to the membrane 106, the membrane 106 is deflected downwards by this contraction, as indicated by arrows in FIG Fig. 2d is clarified.
- a negative voltage ie a voltage opposite to the direction of polarization
- a depolarization of the piezoceramic even at low field strengths in the opposite direction, as in Fig. 2e is indicated by an arrow 108.
- Typical depolarization field strengths of lead zirconate titanate ceramics (PZT ceramics) are, for example, -4000 V / cm.
- a bending transducer is a preferred embodiment of the present invention, since this form of transducer has numerous advantages.
- they have a fast response, on the order of about 1 millisecond with low power consumption.
- a scaling with dimensions of piezoceramic and membrane over large areas is possible, so that a large stroke (10 .... 200 microns) and a large force (switching pressures 10 4 Pa to 10 6 Pa) are possible, with a larger Hub decreases the achievable force and vice versa.
- the medium to be switched is separated from the piezoceramic by the membrane.
- the micro-peristaltic pumps of the invention are to be used in applications where bubble-tolerant, self-priming behavior is required, the micro-peristaltic pumps must be designed to comply with a compression ratio design rule that defines the ratio of stroke volume to dead volume.
- a compression ratio design rule that defines the ratio of stroke volume to dead volume.
- Fig. 3a schematically shows a pump body 200 having an upper surface thereof, in which a pumping chamber 202 is structured.
- a diaphragm 204 is schematically shown, which is provided with an inlet valve piezoactuator 206, a pumping chamber piezoactuator 208 and an outlet valve piezoactuator 210.
- the piezoactuators 206, 208 and 210 By means of the piezoactuators 206, 208 and 210, respective regions of the membrane 204 can be moved downwards, ie in the direction of the pump body 200, as indicated by arrows in FIG Fig. 3a is shown.
- Through the line 212 is in Fig.
- the difference of the pumping chamber volume between the undeflected state of the membrane 204 and the deflected state 212 of the membrane 204 represents the stroke volume ⁇ V of the pumping membrane.
- the channel regions 214 and 216 disposed below the inlet valve piezoactuator 206 and below the outlet valve piezoactuator 210 may be closed by a respective actuation of the corresponding piezoelectric actuator by resting the respective membrane regions on the underlying regions of the pump body.
- FIGS. 3a to 3c merely rough schematic representations, wherein the respective elements are designed so that a closing of respective valve openings is possible.
- an intake valve 62 and an exhaust valve 64 are formed.
- Fig. 3b a situation is shown in which the volume of the pumping chamber 202 is reduced by operating the pumping chamber piezoactuator 208 and in which the inlet valve 62 is closed.
- the situation shown thus represents the state after ejection of a fluid amount from the exhaust valve 64, wherein the volume of the remaining between the closed inlet valve 62 and the passage opening of the open exhaust valve 64 fluid area represents the dead volume V 0 with respect to the pressure stroke, as indicated by the hatched area in Fig. 3b is shown.
- the dead volume with respect to a suction stroke in which the inlet valve 62 is opened and the outlet valve 64 is closed is defined by the volume of the fluid area remaining between the closed outlet valve 64 and the passage opening of the open inlet valve 62, as in FIG Fig. 3c is shown by the hatched area.
- the respective dead volume is defined by the respective closed valve up to the passage opening at which a significant pressure drop occurs at the moment of a respective change in volume of the pumping chamber.
- the dead volumes V 0 for the pressure stroke and the suction stroke are identical. If different dead volumes occur due to an asymmetry for a pressure stroke and a suction stroke, then, in the sense of a worst-case analysis, it is assumed in the following that the larger of the two dead volumes is used to determine the respective compression ratio.
- a worst-case view is assumed in which the entire pump area is filled with a compressible fluid (gas).
- the volume / pressure conditions occurring in the peristaltic pump in a peristaltic pumping cycle as described above are shown in the graph of FIG Fig. 4 shown.
- Fig. 4 in each case both the isothermal volume / pressure characteristics and the adiabatic volume / pressure characteristics are shown, wherein in the sense of a worst-case consideration in the following of isothermal conditions, as they occur in slow state changes, is assumed.
- the overpressure p Ü during the pressure stroke, and the negative pressure p U during the suction stroke, exceed a minimum value during the compression stroke or during the intake stroke must fall below.
- the pressure amount during the compression stroke and the suction stroke must exceed a minimum value, which may be referred to as delivery pressure p F.
- This delivery pressure is the pressure in the pressure chamber which must at least prevail to bypass a liquid / gas interface at a location which is a flow point between the pumping chamber and the passageway of the first or second valve, including this passageway move.
- This delivery pressure can be determined as follows, depending on the size of this flow point.
- Capillary forces must be overcome if free surfaces, for example in the form of gas bubbles (eg air bubbles), are moved in the fluid areas within the pump.
- the delivery pressure to be provided is defined by Equation 2 at the location within the flow path of the microperistaltic pump where the sum of the inverse radii of curvature r 1 and r 2 of a liquid / gas interface having a given surface tension is at a maximum. This point corresponds to the Flu touchgstelle.
- a channel 220 (FIG. Fig. 5a ) with a width d, where the height of the channel is also d.
- the channel 220 has a cross-sectional change at both channel ends 222, for example below the valve membrane or the pumping membrane.
- Fig. 5a the channel is completely filled with a liquid 224 flowing in the direction of the arrow 226.
- Fig. 5b An air bubble 228 now encounters the change in cross section at the entrance of the channel 220.
- a wetting angle ⁇ occurs.
- Fig. 5c the situation is illustrated when the air bubble or meniscus 230 reaches the cross-sectional change 222 at the end of the channel 220.
- This pressure barrier is not negligible in microperistaltic pumps of the type according to the invention due to the small dimensions of geometry, if such a channel represents the bottleneck of the pump.
- the mentioned constriction is generally defined by the distance between the valve membrane and the opposite region of the pump body (for example a sealing lip) when the valve is open.
- r d 2
- half of the smallest ascending wall distance can be considered independently of the tilt angle ⁇ , wetting angle ⁇ or abrupt changes in cross section.
- the peristaltic pump has a constriction at the inlet or outlet valve, which is defined by the gap geometry dependent on the valve lift d.
- Ap ⁇ ⁇ 2 d
- the respective constriction (channel constriction or valve constriction in the open state), at which larger capillary forces must be overcome, can be regarded as a flow point of the microperistaltic pump.
- communication channels within the peristaltic pump are designed such that the diameter of the channel is at least twice that of the valve throat, i. the distance between diaphragm and pump body in the open valve state, exceeds.
- the valve gap represents the flow point of the microperistaltic pump.
- communication channels having a smallest dimension, i. Bottleneck be provided by 50 ⁇ m.
- the upper limit of the channel diameter is determined by the dead volume of the channel.
- the capillary force to be overcome depends on the surface tension at the liquid / gas interface. This surface tension in turn depends on the partners involved. For a water / air interface, the surface tension is about 0.075 N / m and varies slightly with temperature. Organic solvents generally have a significantly lower surface tension, while the surface tension at a mercury / air interface, for example, about 0.475 N / m.
- a peristaltic pump designed to overcome the capillary force at a surface tension of 0.1 N / m is thus suitable for pumping virtually all known liquids and gases in a bubble-tolerant and self-priming manner.
- the compression ratio of a micro-peristaltic pump according to the invention can be made correspondingly higher in order to enable such pumping, for example, also for mercury.
- suction stroke differs by the initial position of the volumes.
- Equation 11 The left side of Equation 11 represents the state before expansion, while the right side represents the state after expansion.
- the negative pressure p U during the pressure stroke must be smaller than the necessary negative delivery pressure p F.
- the discharge pressure p F in terms of absolute value in the consideration of the pressure stroke, in terms of absolute value in the consideration of the suction stroke. It follows: p U > p F
- Preferred embodiments of microperistaltic pumps according to the invention are thus designed such that the compression ratio satisfies the above condition, wherein the minimum necessary delivery pressure corresponds to the pressure defined in equation 8 if channel narrows occurring in the peristaltic pump have minimum dimensions which are at least twice as large as the valve gap.
- the minimum required delivery pressure may correspond to the pressure defined in Equation 3 or Equation 7 if the flow location of the microperistaltic pump is not defined by a gap but a channel.
- a microperistaltic pump according to the invention is to be used when pressure boundary conditions of a negative pressure p 1 at the inlet or a counterpressure p 2 prevail at the outlet, the compression ratio of a microperistaltic pump must be correspondingly greater in order to allow pumping against these inlet pressures or outlet pressures.
- the pressure boundary conditions are defined by the intended application of the microperistaltic pump and can range from a few hPa to several 1000 hPa. For such cases occurring in the pumping chamber pressure p T, or negative pressure p U must achieve these back pressures at least, so that a pumping action occurs. For example, only the height difference of a possible inlet vessel or outlet vessel of 50 cm in water leads to counter pressures of 50 hPa.
- the desired delivery rate is a constraint that places additional demands.
- T 1 / f both the suction stroke and the pressure stroke of the peristaltic pump must be performed, in particular the displacement .DELTA.V must be implemented.
- the available time is therefore maximum T / 2 for suction stroke and pressure stroke.
- the time required to promote the stroke volume through the pumping chamber inlet and the valve throat now depends on the one hand on the flow resistance, on the other hand on the pressure amplitude in the pumping chamber.
- foam-like substances are to be pumped with a microperistaltic pump according to the invention, it may be necessary for a plurality of capillary forces, as described above, to be overcome since a plurality of corresponding liquid / gas interfaces occur.
- the micro-peristaltic pump must be designed to have a compression ratio in order to be able to produce correspondingly higher delivery pressures.
- the compression ratio of a microperistaltic invention must be appropriately higher when necessary in the microperistaltic delivery pressure p F in addition to the aforementioned capillary forces also depends on the boundary conditions of the application.
- the delivery pressure is considered relative to the atmospheric pressure, that is, a positive delivery pressure p F is assumed in the pressure stroke, while a negative delivery pressure p F is assumed in the intake stroke.
- a compression ratio of ⁇ > 9 must be maintained according to Equation 14 above in order to allow pumping against such negative pressure.
- Fig. 6b shows a schematic cross-sectional view of a peristaltic micropump with membrane element 300 and pump body 302 along the line BB of Fig. 6a and Fig. 6c
- Fig. 6a a schematic plan view of the membrane element 300
- Fig. 6c a schematic plan view of the pump body 302 shows.
- the membrane element 300 in turn has three membrane sections 12, 14 and 16 which are each provided with piezoactuators 22, 24 and 26.
- an inlet opening 32 and an outlet opening 34 is formed, such that the inlet port 32 defines an inlet valve together with the diaphragm portion 12, while the outlet port 34 defines an outlet valve with the diaphragm portion 16.
- a pumping chamber 304 is formed in the pump body 302. Furthermore, fluid channels 306 are formed in the pump body 302, which are fluidly connected to the diaphragm areas 12 and 16 associated valve chamber 308 and 310.
- the valve chambers 308 and 310 are formed in the embodiment shown by recesses in the membrane element 300, wherein in the membrane element 300 further to the pumping chamber 304 contributing recess 312 is formed.
- the pumping chamber volume 304 is made larger than the volumes of the valve chambers 308 and 310. This is achieved in the illustrated embodiment by forming a pumping chamber depression in which a structuring in the form of a pumping chamber depression is formed in the pump body 302.
- the stroke of the pump diaphragm 14 is preferably designed so that it can largely displace the volume of the pumping chamber 304.
- a further increase of the pumping chamber volume compared to the valve chamber volume is in the in the Fig. 6a to 6c shown embodiment in that the pumping chamber membrane 14 in terms of area (in the plane of the diaphragm member 300 and the pump body 302) is made larger than the valve chamber membranes, as best in Fig. 6a you can see. This results in a larger in terms of area compared with the valve chambers pump chamber.
- the supply channels 306 in the surface of the pump body 302 are structured. These fluid channels 306 provide reduced flow resistance without significantly degrading the compression ratio of the peristaltic micropump.
- the surface of the pump body 302 could be realized with three stage depressions to implement the pumping chamber of increased depth (compared to the valve chambers), while the top chip is a substantially unstructured membrane. Such two-stage subsidence are technologically more difficult to implement than that in the Fig. 6a to 6c shown embodiment.
- FIG. 7 An enlarged view of the left part of the in Fig. 6b shown cross-sectional view is in Fig. 7 shown in FIG Fig. 7 the height H of the pumping chamber 304 is displayed.
- the patterns forming the pumping chamber 304 in the pump body 302 and in the membrane member 300 have equal depths, it is preferable to make the patterns in the pump body 302 deeper in depth than those in the membrane member to provide the flow channel 306 with a sufficient flow area without unduly compromising the compression ratio.
- the patterns in the pump body 302 that contribute to the fluid channel 306 and the pumping chamber 304 may have a depth of 22 ⁇ m, while the patterns in the membrane element 300 that define the valve chambers 308 and the pressure chamber 304, respectively, have a depth of 8 microns may have.
- FIG. 12 is a schematic cross-sectional view of an enlargement of the section A of FIG Fig. 7 but in a modified form.
- the web is spaced from the opening 32 in the direction of the channel 206.
- mounting tolerances can be taken into account in a double-sided lithography.
- wafer thickness variations that may result in valve openings with different cross-sectional sizes, have no negative impact.
- Fig. 8 defines the distance x to the diaphragm 12, the Flu typegstelle between the pumping chamber and valve port with the valve open.
- the compression ratio of the peristaltic pump is made large to ensure self-filling behavior and robust operation with respect to bladder tolerance.
- a first possibility to realize such an adaptation is to implement a round pumping chamber, ie a pumping chamber whose circumferential shape is adapted to the deflection of the pumping membrane.
- a round pumping chamber ie a pumping chamber whose circumferential shape is adapted to the deflection of the pumping membrane.
- FIG Fig. 9a A schematic plan view of the pumping chamber and fluid channel section of a pump body having such a pumping chamber is shown in FIG Fig. 9a shown.
- round pumping chamber 330 open similar to the representation of Fig. 6c the fluid channels 306, which produce a fluid connection to valve chambers, which in turn may be structured, for example, in a membrane element.
- the pumping chamber can be configured under the pumping membrane so that its contour facing the pumping membrane follows in a precise fit the bending line of the pumping membrane.
- a contour of the pumping chamber can be achieved for example by a correspondingly shaped injection molding tool or by an embossing punch.
- a schematic plan view of a pump body 340, in which such a bending line of the actuator membrane following fluid chamber 342 is structured, is in Fig. 9b shown.
- Fig. 9b illustrated in the pump body structured fluid channels 344 which lead to the fluid chamber 342 and away from the same.
- a schematic cross-sectional view along the line cc of Fig. 9b is in Fig.
- FIG. 9c shown in FIG Fig. 9c
- a flow through the fluid channels 344 is in Fig. 9c indicated by arrows 350.
- the membrane 346 facing to the bending line of the membrane (in the actuated state) adapted contour 352 of the fluid chamber or pumping chamber 342 to recognize.
- This shape of the fluid chamber 352 allows substantially all the volume of the fluid chamber 342 to be displaced upon actuation of the diaphragm 346 by the piezoactuator 348, whereby a high compression ratio can be achieved.
- FIG. 10b An embodiment of a peristaltic micropump, in which both the pumping chamber 342 and valve chambers 360 are adapted to the bending lines of the respective associated membrane sections 12, 14 and 16, is in the 10a and 10b shown, where Fig. 10b a schematic plan view of the pump body 340 shows while Fig. 10a a schematic cross-sectional view taken along the line aa of Fig. 10b shows.
- the shape and contour of the valve chamber 360 and 362 as explained above with reference to the pumping chamber 342, adapted to the bending line of the respective associated membrane portion 12 and 16 respectively.
- FIG. 10b a schematic plan view of the pump body 340 shows
- Fig. 10a a schematic cross-sectional view taken along the line aa of Fig. 10b shows.
- the shape and contour of the valve chamber 360 and 362 as explained above with reference to the pumping chamber 342, adapted to the bending line of the respective associated membrane portion 12 and 16 respectively.
- fluid channels 344a, 344b, 344c, and 344d are formed in the pump body 340.
- the fluid channel 344a constitutes an input fluid channel
- the fluid channel 344b connects the valve chamber 360 to the pumping chamber 342
- the fluid channel 344 connects the pumping chamber 342 to the valve chamber 362
- the fluid channel 344d constitutes an outlet channel.
- the membrane element 380 in this embodiment is an unstructured membrane element which is inserted into a recess provided in the pump body 340 to define the valve chambers and the pump chamber together with the fluid regions formed in the pump body 340.
- connection channels 344b and 344c between the actuator chambers are connected so that they contain a small dead volume compared to the stroke volume. At the same time, these fluid channels reduce the flow resistance between the actuator chambers significantly, so that even larger pumice frequencies and thus larger flow rates, such a stream in turn by arrows 350 in Fig. 10a is displayed, become possible.
- the fluid passages are separated by actuating the membrane sections 12 and 16, respectively, through the fully deflected membrane sections so that fluid separation occurs between the fluid passages 344a and 344b and between the fluid passages 344c and 344d, respectively.
- a web 390 may be provided in the respective valve chamber in the region of the largest stroke of the diaphragm portion 12, which is shaped accordingly, so that it can be completely sealed by the bending of the diaphragm portion 12. More specifically, the web bends up to the edges of the valve chamber, according to the shape of the valve chamber adapted to the bending line. This web can protrude into the respective valve chamber, wherein alternatively, as in Fig.
- the depth of the connection channels 344 may be greater than the stroke y of the membrane portion 12, in which the membrane portion abuts against the pump body, so that the web 390 is sunk, so to speak. If the depth of the connection channels is greater than the maximum stroke, this results in the cost of the compression ratio, but allows low flow resistance between the actuator chambers.
- FIG Fig. 12 An alternative embodiment of a valve chamber 360 is shown in FIG Fig. 12 shown where the depth of the connecting channels 344 is smaller than the maximum stroke y of the diaphragm portion 12, and thus as the depth of the the bending line of the diaphragm portion 12 adapted valve chamber 360 in the region of the largest stroke of the diaphragm portion 12. This allows a secure seal in the closed state of the valve can be achieved.
- a web 390a in the valve chamber 360 which does not simulate the maximum possible bending line of the actuator element, ie the membrane section 12 together with the piezoactuator 22 in Fig. 13 is shown.
- the maximum possible bending line of the membrane section 12 is in Fig. 13 shown by a dashed line 400, while the line 410 corresponds to the maximum possible deflection of the diaphragm portion 12 due to the provision of the web 390a.
- the bending line of the membrane will often not be perfectly concentric with the membrane center, for example due to assembly tolerances of the piezoceramics and due to inhomogeneities in the application of adhesive, by which the piezoceramics are attached to the membranes. Therefore, the area of the land seal can be slightly increased, for example, by about 5 to 20 ⁇ m, depending on the stroke of the actuator, relative to the rest of the fluid chamber in order to ensure reliable contact of the membrane with the web and thus a secure seal. This also corresponds to the in Fig. 13 shown situation. It should be noted, however, that this increases the dead volume and the compression ratio is reduced.
- a plastically deformable material for example silicone
- silicone can be used as the fluid chamber material at least in the region below the movable membrane.
- the thickness of the membrane sections 12, 14 and 16 and thus the thickness of the membrane element 380 can be, for example, 40 ⁇ m, while the thickness of the piezoactuators can be, for example, 100 ⁇ m.
- a piezoceramic a PZT ceramic with a large d31 coefficient can be used.
- the side length of the membranes may for example be 10 mm, while the side length of the piezoelectric actuators may be 8 mm, for example.
- the voltage swing for actuating the actuators in the aforementioned actuator geometry can be, for example, 140 V, which results in a maximum stroke of approximately 100 to 200 ⁇ m with a stroke volume of the pump diaphragm of approximately 2 to 4 ⁇ l.
- the dead volume of the three fluid chambers required for the peristaltic pump drops, so that only the connection channels connecting the valve chambers to the pumping chamber remain.
- such fluid modules are bubble tolerant and self-priming and can deliver both liquids and gases.
- such fluid pumps can in principle build up several bar pressure for compressible and liquid media, depending on the design of the piezoelectric actuator.
- the maximum pressure that can be generated is no longer limited by the compression ratio, but defined by the maximum force of the drive element and by the tightness of the valves.
- several ml / min can be delivered by a suitable channel dimensioning with a low flow resistance.
- the inlet fluid passage 344a and the outlet fluid passage 344d are guided laterally, d. H. the fluid channels are in the same plane as the fluid chambers. As stated above, in such a course, the sealing of the channels may be difficult. However, it is advantageous in the lateral course of the fluid channels that the entire fluid system, including reservoirs connected to the inlet channel 344a and / or the outlet channel 344d, can be formed with a manufacturing step, such as injection molding or stamping.
- Fig. 14 an embodiment of a micro-peristaltic pump according to the invention is shown in which the inlet fluid channel 412 and the outlet fluid channel 414 are vertically recessed in the pump body 340.
- the fluid channels 412 and 414 have a substantially vertical portion 412a and 414a, each of which opens into the valve chambers 360 and 362 substantially centrally below the associated membrane portions 12 and 16, respectively.
- the advantage of in Fig. 14 shown embodiment of the fluid channels is that the fluid channels can be sealed sealed.
- the disadvantage, however, is that such vertical sunken fluid channels are difficult to produce manufacturing technology.
- the peristaltic micropumps according to the invention are preferably activated by the membrane, for example the metal membrane or the semiconductor membrane, being at a ground potential, while the piezoceramics are moved through a typical peristaltic cycle by respectively corresponding voltages be applied to the piezoceramics.
- a peristaltic micropump according to the invention can have further fluid chambers, for example a further fluid chamber 420, which is connected to the pumping chamber 342 via a fluid channel 422.
- a further fluid chamber 420 which is connected to the pumping chamber 342 via a fluid channel 422.
- a first reservoir 424 is connected to the valve chamber 360 via the fluid channel 344a
- a second reservoir 426 is connected to the valve chamber 420 via a fluid channel 428
- a third reservoir 430 is connected to the valve chamber 362 via the fluid channel 344d.
- a structure with four fluid chambers, as in Fig. 15 is shown, for example, form a branching structure or a mixer, in which the mixed streams can be actively promoted.
- the extension to four fluid chambers with four associated fluid actuators, such as in Fig. 15 the realization of three peristaltic pumps, wherein each pumping direction between all reservoirs 424, 426 and 430 can be realized in both directions.
- a single membrane element covers all fluid chambers and reservoir container, wherein a separate piezoelectric actuator is provided for each fluid chamber.
- the entire fluidics can be made very flat, wherein the functional fluidic structures including fluid chambers, channels, membranes, piezo actuators and support structures can have an overall height in the order of 200 to 400 microns.
- systems are conceivable that can be integrated into smart cards.
- even flexible fluidic systems are conceivable.
- fluid chambers can be connected as desired in one plane.
- different reservoirs z. B. are each assigned a Mikroperistaltikpumpe, which then, for example, reagents perform a chemical reaction (for example, in a fuel cell), or perform a calibration sequence for an analysis system, for example in a water analysis.
- the piezoceramics can be glued, for example, to the respective membrane sections.
- the piezoceramics for example PZT, can be applied directly in thick film technology, for example by screen printing processes with suitable intermediate layers.
- FIG Fig. 16 An alternative embodiment of a microperistaltic pump of the invention with recessed inlet fluid passage 412 and recessed outlet fluid passage 414 is shown in FIG Fig. 16 shown.
- the inlet flow channel 412 in turn opens substantially centrally below the membrane portion 12 in a valve chamber 442, while the Auslwithfluidkanal 414 opens substantially centrally below the diaphragm portion 16 in a valve chamber 444.
- the respective orifices of the inlet channel 412 and the outlet channel 414 are provided with a sealing lip 450.
- a pumping chamber 452 is formed in the pump body 440 which is fluidly connected to the valve chambers 442 and 444 by fluid passages in walls 454. According to the in Fig.
- the three membrane sections 12, 14 and 16 in turn form a membrane element 456.
- the membrane sections are driven by piezo stack actuators 460, 462 and 464, which can be placed on the corresponding membrane sections.
- the piezo stack actuators using suitable housing parts 470 and 472, the in Fig. 16 remote from the pump body and the membrane element are used.
- Piezostapelaktoren are advantageous in that they need not be firmly connected to the membrane element, so that they allow a modular structure.
- the actuators do not actively retract a diaphragm section when an actuation thereof is terminated. Rather, a return movement of the membrane portion can be done only by the restoring force of the elastic membrane itself.
- the peristaltic micropumps of the present invention can be made using a variety of materials of manufacture and manufacturing techniques.
- the pump body may for example be made of silicon, be made of plastic by injection molding or manufactured by machining technically.
- the membrane element which forms the drive diaphragm for the two valves and the pumping chamber can be made of silicon, can be formed by a metal foil, for example stainless steel or titanium, can be formed by a plastic membrane provided with conductive coatings in two-component injection molding technique. or may be realized by an elastomeric membrane.
- a non-silicone Silicon Fusion Bonding can take place.
- anodic bonding may preferably be used.
- Other possibilities are a eutectic wafer bonding or a wafer life.
- the basic structure is made of plastic and the membrane element is a metal foil
- lamination can be performed if a bonding agent is used between the membrane element and the basic structure.
- bonding may be carried out with a high shear adhesive, in which case capillary stop trenches are preferably formed in the base structure in order to avoid penetration of adhesive into the fluid structure.
- both membrane element and pump body are made of plastic, ultrasonic welding can be used to connect them. If one of the two structures is optically transparent, a laser welding can alternatively take place. In the case of an elastomeric membrane, the sealing properties of the membrane may also be used to provide a seal by clamping.
- the bonding layer material which may be an adhesive or an adhesive, is used e.g. dispensed by dispensing or by a suitably shaped stamp on the joining layer.
- the membrane is fitted onto the base body. Possible burrs, e.g. can be at the edge of the membrane, find in a corresponding receptacle for the burr place, so that a defined position of the membrane is ensured especially in the direction perpendicular to the surface thereof, which is important in terms of dead volume and tightness.
- a stamp on the pump body, so that the adhesive layer remains as thin and defined.
- a capillary stop trench may be provided surrounding the fluid areas formed in the pump body.
- excess adhesive can not get into the fluid chambers.
- the adhesive can be defined and cured thin. Curing may be at room temperature or accelerated in the oven or by UV irradiation using UV-curable adhesives.
- the base body or pump body can be dissolved by suitable solvents and a plastic membrane can be bonded to the base body as a joining technique.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
Description
Die vorliegende Erfindung bezieht sich auf eine Mikropumpe und insbesondere eine Mikropumpe, die nach einem peristaltischen Pumpprinzip arbeitet.The present invention relates to a micropump, and more particularly to a micropump operating on a peristaltic pumping principle.
Mikropumpen, die nach einem peristaltischen Pumpprinzip arbeiten, sind aus dem Stand der Technik bekannt. So befaßt sich der Artikel "
Aus der
Aus der
Neben den oben genannten Piezoaktoren wäre es ferner möglich, Mikropumpen unter Verwendung elektrostatischer Aktoren zu realisieren, wobei elektrostatische Aktoren jedoch nur sehr geringe Hübe ermöglichen. Alternativ wäre auch die Realisierung pneumatischer Antriebe möglich, was jedoch einen hohen Aufwand hinsichtlich einer externen Pneumatik sowie der dafür erforderlichen Schaltventile notwendig macht. Pneumatische Antriebe stellen somit aufwendige, teuere und platzintensive Verfahren dar, um eine Membranauslenkung zu implementieren.In addition to the above-mentioned piezoelectric actuators, it would also be possible to realize micropumps using electrostatic actuators, but electrostatic actuators allow only very small strokes. Alternatively, the realization of pneumatic actuators would be possible, but this makes a lot of effort in terms of external pneumatic and the required switching valves necessary. Pneumatic drives thus represent complex, expensive and space-consuming procedures to implement a diaphragm deflection.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine peristaltische Mikromembranpumpe zu schaffen, die einfach aufgebaut werden kann und die einen blasentoleranten, selbstansaugenden Betrieb ermöglicht.The object of the present invention is to provide a peristaltic micromembrane pump which can be easily assembled and which enables a bubble-tolerant, self-priming operation.
Erfindungsgemäß wird diese Aufgabe durch eine peristaltische Mikropumpe gemäß Anspruch 1 gelöst.According to the invention, this object is achieved by a peristaltic micropump according to
Die vorliegende Erfindung schafft somit eine peristaltische Mikropumpe, bei der das erste und das zweite Ventil im unbetätigten Zustand offen sind, und bei der das erste und das zweite Ventil durch Bewegen der Membran zu dem Pumpenkörper hin verschlossen werden können, während das Volumen der Pumpkammer durch Bewegen des zweiten Membranbereichs ebenfalls zu dem Pumpenkörper hin verringerbar ist.The present invention thus provides a peristaltic micropump in which the first and second valves are open in the unactuated state and in which the first and second valves are moved by moving the membrane can be closed to the pump body, while the volume of the pumping chamber can also be reduced by moving the second membrane area towards the pump body.
Durch diesen Aufbau ermöglicht die erfindungsgemäße peristaltische Mikropumpe die Realisierung blasentoleranter, selbstansaugender Pumpen, selbst wenn auf einer Membran angeordnete Piezoelemente als Piezoaktor verwendet werden. Alternativ können erfindungsgemäß als Piezoaktoren auch sogenannte Piezo-Stapel (Piezo-Stacks) verwendet werden, die jedoch gegenüber Piezo-Membranwandlern nachteilig dahingehend sind, daß sie groß und teuer sind, Probleme bezüglich der Verbindungstechnik zwischen Stapel und Membran und Probleme bei der Justage der Stapel liefern und somit insgesamt mit einem höheren Aufwand verbunden sind.With this construction, the peristaltic micropump according to the invention makes it possible to realize bubble-tolerant, self-priming pumps, even if piezoelements arranged on a membrane are used as piezo actuators. Alternatively, according to the invention as piezo actuators also so-called piezo-stacks (piezo stacks) can be used, which are disadvantageous to piezo membrane transducers in that they are large and expensive, problems with the connection technique between stack and membrane and problems in adjusting the stack supply and thus are associated with a higher total effort.
Um sicherzustellen, daß die erfindungsgemäße peristaltische Mikropumpe blasentolerant und selbstansaugend arbeiten kann, wird dieselbe vorzugsweise derart dimensioniert, daß das Verhältnis aus Hubvolumen und Totvolumen größer als ein Verhältnis aus Förderdruck und Atmosphärendruck ist, wobei das Hubvolumen das durch die Pumpmembran verdrängbare Volumen ist, das Totvolumen das zwischen Einlaßöffnung und Auslaßöffnung der Mikropumpe verbleibende Volumen, wenn die Pumpmembran betätigt ist und eines der Ventile geschlossen und eines geöffnet ist, ist, der Atmosphärendruck maximal etwa 1050 hPa (Worst-Case-Betrachtung) beträgt, und der Förderdruck der in dem Fluidkammerbereich der Mikropumpe, d. h. in der Druckkammer, notwendige Druck ist, um eine Flüssigkeits/Gas-Grenzfläche an einer Stelle, die eine Flussengstelle in der Mikroperistaltikpumpe, d.h. zwischen der Pumpkammer und der Durchlaßöffnung des ersten oder zweiten Ventils, einschließlich dieser Durchlaßöffnung, darstellt, vorbei zu bewegen.To ensure that the inventive peristaltic micropump can work bubble-tolerant and self-priming, it is preferably dimensioned such that the ratio of stroke volume and dead volume is greater than a ratio of delivery pressure and atmospheric pressure, the displacement being the volume displaceable by the pump membrane, the dead volume the volume remaining between the inlet port and the outlet port of the micropump, when the pumping diaphragm is actuated and one of the valves is closed and one is open, the atmospheric pressure is at most about 1050 hPa (worst case consideration), and the delivery pressure is that in the fluid chamber region Micropump, d. H. in the pressure chamber, necessary pressure is to maintain a liquid / gas interface at a location which is a flow restriction in the microperistaltic pump, i. between the pumping chamber and the passage opening of the first or second valve, including this passage opening, to move past.
Genügt das Verhältnis aus Hubvolumen und Totvolumen, das als Kompressionsverhältnis bezeichnet werden kann, der obigen Bedingung, so ist sichergestellt, daß die peristaltische Mikropumpe blasentolerant und selbstansaugend arbeitet. Dies gilt sowohl bei Einsatz der peristaltischen Mikropumpe zum Fördern von Flüssigkeiten, wenn eine Gasblase, in der Regel eine Luftblase, in den Fluidbereich der Pumpe gelangt, als auch beim Einsatz der erfindungsgemäßen Mikropumpe als Gaspumpe, wenn unbeabsichtigterweise Feuchtigkeit aus dem zu fördernden Gas kondensiert und somit eine Gas/Flüssigkeits-Grenzfläche in dem Fluidbereich der Pumpe auftreten kann.If the ratio of stroke volume and dead volume, which can be called the compression ratio, satisfies the above condition, it is ensured that the peristaltic micropump works bubble-tolerant and self-priming. This applies both when using the peristaltic micropump for conveying liquids, when a gas bubble, usually an air bubble, enters the fluid region of the pump, as well as when using the micropump according to the invention as a gas pump when accidentally condensed moisture from the gas to be pumped and Thus, a gas / liquid interface may occur in the fluid region of the pump.
Kompressionsverhältnisse, die der obigen Bedingung genügen, können erfindungsgemäß beispielsweise realisiert werden, indem das Volumen der Pumpkammer größer ausgeführt wird als das von zwischen den jeweiligen Ventilmembranbereichen und gegenüberliegenden Pumpenkörperabschnitten gebildeten Ventilkammern. Bei bevorzugten Ausführungsbeispielen kann dies realisiert werden, indem der Abstand zwischen Membran und Oberfläche und Pumpenkörperoberfläche im Bereich der Pumpkammer größer ist als im Bereich der Ventilkammern.Compression ratios satisfying the above condition can be realized in the present invention, for example, by making the volume of the pump chamber larger than that of the valve chambers formed between the respective valve diaphragm portions and opposite pump body portions. In preferred embodiments, this can be realized by the distance between the membrane and surface and pump body surface in the pump chamber is greater than in the region of the valve chambers.
Eine weitere Erhöhung des Kompressionsverhältnisses einer erfindungsgemäßen peristaltischen Mikropumpe kann erreicht werden, indem die Kontur einer in dem Pumpenkörper strukturierten Pumpkammer an die Biegelinie der Pumpmembran, d. h. die gebogene Kontur derselben im betätigten Zustand, angepaßt wird, so daß die Pumpmembran im betätigten Zustand im wesentlichen das gesamte Volumen der Pumpkammer verdrängen kann. Ferner können auch die Konturen von in dem Pumpenkörper gebildeten Ventilkammern entsprechend an die Biegelinie der jeweils gegenüberliegenden Membranabschnitte angepaßt sein, so daß im Optimalfall im geschlossenen Zustand der betätigte Membranbereich im wesentlichen das gesamte Ventilkammervolumen verdrängt.A further increase in the compression ratio of a peristaltic micropump according to the invention can be achieved by moving the contour of a pumping chamber structured in the pump body to the bending line of the pumping membrane, i. H. the curved contour of the same in the actuated state, adapted so that the pumping membrane in the actuated state can displace substantially the entire volume of the pumping chamber. Furthermore, the contours of valve chambers formed in the pump body can be adapted accordingly to the bending line of the respective opposite membrane sections, so that in the optimal case in the closed state, the actuated membrane region displaces substantially the entire valve chamber volume.
Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend Bezug nehmend auf die beigefügten Zeichnungen näher erläutert. Es zeigen:
- Fig. 1
- eine schematische Querschnittansicht eines Ausführungsbeispiels einer erfindungsgemäßen peristaltischen Mikropumpe in einem Fluidsystem;
- Fig. 2a bis 2f
- schematische Darstellungen zur Erläuterung eines Piezo-Membranwandlers;
- Fig. 3a bis 3c
- schematische Querschnittdarstellungen zur Erläuterung der Begriffe Hubvolumen und Totvolumen;
- Fig. 4
- ein schematisches Diagramm, das die Volumen/Druck-Zugstände während eines Pumpzyklusses zeigt;
- Fig. 5a bis 5c
- schematische Darstellungen zur Erläuterung des Begriffs Förderdruck;
- Fig. 6a bis 6c
- schematische Ansichten eines alternativen Ausführungsbeispiels einer erfindungsgemäßen Mikropumpe;
- Fig. 7
- eine vergrößerte Darstellung eines Bereichs von
Fig. 6b ; - Fig. 8
- eine vergrößerte schematische Querschnittdarstellung eines modifizierten Bereichs von
Fig. 7 ; - Fig. 9a, 9b und 9c
- schematische Darstellungen möglicher Pumpkammergestaltungen;
- Fig. 10a und 10b
- schematische Darstellungen eines alternativen Ausführungsbeispiels einer erfindungsgemäßen Mikropumpe;
- Fig. 11 bis 13
- schematische Querschnittansichten vergrößerter Bereiche von Modifikationen des in den
Fig. 10a und 10b gezeigten Beispiels; - Fig. 14
- eine schematische Querschnittansicht eines weiteren alternativen Ausführungsbeispiels einer erfindungsgemäßen Mikropumpe;
- Fig. 15
- eine schematische Darstellung einer erfindungsgemäßen Mehrfach-Mikropumpe; und
- Fig. 16
- eine schematische Darstellung eines alternativen Ausführungsbeispiels einer erfindungsgemäßen Mikropumpe.
- Fig. 1
- a schematic cross-sectional view of an embodiment of a peristaltic micropump according to the invention in a fluid system;
- Fig. 2a to 2f
- schematic representations for explaining a piezo-membrane converter;
- Fig. 3a to 3c
- schematic cross-sectional views to explain the terms stroke volume and dead volume;
- Fig. 4
- a schematic diagram showing the volume / pressure Zugstände during a pumping cycle;
- Fig. 5a to 5c
- schematic representations to explain the term delivery pressure;
- Fig. 6a to 6c
- schematic views of an alternative embodiment of a micropump according to the invention;
- Fig. 7
- an enlarged view of a range of
Fig. 6b ; - Fig. 8
- an enlarged schematic cross-sectional view of a modified region of
Fig. 7 ; - Fig. 9a, 9b and 9c
- schematic representations of possible pump chamber designs;
- 10a and 10b
- schematic representations of an alternative embodiment of a micropump according to the invention;
- Fig. 11 to 13
- schematic cross-sectional views of enlarged areas of modifications of the in the
10a and 10b shown example; - Fig. 14
- a schematic cross-sectional view of another alternative embodiment of a micropump according to the invention;
- Fig. 15
- a schematic representation of a multi-micropump according to the invention; and
- Fig. 16
- a schematic representation of an alternative embodiment of a micropump according to the invention.
Ein erstes Ausführungsbeispiel einer erfindungsgemäßen peristaltischen Mikropumpe, die in ein Fluidsystem integriert ist, ist in
Das Membranelement ist an äußeren Bereichen desselben umlaufend an einen Pumpenkörper 30 gefügt, so daß zwischen denselben eine fluiddichte Verbindung besteht. In dem Pumpenkörper 30 sind zwei Fluiddurchlässe 32 und 34 gebildet, von denen einer, je nach Pumprichtung, einen Fluideinlaß und der andere einen Fluidauslaß darstellt. Bei dem in
Ferner sind bei dem in
Bei dem gezeigten Ausführungsbeispiel sind sowohl das Membranelement 10 als auch der Pumpenkörper 30 in einer jeweiligen Siliziumscheibe implementiert, so daß dieselben beispielsweise durch Silicon Fusion Bonding aneinander gefügt sein können. Wie
Durch die Piezoelemente bzw. Piezokeramiken 22, 24 und 26 sind die Membranabschnitte 12, 14 und 16 jeweils in Richtung auf den Pumpenkörper 30 zu betätigbar, so daß der Membranabschnitt 12 zusammen mit dem Fluiddurchlaß 32 ein Einlaßventil 62 darstellt, das durch Betätigen des Membranabschnitts 12 verschlossen werden kann. In gleicher Weise stellen der Membranabschnitt 16 und der Fluiddurchlaß 34 zusammen ein Auslaßventil 64 dar, das durch Betätigen des Membranabschnitts 16 mittels des Piezoelements 26 geschlossen werden kann. Schließlich ist durch Betätigen des Piezoelements 24 das Volumen des zwischen den Ventilen angeordneten Pumpkammerbereichs 42 reduzierbar.By the piezoelectric elements or
Bevor auf die Funktionsweise der in
Zur Beschreibung eines Peristaltikpumpenzyklusses der in
Ausgehend von diesem Zustand wird das Auslaßventil 64 geschlossen und das Einlaßventil 62 geöffnet. Anschließend wird die Pumpmembran 14 nach oben bewegt, indem die Betätigung des Piezoelements 24 beendet wird. Die dadurch expandierende Pumpkammer führt zu einem Unterdruck in der Pumpkammer, der wiederum ein Einsaugen von Fluid durch das geöffnete Einlaßventil 62 zur Folge hat. Anschließend wird das Einlaßventil 62 geschlossen und das Auslaßventil 64 geöffnet, so daß wieder der oben genannte Ausgangszustand erreicht ist. Durch den beschriebenen Pumpzyklus würde somit ein Fluidvolumen, das im wesentlichen dem Hubvolumen des Membranabschnitts 14 entspricht, von dem Fluidkanal 54 zu dem Fluidkanal 56 gepumpt.From this state, the
Erfindungsgemäß werden als Piezoaktoren vorzugsweise Piezo-Membranwandler bzw. Piezo-Biegewandler verwendet. Einen optimalen Hub verrichtet ein solcher Biegewandler, wenn die lateralen Abmessungen der Piezokeramik ca. 80% der darunterliegenden Membran entsprechen. Je nach lateralen Abmessungen der Membran, die typischerweise Seitenlängen von 4 mm bis 12 mm aufweisen kann, können somit Auslenkungen von mehreren 10 µm Hub und damit Volumenhübe im Bereich von 0,1 µl bis 10 µl erreicht werden. Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung weisen Volumenhübe zumindest in einem solchen Bereich auf, da bei einem derartigen Volumenhub vorteilhaft blasentolerante Peristaltikpumpen realisiert werden können.Piezoelectric converters or piezoelectric bending converters are preferably used according to the invention as piezo actuators. Such a bending transducer performs an optimum stroke when the lateral dimensions of the piezoceramic correspond to approximately 80% of the underlying membrane. Depending on the lateral dimensions of the membrane, which can typically have side lengths of 4 mm to 12 mm, deflections of several 10 μm stroke and thus volume strokes in the range from 0.1 μl to 10 μl can thus be achieved. Preferred embodiments of the present invention have volume strokes at least in such a range, since in such a volume stroke advantageous bubble tolerant peristaltic pumps can be realized.
Zu beachten ist bei Piezo-Membranwandlern dabei, daß diese einen effektiven Hub nur nach unten, d. h. zu dem Pumpenkörper hin ermöglichen. Diesbezüglich wird auf die schematischen Darstellungen der
Zur Erzeugung eines Piezo-Membranwandlers ist nun die in
Wird nun an die Piezokeramik eine positive Spannung, d. h. eine Spannung in Polarisationsrichtung, U > 0, angelegt, so kontrahiert die Piezokeramik, siehe
Um eine Bewegung der Membran nach oben zu bewirken, müßte eine negative Spannung, d. h. eine Spannung entgegen der Polarisationsrichtung, an die Piezokeramik angelegt werden, wie in
Trotz dieses Nachteils dahingehend, daß aufgrund der unsymmetrischen Natur des Piezoeffektes mit dem Zweischicht-Silizium-Piezo-Biegewandler, d. h. dem Piezo-Membranwandler, nur eine aktive Bewegung nach unten, d. h. in Richtung zu dem Pumpenkörper hin, realisiert werden kann, stellt die Verwendung eines solchen Biegewandlers eine bevorzugte Ausführungsform der vorliegenden Erfindung dar, da diese Form von Wandlern zahlreiche Vorteile aufweist. Zum einen besitzen sie ein schnelles Ansprechverhalten, in der Größenordnung von ca. 1 Millisekunde bei einem geringen Energieverbrauch. Ferner ist eine Skalierung mit Abmessungen von Piezokeramik und Membran über große Bereiche möglich, so daß ein großer Hub (10 .... 200 µm) und eine große Kraft (Schaltdrücke 104 Pa bis 106 Pa) möglich sind, wobei bei einem größeren Hub die erreichbare Kraft abnimmt und umgekehrt. Ferner ist durch die Membran das zu schaltende Medium von der Piezokeramik getrennt.Despite this drawback to the effect that due to the asymmetrical nature of the piezoelectric effect with the two-layer silicon piezoelectric bending transducer, ie the piezo diaphragm transducer, only an active downward movement, ie toward the pump body out, can be realized, is the use Such a bending transducer is a preferred embodiment of the present invention, since this form of transducer has numerous advantages. First, they have a fast response, on the order of about 1 millisecond with low power consumption. Furthermore, a scaling with dimensions of piezoceramic and membrane over large areas is possible, so that a large stroke (10 .... 200 microns) and a large force (switching
Sollen die erfindungsgemäßen peristaltischen Mikropumpen bei Anwendungen zum Einsatz kommen, bei denen ein blasentolerantes, selbstansaugendes Verhalten erforderlich ist, müssen die Mikroperistaltikpumpen entworfen werden, um einer Designregel hinsichtlich des Kompressionsverhältnisses, das das Verhältnis von Hubvolumen zu Totvolumen definiert, zu genügen. Zur Definition der Begriffe Hubvolumen ΔV und Totvolumen V0 sei zunächst auf die
Gemäß
In
An dieser Stelle sei angemerkt, daß das jeweilige Totvolumen von dem jeweils geschlossenen Ventil bis zu der Durchlaßöffnung, an der im Moment einer jeweilige Volumenänderung der Pumpkammer ein wesentlicher Druckabfall stattfindet, definiert ist. Bei einem symmetrischen Aufbau von Einlaßventil und Auslaßventil, wie er für eine bidirektionale Pumpe bevorzugt ist, sind die Totvolumen V0 für den Druckhub und den Saughub identisch. Ergeben sich aufgrund einer Unsymmetrie für einen Druckhub und einen Saughub unterschiedliche Totvolumina, so sei im Sinne einer Worst-Case-Betrachtung im folgenden davon ausgegangen, daß zur Ermittlung des jeweiligen Kompressionsverhältnisses das größere der beiden Totvolumina verwendet wird.It should be noted at this point that the respective dead volume is defined by the respective closed valve up to the passage opening at which a significant pressure drop occurs at the moment of a respective change in volume of the pumping chamber. With a symmetrical construction of inlet valve and outlet valve, as is preferred for a bidirectional pump, the dead volumes V 0 for the pressure stroke and the suction stroke are identical. If different dead volumes occur due to an asymmetry for a pressure stroke and a suction stroke, then, in the sense of a worst-case analysis, it is assumed in the following that the larger of the two dead volumes is used to determine the respective compression ratio.
Das Kompressionsverhältnis der Mikroperistaltikpumpe berechnet sich aus dem Hubvolumen ΔV und dem Totvolumen V0 wie folgt:
Im folgenden wird von einer Worst-Case-Betrachtung ausgegangen, bei der der gesamte Pumpenbereich mit einem komprimierbaren Fluid (Gas) gefüllt ist. Die bei einem peristaltischen Pumpzyklus, wie er oben beschrieben wurde, in der Peristaltikpumpe auftretenden Volumen/Druck-Zustände sind in dem Diagramm von
Zu Beginn eines Druckhubes herrscht in dem zwischen Einlaßventil und Auslaßventil existierenden Fluidbereich ein Druck p0, während dieser Bereich ein Volumen V0 + ΔV aufweist. Ausgehend von diesem Zustand bewegt sich die Druckmembran während des Druckhubes um das Hubvolumen ΔV nach unten, wodurch sich ein Überdruck pÜ in dem Fluidbereich, d. h. der Pumpkammer, bildet, so daß bei einem Volumen von V0 ein Druck von p0 + pÜ herrscht. Der Überdruck in der Pumpkammer baut sich ab, indem das Luftvolumen ΔV durch den Auslaß gefördert wird, bis ein Druckausgleich stattgefunden hat. Dieses Ausströmen von Fluid aus dem Auslaß entspricht in
Bei den obigen allgemeinen Zustandsbetrachtungen, die zur allgemeinen Erläuterung der Erfindung dienen, wurden jeweils die Volumenverdrängungen des Einlaßventiles und Auslaßventiles zwischen den jeweiligen Saughüben und Druckhüben vernachlässigt.In the above general state considerations, which serve to illustrate the invention in general, the volume displacements of the intake valve and the exhaust valve between the respective suction strokes and pressure strokes were neglected.
Um eine Blasentoleranz erreichen zu können, muß der Überdruck pÜ beim Druckhub, bzw. der Unterdruck pU beim Saughub, einen Mindestwert beim Druckhub überschreiten bzw. beim Saughub unterschreiten. Anders ausgedrückt muß der Druckbetrag beim Druckhub und beim Saughub einen Mindestwert, der als Förderdruck pF bezeichnet werden kann, überschreiten. Dieser Förderdruck ist der Druck in der Druckkammer, der mindestens herrschen muß, um eine Flüssigkeits/Gas-Grenzfläche an einer Stelle, die eine Flußengstelle zwischen der Pumpkammer und der Durchlaßöffnung des ersten oder zweiten Ventils, einschließlich dieser Durchlaßöffnung, darstellt, vorbei zu bewegen. Dieser Förderdruck kann abhängig von der Größe dieser Flußengstelle wie folgt ermittelt werden.In order to achieve a bubble tolerance, the overpressure p Ü during the pressure stroke, and the negative pressure p U during the suction stroke, exceed a minimum value during the compression stroke or during the intake stroke must fall below. In other words, the pressure amount during the compression stroke and the suction stroke must exceed a minimum value, which may be referred to as delivery pressure p F. This delivery pressure is the pressure in the pressure chamber which must at least prevail to bypass a liquid / gas interface at a location which is a flow point between the pumping chamber and the passageway of the first or second valve, including this passageway move. This delivery pressure can be determined as follows, depending on the size of this flow point.
Es müssen Kapillarkräfte überwunden werden, wenn freie Oberflächen, beispielsweise in Form von Gasblasen (beispielsweise Luftblasen) in den Fluidbereichen innerhalb der Pumpe bewegt werden. Der Druck, der aufgebracht werden muß, um solche Kapillarkräfte zu überwinden, hängt von der Oberflächenspannung der Flüssigkeit an der Flüssigkeit/Gas-Grenzfläche und dem maximalen Krümmungsradius r1 und dem minimalen Krümmungsradius r2 des Meniskus dieser Grenzfläche ab:
Der zu erbringende Förderdruck ist durch Gleichung 2 definiert, und zwar an der Stelle innerhalb des Strömungspfades der Mikroperistaltikpumpe, an der die Summe der inversen Krümmungsradien r1 und r2 einer Flüssigkeits/Gas-Grenzfläche mit einer gegebenen Oberflächenspannung maximal ist. Diese Stelle entspricht der Flußengstelle.The delivery pressure to be provided is defined by
Zur Veranschaulichung sei beispielsweise ein Kanal 220 (
Gemäß
Stellt ein solcher Kanal den Bereich eines Fluidsystems dar, an dem die größte Kapillarkraft überwunden werden muß, so beträgt der erforderliche Druck in diesem Spezialfall mit r1 = r2 = r = d/2:
Diese Druckbarriere ist bei Mikroperistaltikpumpen der erfindungsgemäßen Art aufgrund der kleinen Geometriedimensionen nicht zu vernachlässigen, wenn ein solcher Kanal die Engstelle der Pumpe darstellt. Bei einem Leitungsdurchmesser von beispielsweise d = 50 µm und einer Oberflächenspannung Luft/Wasser von σwa = 0,075 N/m beträgt die Druckbarriere Δpb = 60 hPa, während bei einem Kanaldurchmesser d = 25 µm die Druckbarriere Δpb = 120 hPa beträgt.This pressure barrier is not negligible in microperistaltic pumps of the type according to the invention due to the small dimensions of geometry, if such a channel represents the bottleneck of the pump. With a line diameter of for example d = 50 μm and a surface tension air / water of σ wa = 0.075 N / m, the pressure barrier Δp b = 60 hPa, while with a channel diameter d = 25 μm the pressure barrier Δp b = 120 hPa.
Bei Mikroperistaltikpumpen der erfindungsgemäßen Art wird die angesprochene Engstelle in der Regel jedoch durch den Abstand zwischen Ventilmembran und gegenüberliegendem Bereich des Pumpenkörpers (beispielsweise einer Dichtlippe) bei geöffnetem Ventil definiert sein. Diese Engstelle stellt einen Spalt dar, der eine gegenüber der Höhe unendlich große Breite aufweist, d.h. r1 = r und r2 = unendlich.In the case of microperistaltic pumps of the type according to the invention, however, the mentioned constriction is generally defined by the distance between the valve membrane and the opposite region of the pump body (for example a sealing lip) when the valve is open. This bottleneck represents a gap having an infinite width compared to the height, ie r 1 = r and r 2 = infinity.
Für einen solchen Kanal ergibt sich aus obiger Gleichung 2:
Allgemein ist der Zusammenhang zwischen dem kleinsten Krümmungsradius und dem kleinsten Wandabstand d durch folgende Beziehung gegeben:
Der Worst-Case-Fall, d.h. der kleinste Krümmungsradius unabhängig vom Verkippungswinkel und Benetzungswinkel ist gegeben, wenn die Sinusfunktion maximal, d.h. sin(90°+Γ-Θ)=1 wird. Dies tritt beispielsweise bei abrupten Querschnittsänderungen, wie sie in den
Als kleinster auftretender Krümmungsradius kann daher unabhängig vom Verkippungswinkel Γ, Benetzungswinkel Θ oder abrupten Querschnittsänderungen die Hälfte des kleinsten auftetenden Wandabstands betrachtet werden.As the smallest occurring radius of curvature, therefore, half of the smallest ascending wall distance can be considered independently of the tilt angle Γ, wetting angle Θ or abrupt changes in cross section.
In einer Peristaltikpumpe existieren zum einen Fluidverbindungen zwischen den Kammern mit einer gegebenen Kanalgeometrie und einer Engstelle, die eine geringste Durchflußabmessung d definiert. Für einen solchen Kanal gilt:
Zum anderen besitzt die Peristaltikpumpe eine Engstelle am Einlaß- bzw. Auslassventil, die durch die von dem Ventilhub d abhängigen Spaltgeometrie definiert ist. Für diese gilt:
Die jeweilige Engstelle (Kanalengstelle oder Ventilengstelle im geöffneten Zustand), an der größere Kapillarkräfte überwunden werden müssen, kann als Flußengstelle der Mikroperistaltikpumpe betrachtet werden.The respective constriction (channel constriction or valve constriction in the open state), at which larger capillary forces must be overcome, can be regarded as a flow point of the microperistaltic pump.
Bei bevorzugten Ausführungsbeispielen der vorliegenden Erfindung werden daher Verbindungskanäle innerhalb der Peristaltikpumpe derart ausgelegt, daß der Durchmesser des Kanals mindestens das doppelte der Ventilengstelle, d.h. dem Abstand zwischen Membran und Pumpenkörper im geöffneten Ventilzustand, übersteigt. In einem solchen Fall stellt der Ventilspalt die Flußengstelle der Mikroperistaltikpumpe dar. Beispielsweise können bei einem Ventilhub von 20µm Verbindungskanale mit einer geringsten Abmessung, d.h. Engstelle, von 50µm vorgesehen sein. Die obere Grenze des Kanaldurchmessers wird durch das Todvolumen des Kanals bestimmt.In preferred embodiments of the present invention, therefore, communication channels within the peristaltic pump are designed such that the diameter of the channel is at least twice that of the valve throat, i. the distance between diaphragm and pump body in the open valve state, exceeds. In such a case, the valve gap represents the flow point of the microperistaltic pump. For example, with a valve lift of 20μm, communication channels having a smallest dimension, i. Bottleneck, be provided by 50μm. The upper limit of the channel diameter is determined by the dead volume of the channel.
Die zu überwindende Kapillarkraft hängt von der Oberflächenspannung an der Flüssigkeit/Gas-Grenzfläche ab. Diese Oberflächenspannung hängt wiederum von den beteiligten Partnern ab. Für eine Wasser/Luft-Grenzfläche beträgt die Oberflächenspannung etwa 0,075 N/m und variiert leicht mit der Temperatur. Organische Lösemittel besitzen in der Regel eine deutlich geringere Oberflächenspannung, während die Oberflächenspannung an einer Quecksilber/Luft-Grenzfläche beispielsweise etwa 0,475 N/m beträgt. Eine Peristaltikpumpe, die ausgelegt ist, um die Kapillarkraft bei einer Oberflächenspannung von 0,1 N/m zu überwinden, eignet sich somit, um nahezu alle bekannten Flüssigkeiten und Gase blasentolerant und selbstansaugend zu pumpen. Alternativ kann das Kompressionsverhältnis einer erfindungsgemäßen Mikroperistaltikpumpe entsprechend höher gemacht werden, um ein solches Pumpen beispielsweise auch für Quecksilber zu ermöglichen.The capillary force to be overcome depends on the surface tension at the liquid / gas interface. This surface tension in turn depends on the partners involved. For a water / air interface, the surface tension is about 0.075 N / m and varies slightly with temperature. Organic solvents generally have a significantly lower surface tension, while the surface tension at a mercury / air interface, for example, about 0.475 N / m. A peristaltic pump designed to overcome the capillary force at a surface tension of 0.1 N / m is thus suitable for pumping virtually all known liquids and gases in a bubble-tolerant and self-priming manner. Alternatively, the compression ratio of a micro-peristaltic pump according to the invention can be made correspondingly higher in order to enable such pumping, for example, also for mercury.
Die im nachfolgenden erörterten Designregeln gelten für die Förderung von Gasen und inkompressiblen Flüssigkeiten, wobei bei der Förderung von Flüssigkeiten davon ausgegangen werden muß, daß im Worst-Case-Fall Luftblasen das gesamte Pumpkammervolumen ausfüllen. Bei der Förderung von Gasen muß damit gerechnet werden, daß aufgrund einer Auskondensierung Flüssigkeit in die Pumpe gelangen kann. Im folgenden wird davon ausgegangen, daß der Piezoaktor so ausgelegt ist, daß alle erforderlichen Unterdrücke und Überdrücke erreicht werden können.The design rules discussed below apply to the pumping of gases and incompressible liquids, and in the case of liquids, it must be assumed that in the worst case, air bubbles fill the entire pumping chamber volume. In the promotion of gases must be expected that can get into the pump due to a Auskondensierung liquid. In the following it is assumed that the piezoelectric actuator is designed so that all required negative pressures and pressures can be achieved.
Zunächst sei ein Druckhub betrachtet. Während des Ausstoßvorgangs komprimiert die Aktormembran das Gasvolumen, bzw. Luftvolumen. Der maximale Überdruck in der Pumpkammer pÜ wird dann durch den Druck in der Luftblase bestimmt. Er berechnet sich aus der Zustandsgleichung der Luftblase.
Nun sei ein Saughub betrachtet. Der Saughub unterscheidet sich durch die Ausgangslage der Volumina. Nach der Expansion entsteht der Unterdruck pU in der Pumpkammer, d. h. pU ist negativ:
Die linke Seite der Gleichung 11 gibt den Zustand vor der Expansion wieder, während die rechte Seite den Zustand nach der Expansion wiedergibt. Der Unterdruck pU beim Druckhub muß kleiner sein als der notwendige negative Förderdruck pF. Dabei ist zu beachten, daß der Förderdruck pF bei der Betrachtung des Druckhubes betragsmäßig positiv, bei der Betrachtung des Saughubes betragsmäßig negativ ist. Es folgt:
Aus den obigen Gleichungen ergibt sich für das mindestens notwendige Kompressionsverhältnis von blasentoleranten Mikroperistaltikpumpen für den Druckhub:
Für den Saughub ergibt sich folgendes Kompressionsverhältnis:
Ist der Förderdruck pF klein gegenüber dem Atmosphärendruck p0, können die vorhergehenden Gleichungen wie folgt vereinfacht werden, was einer Linearisierung um den Punkt p0, V0 entspricht:
- Druckhub:
- Saughub:
- compression stroke:
- suction stroke:
Als gültige Gleichung für den Saughub und den Druckhub ergibt sich:
Bei schnellen Zustandsänderungen sind die Verhältnisse adiabatisch, d. h. γA = 1,4 für Luft. Bei langsamen Zustandsänderungen sind die Verhältnisse isotherm, d. h. γA = 1. Mit einer konsequenten Anwendung der Worst-Case-Annahme wird im folgenden das Kriterium mit γA = 1 verwendet. Somit kann als Designregel für das notwendige Kompressionsverhältnis blasentoleranter Mikroperistaltikpumpen festgehalten werden, daß das Kompressionsverhältnis größer sein muß als das Verhältnis des Förderdrucks zum Atmosphärendruck, d. h.:
Oder mit den genannten Volumina:
Die oben angegebene einfache lineare Designregel entspricht der Tangente an der isothermen Zustandsgleichung von
Bevorzugte Ausführungsbeispiele erfindungsgemäßer Mikroperistaltikpumpen werden somit derart gestaltet, daß das Kompressionsverhältnis der obigen Bedingung genügt, wobei der minimal notwendige Förderdruck dem in Gleichung 8 definierten Druck entspricht, wenn in der Peristaltikpumpe auftretende Kanalengstellen minimale Abmessungen aufweisen, die zumindest doppelt so groß wie der Ventilspalt sind. Alternativ kann der minimal erforderliche Förderdruck dem in Gleichung 3 oder Gleichung 7 definierten Druck entsprechen, wenn die Flußengstelle der Mikroperistaltikpumpe nicht durch einen Spalt sondern einen Kanal definiert ist.Preferred embodiments of microperistaltic pumps according to the invention are thus designed such that the compression ratio satisfies the above condition, wherein the minimum necessary delivery pressure corresponds to the pressure defined in equation 8 if channel narrows occurring in the peristaltic pump have minimum dimensions which are at least twice as large as the valve gap. Alternatively, the minimum required delivery pressure may correspond to the pressure defined in
Soll eine erfindungsgemäße Mikroperistaltikpumpe zum Einsatz kommen, wenn Druckrandbedingungen eines Unterdrucks p1 am Einlaß bzw. eines Gegendrucks p2 am Auslaß vorherrschen, so muß das Kompressionsverhältnis einer Mikroperistaltikpumpe entsprechend größer sein, um ein Pumpen gegen diese Einlaßdrücke bzw. Auslaßdrücke zu ermöglichen. Die Druckrandbedingungen werden von der vorgesehenen Anwendung der Mikroperistaltikpumpe definiert und können von wenigen hPa bis zu mehreren 1000 hPa reichen. Für solche Fälle muß der in der Pumpkammer auftretende Überdruck pÜ, bzw. Unterdruck pU diese Gegendrücke mindestens erreichen, damit eine Pumpwirkung auftritt. Beispielsweise führt allein die Höhendifferenz eines möglichen Einlaßgefäßes bzw. Auslaßgefäßes von 50 cm bei Wasser zu Gegendrücken von 50 hPa.If a microperistaltic pump according to the invention is to be used when pressure boundary conditions of a negative pressure p 1 at the inlet or a counterpressure p 2 prevail at the outlet, the compression ratio of a microperistaltic pump must be correspondingly greater in order to allow pumping against these inlet pressures or outlet pressures. The pressure boundary conditions are defined by the intended application of the microperistaltic pump and can range from a few hPa to several 1000 hPa. For such cases occurring in the pumping chamber pressure p T, or negative pressure p U must achieve these back pressures at least, so that a pumping action occurs. For example, only the height difference of a possible inlet vessel or outlet vessel of 50 cm in water leads to counter pressures of 50 hPa.
Weiter stellt die gewünschte Förderrate eine Randbedingung dar, die zusätzliche Anforderungen stellt. Bei einem gegebenen Hubvolumen ΔV wird die Förderrate Q durch die Betriebsfrequenz f des sich wiederholenden Peristaltikzyklusses definiert: Q = ΔV · f. Innerhalb der Periodendauer T = 1/f muß sowohl der Saughub als auch der Druckhub der Peristaltikpumpe verrichtet werden, insbesondere muß das Hubvolumen ΔV umgesetzt werden. Die verfügbare Zeit beträgt daher maximal T/2 für Saughub und Druckhub. Die benötigte Zeit, um das Hubvolumen durch die Pumpkammerzuleitung und die Ventilengstelle zu fördern, hängt nun einerseits von dem Strömungswiderstand ab, andererseits von der Druckamplitude in der Pumpkammer.Further, the desired delivery rate is a constraint that places additional demands. For a given swept volume ΔV, the delivery rate Q is defined by the repetitive peristaltic cycle operating frequency f: Q = ΔV · f. Within the period T = 1 / f both the suction stroke and the pressure stroke of the peristaltic pump must be performed, in particular the displacement .DELTA.V must be implemented. The available time is therefore maximum T / 2 for suction stroke and pressure stroke. The time required to promote the stroke volume through the pumping chamber inlet and the valve throat now depends on the one hand on the flow resistance, on the other hand on the pressure amplitude in the pumping chamber.
Sollen mit einer erfindungsgemäßen Mikroperistaltikpumpe schaumartige Substanzen gepumpt werden, so kann es notwendig sein, daß eine Mehrzahl von Kapillarkräften, wie sie oben beschrieben sind, überwunden werden muß, da mehrere entsprechende Flüssigkeit/Gas-Grenzflächen auftreten. In einem solchen Fall muß die Mikroperistaltikpumpe ausgelegt sein, um ein Kompressionsverhältnis aufzuweisen, um entsprechend höhere Förderdrücke erzeugen zu können.If foam-like substances are to be pumped with a microperistaltic pump according to the invention, it may be necessary for a plurality of capillary forces, as described above, to be overcome since a plurality of corresponding liquid / gas interfaces occur. In such a case, the micro-peristaltic pump must be designed to have a compression ratio in order to be able to produce correspondingly higher delivery pressures.
Zusammenfassend kann festgestellt werden, daß das Kompressionsverhältnis einer erfindungsgemäßen Mikroperistaltikpumpe entsprechend höher gewählt werden muß, wenn der in der Mikroperistaltikpumpe notwendige Förderdruck pF neben den angesprochenen Kapillarkräften ferner von den Randbedingungen der Anwendung abhängt. Beachtet werden sollte, daß hier der Förderdruck relativ zum Atmosphärendruck betrachtet wird, im Druckhub also ein positiver Förderdruck pF angenommen wird, während im Saughub ein negativer Förderdruck pF angenommen wird. Als ein technisch sinnvoller Wert für einen robusten Betrieb kann daher für einen Saughub und einen Druckhub ein Betrag des Förderdrucks von mindestens pF = 100 hPa angenommen werden.In summary, it can be determined that the compression ratio of a microperistaltic invention must be appropriately higher when necessary in the microperistaltic delivery pressure p F in addition to the aforementioned capillary forces also depends on the boundary conditions of the application. It should be noted that here the delivery pressure is considered relative to the atmospheric pressure, that is, a positive delivery pressure p F is assumed in the pressure stroke, while a negative delivery pressure p F is assumed in the intake stroke. As a technically meaningful value for a robust operation, therefore, an amount of the delivery pressure of at least p F = 100 hPa can be assumed for a suction stroke and a pressure stroke.
Betrachtet man einen Gegendruck von beispielsweise 3000 hPa am Pumpenauslaß, gegen den gepumpt werden muß, so ergibt sich nach der obigen Gleichung 13 ein Kompressionsverhältnis von ε > 3, wobei ein Atmosphärendruck von 1013 hPa angenommen wird.Considering a back pressure of, for example, 3000 hPa at the pump outlet, against which must be pumped, then results from the above equation 13, a compression ratio of ε> 3, assuming an atmospheric pressure of 1013 hPa.
Muß die Mikroperistaltikpumpe gegen einen großen Unterdruck ansaugen, beispielsweise einen Unterdruck von -900 hPa, so ist nach der obigen Gleichung 14 ein Kompressionsverhältnis von ε > 9 einzuhalten, um ein Pumpen gegen einen solchen Unterdruck zu ermöglichen.If the microperistaltic pump must suck against a large negative pressure, for example a negative pressure of -900 hPa, a compression ratio of ε> 9 must be maintained according to
Beispiele von peristaltischen Mikropumpen, die die Realisierung derartiger Kompressionsverhältnisse ermöglichen, werden nachfolgend näher erläutert.Examples of peristaltic micropumps that enable the realization of such compression ratios are explained in more detail below.
Bei dem in den
Eine weitere Erhöhung des Pumpkammervolumens gegenüber den Ventilkammervolumen ist bei dem in den
Um den Strömungswiderstand zwischen den Ventilkammern 308 und 310 und der Pumpkammer 304 zu reduzieren, sind die Zuleitungskanäle 306 in der Oberfläche des Pumpenkörpers 302 strukturiert. Diese Fluidkanäle 306 liefern einen reduzierten Strömungswiderstand, ohne das Kompressionsverhältnis der peristaltischen Mikropumpe signifikant zu verschlechtern.In order to reduce the flow resistance between the
Alternativ zu dem in den
Beispielhafte Abmessungen des in den
Abmessung der Ventilmembrane 12, 16: 7,3 x 5,6 mm;- Abmessung der Pumpmembran 14: 7,3 x 7,3 mm;
- Membrandicke: 40 µm;
- Durchmesser der Einlaß- bzw.
Auslaßdüse 32, 34:mindestens 50 pm; - Ventilkammerhöhe: 8 µm;
- Höhe der Pumpkammer: 30 µm;
- Breite der Ventil-Dichtlippen dDL: 10µm;
- realisierbare Gesamtgröße: 8 x 21 mm;
- Abmessungen der Piezoelemente: Fläche: 0,8 mal Membranabmessung, Dicke: 2,5 mal Membrandicke;
- Dicke der Piezoelemente: 100µm; und
Öffnungsquerschnitt der Öffnungen 32, 34: 100µm x 100µm.
-
Valve diaphragm dimensions 12, 16: 7.3 x 5.6 mm; - Measurement of the pumping membrane 14: 7.3 x 7.3 mm;
- Membrane thickness: 40 μm;
- Diameter of the inlet or
outlet nozzle 32, 34: at least 50 pm; - Valve chamber height: 8 μm;
- Height of the pumping chamber: 30 μm;
- Width of the valve sealing lips d DL : 10μm;
- Total realized size: 8 x 21 mm;
- Dimensions of the piezo elements: Area: 0.8 times membrane dimension, thickness: 2.5 times membrane thickness;
- Thickness of the piezo elements: 100μm; and
- Opening cross-section of the
openings 32, 34: 100μm x 100μm.
Eine vergrößerte Darstellung des linken Teils der in
Wie oben ausgeführt wurde, muß in den Bereichen des Fluidsystems, in denen eine Pumpwirkung erforderlich ist, indem ein Pumpkammervolumen einer Peristaltikpumpe gebildet wird, das Kompressionsverhältnis der Peristaltikpumpe groß gewählt werden, um ein selbstbefüllendes Verhalten und einen robusten Betrieb bezüglich einer Blasentoleranz zu gewährleisten. Um dies zu erreichen, ist es bevorzugt, die Totvoluminas klein zu halten, was unterstützt werden kann, indem die Kontur bzw. Form der Pumpkammer an die Biegelinie der Pumpmembran im ausgelenkten Zustand angepaßt wird.As stated above, in the areas of the fluid system in which a pumping action is required by forming a pump chamber volume of a peristaltic pump, the compression ratio of the peristaltic pump is made large to ensure self-filling behavior and robust operation with respect to bladder tolerance. In order to achieve this, it is preferable to keep the dead volumes small, which can be assisted by adapting the contour or shape of the pumping chamber to the bending line of the pumping membrane in the deflected state.
Eine erste Möglichkeit, eine solche Anpassung zu realisieren, besteht darin, eine runde Pumpkammer zu implementieren, d.h. eine Pumpkammer, deren Umfangsform an die Auslenkung der Pumpmembran angepasst ist. Eine schematische Draufsicht auf den Pumpkammer- und Fluidkanal-Abschnitt eines Pumpenkörpers mit einer solchen Pumpkammer ist in
Um eine weitere Reduzierung des Totvolumens und damit eine weitere Erhöhung des Kompressionsverhältnisses erreichen zu können, kann die Pumpkammer unter der Pumpmembran so gestaltet werden, daß ihre der Pumpmembran zugewandte Kontur paßgenau der Biegelinie der Pumpmembran folgt. Eine solche Kontur der Pumpkammer kann beispielsweise durch ein entsprechend geformtes Spritzgußwerkzeug oder durch einen Prägestempel erreicht werden. Eine schematische Draufsicht auf einen Pumpenkörper 340, in dem eine solche der Biegelinie der Aktormembran folgende Fluidkammer 342 strukturiert ist, ist in
Ein Ausführungsbeispiel einer peristaltischen Mikropumpe, bei der sowohl die Pumpkammer 342 als auch Ventilkammern 360 an die Biegelinien der jeweils zugeordneten Membranabschnitte 12, 14 und 16 angepaßt sind, ist in den
Wie ferner in
Die Verbindungskanäle 344b und 344c zwischen den Aktorkammern sind so geschaltet, daß sie ein im Vergleich zum Hubvolumen geringes Totvolumen beinhalten. Gleichzeitig verringern diese Fluidkanäle den Strömungswiderstand zwischen den Aktorkammern signifikant, so daß auch größere Pümpfrequenzen und damit größere Förderströme, wobei ein solcher Strom wiederum durch Pfeile 350 in
Ein alternatives Ausführungsbeispiel einer Ventilkammer 360 ist in
Um eine Ventilabdichtung im geschlossenen Zustand zu erreichen, die vorgegebenen Druckanforderungen genügt, kann es bevorzugt sein, in der Ventilkammer 360 einen Steg 390a vorzusehen, der nicht die maximal mögliche Biegelinie des Aktorelements, d. h. des Membranabschnitts 12 zusammen mit dem Piezoaktor 22, nachbildet, wie in
Bei praktischen Realisierungen wird die Biegelinie der Membran oft nicht perfekt konzentrisch zum Membranmittelpunkt sein, beispielsweise aufgrund von Montagetoleranzen der Piezokeramiken und aufgrund von Inhomogenitäten des Kleberauftrags, durch den die Piezokeramiken an den Membranen angebracht sind. Daher kann der Bereich der Stegabdichtung etwas, beispielsweise um ca. 5 bis 20 µm, je nach Hub des Aktors, gegenüber dem Rest der Fluidkammer erhöht werden, um einen sicheren Kontakt der Membran mit dem Steg und damit eine sichere Abdichtung zu gewährleisten. Dies entspricht ebenfalls der in
Alternativ zu den genannten Möglichkeiten kann als Fluidkammermaterial zumindest im Bereich unter der beweglichen Membran ein plastisch verformbares Material, beispielsweise Silikon, verwendet werden. Durch entsprechend groß ausgelegte Aktorkräfte können dann Inhomogenitäten ausgeglichen werden. In einem solchen Fall liegt keine Hart-Hart-Dichtung mehr vor, so daß eine gewisse Toleranz gegen Partikel und Ablagerungen existiert.As an alternative to the abovementioned possibilities, a plastically deformable material, for example silicone, can be used as the fluid chamber material at least in the region below the movable membrane. By correspondingly large-sized actuator forces, inhomogeneities can then be compensated. In such a case, there is no hard-hard seal, so that a certain tolerance against particles and deposits exists.
Im folgenden sei kurz eine beispielhafte Dimensionierung einer Peristaltikpumpe, wie sie in den
Durch die Anpassung der Fluidkammerausführung an die Biegelinie der Membran fällt das Totvolumen der drei für die Peristaltikpumpe benötigten Fluidkammern weg, so daß nur noch die Verbindungskanäle, die die Ventilkammern mit der Pumpkammer verbinden, verbleiben. Werden Verbindungskanäle mit einer Tiefe von 100 µm, einer Breite von 100 µm und einer Länge von jeweils 10 mm, so daß sich eine Gesamtlänge für die Fluidkanäle 344b und 344c von 20 mm ergibt, ergibt das ein Pumpkammer-Totvolumen von 0,2 µl. Daraus kann ein Kompressionsverhältnis ε = ΔV/V = 4 µl/0,2 µl = 20 ermittelt werden.By adapting the fluid chamber design to the bending line of the membrane, the dead volume of the three fluid chambers required for the peristaltic pump drops, so that only the connection channels connecting the valve chambers to the pumping chamber remain. Connecting channels with a depth of 100 microns, a width of 100 microns and a length of 10 mm, so that there is a total length for the
Mit einem derart großen Kompressionsverhältnis von bis zu 20 sind derartige Fluidmodule blasentolerant und selbstansaugend und können sowohl Flüssigkeiten als auch Gase fördern. Derartige Fluidpumpen können ferner für kompressible und flüssige Medien prinzipiell mehrere bar Druck aufbauen, je nach Auslegung des Piezoaktors. Bei einer solchen Mikropumpe wird der maximal erzeugbare Druck nicht mehr durch das Kompressionsverhältnis begrenzt, sondern durch die maximale Kraft des Antriebselements und durch die Dichtheit der Ventile definiert. Trotz dieser Eigenschaften können durch eine geeignete Kanaldimensionierung mit einem geringen Strömungswiderstand mehrere ml/min gefördert werden.With such a high compression ratio of up to 20, such fluid modules are bubble tolerant and self-priming and can deliver both liquids and gases. Furthermore, such fluid pumps can in principle build up several bar pressure for compressible and liquid media, depending on the design of the piezoelectric actuator. In such a micropump, the maximum pressure that can be generated is no longer limited by the compression ratio, but defined by the maximum force of the drive element and by the tightness of the valves. Despite these properties, several ml / min can be delivered by a suitable channel dimensioning with a low flow resistance.
Bei dem oben beschriebenen Ausführungsbeispiel waren sämtliche Fluidkanäle, d. h. auch der Einlaßfluidkanal 344a und der Auslaßfluidkanal 344d lateral geführt, d. h. die Fluidkanäle verlaufen in der gleichen Ebene wie die Fluidkammern. Wie oben dargelegt wurde, kann bei einem derartigen Verlauf die Abdichtung der Kanäle schwierig sein. Vorteilhaft an dem lateralen Verlauf der Fluidkanäle ist jedoch, daß das gesamte Fluidsystem einschließlich mit dem Einlaßkanal 344a und/oder dem Auslaßkanal 344d verbundenen Reservoiren mit einem Herstellungsschritt geformt werden kann, beispielsweise mit Spritzguß oder Prägen.In the embodiment described above, all the fluid channels, i. H. Also, the
In
Die erfindungsgemäßen peristaltischen Mikropumpen werden vorzugsweise angesteuert, indem die Membran, beispielsweise die Metallmembran oder die Halbleitermembran, auf einem Massepotential liegt, während die Piezokeramiken durch einen typischen Peristaltikzyklus bewegt werden, indem jeweils entsprechende Spannungen an die Piezokeramiken angelegt werden.The peristaltic micropumps according to the invention are preferably activated by the membrane, for example the metal membrane or the semiconductor membrane, being at a ground potential, while the piezoceramics are moved through a typical peristaltic cycle by respectively corresponding voltages be applied to the piezoceramics.
Neben der oben beschriebenen Mikroperistaltikpumpe unter Verwendung von drei Fluidkammern 342, 360 und 362 kann ein erfindungsgemäße peristaltische Mikropumpe weitere Fluidkammern aufweisen, beispielsweise eine weitere Fluidkammer 420, die über einen Fluidkanal 422 mit der Pumpkammer 342 verbunden ist. Eine derartige Struktur ist in
Eine Struktur mit vier Fluidkammern, wie sie in
Neben den gezeigten Ausführungsbeispielen können Fluidkammern beliebig in einer Ebene verschaltet werden. So kann beispielsweise unterschiedlichen Reservoirs z. B. je eine Mikroperistaltikpumpe zugeordnet werden, die dann beispielsweise Reagenzien einer chemischen Reaktion zuführen (beispielsweise bei einer Brennstoffzelle), oder eine Kalibriersequenz für ein Analysesystem durchführen, beispielsweise bei einer Wasseranalyse.In addition to the exemplary embodiments shown, fluid chambers can be connected as desired in one plane. For example, different reservoirs z. B. are each assigned a Mikroperistaltikpumpe, which then, for example, reagents perform a chemical reaction (for example, in a fuel cell), or perform a calibration sequence for an analysis system, for example in a water analysis.
Zur Erzeugung eines Piezo-Membranwandlers können die Piezokeramiken beispielsweise auf die jeweiligen Membranabschnitte geklebt werden. Alternativ können die Piezokeramiken, beispielsweise PZT, direkt in Dickschichttechnik aufgebracht werden, beispielsweise durch Siebdruckverfahren mit geeigneten Zwischenschichten.To produce a piezo-membrane converter, the piezoceramics can be glued, for example, to the respective membrane sections. Alternatively, the piezoceramics, for example PZT, can be applied directly in thick film technology, for example by screen printing processes with suitable intermediate layers.
Ein alternatives Ausführungsbeispiel einer erfindungsgemäßen mikroperistaltischen Pumpe mit versenktem Einlaßfluidkanal 412 und versenktem Auslaßfluidkanal 414 ist in
Piezostapelaktoren sind vorteilhaft dahingehend, daß dieselben nicht fest mit dem Membranelement verbunden sein müssen, so daß dieselben einen modularen Aufbau ermöglichen. Bei solchen nicht fest verbundenen Piezostapelaktoren ziehen die Aktoren einen Membranabschnitt nicht aktiv zurück, wenn eine Betätigung desselben beendet wird. Vielmehr kann eine Rückbewegung des Membranabschnitts nur durch die Rückstellkraft der elastischen Membran selbst erfolgen.Piezostapelaktoren are advantageous in that they need not be firmly connected to the membrane element, so that they allow a modular structure. In such non-fixed piezo stack actuators, the actuators do not actively retract a diaphragm section when an actuation thereof is terminated. Rather, a return movement of the membrane portion can be done only by the restoring force of the elastic membrane itself.
Die erfindungsgemäßen peristaltischen Mikropumpen können unter Verwendung verschiedenster Herstellungsmaterialien und Herstellungstechniken gefertigt werden. Der Pumpenkörper kann beispielsweise aus Silizium hergestellt werden, aus Kunststoff durch Spritzguß gefertigt werden oder feinwerktechnisch spanend hergestellt werden. Das Membranelement, das die Antriebsmembrane für die beiden Ventile und die Pumpkammer bildet, kann aus Silizium hergestellt werden, kann durch eine Metallfolie, beispielsweise Edelstahl oder Titan, gebildet sein, kann durch eine in Zweikomponenten-Spritzgußtechnik gefertigte mit leitfähigen Beschichtugnen versehene Kunststoffmembran gebildet sein, oder kann durch eine Elastomermembran realisiert sein.The peristaltic micropumps of the present invention can be made using a variety of materials of manufacture and manufacturing techniques. The pump body may for example be made of silicon, be made of plastic by injection molding or manufactured by machining technically. The membrane element which forms the drive diaphragm for the two valves and the pumping chamber can be made of silicon, can be formed by a metal foil, for example stainless steel or titanium, can be formed by a plastic membrane provided with conductive coatings in two-component injection molding technique. or may be realized by an elastomeric membrane.
Die Verbindung von Membranelement und Pumpenkörper ist ein wichtiger Punkt da an dieser Verbindung im Betrieb der Peristaltikpumpe hohe Scherkräfte auftreten können. An diese Verbindung sind folgende Anforderungen zu stellen:
- dicht;
- dünne Fügeschicht (< 10 µm), da die Pumpkammerhöhe ein kritischer Designparameter ist, der das Totvolumen beeinflußt;
- mechanische Beständigkeit; und
- chemisch beständig gegen zu fördernde Medien.
- thick;
- thin bonding layer (<10 μm), since the pump chamber height is a critical design parameter that affects the dead volume;
- mechanical resistance; and
- chemically resistant to media to be conveyed.
Im Falle von Silizium als Grundstruktur und Membranelement kann ein fügeschichtloses Silicon Fusion Bonding erfolgen. Im Falle einer Silizium-Glaskombination kann vorzugsweise ein anodisches Bonden verwendet werden. Weitere Möglichkeiten sind ein eutektisches Waferbonden oder ein Waferkleben.In the case of silicon as the basic structure and membrane element, a non-silicone Silicon Fusion Bonding can take place. In the case of a silicon-glass combination, anodic bonding may preferably be used. Other possibilities are a eutectic wafer bonding or a wafer life.
Falls die Grundstruktur aus Kunststoff besteht und das Membranelement eine Metallfolie ist, kann ein Laminieren durchgeführt werden, wenn ein Haftvermittler zwischen Membranelement und Grundstruktur verwendet wird. Alternativ kann ein Kleben mit einem Klebstoff hoher Scherfestigkeit erfolgen, wobei dann in der Grundstruktur vorzugsweise Kapillarstopgräben gebildet werden, um ein Eindringen von Kleber in die Fluidstruktur zu vermeiden.If the basic structure is made of plastic and the membrane element is a metal foil, lamination can be performed if a bonding agent is used between the membrane element and the basic structure. Alternatively, bonding may be carried out with a high shear adhesive, in which case capillary stop trenches are preferably formed in the base structure in order to avoid penetration of adhesive into the fluid structure.
Falls sowohl Membranelement als auch Pumpenkörper aus Kunststoff bestehen, kann zur Verbindung derselben ein Ultraschallschweißen verwendet werden. Falls eine der beiden Strukturen optisch transparent ist, kann alternativ ein Laserschweißen erfolgen. Im Falle einer Elastomermembran können die Dichtungseigenschaften der Membran ferner dazu verwendet werden, eine Abdichtung durch Klemmung zu gewährleisten.If both membrane element and pump body are made of plastic, ultrasonic welding can be used to connect them. If one of the two structures is optically transparent, a laser welding can alternatively take place. In the case of an elastomeric membrane, the sealing properties of the membrane may also be used to provide a seal by clamping.
Im folgenden wird kurz erläutert, wie eine mögliche Befestigung der Membran an dem Pumpenkörper bei einer erfindungsgemäßen Mikroperistaltikpumpe erfolgen kann. Wird bei der erfindungsgemäßen Mikropumpe die Membran an den Pumpenkörper geklebt, so ist zu beachten, daß die Dosierung von Fügeschichtmaterialien (z.B. Klebstoff) kritisch ist, da einerseits die Membran rundum dicht sein muß (also ausreichend Klebstoff aufgebracht werden muß), und andererseits ein Eindringen von überschüssigem Klebstoff in die Fluidkammern vermieden werden muß.The following briefly explains how a possible attachment of the membrane to the pump body can take place in a micro-peristaltic pump according to the invention. If in the micropump of the invention, the membrane is glued to the pump body, it should be noted that the dosage of Fügeschichtmaterialien (eg adhesive) is critical, since on the one hand, the membrane must be tight (so sufficient adhesive must be applied), and on the other hand, penetration must be avoided by excess adhesive in the fluid chambers.
Das Fügeschichtmaterial, das ein Klebstoff oder ein Haftmittel sein kann, wird z.B. durch Dispensieren oder durch einen entsprechend geformten Stempel auf die Fügeschicht aufgebracht. Nach dem Auftrag des Fügeschichtmaterials wird die Membran auf den Grundkörper bestückt. Mögliche Grate, die z.B. beim Vereinzeln am Rand der Membran sein können, finden in einer entsprechenden Aufnahme für den Grat Platz, so daß eine definierte Lage der Membran vor allem in der Richtung senkrecht zur Oberfläche derselben sichergestellt ist, was bezüglich des Totvolumens und der Dichtheit wichtig ist.The bonding layer material, which may be an adhesive or an adhesive, is used e.g. dispensed by dispensing or by a suitably shaped stamp on the joining layer. After the application of the bonding layer material, the membrane is fitted onto the base body. Possible burrs, e.g. can be at the edge of the membrane, find in a corresponding receptacle for the burr place, so that a defined position of the membrane is ensured especially in the direction perpendicular to the surface thereof, which is important in terms of dead volume and tightness.
Danach wird mit einem Stempel auf den Pumpenkörper gedrückt, damit die Klebeschicht möglichst dünn und definiert bleibt. Um überschüssigen Kleber aufzunehmen, kann ein Kapillarstopgraben vorgesehen sein, der die in dem Pumpenkörper gebildeten Fluidbereiche umgibt. Somit kann solcher überschüssiger Kleber nicht in die Fluidkammern gelangen. Unter diesen Bedingungen kann der Klebstoff definiert und dünn aushärten. Das Aushärten kann bei Raumtemperatur erfolgen oder beschleunigt im Ofen oder durch UV-Bestrahlung bei Verwendung von UV-härtenden Klebstoffen.Then press with a stamp on the pump body, so that the adhesive layer remains as thin and defined. To accommodate excess adhesive, a capillary stop trench may be provided surrounding the fluid areas formed in the pump body. Thus, such excess adhesive can not get into the fluid chambers. Under these conditions, the adhesive can be defined and cured thin. Curing may be at room temperature or accelerated in the oven or by UV irradiation using UV-curable adhesives.
Alternativ zu der beschriebenen Klebetechnik kann als Verbindungstechnik ein Anlösen des Grundkörpers bzw. Pumpenkörpers durch geeignete Lösemittel und ein Fügen einer Kunststoffmembran an den Grundkörper erfolgen.As an alternative to the adhesive bonding technique described, the base body or pump body can be dissolved by suitable solvents and a plastic membrane can be bonded to the base body as a joining technique.
Claims (17)
- Peristaltic micropump comprising:a first membrane region (12) with a first piezo-actor (22; 460) for actuating the first membrane region;a second membrane region (14) with a second piezo-actor (24; 462) for actuating the second membrane region;a third membrane region (16) with a third piezo-actor (26; 464) for actuating the third membrane region; anda pump body (30; 302; 340; 440),wherein the pump body forms, together with the first membrane region (12), a first valve (62) whose passage opening (32) is open in the non-actuated state of the first membrane region and whose passage opening may be closed by actuating the first membrane region,
wherein the pump body forms, together with the second membrane region (14), a pumping chamber (42; 304; 330; 342; 452) whose volume may be decreased by actuating the second membrane region, and
wherein the pump body forms, together with the third membrane region (16), a second valve (64) whose passage opening (34) is open in the non-actuated state of the third membrane region and whose passage opening may be closed by actuating the third membrane region,
wherein the first and second valves (62, 64) are fluidically connected to the pumping chamber,
wherein between a stroke volume ΔV, a dead volume V0, a delivery pressure PF, and the atmospheric pressure P0 the following relationship applies:
wherein the stroke volume ΔV is a volume displaced by an actuation of the second membrane region (14), wherein the dead volume V0 is a volume present between the opened passage opening (32; 34) of one of the valves (62, 64) and the closed passage opening (32, 34) of the other of the valves (62, 64) in the actuated state of the second membrane region (14), and wherein the delivery pressure pF is the pressure necessary in the pumping chamber (42; 304; 330; 342; 452) to move a liquid/gas interface past a bottleneck in the peristaltic micropump. - Peristaltic micropump of claim 1, wherein between the first membrane region (12) and the pump body (302; 340; 440) a first valve chamber (308; 360; 442) is formed, and wherein between the third membrane region (16) and the pump body (302; 340; 440) a second valve chamber (310; 362; 444) is formed, wherein the valve chambers are fluidically connected to the pumping chamber (42; 304; 330; 342; 452).
- Peristaltic micropump of claim 2, wherein the volume of the pumping chamber (304) is greater than the volume of the first or second valve chamber (308, 310).
- Peristaltic micropump of claim 3, wherein a distance between membrane surface and pump body surface in the region of the pumping chamber (304) is greater than in the region of the valve chamber (308, 310).
- Peristaltic micropump of claim 3 or 4, wherein the second membrane region (14) and the pumping chamber are greater in area than the first or third membrane region (12, 16) and the associated valve chambers.
- Peristaltic micropump of one of claims 2 to 5, wherein the membrane regions (12, 14, 16) are formed in a membrane element (10; 300; 380; 456), wherein the valve chamber (308, 310; 360, 362; 442, 444), the pumping chamber (42; 304; 330; 342; 452), and fluid channels (306; 344) are formed between the valve chambers and the pumping chamber by structures in the pump body and/or the membrane element.
- Peristaltic micropump of one of claims 1 to 6, wherein the pumping chamber (330; 342) has a structure in the pump body (340), wherein the contour of the structure is adapted to the arched contour of the second membrane section (14) in the actuated state.
- Peristaltic micropump of one of claims 2 to 6, wherein the pumping chamber (342) and the valve chambers (360, 362) have structures in the pump body (340), wherein the contours of the structures are adapted to the respective arched contour of the corresponding membrane section (12, 14, 16) in the actuated state.
- Peristaltic micropump of one of claims 1 to 8, wherein the first and the third membrane region (12, 16) and the piezo-actors (22, 26; 460, 464) thereof are designed such that they push on a counter-element (390; 390a) with a predetermined force in the actuated state to close the respective valve.
- Peristaltic micropump of claim 8, comprising lateral fluid feed lines (344a, 344b) to the valve chambers (360, 362) formed in the pump body (340), which are closed by actuating the corresponding membrane section.
- Peristaltic micropump of claim 10, wherein, in the region of a valve chamber (360, 362), a ridge (390; 390a) is provided against which the corresponding actuated membrane section abuts to close the corresponding lateral fluid line.
- Peristaltic micropump of claim 10, wherein the valve chambers comprise, opposite the corresponding membrane section, a plastically deformable material against which the corresponding membrane section abuts in the actuated state.
- Peristaltic micropump of one of claims 1 to 12, further comprising at least one further membrane region with a further piezo-actor for actuating the further membrane region, the further membrane region forming, together with the pump body, a further valve whose passage opening is open in the non-actuated state of the further membrane region and whose passage opening may be closed by actuating the further membrane region, the further valve being fluidically connected to the pumping chamber.
- Peristaltic micropump of one of claims 1 to 13, wherein the piezo-actors are piezo-membrane converters formed by respective piezo-elements applied onto a membrane region.
- Peristaltic micropump of claim 14, wherein the piezo-elements are glued onto the respective membrane region or formed on the respective membrane region in thick film technique.
- Peristaltic micropump of one of claims 1 to 13, wherein the piezo-actors are formed by respective piezo-stacks.
- Fluid system with a plurality of peristaltic micropumps of one of claims 1 to 16 and a plurality of reservoirs fluidically connected to the peristaltic micropumps.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10238600 | 2002-08-22 | ||
DE10238600A DE10238600A1 (en) | 2002-08-22 | 2002-08-22 | Peristaltic micropump |
PCT/EP2003/009352 WO2004018875A1 (en) | 2002-08-22 | 2003-08-22 | Peristaltic micropump |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1458977A1 EP1458977A1 (en) | 2004-09-22 |
EP1458977B1 EP1458977B1 (en) | 2005-04-20 |
EP1458977B2 true EP1458977B2 (en) | 2008-11-12 |
Family
ID=31197271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03792417A Expired - Lifetime EP1458977B2 (en) | 2002-08-22 | 2003-08-22 | Peristaltic micropump |
Country Status (7)
Country | Link |
---|---|
US (1) | US7104768B2 (en) |
EP (1) | EP1458977B2 (en) |
JP (1) | JP4531563B2 (en) |
CN (1) | CN100389263C (en) |
AU (1) | AU2003255478A1 (en) |
DE (2) | DE10238600A1 (en) |
WO (1) | WO2004018875A1 (en) |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9138537B2 (en) | 2003-10-02 | 2015-09-22 | Medtronic, Inc. | Determining catheter status |
US7320676B2 (en) * | 2003-10-02 | 2008-01-22 | Medtronic, Inc. | Pressure sensing in implantable medical devices |
US9033920B2 (en) * | 2003-10-02 | 2015-05-19 | Medtronic, Inc. | Determining catheter status |
US8323244B2 (en) * | 2007-03-30 | 2012-12-04 | Medtronic, Inc. | Catheter malfunction determinations using physiologic pressure |
CN100458152C (en) * | 2004-03-24 | 2009-02-04 | 中国科学院光电技术研究所 | Micro-mechanical reciprocating diaphragm pump |
DE102005001807A1 (en) * | 2005-01-13 | 2006-07-20 | Air Liquide Deutschland Gmbh | Process for heating an industrial furnace and apparatus therefor |
DE102005038483B3 (en) * | 2005-08-13 | 2006-12-14 | Albert-Ludwigs-Universität Freiburg | Micro pump e.g. fluid micro pump, for bidirectional delivery of fluid, has diaphragm areas whose geometric dimensions and elastic properties are designed so that displaced volume and changes of dimensions completely comply with requirements |
DE102005055697B4 (en) * | 2005-11-23 | 2011-12-29 | Allmendinger Elektromechanik Gmbh | Device for metered delivery of a fluid and device with such a device |
JP4638820B2 (en) * | 2006-01-05 | 2011-02-23 | 財団法人神奈川科学技術アカデミー | Micro pump and manufacturing method thereof |
US7976795B2 (en) * | 2006-01-19 | 2011-07-12 | Rheonix, Inc. | Microfluidic systems |
EP1834658B1 (en) * | 2006-03-14 | 2009-12-30 | F. Hoffmann-La Roche AG | Peristaltic micropump with volume flow sensor |
WO2007123764A2 (en) * | 2006-04-06 | 2007-11-01 | Medtronic, Inc. | Systems and methods of identifying catheter malfunctions using pressure sensing |
DE102006028986B4 (en) | 2006-06-23 | 2019-06-27 | Albert-Ludwigs-Universität Freiburg | Contrast membrane drive to increase the efficiency of micropumps |
US7842426B2 (en) * | 2006-11-22 | 2010-11-30 | Gm Global Technology Operations, Inc. | Use of a porous material in the manifolds of a fuel cell stack |
KR101088943B1 (en) * | 2006-12-09 | 2011-12-01 | 가부시키가이샤 무라타 세이사쿠쇼 | Piezoelectric micro-blower |
JP4946464B2 (en) * | 2007-01-30 | 2012-06-06 | ブラザー工業株式会社 | Liquid transfer device and method for manufacturing liquid transfer device |
US9044537B2 (en) | 2007-03-30 | 2015-06-02 | Medtronic, Inc. | Devices and methods for detecting catheter complications |
DE102007045637A1 (en) * | 2007-09-25 | 2009-04-02 | Robert Bosch Gmbh | Microdosing device for dosing small amounts of a medium |
EP2205869B1 (en) * | 2007-10-22 | 2017-12-27 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Membrane pump |
US8353682B2 (en) * | 2007-11-23 | 2013-01-15 | Stichting Imec Nederland | Microfluidic-device systems and methods for manufacturing microfluidic-device systems |
JP5027930B2 (en) | 2007-11-23 | 2012-09-19 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | Pump device including safety valve |
US8327845B2 (en) | 2008-07-30 | 2012-12-11 | Hydrate, Inc. | Inline vaporizer |
US9968733B2 (en) * | 2008-12-15 | 2018-05-15 | Medtronic, Inc. | Air tolerant implantable piston pump |
WO2010073020A1 (en) * | 2008-12-24 | 2010-07-01 | Heriot-Watt University | A microfluidic system and method |
US8267885B2 (en) * | 2008-12-31 | 2012-09-18 | Fresenius Medical Care Holdings, Inc. | Methods and apparatus for delivering peritoneal dialysis (PD) solution with a peristaltic pump |
CA2777445C (en) * | 2009-10-21 | 2014-08-05 | Biocartis Sa | Microfluidic cartridge with parallel pneumatic interface plate |
FR2952628A1 (en) | 2009-11-13 | 2011-05-20 | Commissariat Energie Atomique | PROCESS FOR MANUFACTURING AT LEAST ONE DEFORMABLE MEMBRANE MICROPUMP AND DEFORMABLE MEMBRANE MICROPUMP |
US8757511B2 (en) | 2010-01-11 | 2014-06-24 | AdvanJet | Viscous non-contact jetting method and apparatus |
DE102010001369B4 (en) * | 2010-01-29 | 2013-10-10 | Paritec Gmbh | Peristaltic system, fluid delivery device, pipetting device, cuff and method for operating the peristaltic system |
WO2011103328A2 (en) | 2010-02-17 | 2011-08-25 | Viking At, Llc | Smart material actuator with enclosed compensator |
JP5480983B2 (en) | 2010-03-05 | 2014-04-23 | フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ | Bent transducer, micro pump and micro valve manufacturing method, micro pump and micro valve |
WO2011107157A1 (en) | 2010-03-05 | 2011-09-09 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Valve, layer structure comprising a first and a second valve, micropump and method of producing a valve |
DE102010028524A1 (en) * | 2010-05-04 | 2011-11-10 | Robert Bosch Gmbh | Microfluidic component, in particular peristaltic micropump, and method for its production |
GB2481425A (en) | 2010-06-23 | 2011-12-28 | Iti Scotland Ltd | Method and device for assembling polynucleic acid sequences |
WO2012118548A2 (en) | 2010-12-09 | 2012-09-07 | Viking At, Llc | High speed smart material actuator with second stage |
WO2012092394A1 (en) | 2010-12-29 | 2012-07-05 | Cardinal Health 414, Llc | Closed vial fill system for aseptic dispensing |
FR2974598B1 (en) | 2011-04-28 | 2013-06-07 | Commissariat Energie Atomique | FLOW METER MICROPUMP AND METHOD FOR PRODUCING THE SAME |
WO2012152321A1 (en) * | 2011-05-10 | 2012-11-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Controllable fluid sample dispenser and methods using the same |
WO2012152319A2 (en) * | 2011-05-10 | 2012-11-15 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Controllable scent sample dispenser, and animal training and testing system for detecting scents |
KR101197208B1 (en) * | 2011-06-29 | 2012-11-02 | 한국과학기술원 | Micro pump and driving method thereof |
US20130000758A1 (en) * | 2011-06-30 | 2013-01-03 | Agilent Technologies, Inc. | Microfluidic device and external piezoelectric actuator |
US20130000759A1 (en) * | 2011-06-30 | 2013-01-03 | Agilent Technologies, Inc. | Microfluidic device and external piezoelectric actuator |
DE102011107046B4 (en) | 2011-07-11 | 2016-03-24 | Friedrich-Schiller-Universität Jena | micropump |
US9417332B2 (en) | 2011-07-15 | 2016-08-16 | Cardinal Health 414, Llc | Radiopharmaceutical CZT sensor and apparatus |
WO2013012813A1 (en) | 2011-07-15 | 2013-01-24 | Cardinal Health 414, Llc | Modular cassette synthesis unit |
WO2013012822A1 (en) | 2011-07-15 | 2013-01-24 | Cardinal Health 414, Llc | Systems, methods, and devices for producing, manufacturing, and control of radiopharmaceuticals |
US9346075B2 (en) | 2011-08-26 | 2016-05-24 | Nordson Corporation | Modular jetting devices |
US9254642B2 (en) | 2012-01-19 | 2016-02-09 | AdvanJet | Control method and apparatus for dispensing high-quality drops of high-viscosity material |
GB2500658A (en) | 2012-03-28 | 2013-10-02 | Dna Electronics Ltd | Biosensor device and system |
DE102012106848A1 (en) | 2012-07-27 | 2014-01-30 | Prominent Dosiertechnik Gmbh | Dosing system and metering pump for this |
CN104169583B (en) * | 2012-12-21 | 2017-03-01 | 弗劳恩霍夫应用研究促进协会 | Pump arrangement including relief valve arrangement |
DE102013100559A1 (en) | 2013-01-21 | 2014-07-24 | Allmendinger Elektromechanik KG | Device for the metered delivery of a fluid, and device and method with such a device |
US10276776B2 (en) | 2013-12-24 | 2019-04-30 | Viking At, Llc | Mechanically amplified smart material actuator utilizing layered web assembly |
FR3020632B1 (en) * | 2014-04-30 | 2017-09-29 | Commissariat Energie Atomique | SYSTEM FOR MODULATING THE QUANTITY OF LIQUID DELIVERED BY A PIEZO-ELECTRICALLY CONTROLLED MICRO PUMP |
JP2017528509A (en) * | 2014-06-06 | 2017-09-28 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア | Self-shielding benchtop chemistry system |
AU2015272038A1 (en) * | 2014-06-13 | 2016-12-15 | Formulatrix, Inc. | Fluid delivery system of an in ovo injection apparatus |
KR102099790B1 (en) | 2014-07-28 | 2020-04-10 | 이종희 | Piezo electric pump |
KR102151025B1 (en) | 2014-07-28 | 2020-09-02 | 이종희 | A pumping method by using piezo electric pump |
KR102151030B1 (en) | 2014-07-28 | 2020-09-02 | 이종희 | A pumping method controlling pulsation by using piezo electric pump |
DE102015218468A1 (en) | 2015-09-25 | 2017-03-30 | Robert Bosch Gmbh | Pumping device for pumping a fluid, method for operating a pumping device and method for producing a pumping device |
DE102015224622A1 (en) | 2015-12-08 | 2017-06-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | FREISTRAHLDOSIERSYSTEM |
DE102015224619A1 (en) | 2015-12-08 | 2017-06-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | micro-dosing system |
DE102016201718B4 (en) | 2016-02-04 | 2022-02-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Pump with polygonal piezo diaphragm converter |
US11020524B1 (en) | 2016-02-19 | 2021-06-01 | University Of South Florida | Peristaltic micropumps and fluid delivery devices that incorporate them |
US20170285858A1 (en) * | 2016-03-30 | 2017-10-05 | Intel Corporation | Intelligent pressure sensitive display |
CN109681414B (en) * | 2018-03-09 | 2024-08-16 | 常州威图流体科技有限公司 | Micro piezoelectric pump based on optical transmission welding, piezoelectric pump set and assembly method |
JP7069875B2 (en) | 2018-03-14 | 2022-05-18 | セイコーエプソン株式会社 | Liquid discharge head and liquid discharge device |
DE102018217744A1 (en) * | 2018-10-17 | 2020-04-23 | Robert Bosch Gmbh | Method for conveying at least a first medium within a channel system of a microfluidic device |
US11965762B2 (en) * | 2019-10-21 | 2024-04-23 | Flusso Limited | Flow sensor |
US12134557B2 (en) * | 2021-02-12 | 2024-11-05 | Taiwan Semiconductor Manufacturing Co., Ltd. | Arched membrane structure for MEMS device |
WO2023141079A1 (en) * | 2022-01-18 | 2023-07-27 | Aita Bio Inc. | Pressure sensor for a device for delivering insulin to a user |
WO2023141072A1 (en) * | 2022-01-19 | 2023-07-27 | Aita Bio Inc. | Mems micropump with multi-chamber cavity for a device for delivering insulin |
DE102022214000A1 (en) | 2022-12-20 | 2024-06-20 | Robert Bosch Gesellschaft mit beschränkter Haftung | Hand tool and method for operating a hand tool |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593290A (en) † | 1994-12-22 | 1997-01-14 | Eastman Kodak Company | Micro dispensing positive displacement pump |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3618106A1 (en) * | 1986-05-30 | 1987-12-03 | Siemens Ag | PIEZOELECTRICALLY OPERATED FLUID PUMP |
JPH0227073A (en) * | 1988-07-15 | 1990-01-29 | Shiroki Corp | Locking system for car |
JP2671412B2 (en) * | 1988-08-02 | 1997-10-29 | 日本電気株式会社 | Piezoelectric micro pump |
JPH02126860A (en) * | 1988-11-08 | 1990-05-15 | Olympus Optical Co Ltd | Internally buried type micropump |
KR910012538A (en) * | 1989-12-27 | 1991-08-08 | 야마무라 가쯔미 | Micro pump and its manufacturing method |
EP0465229B1 (en) * | 1990-07-02 | 1994-12-28 | Seiko Epson Corporation | Micropump and process for manufacturing a micropump |
US5466932A (en) * | 1993-09-22 | 1995-11-14 | Westinghouse Electric Corp. | Micro-miniature piezoelectric diaphragm pump for the low pressure pumping of gases |
DE19637928C2 (en) * | 1996-02-10 | 1999-01-14 | Fraunhofer Ges Forschung | Bistable membrane activation device and membrane |
US6074178A (en) * | 1997-04-15 | 2000-06-13 | Face International Corp. | Piezoelectrically actuated peristaltic pump |
DE19719862A1 (en) * | 1997-05-12 | 1998-11-19 | Fraunhofer Ges Forschung | Micro diaphragm pump |
US6247908B1 (en) * | 1998-03-05 | 2001-06-19 | Seiko Instruments Inc. | Micropump |
SE9803848D0 (en) * | 1998-11-11 | 1998-11-11 | Thomas Laurell | Micro Pump |
-
2002
- 2002-08-22 DE DE10238600A patent/DE10238600A1/en not_active Withdrawn
-
2003
- 2003-08-22 JP JP2004530251A patent/JP4531563B2/en not_active Expired - Fee Related
- 2003-08-22 DE DE50300465T patent/DE50300465D1/en not_active Expired - Lifetime
- 2003-08-22 EP EP03792417A patent/EP1458977B2/en not_active Expired - Lifetime
- 2003-08-22 WO PCT/EP2003/009352 patent/WO2004018875A1/en active IP Right Grant
- 2003-08-22 CN CNB038194309A patent/CN100389263C/en not_active Expired - Fee Related
- 2003-08-22 AU AU2003255478A patent/AU2003255478A1/en not_active Abandoned
-
2004
- 2004-10-06 US US10/960,549 patent/US7104768B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593290A (en) † | 1994-12-22 | 1997-01-14 | Eastman Kodak Company | Micro dispensing positive displacement pump |
Also Published As
Publication number | Publication date |
---|---|
US20050123420A1 (en) | 2005-06-09 |
EP1458977A1 (en) | 2004-09-22 |
JP2005536675A (en) | 2005-12-02 |
WO2004018875A1 (en) | 2004-03-04 |
EP1458977B1 (en) | 2005-04-20 |
JP4531563B2 (en) | 2010-08-25 |
DE50300465D1 (en) | 2005-05-25 |
CN1675468A (en) | 2005-09-28 |
DE10238600A1 (en) | 2004-03-04 |
CN100389263C (en) | 2008-05-21 |
AU2003255478A1 (en) | 2004-03-11 |
US7104768B2 (en) | 2006-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1458977B2 (en) | Peristaltic micropump | |
EP1320686B1 (en) | Micro valve normally in a closed position | |
EP2207963B1 (en) | Pump and pump arrangement | |
EP1331538B1 (en) | Piezo-electrically controlled micro actuator for fluids | |
DE69500529T2 (en) | MICRO PUMP | |
EP2205869B1 (en) | Membrane pump | |
DE19720482C5 (en) | Micro diaphragm pump | |
US8382452B2 (en) | Pump arrangement comprising a safety valve | |
DE19546570C1 (en) | Fluid micropump incorporated in silicon chip | |
EP2531760B1 (en) | Micro-fluidic component for manipulating a fluid, and microfluidic chip | |
DE4135655C2 (en) | ||
EP1576294B1 (en) | Microvalve that is doubly closed in a normal manner | |
EP1179139A1 (en) | Micromechanic pump | |
EP0613535B1 (en) | Micromechanical valve for micromechanical dosing devices | |
DE102006028986B4 (en) | Contrast membrane drive to increase the efficiency of micropumps | |
EP2567092B1 (en) | Microfluidic component, in particular a peristaltic micropump, and method for producing same | |
DE10238585B3 (en) | Fluid module for a peristaltic pump comprises a one-piece base element having a recess containing a fluid and fluid passages, a membrane element adjoining the recess | |
DE102008004147A1 (en) | Micropump for pumping of fluid, has diaphragm, which is extended over cross section of fluid channel, and has fluid component with passage by diaphragm | |
DE19844518A1 (en) | Hydraulic flow amplifier for microsystems with drive diaphragm bending under energy supply | |
EP1488106B1 (en) | Free jet dosing module and method for the production thereof | |
DE10164474A1 (en) | Fluid micropump volume varied by one-piece membrane and plunger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
17P | Request for examination filed |
Effective date: 20040715 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50300465 Country of ref document: DE Date of ref document: 20050525 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20050613 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
ET | Fr: translation filed | ||
26 | Opposition filed |
Opponent name: ALBERT-LUDWIGS-UNIVERSITAET FREIBURG Effective date: 20060118 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20081112 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200825 Year of fee payment: 18 Ref country code: FR Payment date: 20200820 Year of fee payment: 18 Ref country code: DE Payment date: 20200824 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50300465 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210822 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210822 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220301 |